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Abstract. The difference-in-differences (DID) approach is a well-known
strategy for estimating the effect of an exposure in the presence of unob-
served confounding. The approach is most commonly used when pre- and
post-exposure outcome measurements are available, and one can assume that
the association of the unobserved confounder with the outcome is equal in
the two exposure groups, and constant over time. Then one recovers the
treatment effect by regressing the change in outcome over time on the ex-
posure. In this paper, we interpret the difference-in-differences as a negative
outcome control (NOC) approach. We show that the pre-exposure outcome
is a negative control outcome, as it cannot be influenced by the subsequent
exposure, and it is affected by both observed and unobserved confounders
of the exposure-outcome association of interest. The relation between DID
and NOC provides simple conditions under which negative control outcomes
can be used to detect and correct for confounding bias. However, for general
negative control outcomes, the DID-like assumption may be overly restric-
tive and rarely credible, because it requires that both the outcome of interest
and the control outcome are measured on the same scale. Thus, we present a
scale-invariant generalization of the DID that may be used in broader NOC
contexts. The proposed approach is demonstrated in simulations and on a
Normative Aging Study data set, in which Body Mass Index is used for NOC
of the relationship between air pollution and inflammatory outcomes.
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1. INTRODUCTION

Unmeasured confounding can seldom be ruled out
in nonexperimental studies. Over the years, a number
of analytic techniques were developed in epidemiology
and the social sciences to detect and ideally, adjust for,
bias due to unobserved confounding. One common ap-
proach is so-called “difference-in-differences” (DID)
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estimation (Card, 1990; Angrist and Krueger, 1999;
Meyer, Kip Viscusi and Durbin, 1995), which is typ-
ically used when:

(i) One has observed the outcome pre- and post-
exposure for each person, and

(ii) the association of the unobserved confounder with
the outcome is assumed equal across exposure
groups and constant over time.

Then the approach entails estimating the effect of ex-
posure by taking a difference between exposure groups
of the average change in outcome over time.

Another approach for evaluating the presence of con-
founding bias, sometimes used in epidemiologic prac-
tice, consists of estimating an association between the
exposure and a so-called negative control outcome.
That is, an observed outcome not causally related
to the treatment, and influenced by unmeasured con-
founders of the exposure-outcome relationship of pri-
mary interest. Lipsitch, Tchetgen Tchetgen and Co-
hen (2010) and Flanders et al. (2011) discussed us-
ing negative control outcomes to detect confounding
by unmeasured factors, as indicated by evidence of
an association between the exposure and the negative
control outcome conditional on observed confounders.
Tchetgen Tchetgen (2014) proposed a calibration ap-
proach to correct causal effect estimates for bias due to
unobserved confounding. However, the identification
conditions of Tchetgen Tchetgen (2014) require that
the ranks of the outcome of interest be preserved un-
der exposure and no exposure conditions (also known
as rank preservation). It is of interest to identify more
general conditions under which the exposure-negative
control outcome association gives a valid estimate of
unmeasured confounding bias that can simply be re-
moved (e.g., subtracted) from the estimated exposure-
outcome association to give a valid causal effect esti-
mate.

In this paper, we interpret the DID as a negative
outcome control (NOC) approach to adjust for un-
observed confounding. The equivalence follows from
noting that the pre-exposure outcome in DID is an ideal
negative control outcome, since it cannot be influenced
by the subsequent exposure, and it is likely affected
by both measured and unobserved risk factors for the
post-exposure outcome. We then show that assumption
(ii) is equivalent to an “additive equi-confounding” as-
sumption that the magnitude of confounding bias for
the primary outcome is equal on the additive scale to
the confounding bias for the negative control outcome.
Assumptions (i) and (ii) are equivalent to conditions

