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Chaos Communication:
A Case of Statistical Engineering
Anthony J. Lawrance

Abstract. The paper gives a statistically focused selective view of chaos-
based communication which uses segments of noise-like chaotic waves as
carriers of messages, replacing the traditional sinusoidal radio waves. The
presentation concerns joint statistical and dynamical modelling of the binary
communication system known as “chaos shift-keying”, representative of the
area, and leverages the statistical properties of chaos. Practically, such sys-
tems apply to both wireless and optical laser communication channels. The-
oretically, the chaotic waves are generated iteratively by chaotic maps, and
practically, by electronic circuits or lasers. Both single-user and multiple-
user systems are covered. The focus is on likelihood-based decoding of mes-
sages, essentially estimation of binary-valued parameters and efficiency of
the system is in terms of the probability of bit decoding error. The empha-
sis is on exact theoretical results for bit error rate, their structured approx-
imations and engineering interpretations. Design issues, optimality of per-
formance, interference and fading are other topics considered. The statistical
aspects of chaotic synchronization are involved in the modelling of optical
systems. Empirical illustrations from an experimental laser-based system are
presented. The overall aim is to show the use of statistical methodology in
unifying and advancing the area.

Key words and phrases: Bit error rate, chaos communications, chaos
modelling, chaos shift-keying, communications engineering, decoding as
likelihood-based statistical inference, empirical communication system anal-
ysis, Gaussian approximations, laser chaos, nonlinear dynamics, optical
noise, statistical modelling, statistical time series, synchronization error.

1. INTRODUCTION TO CHAOS COMMUNICATIONS

Communications involving chaotic waves is an area
in which there is much synergy between engineering
and statistical modelling. Chaos communication sys-
tems use segments of noise-like chaotic waves, rather
than traditional sinusoidal waves, to carry messages.
The chaotic waves are generated mathematically by
chaotic maps or physically by electronic means, such
as electrical circuits or lasers. The area started in
physics some 25 years ago with remote synchroniza-
tion of chaotic waves, the phenomenon that two re-
motely generated chaotic sequences can proceed in
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unison; it then travelled in a multi-disciplinary way into
mathematical chaos theory, communications engineer-
ing and statistical modelling. The value of synchro-
nization is that it provides remote although imperfect
information at the receiver about a segment gener-
ated at a transmitter. This implies in the communica-
tion setting that for each received wave segment car-
rying a message there is also available at the receiver
an imperfect version of its segment without the mes-
sage, sometimes referred to as the reference segment.
In electrical circuit systems, the reference segment is
known from transmission rather than by synchroniza-
tion. In either case, there is then enough information
in the two segments for the transmitted message to be
decoded by statistical estimation on the basis of the
system model. This involves statistical properties of
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the chaotic waves, transmission noise and, additionally,
synchronization error for laser-based systems. Trans-
mission noise is either electronic or optical. The mod-
els used are mathematical extractions of the engineer-
ing communication system, but nevertheless allow the-
oretical investigation of performance and optimal de-
sign.

The presentation here particularly concerns statisti-
cal and mathematical modelling of the binary commu-
nication system known as antipodal chaos shift-keying
(CSK) which has typical characteristics of systems in
the area. Shift-keying is a variously used communi-
cations description and here refers to the multiplica-
tive modulation of a chaotic wave segment by a binary
bit b, with antipodal implying b = ±1. One aim of the
paper is to mathematically specify the antipodal chaos
shift-keying system and assert the importance of its sta-
tistical features, thereby clarifying and unifying earlier
approaches and their differing interdisciplinary styles.
An important communication concern is bit error rate,
essentially a statistical measure of performance, and so
there is emphasis on its theoretical calculation by exact
and approximate mathematics—not found in much of
the engineering literature. Initial focus is on single-user
systems, but extensions to more realistic multi-user sit-
uations are also covered.

In this area, the statistical aspects of chaos and
synchronization are more central than the dynamical
ones. Kohda and Murao (1990) gave an early account
of the statistical properties of chaotic maps based on
the Frobenius–Perron operator. Berliner (1992) made
a strong connection between statistics and chaos in a
wide ranging and at times philosophical discussion. An
accessible statistical introduction to the useful invari-
ant statistical distributions of chaos is given in the early
chapters of Lasota and Mackey (1994) while Lawrance

and Balakrishna (2008) elaborate the dependency as-
pects most relevant in the present context. The topic of
chaos synchronization was initially explored by Pecora
and Carroll (1990), Carroll and Pecora (1992), who
realized that it could be applied in communications.
The earliest work on antipodal CSK appears to be by
Parlitz and Ergezinger (1994) in the so-called coher-
ent case when the carrying wave segment is known ex-
actly at the receiver, and by Kolumbán et al. (1996) in
the so-called non-coherent or differential case when the
carrying wave segment is also transmitted; continuing
work was published in two special issues of the Pro-
ceedings of the IEEE, Kolumbán and Kennedy (2000)
and Hasler et al. (2002). Papers in these collections can
be seen as the foundational work in the area. Subse-
quently there has been a linked pair of monographs
consolidating much of the earlier work, Lau and Tse
(2003) and Tam, Lau and Tse (2007) and paper collec-
tions by Kennedy, Rovatti and Setti (2000), Larson, Liu
and Tsimring (2006). While these developments were
mainly based on electronic circuit generation of chaos,
at about the same time there was independent and
parallel experimental work concerning the communi-
cations use of remotely synchronized chaotic lasers,
beginning with Mirasso, Colet and Garcia-Fernandez
(1996) and which was later overviewed in a featured
section of the IEEE Journal of Quantum Electronics,
Donati and Mirasso (2002). A comprehensive account
of laser communication from an engineering perspec-
tive is given by Uchida (2012).

The antipodal chaos shift-keying system is illus-
trated in the block diagram of Figure 1. A chaotic so-
called spreading segment X = {Xi}Ni=1 is taken from
a chaotic wave of mean zero and variance σ 2

X gen-
erated at the transmitter, either mathematically or by
physically; N is called the spreading factor. The bit to
transmitted b, multiplicatively modulates the spreading

FIG. 1. Block diagram of antipodal chaos shift-keying communication systems in both the coherent and non-coherent forms. In the coherent
form, the reference signal is known exactly at the receiver, and in the non-coherent form it is known inexactly at the receiver by transmission
or synchronization.
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segment as bX = {bXi}Ni=1 which then passes through
a noisy channel and becomes the message segment
R = {bXi + εi}Ni=1 at the receiver where {εi}Ni=1 is the
associated message noise. Also, the spreading segment
at the transmitter X, may be transmitted to the receiver
or synchronized there, where it is known as the ref-
erence segment Y = {Xi + ηi}Ni=1; here {ηi}Ni=1 is the
associated reference or synchronization error, as appli-
cable. If there is no reference or synchronization error,
the system is called coherent; one such way would be
by perfect synchronization at the receiver. Otherwise,
the system is said to be non-coherent. The terminology
here is not consistent in the communications literature;
sometimes non-coherent implies a system without the
need for a reference segment; sometimes coherent is
used if there is one, whether it is known exactly or not.

The system model equations for antipodal chaos
shift-keying communication concern the transmission
of a single binary message. The standard assumption is
that the system is memoryless, with no dependency be-
tween bits. From Figure 1, the equation for the received
message segment for a single bit is seen to be

(1) Ri = bXi + εi, i = 1,2, . . . ,N,

where {εi} is independent and identically distributed
channel noise of mean zero and variance σ 2

ε . In a coher-
ent system, covered in Sections 2–4, the reference seg-
ments are known, although generated chaotically, and
this is the only equation required. Section 5 deals with
the non-coherent system in which the reference seg-
ments are either transmitted to the receiver or imper-
fectly known there by synchronization. In these cases,
there is a second model equation for the reference seg-
ments

(2) Yi = Xi + ηi, 1 = 1,2, . . . ,N.

