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Reconciling the Subjective and Objective
Aspects of Probability
Glenn Shafer

Abstract. Since the early nineteenth century, the concept of objective proba-
bility has been dynamic. As we recognize this history, we can strengthen Pro-
fessor Nozer Singpuwalla’s vision of reliability of survival analysis by align-
ing it with earlier conceptions elaborated by Laplace, Borel, Kolmogorov,
Ville and Neyman. By emphasizing testing and recognizing the generality of
the vision of Kolmogorov and Neyman, we gain a perspective that does not
rely on exchangeability.
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I would like to thank Professor Singpurwalla for pre-
senting his views on reliability theory so clearly, and I
would like to thank the editor for this opportunity to
comment.

Professor Singpurwalla proposes to improve our un-
derstanding of reliability theory and survival analysis
by revisiting the interpretation of probability. The no-
tion of exchangeability, he argues, is key; it allows us
to link personal probability and propensity. He also ex-
presses the hope that “the linkage also bring about a
rapprochement between the relative frequency and per-
sonalistic interpretations of probability”.

The desire to reconcile or unify competing interpre-
tations of probability has long been widespread among
statisticians. Singpurwalla cites M. G. Kendall’s 1949
plea for reconciliation, and he could also have cited
numerous contributions to this journal, including A. P.
Dawid’s “Probability, Causality and the Empirical
World: A Bayes–de Finetti–Popper–Borel Synthesis”
(2004) and my own “The Unity and Diversity of Prob-
ability” (1990). None of these efforts at reconciliation
have gained much traction. Our efforts to find unity
seem only to multiply the number of competing view-
points.

I believe that only deeper historical understanding
can bring order to this babel. In the nineteenth century,
especially among continental writers, there was greater
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TABLE 1
Words used by four authors to distinguish between subjective and

objective probability

Subjective Objective

Laplace (1812) probabilité possibilité
facilité

Poisson (1837) probabilité chance
Cournot (1843) probabilité subjective probabilité objective
Sinpurwalla survivability reliability

probability propensity
personal probability objective chance

unity in the interpretation of probability—greater link-
age between its subjective and objective aspects. If
today’s statisticians and probabilists were better in-
formed about this older linkage and the ways in which
it broke down during the twentieth century, we would
be much closer to having a common language for mov-
ing forward.

As I read the words Singpurwallah uses to dis-
tinguish between subjective and objective aspects of
probability, I found myself wanting to use instead the
language of the nineteenth-century giants, as in Ta-
ble 1. Singpurwalla’s main message could be reframed,
I think, as a plea for leaving aside the divisions intro-
duced by twentieth-century authors such as von Mises,
de Finetti and Popper, and returning to the insights of
Laplace and his nineteenth-century successors.

One of Singpurwalla’s points is that the twentieth-
century view of objective probability often takes con-
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stant probabilities as basic, whereas objective proba-
bilities or propensities may and usually do change over
time. But the notion that objective probabilities vary is
hardly novel. From John Graunt onward, statistics has
always been predominantly about time series (Klein,
1997). Moreover, many nineteenth-century authors, in-
cluding Poisson, Cournot and Bienaymé, paid great at-
tention to variation in probabilities (Heyde and Seneta,
1977).

Singpurwalla (Section 6) writes:

Lapace . . . claimed that the Bernoulli pa-
rameter P was the cause of an observed bi-
nary random variable, and that one’s knowl-
edge about P changes as more and more
binary observations are obtained. With fil-
tering, the added dimension is to make pro-
vision for the P itself to change over time
due to the physics of the scenario.

Yet this added dimension was already discussed by
Laplace (Fischer, 2011, page 30). Would Laplace find
any fundamental conceptual novelty in Singpurwalla’s
models? Would he want to use de Finetti’s theorem to
interpret these models? Probably not.

