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Model Uncertainty First, Not Afterwards
Ingrid Glad and Nils Lid Hjort

Abstract. Watson and Holmes propose ways of investigating robustness of
statistical decisions by examining certain neighbourhoods around a posterior
distribution. This may partly amount to ad hoc modelling of extra uncertainty.
Instead of creating neighbourhoods around the posterior a posteriori, we ar-
gue that it might be more fruitful to model a layer of extra uncertainty first,
in the model building process, and then allow the data to determine how big
the resulting neighbourhoods ought to be. We develop and briefly illustrate a
general strategy along such lines.

Key words and phrases: Envelopes, Kullback–Leibler distance, local
neighbourhoods, model robustness.

1. INTRODUCTION

The Bayesian apparatus has a clear master recipe.
With data y, sampled from a model with parameters θ ,
and with a loss function L(a, θ) for potential actions or
decisions a, one computes the posterior expected loss

(1) ψ(a) = E
{
L(a, θ) | data

} =
∫

L(a, θ)πI (θ)dθ

and chooses the decision â which minimises this func-
tion. Here, πI (θ) is the posterior distribution for the
model parameters, building also on a prior.

It is an entirely sensible idea to investigate robust-
ness of both the ψ(a) function and of the recipe’s
suggested decision â = argmin(ψ) with respect to the
different ingredients, from the prior and the model
specification to indeed also the loss function employed.
Watson and Holmes (WH) carry out such investiga-
tions by examining â inside Kullback–Leibler (KL)
type neighbourhoods around πI . They do so with these
neighbourhoods put up after the original analysis, with-
out particular regard to what has been put into the prior
and the data model, to what might have been wrong
there, and without a clear recipe for how big these
neighbourhoods perhaps ought to be.

We suggest it would be more coherent and poten-
tially fruitful to admit such a layer of extra uncer-
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tainty as part of the prior and model building pro-
cess, and then examine the consequences for ψ(a)

and â. This allows the data their natural voice in the
matter, creating the right amount of extra uncertainty
around the first attempt at summarising information via
the πI (θ), rather than constructing ad hoc “neighbour-
hoods around the posterior a posteriori”. In particular,
the WH approach remains centred at πI , not able to
pick up a real bias of misspecification; our methods,
laid out below, handle this, via KL neighbourhoods in
the model specification, rather than by introducing ex-
tra uncertainty after the full analysis.

2. A NEIGHBOURHOOD ELABORATION OF
THE MODEL

Suppose the initial model for observations has the
form of some f (y, θ), with a parameter vector of di-
mension say p; this is the setup that along with a
prior π0(θ) leads to the posterior distribution πI (θ)

in (1). We now embed the start model in a larger model
f (y, θ, γ ), with γ = (γ1, . . . , γq) being extra parame-
ters reflecting different ways in which the start model
might have been too simplistic. These could relate to
missing interaction terms in a regression model, Gaus-
sian components not quite being Gaussian, a not fully
correct link function, elements of dependence where
the start model claims independence, etc. The narrow
model corresponds to a null value γ = γ0 in the γ pa-
rameter region, assumed below to be an inner parame-
ter.
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Now consider a focus parameter μ = μ(θ, γ ), a “pri-
mary interest” parameter with direct relevance for the
loss function; we could, for example, have L(a, θ) =
L0(|μ − a|) with an appropriate L0 depending only on
how well we estimate μ. In a Bayesian setting, we are
then interested in both:

(i) the posterior π(μnarr | data), where μnarr =
μ(θ, γ0); and

(ii) π(μwide | data), where μwide = μ(θ, γ ) is the
real thing.

We demonstrate below that both questions can be an-
swered, in reasonable generality, in a local neighbour-
hood framework where γ = γ0 + δ0/

√
n, in terms of

the growing sample size n. The data generating mech-
anism is hence taken to be ftrue(y) = f (y, θ0, γ0 +
δ0/

√
n), for some (unknown) (θ0, δ0). The accompa-

nying true value of the focus parameter is μtrue =
μ(θ0, γ0 + δ0/

√
n). We take an interest in conse-

quences for (i) and (ii), after having started with pri-
ors, say π0(θ) for the θ part and πe(δ) for the extra δ

part. These questions and methods, leading to alterna-
tives to the WH approach, may also be worked with
in the frequentist framework of Schweder and Hjort
(2016), where posterior distributions emerge without
priors, but we here focus on the usual Bayesian ap-
proach. The local model framework also amounts to a
KL neighbourhood setup; see (5) below. Our formali-
sation with μ = μ(θ, γ ) and loss function built for that
μ is a version of WH’s Principles 1a and 1b.