Equations (1) and (2) provide the theoretical model of
the system, called a base-band model in the commu-
nications literature, and lead to the statistical basis of
decoding the received bits and the bit error rate. Inde-
pendent Gaussian assumptions are usually made for the
noise and error terms.

2. MAXIMUM LIKELIHOOD DECODING OF
MESSAGES AND BIT ERROR THEORY

In the statistical approach to decoding, a received bit
b is treated as an unknown statistical parameter in the
system model and is estimated from the available infor-
mation, which in the case of coherent antipodal CSK is
the message segment R and its spreading segment X.

Intuitively, it can be seen that the correlation between
R and X should have the same sign as b, and thus pro-
vide an estimate of b. Verifying this as the maximum
likelihood decoder in the simplest coherent case of an-
tipodal coherent CSK with Gaussian channel noise is a
useful way to unfold the primary theoretical approach
to decoding. The accuracy of the estimate is naturally
assessed by its error rate, usually the most important
communication measure of performance, and more ap-
propriate than the variance. The exact Gaussian theory
(EGT) is of central relevance and will be given, some-
what extended from the original result in Lawrance and
Ohama (2003).

Knowing the chaotic segment XT ≡ (X1,X2,

. . . ,XN) exactly, the Gaussian likelihood of a trans-
mitted bit b based on received message segment RT ≡
(R1,R2, . . . ,RN), is

l
(
b,σ 2

ε | R,X
)

(3)

= (σε

√
2π)N exp

{
− 1

2σ 2
ε

N∑
i=1

(Ri − bXi)
2

}
.

This is first maximized over σ 2
ε as a function of b when

only interested in estimating b, giving

(4) σ 2
ε (b) = N−1

N∑
i=1

(Ri − bXi)
2

and hence the marginal likelihood for b is

l
(
b,σ 2

ε (b) | R,X
)

(5)

= (2πe/N)N/2

{
1

N

N∑
i=1

(Ri − bXi)
2

}−N/2

.

Maximum likelihood estimation implies choosing the
value of b which has the greater likelihood, or the
greater log likelihood, so the appropriate log likelihood
difference condition is

log l
(+1, σ 2

ε (+1) | R,X
)− log l

(−1, σ 2
ε (−1) | R,X

)
(6)

=
N∑

i=1

RiXi ≡ CR,X > 0

in which the middle term is the covariance of R,X seg-
ments, assuming a chaotic wave of mean zero, as can
always be arranged. Hence, b̂, the maximum likelihood
estimate of b, is given by

(7) b̂ = sign{CR,X}
and is known in communication theory as a correlation
decoder. From a statistical point of view, it is just an
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estimate of a regression coefficient b which can only
take one of the two values ±1 according to the sign
of the covariance, as previously surmised more gener-
ally. Note that its form does not depend on the type of
spreading, and whether it is chaotic or not, but does as-
sume knowledge of spreading. The accuracy of b̂ will
be considered presently, but as a maximum likelihood
estimate, the correlation decoder is optimum in this sta-
tistical sense for this particular CSK system when there
is no prior knowledge of b.

If it is known that the proportion of ±1 transmitted
bits is in the ratio p : 1 − p, then a simple Bayesian
regression estimate is obviously an improvement. This
implies a class-room twist on the usual Bayesian re-
gression scene in that the regression parameter can
only take the values ±1, and should have binary prior
probabilities (p,1 − p),0 ≤ p ≤ 1. With the conju-
gate gamma prior probability density for σ−2

ε , say, with
shape g and scale h and thus probability density func-
tion proportional to xg exp(hx), the Bayesian decoder
becomes in the coherent CSK case

b̂ = sign

{
N∑

i=1

(Ri + Xi)
2 + 2h

(8)

−
(

1 − p

p

) 2
N+2g+2

(
N∑

i=1

(Ri − Xi)
2 + 2h

)}
.

This simplifies with the noninformative prior g = h =
0. The posterior distribution for σ 2

ε and its mean or
median will be somewhat complicated. In communica-
tions practice, an equal proportion of ±1’s are usually
transmitted, and then the Bayesian and non-Bayesian
decoders are identical.

Bit error rate (BER) is the most important measure
of communication performance for binary systems and
statistically is the average probability of bit error, and
for CSK systems is over spreading segments; there
are others, such as outage rate, Lawrance and Ohama
(2005). For BER of chaos-based systems, there are
early approximate engineering results, thought to be
exact, in several key papers, such as Kolumbán (2000)
and Abel, Schwarz and Gotz (2000). They were car-
ried over from other communication engineering sys-
tems such as binary phase shift keying (BPSK), Proakis
(2001). The emphasis here is on exact BER results for
chaos shift-keying systems and their use in providing
engineering insights and structured approximations.

The BER of b̂ from (7) needs to be considered con-
ditional on the binary bit value transmitted and then av-
eraged over their relative proportions to get the overall

rate. Fortunately, from symmetry considerations, the
conditional BERs are equal in most systems, including
coherent CSK, and so it is sufficient to consider BER
in

BER = P(b̂ = −1 | b = 1) = P(b̂ = 1 | b = −1)

= P(CR,X < 0 | b = 1)(9)

= P(CR,X > 0 | b = −1),

where the third and fourth equalities are from (6). With
the received message R given by (1), the covariance in
(9) when b = 1 is given by

(10) CR,X ≡
N∑

i=1

XiRi =
N∑

i=1

Xiεi +
N∑

i=1

X2
i .

Hence, the probability of a bit error by the correlation
decoder, conditional on X, can be expressed as

BER = P(CR,X < 0 | b = 1)
(11)

= P

(
N∑

i=1

Xiεi +
N∑

i=1

X2
i < 0

)
.

This can be evaluated exactly since the distribution
of the linear combination of Gaussian noise terms is
Gaussian with mean zero and variance σ 2

ε

∑N
i=1 X2

i .
Then a simple Gaussian distribution calculation leads
to the preliminary conditional result

(12) BER(X) = �
{−(XT X/σ 2

ε

)1/2}
,

where XT X represents an important engineering quan-
tity called bit energy, the sum-of-squares of the spread-
ing segment values, and �(·) is the cumulative distri-
bution function of a standardized Gaussian variable.
The distribution of the probability of bit error from
(12) has been pursued in Lawrance and Ohama (2005)
in connection with outage, another measure of perfor-
mance. Unconditionally, over the joint invariant distri-
bution of the spreading sequences, the final exact result
becomes

(13) BER = EX�
{−[(XT X/Nσ 2

X

)
SNR

]1/2}
,

where SNR = Nσ 2
X/σ 2

ε is the fundamental commu-
nications transmission measure, the per bit signal-to-
noise ratio; the first term in (13) will be called the stan-
dardized bit energy. The result (13) indicates that BER
is in the range (0,0.5); it is also clear that the expecta-
tion over X could be replaced by that over the distribu-
tion of bit energy.

The general definition of SNR in communications
literature is bit-energy-to-noise-power-spectral-density



562 A. J. LAWRANCE

ratio for continuous signals, for example, Lau and Tse
(2003), page 39, but the given form is more easily ap-
plicable in the present discrete base-band model.

Of considerable communication interest is the appli-
cation of Jensen’s inequality to (13), giving the lower
bound result as

(14) BER ≥ �
{−(SNR)1/2}.

This is the result which was originally assumed to be
exact. In the CSK setting, it can be reached by exten-
sive spreading, N → ∞. A key statistical observation
from (13) and (14) is that bit error rate approaches
its lower bound as bit energy reduces in variability, a
desirable communication property. Thus, where possi-
ble, chaotic sequences should be designed with this in
mind, as to be discussed in Section 3. The CSK lower
bound is the exact result for the conventional binary
phase shift keying (BPSK). This has led to some engi-
neering views that CSK cannot improve on BPSK, but
it is better in some respects, such as the steganographic
security of its apparently noisy transmissions.