under which one can use negative controls to detect—
and also sometimes to correct for—confounding bias.
However, the additive equi-confounding assumption
may be overly restrictive outside of the context of
pre- and post-outcome measurements, because it re-
quires that both the primary and negative control out-
comes are measured on the same scale. As a rem-
edy, we consider a generalization of DID via a scale-
invariant approach largely motivated by the change-
in-changes approach of Athey and Imbens (2006) that
may be more broadly applicable. Our approach, how-
ever, goes beyond Athey and Imbens (2006) in that
we give weaker identification conditions and develop
a flexible framework for estimation and inference us-
ing a familiar location-scale model specification that
allows one to easily incorporate a possibly large num-
ber of observed confounders. Both the scale-invariance
property of the more general approach and its ability
to incorporate covariates make our methods particu-
larly well suited for NOC. Importantly, while Athey
and Imbens (2006) briefly consider covariate adjust-
ment, their model-based approach relies on an assump-
tion that the unobserved confounder is independent of
observed covariates conditional on the exposure. How-
ever, due to collider bias stratification (Pearl, 2009;
Hernán, Hernández-Díaz and Robins, 2004), this lat-
ter assumption cannot hold if both observed and unob-
served covariates either cause or share a common cause
with the exposure, thus invalidating their proposed co-
variate adjustment approach when the observed covari-
ates are confounders. Our proposed approach also of-
fers an alternative to the control outcome calibration
approach (COCA) of Tchetgen Tchetgen (2014) by
avoiding the rank-preservation assumption it relies on,
and replacing it with milder assumptions regarding a
negative control outcome.

The paper is organized as follows. In Section 2, we
present the NOC framework and relate it to the DID.
In Section 3, we show how negative outcomes poten-
tially can be used in broader settings than the classi-
cal DID, and develop a general NOC approach to in-
directly account for unobserved confounding, together
with a framework for inference under a location-scale
model. In Section 4, we provide a simulation study of
the proposed methods, and in Section 5 we illustrate
the method by estimating the short term effect of air
pollution on blood inflammation markers, with Body
Mass Index (BMI) used as a negative outcome.
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2. NOTATION, DEFINITIONS AND ADDITIVE
EQUI-CONFOUNDING

Let A denote the exposure received by an individual,
let Y denote a post-exposure outcome, and let C denote
a set of observed confounding variables of the effect of
A on Y . Let U denote unmeasured confounders of the
effect of A on Y . Let Ya denote an individual’s out-
come if exposure A were set, possibly contrary to fact,
to a. In this work, we are interested in estimating the
so-called marginal average effect of treatment on the
treated (ETT), defined as

α = E{Y1 − Y0|A = 1}.
Let N denote a negative control outcome variable. The
relationships between these variables may be depicted
by the causal diagram in Figure 1. As shown in the
figure, N is a negative control outcome because it is not
directly influenced by exposure, but it is influenced by
the unobserved confounders of the exposure-outcome
association (Lipsitch, Tchetgen Tchetgen and Cohen,
2010). Note that N and Y can be (but do not have to
be) associated independently of their common causes
U and C, as in the simple DID scenario in which the
negative control outcome is the pre-exposure value of
the outcome of interest.

To provide identifiability conditions for the causal
effect of A on Y , let Na denote an individual’s coun-
terfactual value for N if A were set to a. The following
assumptions state that the negative outcome is not af-
fected by the exposure, and that the observed outcome
corresponds to the counterfactual outcome for the ob-
served exposure value (i.e., the so-called consistency
assumption).

ASSUMPTION 1. Na = N , a = 0,1, and Ya = Y if
A = a.

The assumption that (C,U) suffice to adjust for con-
founding for the effect of A on Y implies that

(1) E{Y0|A = 1, c, u} − E{Y0|A = 0, c, u} = 0

FIG. 1. Directed acyclic graph depicting the causal association
between the treatment A, primary outcome Y , negative control out-
come N , measured pre-exposure confounders C and unmeasured
confounders U .

for all (c, u); however, C alone may not completely
account for exposure-outcome confounding, that is,

(2) E{Y0|A = 1, c} − E{Y0|A = 0, c} �= 0

for some c, and likewise for N0 replacing Y0.