When we extend our historical horizon to the nine-
teenth century, von Mises’s frequency theory begins to
look like an aberration and Popper’s philosophy looks
less innovative. We should remember that von Mises’s
ideas were vigorously rejected by the leading French
probabilists of his time, especially Lévy and Fréchet,
who also wrote at length about the objective concept
of probability. One reason for this rejection was that
the convergence of relative frequencies considered by
von Mises is not the only almost sure property of a ran-
dom sequence. As Jean Ville pointed out, the relative
frequencies in a sequence and selected subsequences
might converge but do so from above or otherwise vi-
olate the law of the iterated logarithm (Ville, 1939,
Bienvenu, Shafer and Shen, 2009). Many philosophers
and statisticians continue to present von Mises’s as
the canonical account of objective probability, but in
order to bring it into the mainstream of mathemati-
cal probability, we need to revise it, as Ville did, to
accommodate all properties that are given probability
one by a probabilistic theory—at least all such prop-
erties that are simple or computable. From the more
practical perspective of statistics, an objective concept
of probability must insist on all simple properties that
are given probability close to one, and once we do

this there is no need to insist that the objective prob-
abilities for a sequence of events or the objective ex-
pectations for a sequence of variables should be con-
stant. When we ask, as Jerzy Neyman did, whether
frequencies of a scientific phenomenon are consistent
with a stochastic process used to model it (Neyman,
1960), we are not pretending that the stochastic pro-
cess gives constant probabilities; instead we are asking
for consistency with martingale-type generalizations of
Bernoulli’s theorem.

Following Fréchet, Kolmogorov gave a concise set
of axioms and definitions that presented probability
theory as a child of measure theory and functional
analysis. This removed time, which had been funda-
mental since Laplace, from the basic probability pic-
ture and contributed to the misperception that interpret-
ing probability means interpreting isolated or constant
probabilities. But it is clear, from his other work in
probability at the time, that Kolmogorov did consider
time fundamental to the larger probability picture, and
Doob devoted great energy to emphasizing the role of
time and the fundamental role of Ville’s martingales.
In more recent decades, the fundamental role of mar-
tingales has often become explicit in survival analysis
(Aalen et al., 2009).

In the game-theoretic generalization of Kolmogo-
rov’s framework developed by Vladmir Vovk, myself,
and others over the past twenty years (Shafer and
Vovk, 2001, www.probabilityandfinance.com), martin-
gales and supermartingales are used to test probabilis-
tic forecasts. Consistent with the traditional practice of
rejecting a hypothesis when a test statistic selected in
advance comes out too large, we reject the model or
forecasting system when a nonnegative supermartin-
gale reaches too large a multiple of its initial value.
Since a nonnegative supermartingale is the capital pro-
cess for a strategy that bets at the prices set by the
model without risking more than its initial capital, this
method of testing can be said to identify validity of the
model with its resistance to betting: the model is valid
if we cannot multiply our capital by a large factor bet-
ting against it. This way of looking at testing brings
us back to an attitude shared by Émile Borel and Paul
Lévy, who did not see so great a distance between the
subjective and objective interpretations of probability.
A probabilistic model or forecasting system is objec-
tively valid if no one can beat it. It is subjectively valid
if you think no one can beat it. There is a difference
between asserting objective validity and asserting sub-
jective validity, but in practice this difference may be
small.

http://www.probabilityandfinance.com
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This is not the place to list all the contributions
game-theoretic probability can make to interpreting
probability and developing its applications, but I do
want to note one application that may be relevant to
Singpurwalla’s claim (Section 2.2) that “without ex-
changeability, it is not possible to justify inductive sta-
tistical inference.” Suppose, to fix ideas, that we ob-
serve in sequence quantities X1,X2, . . . ,XN , where
N is very large and each Xn will be either 0 or 1.
Suppose we are required, for n = 1, . . . ,N − 1, to
give a probability for Xn = 1, having already observed
X1, . . . ,Xn−1. Is it possible to do this so that the prob-
abilities will be valid, that is, will pass all reasonable
statistical tests? Yes. One method for giving such valid
forecasts, called defensive forecasting emerges from
the game-theoretic framework. It involves obtaining a
single betting strategy by averaging the betting strate-
gies corresponding to the different statistical tests we
want to beat and then choosing the probabilities to
beat that betting strategy (Vovk, Takemura and Shafer,
2005, Shafer, 2008).
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