The independence of the Gaussian noise result in
(13) can be relaxed to autocorrelated Gaussian channel
noise and the generalized EGT result for the correla-
tion decoder is

BER = EX�

{
−
[(

XT X/Nσ 2
X

)
SNR

(15) /(
1 + 2

N−1∑
k=1

(
1 − i

N

)
ρ̂X(k)ρε(k)

)]1/2}
,

where ρε(i) is the ith autocorrelation of the noise and
ρ̂X(k) is the kth within-segment empirical autocorrela-
tion

(16) ρ̂X(k) = (N − k)−1
N−k∑
i=1

XiXi+i

/
N−1

N∑
i=1

X2
i

for the zero-mean segment intervals. The within-
segment autocorrelations could be replaced by the the-
oretical ones as a simplifying approximation. The ef-
fect of noise autocorrelation is seen to depend on the
signs of the autocorrelations of the within-segment
spreading and those of the noise. If noise and spread-
ing are oppositely correlated, the square-rooted term is
less than one, thus reducing BER toward zero; other-
wise, the square-rooted term is greater than one, thus
increasing BER toward one-half. There are similar con-
clusions for the lower bound, also only available from
the exact statistical approach.

The calculation of BER via (13) for coherent CSK
is seen to involve an expectation over a segment of

the spreading sequence. This might seem to require
a daunting N -dimensional integral but in the case of
chaotic map spreading it is one-dimensional since all
spreading values are iterations of the map from an ini-
tial random variableX1. With the chaotic map being de-
noted by τ(x) and its iterates by τ (i)(x), the BER result
(13) becomes

BER = EX1�

{
−
[(

N∑
i=1

τ (i−1)(X1)
2
/

Nσ 2
X

)
(17)

· SNR

]1/2}
which is equivalently the one-dimensional integral∫ c

x=−c

{
�

(
−
[(

N∑
i=1

τ (i−1)(x)2
/

Nσ 2
X

)
(18)

· SNR

]1/2)}
ϕ(x)dx,

where (−c,+c) is the range of the map and ϕ(x) is the
p.d.f. of its natural invariant distribution. The integral
can be numerically evaluated for maps with explicit
iterated forms, a key point. Incidentally, note that the
chaotic nature had not been leveraged previously since
only the random variable stationary aspect of spreading
has been assumed.

For logistic spreading, the form taken is

τ (i)(x) = x, i = 1

= cosh
(
2i−1 arccosh(x)

)
,(19)

−1 ≤ x < 1, i = 2,3, . . . .

A computational disadvantage of using the logistic
map is that for extensive spreading, the function to be
integrated in (18) is a polynomial with many turning
points and requires delicate evaluation, soon becoming
impractical and needing approximation. However, for
the Bernoulli-shift map

τ (i)(x) = x, i = 1

= 2i−1x − 1 − 2k,
k

2i−2 ≤ x <
k + 1

2i−2 ,(20)

k = −2i−2, . . . ,2i−2 − 1, i = 2,3, . . . ,

the piece-wise linearity is a computational advantage,
although as will be seen in Figure 2, is not always as
effective in spreading.

Figure 2 gives some illustrations of the BER re-
sults (13) and (14) using (19) and (20) for logis-
tic and Bernoulli-shift map spreading; the scales are
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FIG. 2. BER plotted against SNRdb for antipodal CSK; order of curves from panel variables; solid lowest curve in each panel is the BER
Jensen lower bound. Panel (a): logistic map spreading, spreading factors N = 1,2, . . . ,5. Panel (b): Bernoulli-shift map spreading, spreading
factors N = 1,2, . . . ,5. Panel (c): Bernoulli-shift, logistic and Gaussian spreading, spreading factorN = 5. Panel (d): Bernoulli-shift and
logistic spreading, spreading factor N = 2 and Bernoulli-shift and logistic spreading, spreading factor N = 5.

logarithmic for BER and decibel for SNR, SNRdb =
10 log10(SNR). The main conclusions are, from Panels
(a) and (b), the overall superiority of logistic spreading
to Bernoulli-shift spreading. Panel (c) illustrates that
independent Gaussian spreading is inferior to chaotic
Bernoulli-shift spreading and logistic spreading. Panel
(d) shows the advantage of increasing the spreading
factor in both of the Bernoulli-shift and logistic cases
with the latter being superior although not very close
to the lower bound by N = 5 for SNRdb > 10. Also
shown by the top curves of Panels (a), (b) and (c) are
the upper bounds of no spreading, N = 1. It is conjec-
tured that independent spreading is generally inferior
to negatively dependent spreading and superior to pos-
itively dependent spreading.

There are many approximate results in the chaos
communication literature for the BERs of correlation
decoders, mostly following the early approaches in
which results were transferred from other systems or

obtained by simple Gaussian approximation (SGA),
such as to CR,X in (10). By comparisons with the ex-
act results, they have been found inaccurate for mod-
erate N and small BERs, as will be illustrated in Fig-
ure 2. The inaccuracy comes from approximating the
lower tail of the distribution of CR,X , which is skewed,
by a Gaussian distribution with the mean and variance
of CR,X . Nevertheless, the results can be structured to
identify influential terms. The SGA approach begins
with the equalities

BER = P {b̂ = −1 | b = 1} = P {CR,X < 0 | b = 1}
(21)

= P

{
CR,X − E(CR,X)

[var(CR,X)]1/2 <
−E(CR,X)

[var(CR,X)]1/2

}
,

and making the standardized Gaussian assumption for
the first term of the last equality gives

BERsga = P {CR,X < 0 | b = 1}
(22)

∼= �

{
− E(CR,X)

[var(CR,X)]1/2

}
,
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with b = 1 being assumed in the expectation and vari-
ance terms. After some calculation, there is the explicit
SGA result

BERsga 	 �

{
−
[

1

SNR
+ N−1 σ 2

X2

σ 4
X

(23)

·
{

1 + 2
N−1∑
k=1

(
1 − k

N

)
ρX2(k)

}]− 1
2
}

as first derived in Lawrance and Balakrishna (2001).
Here, σ 2

X2 is the variance of X2
t , ρX2(k) is the within-

segment lag -k quadratic autocorrelation of (Xi,Xi+k),
that is the lag -k linear autocorrelation of (X2

t ,X
2
t+k),

and the variances ratio is the kurtosis of X. The approx-
imation agrees with the exact result (13) as SNR → 0
and also when N → ∞. The second term indicates the
influential roles of the kurtosis of the spreading and
its quadratic autocorrelations, anther credit to the exact
result. Positivity of the quadratic autocorrelation sum
is seen to increase BER, as does large kurtosis of the
spreading. Negativity of the sum correspondingly re-
duces BER. Notice that the result does not depend on
the actual type of the spreading, only on its marginal
and correlational properties, and thus emphasises a
qualitative deficiency in the approximation. A variety
of such approximations, although less structured, have
been reported in Lau and Tse (2003) and Tam, Lau and
Tse (2007). Figure 3 illustrates the approximation. The
upper set of curves are from the SGA result (23) cal-
culated for N = 1,2, . . . ,6 while the separated lower
set, not including the lower bound curve (14), are from
the corresponding exact result (13). It is evident that

FIG. 3. Comparison of using the exact BER result for the lower
set of curves with using the SGA approach for the upper set of
curves, for coherent CSK with logistic map spreading, spreading
factors N = 2,3, . . . ,6, and the lower bound.

the SGA result gives curves which are much different
to the exact ones.

For qualitative information about the effect of auto-
correlation in the channel noise, the SGA approxima-
tion to the exact BER result (15) can be obtained by
reworking of (23) as

BERsga

	 �

{
−
[

1

SNR

{
1 +

N∑
k=1

(
1 − k

N

)
ρX(k)ρε(k)

}
(24)

+ N−1 σ 2
X2

σ 4
X

{
1 + 2

N−1∑
k=1

(
1 − k

N

)
ρX2(k)

}]− 1
2
}
.

The first term of the sum is seen as an approximation
in the exact result (15), (16) and the second is found in
the uncorrelated noise SGA expression (23).