2.1 Difference-in-Differences as an Additive
Negative Outcome Control Approach

Next, consider the longitudinal study represented in
Figure 2 in which the outcome process Y(t) is mea-
sured at 2 occasions, t = 0,1, with Y(0) and Y(1)

pre- and post-exposure variables, respectively. Accord-
ing to this graph, although A is a cause of Y(1), it
does not cause Y(0) (although the reverse may hold),
and the unobserved confounder of the effect of A on
Y(1), U , is also a cause of Y(0). This causal diagram
represents a typical situation under which difference-
in-differences may potentially be used to account for
unobserved confounding by U . However, an addi-
tional assumption about the underlying structure of
confounding is required to justify the standard DID ap-
proach, and is described below. The similarity of the
causal structure encoded in both Figures 1 and 2 is
quite striking, as Figure 1 can be obtained from Fig-
ure 2 by relabeling Y(0) as N and Y(1) as Y , thus es-
tablishing a direct correspondence between the NOC
causal framework and the DID framework. As noted
above, identification of the effect of A on Y using
DID, relies on further elaboration of the data generat-
ing mechanism under Figure 1. A simple causal model
supposes that Y(t) follows the simple linear model
(where individual observations are suppressed in the
notation)

E
{
Y(t)|U,A,C

}
= b(U) + m(t) + βtA + γ (t)T C

(3)

such that m(t) indexes a time-specific intercept, γ (t)

indexes a time-specific association between C and

FIG. 2. Directed acyclic graph depicting the causal association
between the treatment A, pre-exposure outcome Y (0), post-expo-
sure outcome Y (1), measured pre-exposure confounders C and un-
measured confounders U .
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Y(t), b(U) indexes the effect of U on Y(t) which is
assumed independent of t,A and C, and β encodes the
causal effect of A on Y(1). Let Ya(t) denote the coun-
terfactual outcome at t under exposure a, and note that
the key assumption encoded in equation (3) is that

E
{
Y(1) − Y(0)|U,A = a,C

}
= E

{
Y(1) − Y(0)|A = a,C

}
, a = 0,1

(4)

which implies that C suffices to adjust for confounding
between A and Y(1) − Y(0), and thus

E
{
Y0(1) − Y0(0)|A = 1,C

}
= E

{
Y0(1) − Y0(0)|A = 0,C

}
.

(5)

Since treatment is assumed to start only after time 0,
so that E[Y1(0)|A = 1,C] = E[Y0(0)|A = 1,C], and
using equation (5), we obtain the following equality:

E
{
Y1(1) − Y1(0)|A = 1,C

}
− E

{
Y0(1) − Y0(0)|A = 0,C

}
(6)

= β

= E
(
Y1(1) − Y0(1)|A = 1,C

)
.(7)

The effect identified in (6) defines the DID estimand
under equation (3) and, therefore, under assumption
(4) is equal to E{Y1(1) − Y0(1)|A = 1}, the marginal
causal effect of treatment on the treated. Interestingly,
rather than assuming equation (3), one may take equa-
tion (5) as a primitive condition, which may hold with-
out necessarily assuming the model given by equation
(3) holds exactly. Only assuming that (5) holds has pre-
viously been shown to suffice for nonparametric iden-
tification of the marginal ETT even when the linear
model (3) does not necessarily hold (Abadie, 2005).
Thus, assuming no heterogeneity in the effect of A

across strata of C and U as encoded in model (3) is
not strictly necessary to estimate the causal effect of
treatment on the treated.