Let θ̂narr be the maximum likelihood (ML) estimator
of θ in the start model, having only θ on board, and let
(θ̂ , γ̂ ) be the ML estimators in the f (y, θ, γ ) model.
These lead to ML estimators μ̂narr = μ(θ̂narr, γ0) and
μ̂wide = μ(θ̂, γ̂ ) for the focus parameter, in the work-
ing model and the extended model, respectively. To
explain what goes on, regarding the behaviour of
both the ML estimators and with Bayes construc-
tions, we need the Fisher information matrix Jwide =
−E∂2 logf (Y, θ0, γ0)/∂κ ∂κ t, writing κ = (θ, γ ) for
the full parameter vector of the extended model, but
computed at the null model:

Jwide = J (θ0, γ0) =
(
J00 J01
J10 J11

)
,

with inverse

J−1
wide =

(
J 00 J 01

J 10 J 11

)
.

The blocks indicated here of the (p + q) × (p + q)

matrices have their appropriate sizes. Following Hjort

and Claeskens (2003) and Claeskens and Hjort (2008),
Chapters 5, 6, Dn = √

n(γ̂ − γ0) →d D ∼ Nq(δ0,Q),
with Q = J 11, and

√
n(θ̂narr − θ0) →d Np

(
J−1

00 J01δ0, J
−1
00

)
,

(2) (√
n(θ̂ − θ0)√
n(γ̂ − γ0)

)
→d Np+q

((
0
δ0

)
, J−1

wide

)
.

Using the perhaps too simple start model amounts to
smaller variability but a certain modelling bias, and
vice versa with the extended model. This is captured
in the following results, valid in the frequentist frame-
work with a fixed δ0/

√
n distance from the work-

ing model. Define ω = J10J
−1
00

∂μ
∂θ

− ∂μ
∂γ

and τ 2
0 =

(
∂μ
∂θ

)tJ−1
00

∂μ
∂θ

, with partial derivatives evaluated at the
null point. Then

√
n(μ̂narr − μtrue) →d N

(
ωtδ0, τ

2
0
)
,

(3) √
n(μ̂wide − μtrue) →d N

(
0, τ 2

0 + ωtQω
)
.

Note that different focus parameters μ give rise to dif-
ferent ω, so some types of model misspecifications
might cause little or no damage to some types of in-
ferences or decisions, whereas other aspects missed by
the working model might lead to misleading inference.
The degree to which misspecification of the start model
is crucial for the later inference hinges on the sizes of
|ωtδ0| and (ωtQω)1/2, depending in particular on the
focus parameter, or, in yet other words, the loss func-
tion. We shall now see that results parallelling the fre-
quentist findings (2)–(3) may be reached for Bayes so-
lutions, of crucial relevance for questions (i) and (ii)
above, depending however also on the precise prior
πe(δ) used for the γ0 + δ/

√
n part.

First, consider Sn = √
n(θ − θ̂narr) and its posterior

distribution. Starting from

π(s | data)

∝ π0(θ̂narr + s/
√

n)

· exp
{
�n(θ̂narr + s/

√
n,γ0) − �n(θ̂narr, γ0)

}
,

with �n(θ, γ ) the likelihood, one learns upon Tay-
lor expansion and some further analysis that π(s |
data) →d const. exp(−1

2stJ00s), which is the
Np(0, J−1

00 ) density. With the delta method type of
arguments, this leads to

√
n(μnarr − μ̂narr) | data →d

N(0, τ 2
0 ). In view of (3), this means first-order approx-

imation agreement for frequentist and Bayesian anal-
yses for μ via the narrow vehicle model. Confidence
and credibility intervals are equal, to the first order,
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they have sensible widths, but they are biased, thanks
to ωtδ0.

Second, consider Tn = √
n(θ − θ̂ ) and the joint pos-

terior for (Tn, δ). We find

π(t, δ | data)

→d const. πe(δ)(4)

· exp
{
−1

2

(
t

δ − D

)t

Jwide

(
t

δ − D

)}
.