These results have all been for coherent chaos shift
keying, but more practically, spreading sequences will
have to be transmitted to the receiver or synchronized
at the receiver, in order to decode the message. Then
the coherent case is best-case modelling. The neces-
sary bit decoding and error rate theory for non-coherent
modelling will be covered in Section 5 after consider-
ations of design.

3. DESIGN OF CHAOS COMMUNICATION
SYSTEMS

This is not a topic which has received much atten-
tion in the engineering literature and draws strength
from the exact statistical theory approach to bit error.
Homer et al. (2004) discussed in a somewhat ad hoc
way the choice among piece-wise linear chaotic map
generators. More conceptually, Yao (2004) noted from
the exact result (13), that there is a condition for deter-
mining the type of spreading which brings BER down
to its lower bound (14); this is when the bit energy sum-
of-squares term in (13) is equal to its expectation Nσ 2

X .
Actually, the condition is an exact impossibility if the
spreading segments are to be chaotic but it does sug-
gest a strategy toward this aim. Thus, first consider the
variance of the bit energy sum-of-squares

var

(
N∑

i=1

X2
i

)
(25)

= N

{
1 + 2

N−1∑
k=1

(
1 − k

N

)
ρX2(k)

}
σ 2

X2
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and require it to be zero, so X2
i is equal to its expecta-

tion σ 2
X , by having

(26) 1 + 2
N−1∑
k=1

(
1 − k

N

)
ρX2(k) = 0.

This is too intractable to take forward in general and
exactly, but it is possible to consider the case N = 2
for adjacent pairs and this yields

(27) 1 + ρX2(1) = 0,

suggesting that (X2
i ,X

2
i+1) be linearly related with

slope −1 and thus that (Xi,Xi+1) lies on a circle.
With N even, constant spreading energy per bit is
then assured. However, a circle is not a chaotic map,
and thus a chaotic circular map approximately resem-
bling a circle is required. First, working in terms of
the linearly related squared variables, a map with slope

−1 is required but this cannot be chaotic; an approxi-
mate chaotic form can be visualized as set of 2m sub-
lines, say, as illustrated in Figure 4, Panels (a) and (b).
The simplest case of two branches, the Bernoulli map,
translates into the 1st-order circular map of Figure 4,
Panel (c) given by

τ(x) = {−√−2x2 + 2,−1 ≤ x < −1/
√

2;√
−2x2 + 1,−1/

√
2 ≤ x < 1/

√
2;(28)

−
√

−2x2 + 2,1/
√

2 ≤ x < 1
}
,

and the case of 4 branches translates into the 2nd-order
circular map of Figure 4, Panel (d). More generally,
the class of Yao’s circular maps is produced which
more and more resemble a circle as the number of
branches increase. Circular maps such as (28) have a
natural invariant distribution with v-shaped p.d.f. |x|;

FIG. 4. Circular maps involved with optimal spreading in coherent CSK theory.
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this map has ρX2(1) = −1/2, so only about halfway
to the Frechet lower bound of −0.968. With m lin-
ear branches, the map has the same invariant distribu-
tion, but now has ρX2(1) = −1 + 1/2(m − 1)2 which
does approach the lower bound −1 as the number of
branches increases.

Papamarkou and Lawrance (2007) improved on
Yao’s map (28) by transforming a non-central Bernoulli
map with branch division at r producing a deformed
circular map as illustrated in Figure 4, Panel (e) for r =
0.2. The minimum lag 1 quadratic autocorrelation is
now −0.722, when r = 0.42, a considerable improve-
ment on −0.5. The invariant distribution associated
with the deformed circular map now has a distribution
with p.d.f. {−2(1 − r)x,−1 ≤ x ≤ 0;2rx,0 < x < 1}.
The culmination of this work is that of paired Bernoulli
circular spreading, Papamarkou and Lawrance (2013),
in which a type of random circular map is developed
which actually attains the lower bound (14), admit-
tedly at the cost of some complication and which is
not chaotic.

This brief analysis has, hopefully, indicated that a
start from the statistically exact bit error result (13) en-
ables theoretical and design insight about CSK. The
family of chaotic circular and deformed circular maps
bring the BER within close proximity to the theoreti-
cal lower bound, without actually reaching it. They are
likely to be more useful in practice than theoretically
since their explicit convolutions seem intractable.

4. MODELLING INTERFERENCE AND MULTI-PATH
FADING CHANNELS

The performance of a communication system can
be degraded by external circumstances, such as inno-
cent interference, intentional jamming, multi-path fad-
ing and by multi-user activity. The present concern
will be limited to the statistical modelling of the sec-
ond and third of these. Intentional jamming can take
many forms, and to illustrate, the effect of wide band
on-off pulsed additive jamming signals on the BER of
the correlation decoder will be considered. The presen-
tation is based on reformulating work in Lau and Tse
(2003) to introduce exact and informative structural re-
sults which reveal those features of the system control-
ling susceptibility to jamming. Several new descrip-
tive terms are introduced which emphasize the main
aspects.

The on-off jamming signal for a typical spreading
segment will be represented by Ui, i = 1,2, . . . ,N and

is modelled as

Ui = {0, i = 0,Ai, i = 1,2, . . . ,M;
(29)

0, i = M + 1, . . . ,N},
where M,0 ≤ M ≤ N is the jamming number and
Ai,1 ≤ Ai ≤ M give the jamming strengths which are
modelled as independent Gaussian N(0, σ 2

a ). The re-
ceived but jammed message segment is now

(30) Ri = bXi + Ui + εi, i = 1,2, . . . ,N,

where the interference effectively increases the mes-
sage noise. The covariance of the correlation decoder
as in (10) now becomes

CR,X =
N∑

i=1

RiXi

(31)

= b

N∑
i=1

X2
i + M

M∑
i=1

Xi(Ai + εi) +
N∑

i=M+1

Xiεi.

Conditionally on the spreading values X1,X2, . . . ,XN

and Gaussian noise, CR,X is a linear combination of
independent Gaussian variables, thus with a Gaussian
distribution which has mean and variance

(32) b

N∑
i=1

X2
i ,

(
σ 2

a + σ 2
ε

) M∑
i=1

X2
i + σ 2

ε

N∑
i=M+1

X2
i ,

respectively. A calculation paralleling (11) and some
creative formula display then give the exact BER of
the correlation decoder as

BER = EX�

{
−
[((

XT X
)
N/Nσ 2

X

)
SNR

(33) /(
1 + JFM,N

M−1(XT X)M

N−1(XT X)N

)]1/2}
,

where (XT X)i is the sum of squares of the first i

spreading values and JFM,N = Mσ 2
a /Nσ 2

ε is termed
the jamming factor. The SNR term in (33) gives the
no-jamming result (13). For increasingly large spread-
ing, but a constant jamming-spread fraction (JSF) γ =
M/N , the limiting form of (33) is seen as

(34) BER → �
{−[SNR/(1 + JF)

]1/2}
,

where JF = γ {σ 2
a /σ 2

ε }. Thus, increases in the jamming
factor bring BER closer to its maximum value of one-
half. Figure 5 gives illustrations of jamming in respect
of the exact and limiting results with M = 2,N = 4
and several jamming factors JF. Panel (a) shows the
exact results for jamming factors JF = 0,1,3,5 with
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FIG. 5. Wide band on-off pulsed jamming of coherent CSK with logistic spreading, spreading factor N = 4 and jamming number M = 2.
Panel (a): Exact BER curves for the coherent lower bound and jamming factors JF = 0,1,3,5. Panel (b): Comparison of limiting and exact
BER curves for jamming factors JF = 1,5.

JF = 0 indicating no jamming, and emphasizes that
jamming is much more effective at high SNR values.
Panel (b) compares the exact and limiting curves for
JF = 1,5 and suggests that the limiting result (34) may
be a lower bound, but this has not been verified, and
that it is a rather optimistic view of BER for large SNR.
The results here thus enable engineering judgements
about the effect of jamming, and suggest the increased
spreading factors and SNR levels needed to overcome
unwanted effects on BER.