2.2 Additive Equi-Confounding Bias

Here, we are particularly interested in the following,
alternative, formulation of (5):

E
{
Y0(1)|A = 1,C

} − E
{
Y0(1)|A = 0,C

}
= E

{
Y(0)|A = 1,C

} − E
{
Y(0)|A = 0,C

}
which, upon substituting Y0 for Y0(1) and N for Y(0),
is equivalently expressed:

E{Y0|A = 1,C} − E{Y0|A = 0,C}
= E{N |A = 1,C} − E{N |A = 0,C},(8)

where the left-hand side of (8) encodes the degree of
confounding bias (2) for the effect of A on Y , and the
right-hand side of (8) likewise represents confound-
ing bias for the (null) effect of A on N . Equation (8)
provides the “additive equi-confounding” assumption,
which connects identification in the DID approach to
identification in the NOC framework.

The additive equi-confounding assumption (8) thus
states that the magnitude of confounding bias for es-
timating the effect of A on Y and that of A on N are
exactly equal. Thus, we may conclude that under ad-
ditive equi-confounding, a DID type approach may be
used to estimate the marginal ETT α in the presence of
unobserved confounding and likewise if one has access
to a negative outcome control variable N (which may
differ from a pre-exposure realization of the outcome).

Therefore, the additive equi-confounding assump-
tion formalizes the relation between DID and NOC,
making connection to a fairly rich literature on DID
for inference under a NOC framework. The DID litera-
ture includes several variants of the parametric strategy
described above, as well as more flexible semiparamet-
ric methods (see Angrist and Pischke, 2008; Abadie,
2005, and references therein). However, the additive
equi-confounding assumption may only be credible in
settings where the primary and the negative control
outcomes are measured on the same scale, say as dis-
tinct realizations of the same underlying process as in
the difference-in-differences context. This restriction is
well illustrated by the linear model (3) in which the
invariance of b(U) with respect to time encodes the
equivalent assumption for a negative outcome control,
that the association between U and the primary out-
come is the same as that between U and the negative
control outcome. Such an assumption may be inappro-
priate even if one has available a valid negative control
outcome which satisfies Figure 1. In the next section,
we consider a weaker form of equi-confounding which
may be more useful in practice for NOC.

3. DISTRIBUTIONAL EQUI-CONFOUNDING AND
INDIRECT NOC CONFOUNDING ADJUSTMENT

In this section, we consider a more general frame-
work for NOC adjustment of unobserved confounding
under assumptions considerably less restrictive than
additive equi-confounding.

3.1 General NOC Identification Conditions

We relax the previous structure of unobserved con-
founding for Y and N , by allowing the unobserved
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FIG. 3. Directed acyclic graph depicting the causal association
between the treatment A, primary outcome Y , negative control out-
come N , measured pre-exposure confounders C and unmeasured
confounders U and W of the primary and secondary outcomes, re-
spectively.

confounder for the effect of A on Y denoted by U ,
to be distinct from the unobserved confounder of the
effect of A on N , denoted W .

ASSUMPTION 2. A ⊥⊥ Y0|C,U , however A �⊥⊥
Y0|C; and A ⊥⊥ N |C,W , however A �⊥⊥ N |C.

This more general framework is depicted in Figure 3.
In addition to this causal diagram, in order to appropri-
ately account for possible nonlinearity and scale dif-
ferences between the outcome and the negative control
outcome, we introduce a more general nonparametric
structural equations model.

ASSUMPTION 3. Y0 and N are related to U,W

and C according to

Y0 = hy(U,C),(9a)

N = hn(W,C),(9b)

where

hy(u, c) is monotone increasing in
u for each c,

(10a)

and

hn(w, c) is monotone increasing in
w for each c.

(10b)

This set of equations encodes the fact that consis-
tent with Figure 3, U and C are parents of Y0 and,
therefore, are parents of Y , and likewise that W and
C are parents of N . The direction of monotonicity
in equations (10a), (10b) can be changed without any
real consequence. This assumption might be most com-
pelling if one has available specific knowledge about
what common cause of the treatment and the outcome,
although unobserved, might satisfy the monotonicity
assumption, even if just approximately. Such knowl-
edge would strengthen credibility in the monotonicity
assumption, violation of which is likely to invalidate

the proposed approach without an alternative assump-
tion.