This means that the part of the prior relating to θ

is being washed out by the data, with θ | data ∼
Np(θ̂ , J 00/n); this aspect of (4) corresponds to a Bern-
shteı̆n–von Mises theorem for the θ part. The πe(δ)

part is not being washed out; however, in the limit,
πe(δ | data) ∝ πe(δ) exp{−1

2(δ − D)tQ−1(δ − D)},
where D | δ ∼ Nq(δ,Q). It follows that

√
n(μwide − μ̂wide) | data

→d

(
∂μ

∂θ

)t
T +

(
∂μ

∂γ

)t
(δ − D),

with (T , δ) having the joint limiting distribution indi-
cated in (4). If in particular a flat prior is used for πe(δ),
then this results in Bayesian inference matching fre-
quentist inference to the first order, as is seen from (3).

Informative priors may be used, however, reflect-
ing the assumption that the start model should not be
very wrong. A natural prior on these extra parame-
ters is δ ∼ Nq(0, νQ). Then the posterior is approx-
imately a Nq(ρD,ρQ), from the above, with ρ =
ν/(ν + 1). We can infer the size of ν, and hence ρ

and for later degrees of robustness, from data. We
may specifically use the natural statistic Zn = n(γ̂ −
γ0)

tQ̂−1(γ̂ − γ0), via the ML for γ and an estimate
for Q inferred from that of J . It has the property that
Zn | δ →d DtQ−1D ∼ χ2

q (δtQ−1δ), and its uncondi-
tional limit mean is q + qν. This leads to the natu-
ral estimator ρ̂ = clip(1 − q/Zn), where clip(x) trun-
cates x to the unit interval. The corresponding empiri-
cal Bayes scheme can then be followed by simulating
from μ(θ̂ + t/

√
n,γ0 + δ/

√
n), with (t, δ) drawn from

the relevant (4) distribution.
WH construct KL neighbourhoods around the pos-

terior from the start model. Our approach can be seen
as constructing neighbourhoods around the model it-
self, via extra extension parameters γ , and then al-
lowing the data to tell us how far these are from their
null values. It turns out that these neighbourhoods also
correspond to the KL metric. Writing for simplicity

f0(y) = f (y, θ0, γ0) and fδ(y) = f (y, θ0, γ0 +δ/
√

n),
Taylor expansion and some analysis lead to both

KL(f0, fδ)
.= 1

2
(1/n)δtJ11δ and

(5)

KL(fδ, f0)
.= 1

2
(1/n)δtJ11δ,

implying in particular that the KL and the reverse KL
neighbourhoods agree, to this order of approximation.
Note that KL distances are “quadratic” and are easier to
interpret on the square-root scale; densities O(1/

√
n)

apart have KL distances O(1/n).

3. AN ILLUSTRATION: ALMOST FLAT
REGRESSION

Our methods and findings briefly exposited above
generalise suitably to regression settings, partly fol-
lowing the methods of Claeskens and Hjort (2008),
Chapters 6, 7. For an illustration, consider a simple re-
gression setup where yi = β0 + β1(xi − x̄) + εi for
i = 1, . . . , n, for εi being i.i.d. N(0, σ 2), with x̄ =
n−1 ∑n

i=1 xi , and for simplicity of presentation take
σ = 1 known. We take an interest in μ = E(Y | x0) =
β0 + β1(x0 − x̄). We take the narrow starting model to
correspond to β1 = 0 and the wider extension to have
β1 = δ/

√
n, fitting with our general apparatus above.

The ML estimators for β0 and β1 in the wider model
are the familiar ȳ and (1/Mn)n

−1 ∑n
i=1(xi − x̄)yi ,

where Mn = n−1 ∑n
i=1(xi − x̄)2. In this case, the ML

for β0 in the narrow model is the same as in the
wide model. We hence have μ̂narr = ȳ and μ̂wide =
ȳ + (x0 − x̄)β̂1. The Fisher information matrix is Jn =
diag(1,Mn), and Qn = 1/Mn. We also need Dn =√

nβ̂1, which has the N(δ0,Qn) distribution. With a
prior δ ∼ N(0, νQn), we have δ | Dn ∼ N(ρDn,ρQn),
with ρ = ν/(ν + 1). The empirical Bayes estimate
for this shrinkage parameter is clip(1 − 1/Zn), with
Zn = nMnβ̂

2
1 .

Figure 1 relates to a simulated dataset with n = 100,
with (β0, β1) = (2.00,3.50/

√
n), and the xi taking

values 1/n,2/n, . . . , n/n, and with interest in μ =
β0 + β1(x0 − x̄) at the next position x0 = 1 + 1/n.
The true value is 2.177, marked in the figure. The left-
hand curve corresponds to WH’s πI , the posterior den-
sity for μ, computed based on the initial (and slightly
wrong) model, missing the target due to the model bias.
The right-hand curve corresponds to Bayesian analy-
sis in the wider model, and also to a flat prior on δ

in the β1 = δ/
√

n setup. The middle curve is the em-
pirical Bayes compromise, emerging from using the
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FIG. 1. Posterior distributions for μ = E(Y | x0) in the simple re-
gression illustration, with x0 = 1.01, and true value 2.177 marked
on the μ axis. Left curve: πI (μ), from narrow model; right curve:
π(μ | data) in wide model; middle curve: the empirical Bayes com-
promise.