Multi-path fading is a type of unintentional and often
unavoidable transmission disturbance, for instance, the
reflecting of signals off buildings. Concern in the liter-
ature related to the effect on the BER of chaos-based
systems is represented by Zhou, Wang and Ye (2010),
Kaddoum et al. (2010) and Kaddoum and Gagnon
(2013a). Fading is modelled by the transmitted mes-
sage segment being multiplicatively distorted by a ran-
dom variable fading factor, V (V ≥ 0), effecting the
transmitted message so the received signal according
to (1) is now of the form

(35) Ri = VibXi + εi, i = 1,2, . . . ,N.

The distribution of V depends on the type of fad-
ing. For multi-path scattering from clusters of reflected
waves, the Nakagami distribution is often used, with its
p.d.f.

fV (v) = 2

�(m)

(
m

ϕ

)m

ν2m−1 exp
(−mV 2/ϕ

)
,

(36)
ν ≥ 0,

where ϕ = E(V 2),m = ϕ2/var(V 2). For other types
of fading, Raleigh and Rice distributions are consid-
ered more appropriate.

5. NON-COHERENT CHAOS SHIFT-KEYING
COMMUNICATION

The difficulty in some circumstances of exactly
knowing the reference segments at the receiver in co-
herent chaos-based systems focussed engineering in-
vestigation of non-coherent antipodal CSK; with these
the reference sequence has to be either transmitted
to the receiver or available there by imperfect syn-
chronization. An empirical illustration of what can be
achieved practically by synchronization of two lasers
is given in Figure 6. This is taken from the output
of an experimental laser-based antipodal CSK system
analysed in Lawrance, Papamarkou and Uchida (2017)
where the exact laser wave is exceptionally available
for comparison with the synchronized version. The
tracking between the two waves is seen to be close
although not perfect.

There have been several versions of non-coherent
CSK systems in which the reference segments are
transmitted, with differential chaos shift-keying
(DCSK) being the most popular. The statistical mod-
elling theory has been treated in a minimal way us-
ing correlation decoders and their bit error results have
been approximate. However, correlation decoders can
be justified by extending the likelihood (3) to include
terms from the reference segments equation (2) and
then obtaining a partial likelihood. Here, the empha-
sis is on the performance of the correlation decoder



568 A. J. LAWRANCE

FIG. 6. Comparison at 250 time points of a laser generated chaotic wave (thin black line) and its remotely synchronized version (thick grey
line) from an experimental CSK communication system.

via exact theory of its BER; both EGT and SGA ap-
proaches are used by expanding on Lawrance and
Ohama (2003).

Following its introduction in Section 2, the spread-
ing segment (X1,X2, . . . ,XN ) is modelled at the re-
ceiver as the reference segment

(37) Yi = Xi + ηi, var(ηi) = σ 2
η , i = 1,2, . . . ,N.

Similarly, from Section 1, the message segment con-
taining the binary bit b is modelled at the receiver as

(38) Ri = bXi + εi, var(εi) = σ 2
ε , i = 1,2, . . . ,N.

In this formulation there are now two signal-noise ra-
tios,

(39) SNR = Nσ 2
X

σ 2
ε

, SER = Nσ 2
X

σ 2
η

,

where SNR is the signal-to-noise ratio used previously,
and SER is the newly termed spreading-to-error ratio.

The correlation decoder takes the usual covariance
form

(40) CR,Y =
N∑

i=1

RiYi

and substituting (37) and (38) into (40) gives

BER = P(CR,Y < 0 | b = 1)
(41)

= P

{
N∑

i=1

(Xi + εi)(Xi + ηi) < 0
∣∣∣b = 1

}
.

The probability in (41) is calculated as in Lawrance
and Ohama (2003) under the tractable assumptions
of independent Gaussian message noise and segment
or synchronization errors, but assumes different vari-
ances. It will be mathematically convenient to set εi =
σεui, ηi = σηvi where {ui} and {νi} are independent

standardized Gaussian sequences, and then

BER = P

{
N∑

i=1

(Xi + σεui)(Xi + σηvi) ≤ 0

}
(42)

= P

{
N∑

i=1

(Xi/σε + ui)(Xi/ση + vi) ≤ 0

}
.

This probability will be obtained in terms of the sta-
tistical non-central F-distribution. First, define the fol-
lowing variables:

(43) z1i = 1√
2
(ui + vi), z2i = 1√

2
(ui − vi)

which are also independent Gaussian and give ui and
vi as

(44) ui = 1√
2
(z1i + z2i ), vi = 1√

2
(z1i − z2i ).

These allow the previous BER expression to be written

BER = P

{
N∑

i=1

[
(Xi/σε) + 1√

2
(z1i + z2i )

]
(45)

·
[
(Xi/ση) + 1√

2
(z1i − z2i )

]
≤ 0

}
.

The next step is to multiply out the inner terms and
separate them into groups involving either z1i or z2i

and then complete the squares in these variables, find-
ing there are no resulting z1iz2i product terms. These
operations lead to the key result

BER = P

{
N∑

i=1

[
z1i + 1√

2

(
σ−1

ε + σ−1
η

)
Xi

]2

(46)

−
N∑

i=1

[
z2i + 1√

2

(
σ−1

ε − σ−1
η

)
Xi

]2
≤ 0

}
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which shows that the sum and difference of the inverse
standard deviations of the optical noise and synchro-
nization error are the important quantities. Writing the
previous expression as

BER
(47)

= P

{∑N
i=1[z1i + 1√

2
(σ−1

ε + σ−1
η )Xi]2∑N

i=1[z2i + 1√
2
(σ−1

ε − σ−1
η )Xi]2

≤ 1
}

is a key statistical step for computation, and actually
this result does not depend on Gaussian distribution
assumptions. With Gaussian noise and error assump-
tions, and conditional on spreading X, the ratio term
is a standard non-central F variable FN,N(ν1,X, ν2,X)

with degrees of freedom (N,N ) and non-centrality pa-
rameters

(ν1,X, ν2,X)

≡
{

1

2

(
σ−1

ε ± σ−1
η

)2
XT X

}
(48)

=
{

1

2

(
1

{SNR}1/2 ± 1

{SER}1/2

)2(
XT X/Nσ 2

X

)}
.

The last equality shows how the communication quan-
tities of bit energy, the signal-noise and spreading-error
ratios determine bit error rate. Returning to the previ-
ous BER expression (47), it can now be written as an
average over the spreading sequence as

(49) BER = EX

[
P
{
FN,N(ν1,X, ν2,X) ≤ 1

}]
.

Notice via (48) that since this only involves spreading
through the bit energy sum of squares, its expectation
can be over the distribution of bit energy, a consider-
able simplification. With a particular chaotic map for
the spreading, an exact numerical calculation from (49)
is theoretically possible via a one-dimensional integral.

A tractable approximate result for any chaotic map
and extensive spreading N comes from replacing the
bit energy sum-of-squares by Nσ 2

X to now give the
non-centrality parameters (ν1,X, ν2,X) as

(50) (ν1, ν2) ≡ 1

2

(
1

{SNR}1/2 ± 1

{SER}1/2

)2
.

If this approximation is used in (49), there is the ap-
proximate result

(51) BER ∼= P
{
FN,N(ν1, ν2) ≤ 1

}
.

The limiting N → ∞ behaviour of the doubly non-
central variable FN,N(ν1, ν2) does not seem to be avail-
able to indicate whether this is a lower bound on

BER as a function of SNR and SER. There are some-
what simpler versions of these results when the mes-
sage noise and reference or synchronization errors have
equal variances, as for the DCSK system.