We now consider quantile–quantile and distribu-
tional equi-confounding as less restrictive identifying
assumptions for NOC than additive equi-confounding.
To proceed, we introduce the quantile–quantile trans-
formation, as a measure of association between two
variables, which we will use to encode confounding
bias. Let FX|Z(·) denote the cumulative distribution
function of a X given Z, let fX|Z be the correspond-
ing density function, F−1

X|Z(·) its inverse map, and let
f ◦ g(x) = f (g(x)) denotes composition of functions
f and g. Define the quantile–quantile (qq) association
between U and A conditional on C:

q0(v|c) = FU |A=0,C=c ◦ F−1
U |A=1,C=c(v), v ∈ [0,1].

Under independence of U and A given C (i.e., no con-
founding bias), we have that q0(v|c) = v, while any de-
parture from the identity function encodes unobserved
confounding, that is, q0(v|c)− v �= 0 for some value c.
Likewise let

q1(v|c) = FW |A=0,C=c ◦ F−1
W |A=1,C=c(v).

Figure 4 provides an example of an estimated qq-
transformation function between two distributions es-
timated from the data set discussed in Section 5. The

FIG. 4. The qq-transformation between F̂δ to F̂ε , defined as
F̂ε ◦ F̂−1

δ (u) for u ∈ [0,1]. This qq-transformation was estimated
from the NAS data set, where u is the empirical cumulative proba-
bility of the scaled residuals of log-BMI and the qq-transformation
maps each such value to the empirical cumulative probability of the
scaled residuals of log-fibrinogen.
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function maps the probability distribution of the scaled
residuals of log-BMI to a probability distribution of
the scaled residuals of log-fibrinogen. The diagonal
curve corresponds to the hypothesis that both sets of
residuals follow a common distribution such that the
20th percentile under one matches that under the other.
However, in Figure 4 the value of the 20th percentile
of F̂δ corresponds to the 38th percentile under F̂ε .
The quantile–quantile equi-confounding assumption is
given below.

ASSUMPTION 4. Quantile–quantile equi-con-
founding.

(11) q0(v|c) = q1(v|c), v ∈ [0,1].
This assumption implies that the association (on the

quantile–quantile scale) between U and A is the same
as between W and A conditional on C. Note that
both q0 and q1 while being equal under the assump-
tion, will generally not be equal to the identity map
in the presence of unobserved confounding. Quantile–
quantile equi-confounding is implied by the follow-
ing somewhat stronger distributional equi-confounding
bias assumption, although the latter is still considerably
weaker than additive equi-confounding. Let X ∼ Z de-
note that X and Z follow a common distribution.

ASSUMPTION 5. Distributional equi-confounding.

(12) U |A,C ∼ W |A,C.

The assumption states that the conditional distribu-
tion of the unobserved confounder for Y is the same
as that for N given A and C. Note that both Assump-
tions 4 and 5 are trivially satisfied, if as previously as-
sumed, the unobserved confounder of Y and N is the
same, that is, U = W . Note also that both assump-
tions are considerably weaker than the previous ad-
ditive equi-confounding assumption (8) because they
place no restriction beyond monotonicity on the rela-
tionship between U and Y0, and likewise for the rela-
tionship between W and N . Crucially, they are both
invariant in a monotone transformation of the outcome
and, therefore, do not suffer from the scale restriction
of additive equi-confounding.

The following Theorem 1 establishes nonparamet-
ric identification of the marginal effect of treatment
on the treated α under quantile–quantile equi-con-
founding and, therefore, also under distributional equi-
confounding. Define N∗ ∼ N |A = 1,C to be a random
variable distributed as the negative outcome in the ex-
posed group. The main identification result requires the
additional regularity condition.

ASSUMPTION 6. Positivity.