δ ∼ N(0, νQn) prior and then estimating ν from data.
It would be of interest to see in suitable detail how
the WH approach would pan out in such a setting,
given a relevant loss function, for example, of the type
L0(|μ−a|), via KL neighbourhood tilting of the πI (μ)

distribution.

4. KL NEIGHBOURHOODS WITH DIRICHLET
PROCESSES DO NOT WORK

Given the authors’ approach (though we found dif-
ficulties with this, conceptually and operationally, dis-
cussed above), it is at the outset also sensible to follow
such ideas nonparametrically. The authors do so em-
ploying Dirichlet processes (Section 4.3), in effect at-
tempting to examine posterior loss inside KL Dirich-
let process neighbourhoods centred at πI . It turns
out that this is problematic, however. First, examin-
ing robustness within a random neighbourhood, say
the set where d(P,πI ) ≤ c (direct) or d(πI ,P ) ≤ c

(reversed), clashes with WH’s coherence principle, as
they here seem to rely on a single realisation of a
Dirichlet process P ∼ DP(α,πI ); even letting m → ∞
in their favoured way of sampling from a DP, with an
infinite bag of samples [cf. their equation (4)], corre-
sponds to a single realisation; see the discussion in
Hjort (2003), Section 2. It would perhaps make bet-
ter sense to define such neighbourhoods via the means

of these random distances. We note, incidentally, that
WH’s equation (7), giving a correct formula for the ex-
pected absolute deviation around the mean for a Beta
distribution, seems to be taken as indication that the ex-
pected L1 distance between the random Dirichlet pro-
cess distribution function F and its mean F0 ought to
be of size O(1/α) (cf. WH’s Figure 5). The real ex-
pected L1 distance is however considerably bigger, and
indeed of size O(1/

√
α) as the concentration index α

grows. This is seen from the Brownian motion limit of√
α(F − F0).
There are yet further technical issues with these KL

neighbourhoods around πI , as we shall now explain.
For simplicity of presentation, take πI to be the uni-
form distribution on the unit interval; the problems we
point to with the Dirichlet process approach to KL
neighbourhoods persist, and in the same manner, for
other choices of the centre distribution πI .

For the direct neighbourhood, let P ∼ DP(α,πI ),
and consider the KL distance from Pm to πI , where Pm

is the inherited Dirichlet distribution on a fine partition
of m intervals of length 1/m. This is KL(Pm,πI ) =∑m

i=1 pi log(pi/qi), with qi = 1/m and (p1, . . . ,

pm) ∼ Dir(α/m, . . . , α/m). Writing pi = Gi/G, with
the Gi ∼ Gam(α/m,1) independent and with sum
G ∼ Gam(α,1), one finds

KL(Pm,πI ) =
m∑

i=1

Gi

G
log

Gi

G
+ logm

= −Vm

G
− logG + logm,

with Vm = −∑m
i=1 Gi logGi . Here, Vm tends to a cer-

tain complicated distribution with mean 0.5772 α and
variance 0.8237 α; the main point is, however, that the
real KL distance from the Dirichlet process to its centre
approaches infinity. Consider also what WH term the
reverse KL neighbourhood, involving KL(πI ,Pm) =∑m

i=1 qi log(qi/pi). With the same representation as
above, one finds

KL(πI ,Pm) =
m∑

i=1

qi logqi −
m∑

i=1

qi(logGi − logG)

= log(G/m) + Wm,

with Wm = −∑m
i=1 qi logGi . Via E logGi =

ψ(α/m) = ψ(1 + α/m) − m/α, where ψ = �′/� is
the digamma function, and some further analysis one
finds that Wm

.= m/α. Hence, KL(πI ,Pm)
.= m/α and

tends to infinity in the limit from fine partition to a
genuine Dirichlet process; (1/m)KL(πI ,Pm) → 1/α.
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So the direct and the reverse KL distances involved for
this fine partition version Pm of P ∼ DP(α,πI ) are of
size logm and m/α, both tending to infinity, indicating
that KL neighbourhoods don’t work in the intended
fashion.
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