Some further insight into the model is afforded by
the SGA result which can be derived in terms of its
component statistical features as

BERsga

= �

{
−
(

1

SNR

{
1 +

N∑
k=1

(
1 − k

N

)
ρX(k)ρε(k)

}

+ 1

SER

{
1 +

N∑
k=1

(
1 − k

N

)
ρX(k)ρη(k)

}
(52)

+ N

SNR · SER

{
1 +

N∑
k=1

(
1 − k

N

)
ρε(k)ρη(k)

}

+ N−1 σ 2
X2

σ 4
X

{
1 + 2

N−1∑
k=1

(
1 − k

N

)
ρX2(k)

})− 1
2
}

and covers the case when both message noise and refer-
ence or synchronization errors are autocorrelated. The
structured form allows the effects of the important en-
gineering quantities SNR and SER to be seen, as well
as the statistical distributional and correlations quanti-
ties. Results of this type without the explicit quadratic
autocorrelation terms are reported in Tam, Lau and Tse
(2007) from a computational angle.

Figure 7 continues the initial illustration in Figure 6
of a laser-based experimental system; correlation de-
coding and bit error rate are empirically illustrated
in Panels (a) and (b), respectively. Panel (a) gives a
typical scatterplot of received message-carrying seg-
ments and their synchronized segments using a spread-
ing factors of 3–20; it shows a strongly positive corre-
lation (0.889), correctly decoding the transmitted +1
bit. Panel (b) gives the BER performance of the non-
coherent system plotted against spreading factor, rather
than SNR as is customary, since both optical noise
and synchronization error were fixed in the experiment.
Additionally, there is experimental knowledge of the
spreading wave to enable a similar calculation for the
coherent system. The spreading factor and the degree
of synchronization were high enough for the bit er-
ror performance of the non-coherent system to be very
near that of the coherent system, its lower bound.

Another distinguishing feature of non-coherent CSK
is that for given values of SNR and SER there may
be an optimum extent of spreading, intuitively due to
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FIG. 7. Panel (a): Scatterplot of a received message segment and its synchronized version for N = 20 spreading. Panel (b): BER curves
of the experimental non-coherent shift-keying communication system (light curve) and of the corresponding coherent system (dark curve) in
which there is no synchronization error.

the balance of information in the message and spread-
ing segments. This was first investigated by Sushchik,
Tsimring and Volkovskii (2000). One case is when
noise and error are each linearly uncorrelated and
spreading is quadraticly uncorrelated, as is so with lo-
gistic map spreading. Treating N as continuous, it can
be shown using (52) that the spreading factor Ñ giving
the minimum BER value and this value itself B̃ER, are
given by

Ñ 	 κ1/2
√

SNR · SER,

B̃ER = �

{
−
[
SNR(53)

/(
1 + SNR

SER
+ 2κX

√
SNR

SER

)]1/2}
,

respectively, where κX = σ 2
X2/σ

4
X . Note that BER is

increased relative to the Jensen lower bound (14) of
the coherent case, and moreover, that it is reached for
very large SER. However, because (52) is an SGA ap-
proximation, Ñ may not accord with the exact result
via (49).

6. MULTI-USER COHERENT CHAOS
SHIFT-KEYING COMMUNICATION

This section treats antipodal chaos shift-keying com-
munication with more than one pair of participants
under the coherent assumption. The key new aspect
for a user decoding a bit is that of interference from
other users. As far as an individual user is concerned,
the other users constitute additional non-independent
and non-Gaussian noise, and not just simply the ad-
dition of more independent Gaussian noise. There has

been relatively little published work in this area, apart
from Tam et al. (2002), Tam, Lau and Tse (2003)
employing correlation decoders and SGA. Develop-
ment of corresponding EGT results were given in
Tam et al. (2004) following Lawrance and Ohama
(2003). The presentation here focusses on providing
a likelihood-based decoder and its EGT, and initially
develops from Lawrance and Yao (2008). Following
Lau and Tse (2003), Tam, Lau and Tse (2007) also in-
vestigate correlation and other decoders in multi-user
chaos shift-keying systems, although not the newer
likelihood-based decoder; they present computational
BER results, mainly using an SGA approach. The fo-
cus here continues to be on the EGT approach giving
exact and structured results.

Suppose there are now L users (L ≥ 2), and the
system is concerned with the simultaneous transmis-
sion of single binary bit messages, b = ±1 by the lth
user, l = 1,2, . . . ,L, in a single time slot. The fo-
cus is on the so-called active-user, in the presence
of so-called other-users who have interfering effects.
A block diagram of the model is given in Figure 8.
The modelling assumption is that each user l has their
own chaotic generator which provides a spreading seg-
ment XT

l = (Xl1, . . . ,XlN); for simplicity, the same
spreading factor N is taken by all users. As in the
single-user coherent case, the spreading segment of an
active-user is assumed to be known exactly by the in-
tended receiver. To transmit a binary bit bl , the lth
user modulates the spreading segment Xl to become
blXl , a procedure which is followed by all users. Their
modulated spreading segments are transmitted addi-
tively in the same time slot, and received through in-
dividual channels to each intended receiver, with the
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FIG. 8. Block diagram of an antipodal multi-user coherent CSK communication system and transmission by the active lth user.

lth receiver attracting individual IID-Gaussian chan-
nel noise εT

l = (εl1, εl2, . . . , εlN). The lth receiver has
to decode the lth message bit, ignoring interference
from the others. From the active lth user transmitting
bit bl , the message segment arriving at the lth receiver
RT

l = (Rl1,Rl2, . . . ,RlN) can be written

(54) Rl = blXl +
L∑

k 
=l=1

bkXk + εl.

The summation term represents interference by the
message bits of other-users. Decoding of the message
bit bl in the received signal uses knowledge of the lth
reference segment, but without any knowledge of the
reference segments and binary bit messages of other-
users; they are thus treated here as random variables,
not as unknown statistical parameters to be estimated.
This mixture of statistical inferential assumptions re-
flects practical realities.

This section is next concerned with developing a
likelihood-based decoder for multi-user coherent an-
tipodal CSK systems, following Lawrance and Yao
(2008); although the exact result is not tractable enough
for practical use, a multivariate Gaussian assumption
yields an approximate maximum likelihood decoder
which is an attractive generalization and an improve-
ment on the correlation decoder. The multi-user sys-
tem requires a theoretical analysis which significantly
departs from that of the single-user system given in
Sections 2 and 5. The approach demonstrates further

benefits flowing from the use of statistical theory in
communications engineering.

As in the single-user case, the message bit bl is re-
garded as a parameter to be estimated using the re-
ceived data Rl and known spreading segment Xl . The
likelihood of bl is thus formed from the joint proba-
bility density function of the other-message and noise
terms of (54), acting as dependent noise. The optimum
decoder is the value of bl which maximises this other-
user likelihood. In the derivation, the channel noise
variance σ 2

ε is assumed known; this is not a disadvan-
tage in two important cases where it is absent from
the decoder. To obtain the other-user likelihood, the re-
ceiver equation (54) first needs to be expressed in terms
of the other-user terms as

Rl = blXl + R′
l

(55)

where R′
l =

L∑
k 
=l=1

b̃kXk + εl, i = 1,2, . . . ,N.

Then R′
l = Rl − blXl and the required likelihood of bl

based on R′
l follows from (55) as the joint probability

density function

(56) fR′
l
(Rl ∓ Xl | bl = ±1,Xl).

The likelihood decoder of bl is given by whichever of
bl = ±1 makes (56) the largest, and thus can be written

(57) b̂l = sign
{
log
(
fR′

l
(Rl − Xl)/fR′

l
(Rl + Xl)

)}
,
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where fR′
l
(·) is the joint probability density of R′

l . This
is the most general result which can be achieved. More
particular results need specific expressions for the joint
distribution of R′

l and follow.
The approach to be adopted is that of approximat-

ing the distribution of R′
l by a multivariate Gaussian,

as is at least plausible since (55) includes a Gaussian
noise term. However, this approach has not been for-
mally justified but will nevertheless be seen to pro-
duce decoders which are advantageous in their BER
performance. The required mean vector of R′

l is one of
all zeros due to the zero mean of the spreading, and
the covariance components in this case can be written
in terms of σ 2

ε , σ 2
X,L and the linear autocorrelations

{ρX(1), ρX(2), . . . , ρX(N)} of the spreading segment,
as

var
(
R′

li

)≡ σ 2
R′

l
= (L − 1)σ 2

X + σ 2
ε ,

(58)
cov

(
R′

li ,R
′
lj

)= (L − 1)σ 2
XρX

(|i − j |), i 
= j.