If 0 < fN |A=1,C

(
N∗)

,

then 0 < FN |A=0,C

(
N∗)

< 1.
(13)

This condition ensures that values of the negative
outcome in the exposed are in the support of the distri-
bution of the negative outcome in the unexposed, and
the probability FN |A=0,C(N∗) will not be identically 1
or 0 for some set of plausible values of N∗.

THEOREM 1. Under Assumptions 1–4 and 6, we
have that

α = E{Y1 − Y0|A = 1}
= E{Y |A = 1} − E{Ỹ },

where

Ỹ = F−1
Y |A=0,C ◦ FN |A=0,C

(
N∗)

.

All proofs can be found in Appendix A. It is helpful
to contrast the estimand obtained in Theorem 1 under
qq equi-confounding, to that obtained under additive
equi-confounding. Recall that under the latter condi-
tion equation (6) states that the ETT is given by

β = E{Y |A = 1,C} − E{Y |A = 0,C}
+ E{N |A = 0,C} − E{N |A = 1,C}.

Under qq equi-confounding bias E{F−1
Y |A=0,C ◦

FN |A=0,C(N∗)} is substituted for E{Y |A = 0,C} +
E{N |A = 0,C} − E{N |A = 1,C} as the negative
control-adjusted identifying expression for the condi-
tional counterfactual mean E(Y0|A = 1).

Theorem 1 is a negative control analog of a simi-
lar identification result in the change-in-changes ap-
proach of Athey and Imbens (2006), which they obtain
under a more stringent assumption analogous to dis-
tributional equi-confounding. Whereas Athey and Im-
bens’s (2006) primary goal was to account for possi-
ble nonlinearity in a DID context, our primary con-
cern has been to account for possible differential scal-
ing in a NOC context, and to demonstrate the close
relationship between these contexts as established by
the above result. The isomorphism between the two
frameworks further provides a principled framework
for NOC of unobserved confounding, possibly using
a post-exposure outcome to achieve such control.

3.2 Indirect NOC Adjustment in the Location-Scale
Model

For inference, we discuss indirect adjustment under
a location-scale semiparametric model. Specifically,
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suppose that both Y and N follow a location-scale
model conditional on C in the unexposed, with A = 0.
Let

E(N |A = 0,C) = μn(C),

Var(N |A = 0,C) = s2
n(C),

and

δ = N − μn(C)

sn(C)
,

and likewise, let

E(Y |A = 0,C) = μy(C),

Var(Y |A = 0,C) = s2
y(C)

and

ε = Y − μy(C)

sy(C)
.

Then the location-scale models for Y and N states that

(14) ε|A = 0,C ∼ fε(ε), δ|A = 0,C ∼ fδ(δ),

where fε(·) and fδ(·) are unrestricted baseline densi-
ties with cumulative distribution functions Fε(·) and
Fδ(·).

COROLLARY 1. Under the assumptions stated in
Theorem 1 and the location-scale model (14), we have
that

Ỹ = sY (C)

{
F−1

ε ◦ Fδ

(
N∗ − μn(C)

sn(C)

)}

+ μy(C),

(15)

and in the special case where Fε(·) = Fδ(·), then

(16) Ỹ = sy(C)

{
N∗ − μn(C)

sn(C)

}
+ μy(C).

Note also that if Fδ(·) = Fε(·), that is, if the distri-
bution of scaled-residuals ε and δ coincide then the
regularity condition 6 is not strictly required. Next,
we describe a simple practical implementation of the
NOC adjustment given in Corollary 1, first assuming
a location-scale family allowing Fδ(·) and Fε(·) to be
different, and then further assuming Fδ(·) = Fε(·).