Thus, the auto-covariance matrix of R′
l is thus

�R′
l
= (L − 1)σ 2

X(59)

·

⎡⎢⎢⎣
1 + σ 2

ε /(L − 1)σ 2
X ρX(1)

ρX(1) 1 + σ 2
ε /(L − 1)σ 2

X

.

.

.
.
.
.

ρX(N − 1) ρX(N − 2)

· · · ρX(N − 1)
· · · ρX(N − 2)

.

.

.
.
.
.

· · · 1 + σ 2
ε /(L − 1)σ 2

X

⎤⎥⎦ .

Then by invoking the multivariate Gaussian density
with these results, so assuming

fR′
l

(
r | bl = ±1,XT

l

)
(60)

= 1

(2π)N/2|�R′
l
|1/2 exp

[
−1

2
rT �−1

R′
l
r

]
and using (57), there is the approximate likelihood de-
coder

(61) b̂l = sign
{
XT

l �−1
R′

l
Rl

}
.

The pleasing statistical structure to this result is from
its obvious generalization of the correlation decoder (7)
for the single-user case. A key new point is that the
decoder gains advantage from leveraging the type of
spreading, while a negative point is that in general it
is not immediately useable because �−1

R′
l

contains the

unknown channel noise variance.

However, there are there are two useful special cases
applying to multi-user CSK and which have simple
forms of �−1

R′
l

in which the noise variance is absent, and

they suggest a generally useable form. The first is when
the spreading is uncorrelated, for example, by a logistic
map, and then by (59) �−1

R′
l

is the identity matrix and so

does not involve σ 2
ε . In this case, the likelihood decoder

(61) reduces to an ordinary correlation decoder of the
form (7). The second and generally more useful case is
when there is a large number of other users, and σ 2

ε is
negligible relative to (L − 1)σ 2

X , the total variance of
the other-users. Then, apart from the initial (L− 1)σ 2

X ,
�−1

R′
l

is the inverse matrix of the N −1 autocorrelations

of the spreading segment, given by the circulant matrix

(62) �X ≡
⎡⎢⎣

1 ρX(1) · · · ρX(N − 1)
ρX(1) 1 · · · ρX(N − 2)

.

.

.
.
.
.

.

.

.
.
.
.

ρX(N − 1) ρX(N − 2) · · · 1

⎤⎥⎦ .

This suggests the decoder

(63) b̂l = sign
{
XT

l �−1
X Rl

}
which will be called the likelihood-based decoder and
is easily available with chaotic spreading after the one-
time inversion of �Xand is a natural generalization of
the correlation decoder (7). Importantly, knowing σ 2

ε is
not necessary. Although a significant improvement on
the correlation decoder, it is not fully optimal because
of the derivation including approximating assumptions.
However, in single-user systems with autocorrelated or
non-Gaussian noise there could be advantage relative
to the ordinary correlation decoder.

When the autocorrelations are powers of ρ, as they
are for Bernoulli-shift map spreading withρ = 1

2 ,the in-
version of (62) is explicit and the decoder appears as

b̂l = sign

{
(Xl1 − ρXl2)Rl1

+
N−1∑
i=2

{−ρXli−1 + (
1 + ρ2)Xli − ρXli+1

}
Rli(64)

+ (−ρXlN−1 + XlN)RlN

}
.

The form (64) is known from other areas of commu-
nication engineering as a type of rake decoder. The
statistical point to be made is that it can be seen as a
likelihood-based.

The exact approach is next used to study the BER
of the likelihood-based decoder (63); the structured
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mathematical development allows useful communica-
tion engineering insights. By writing

Cl
R,X = XT

l �−1
X Rl

(65)
= XT

l �−1
X (blXl + X[l]b[l] + εl)

the active-user bit error rate is first obtained as

BERl = P
(
Cl

R,X < 0 | bl = 1
)

= P
{
XT

l �−1
X εl < −XT

l �−1
X Xlbl(66)

− XT
l �−1

X X[l]b[l] | bl = 1
}
.

Conditional on the spreading segments, and after
using the Gaussian distribution of the noise term
XT

l �−1
X εl , which has mean zero and variance

XT
l �−1

X �−1
X Xlσ

2
ε , there is the result

(67) BERl(X) = �

{
−XT

l �−1
X Xl + XT

l �−1
X X[l]b[l]

σε[XT
l �−1

X �−1
X Xl]1/2

}
.

The argument of � can next be regarded as a function
of two dependent variables, the lth active-user spread-
ing segment Xl and the other-user interference variable

(68) �l ≡ XT
l �−1

X X[l]b[l].

Thus, the unconditional probability from (67) for the
EGT result given bl = 1, is

(69) BERl = EXl,�l
�

{
− XT

l �−1
X Xl + �l

σε[XT
l �−1

X �−1
X Xl]1/2

}
.

It is still difficult to proceed exactly, but the joint ex-
pectation (69) can be evaluated approximately by not-
ing that �l | Xl = bT[l]XT[l]�

−1
X Xl is the sum of L − 1

conditionally independent variables bkX
T
k �−1

X Xl, k =
1, . . . , [l], . . . ,L, and thus, at least for several users,
can be assumed conditionally to have a Gaussian dis-
tribution, by the so-called theoretical Gaussian ap-
proximation (TGA). Immediate observation of �l | Xl

shows that the conditional mean is zero and for the ex-
act conditional variance, taken over the spreading of
other-users, there is

var(�l | Xl)

= var
(
bT[l]XT[l]�−1

X Xl

)= L∑
k 
=l,=1

var
(
bkX

T
k �−1

X Xl

)
(70)

=
L∑

k 
=l,=1

XT
l �−1

X var
(
bkX

T
k

)
�−1

X Xl

= (L − 1)XT
l �−1

X var
(
bkX

T
k

)
�−1

X Xl.

This simplifies by calculation of var(bkX
T
k ) and since

b2
k ≡ 1 and leads to the result

(71) var(�l | Xl) = σ 2
�l |Xl

= (L − 1)XT
l �−1

X Xlσ
2
X.

Thus, with � = σ�l |Xl
Z, Z a standardized Gaussian

variable, (69) conditional on Xl becomes

BERl(Xl)
(72)

	
∫ ∞
−∞

�

{
− XT

l �−1
X Xl + σ�l |Xl

z

σε[XT
l �−1

X �−1
X Xl]1/2

}
φ(z) dz,

where φ(·) is the standardized Gaussian probability
density function. By applying the Gaussian identity∫ +∞

−∞
�
{−(a + bz)/c

}
φ(z) dz

(73)
= �

{−a/
(
b2 + c2)1/2}

,

to (72), the BER of the likelihood-based decoder be-
comes

BERl 	 EXl
�
{−(XT

l �−1
X Xl

)[(
XT

l �−1
X �−1

X Xl

)
σ 2

ε
(74)

+ (L − 1)
(
XT

l �−1
X Xl

)
σ 2

X

]−1/2}
.

Communication engineering insight is provided by
separating out the channel noise and other-user ef-
fects in (74). Then a structured form of the approxi-
mate BER of the multi-user coherent CSK system with
likelihood-based decoding is

BERl 	 EXl
�

{[
−(XT

l �−1
X Xl/Nσ 2

X

)
(75) /(XT

l �−1
X �−1

X Xl

XT
l �−1

X Xl

1

SNR
+ 1

SIR

)]1/2}
.

Here, SIR is a new and generally useful multi-user
quantity, the spreading to other-user interference ratio
(SIR), defined as N/(L − 1). For a very large number
of other-users relative to N , SIR approaches 0 and BER
approaches its worst value 0.5; and similarly for a very
low SNR. A very large SNR overpowers transmission
noise, and then BER is due only to SIR other-user in-
terference and becomes

BERl 	 EX�
{−[(XT �−1

X X/Nσ 2
X

)
SIR

]1/2}
(76)

≥ �{−√
SIR},

with the lower bound by application of Jensen’s in-
equality.

Extensive spreading relative to other-users, oppo-
sitely overpowers other-user interference and BER is
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due only to channel SNR. Then there is the earlier re-
sult

(77) BERl ≥ �(−√
SNR)

as obtained at (14) for the single-user coherent case.
When spreading is uncorrelated, as with the logistic

map, there is the particularly simple case of (75) which
reduces to

BERl 	 EXl
�

{[
−(XT

l Xl/Nσ 2
X

)
(78) /( 1

SNR
+ 1

SIR

)]1/2}
and this gives the even simpler lower bound

(79) BERl ≥ �

{
−
(

1

SNR
+ 1

SIR

)−1/2}
.

The uncorrelated feature is only significant in multi-
user systems. The lower bounds are reached by exten-
sive spreading.

Exact computations using (75) leverages the chaotic
spreading assumptions, as in the corresponding single-
user calculation at (18). Without it, the expectation in
(75) is an intractable N -dimensional integral.

Omitting full presentation, there is an SGA result
corresponding to (75) which takes the form

BERl 	 �

{
−
[
N−1 σ 2

X2

σ 4
X

{
1 + 2

N−1∑
k=1

(
1 − k

N

)
ρX2(k)

}

+
{

1 + 2
N−1∑
k=1

(
1 − k

N

)
ρε(k)ρX(k)

}
1

SNR
(80)

+
{

1 + 2
N−1∑
k=1

(
1 − k

N

){
ρX(k)

}2

}
1

SIR

]− 1
2
}
.

Communication engineering interest in (80) is the im-
plication that low BER is realized when its negative-
square-rooted term is large giving a very negative ar-
gument to the Gaussian distribution function. The first
two terms are as in the single-user result (24) while the
third term is due to the other-users. Statistical interest
is in the involvement of two types of autocorrelation of
the chaotic spreading sequence, with the linear auto-
correlations not appearing in single-user results. Low
BER occurs when the quadratic autocorrelations are
less or equal to zero and linear autocorrelations of ei-
ther sign are as small as possible; the former was found
for single-user systems in Section 3 concerning design
issues. The value of these results is qualitative, since as
for single-user systems, the accuracy of the SGA may

be poor. Tam, Lau and Tse (2007), Chapter 3, obtained
a much less structured general SGA expression and a
simplified more specific form for uncorrelated spread-
ing.

Similar results to those given in this section are
available for standard correlation decoders and in non-
coherent multi-user systems, but for reasons of space
are not included and will be reported elsewhere.

The section concludes with illustrations in Figure 9
of BER results for a small multi-user system with 3
users each using Bernoulli map spreading segments
of length 4. The first and uppermost curve is from
the omitted SGA approximation to the BER of corre-
lation decoding. The second curve is from the omit-
ted TGA approach for correlation decoding. The third
curve is the TGA approximation (75) for likelihood-
based decoding. This compares very favourably with
the fourth curve for the lower bound (79) from uncor-
related spreading. The final curve is from the single-
user lower bound (14), so ignoring other users. The
horizontal line is the lower bound from (76) for no
channel noise, with BER only due to the interfer-
ence by the other two users. The main point is the
superiority of likelihood-based decoding over corre-
lation decoding, and achieved practically with little
computational cost. The curves generally support the
previous theoretical discussions. However, for unre-
alistically low SNR, where the TGA approach is not
claimed to be theoretically accurate, there is no ev-
idence of improvement over the correlation decoder.

FIG. 9. Three-user (L = 3) coherent CSK with Bernoulli
spreading, N = 4 and SIR = 2; comparisons of BER cal-
culations. SGA for correlation decoding (dot-dot-dash curve),
TGA for correlation decoding (dot-dash curve), TGA for likeli-
hood decoding (dash-curve), TGA Jensen lower bound for like-
lihood-based decoding with uncorrelated spreading (continuous
curve), single-user lower bound (continuous-curve), theoretical
lower bound for likelihood-based decoding with no channel noise
at �(−√

SIR) = 0.07865 (horizontal line).
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The single-user lower bound emphasizes the strong in-
terference effect of other users on BER. Although not
shown, Bernoulli-shift map spreading is actually supe-
rior to logistic spreading for high SNR, contrary to that
in single-user systems. These illustrations are not in-
tended to represent a realistic engineering-size appli-
cation, rather to be an exemplar of exact results which
are not too computationally demanding.

7. FINAL OVERVIEW

More could be said about most of the topics covered
and many topics and contributions in the area have not
been mentioned. Further information is given in the
References, particularly the engineering publications,
their references and the list of chaos-based communi-
cation models in the Appendix. Among omitted topics
are multi-type symbol systems, systems employing dif-
ferent generators for each transmitted symbol type and
many models designed to suit to particular practical
circumstances. The flexibility of statistical modelling
should allow further developments.

This account has focussed on the modelling and sta-
tistical aspects of chaos-based antipodal shift-keying
systems for transmitting binary messages, with men-
tion of extensions to the basic supporting structures to
include non-Gaussian and autocorrelated noise and er-
rors. There has been emphasis on exact statistical mod-
elling approaches and structured results for bit error.
This is in contrast to the treatment of quite a large num-
ber of other models in the engineering literature for
particular communication architectures, mostly with
the little or no concern for exact treatments. A distinc-
tion has been made between systems involving elec-
tronic circuit generation of chaos and those involv-
ing laser-based optical generation. Developments of
non-coherent models applying to imperfectly synchro-
nized systems, as found in laser-based optical systems,
have been given. The possible synchronization of laser-
based chaos is usefully employed here because it pro-
vides the means of remotely synchronizing spread-
ing sequences as required in non-coherent systems. As
far as the non-coherent CSK systems are concerned,
likelihood-based decoders, together with their BER
performance, have been given, a previously open area.
Design analysis has indicated that negative quadratic
autocorrelation of spreading reduces bit error. It is
worth emphasizing that the chaotic map spreading as-
sumption is mainly theoretically useful because it al-
lows exact or very accurate theoretical calculations of

bit error rates in coherent systems and provides in-
sights as to optimal spreading, and further is the ba-
sis of steganographic security. In itself, the chaos as-
sumption is not essential. The mathematical structure
of chaos-based systems is actually free of chaotic as-
sumptions. There are still theoretical challenges with
exact likelihood decoders for multi-user CSK systems
and computational challenges in calculating extremely
small BERs for very large spreading factors. But, hope-
fully, this account has demonstrated that statistical-
based modelling and communications engineering can
work together to provide new insights and useful re-
sults.

APPENDIX: CHAOS COMMUNICATION SYSTEMS
NOT COVERED

A partial list of other chaos-based models in the lit-
erature includes the following:

Differential chaos shift-keying (DCSK), Kolumbán
et al. (1996), Frequency modulated differential chaos
shift-keying (FM-DCSK), Kolumbán et al. (1998),
Correlation delay shift-keying (CD-CSK), Sushchik,
Tsimring and Volkovskii (2000), Symmetric chaos
shift-keying (SCSK), Sushchik, Tsimring and
Volkovskii (2000), On-Off shift-keying (ON-OF CSK),
Uchida et al. (2001), Heil et al. (2002), Quadrature
CSK (Q-CSK), Galias and Maggio (2001), Chaotic
phase shift-keying (CP-CSK), Hasler and Schimming
(2002), Permutation-based DCSK (P-DCSK), Lau,
Cheong and Tse (2003), High-data-rate code shifted
CSK (CSDCSK), Kaddoum and Gagnon (2012), High
efficiency CSK (HE-CSK), Hua and Ping (2012),
Space-time block CSK (STBC-CSK), Kaddoum and
Gagnon (2013a), Decode-and Forward CSK
(DF-CSK), Kaddoum and Gagnon (2013b); Improved
non-coherent DCSK (I-DCSK), Kaddoum, Soujeri and
Arcila (2015).
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