Let μ̂n(·), μ̂y(·) be estimators of the mean functions
for the negative and primary outcomes under no expo-
sure, and let ŝn(·), ŝy(·) denote estimators of the stan-
dard deviations of N and Y . These can be obtained
using standard models for mean and variance regres-
sion, for example, one may take μ̂n(C) = π̂0 + π̂ ′

1C

the ordinary least squares estimator of E(N |A = 0,C)

using the subsample with A = 0, and likewise one
may take ŝ2

n(C) = exp(ω̂0 + ω̂′
1C) a standard log-linear

regression of the squared N − μn(C) in the unex-
posed subsample, and similarly for μ̂y(·) and ŝy(·).
Further, let F̂δ(·) and F̂ε(·) denote the empirical cumu-
lative distribution functions of ε̂ and δ̂ where ε̂ = {Y −
μ̂y(Ci)}/̂sy(Ci) and δ = {N − μ̂n(C)}/̂sn(C) among
the unexposed, that is, when A = 0. Specifically,

F̂ε(u) = 1

n0

n0∑
i=1

I{̂εi ≤ u},

where I(·) is the indicator of an event.
Let n1 denote the number of exposed persons.

1. Following Theorem 1 and Corollary 1, an estimator
of α is obtained by substitution, that is,

α̂1 =
( ∑

i:Ai=1

Yi

− ŝy(Ci)

{
F̂−1

ε ◦ F̂δ

(
N∗

i − μ̂n(Ci)

ŝn(Ci)

)}

− μ̂y(Ci)

) /
n1.

(17)

2. Under homoscedasticity, that is, ŝy(Ci) = ŝy ob-
tained in a intercept-only regression, and similarly
for ŝn, we get

α̂3 =
( ∑

i:Ai=1

Yi

− ŝy

{
F̂−1

ε ◦ F̂δ

(
N∗

i − μ̂n(Ci)

ŝn

)}

− μ̂y(Ci)

) /
n1.

(18)

3. Assuming Fδ(·) = Fε(·), (17) simplifies to

α̂3 =
( ∑

i:Ai=1

Yi − ŝy(Ci)

(
N∗

i − μ̂n(Ci)

ŝn(Ci)

)

− μ̂y(Ci)

) /
n1.

(19)

4. And finally, under both homoscedasticity and
Fδ(·) = Fε(·), we get

α̂4 =
∑

i:Ai=1[Yi − μ̂y(Ci)]
n1

− ŝy

ŝn

[N∗
i − μ̂n(Ci)]

n1
(20)

= η̂y − ŝy

ŝn
η̂n,
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where η̂y and η̂n are regression-based estimators of
the effect of treatment on the treated for Y and N ,
respectively. This formulation provides some intu-
ition for the proposed indirect adjustment, whereby
the standard estimator of the A–Y association, ob-
tained from a linear regression of Y on A and C, is
adjusted by subtracting an estimator of the magni-
tude of confounding bias given by the scaled asso-
ciation between N and A, with scaling factor ŝy /̂sn.
The scaling factor is necessary here, to account for
possible scale differences between N and Y , or be-
tween the magnitude of the effect of the unmeasured
confounder on N and Y . The more complicated es-
timator α̂1 further accounts for distributional differ-
ences and possible heteroscedasticity.

These four estimators are all regular and asymptoti-
cally linear under standard regularity conditions. In the
Appendix, we provide a simple expression for the large
sample variances of α̂3 and α̂4 which may be used to
construct confidence intervals; alternatively, we recom-
mend using the nonparametric bootstrap for inference.

4. SIMULATION STUDY

We conducted a simulation study to demonstrate the
applicability of our proposed indirect NOC adjustment
under a location-scale model. We generated data from
the model defined by

Y = (U + η0 + Cηc + Aα̃) × σy,

N = (W + β0 + Cβc) × σn

with U and W from the same location-scale fam-
ily. We set σy = 3, σn = 1.5, (η0, ηc)

T = (1,2)T ,
(β0, βc)

T = (2,3)T , and α̃ = 1, so the exposure ef-
fect on the unexposed amounted to α = α̃ ×σy = 3. To
simulate confounding bias between exposure groups,
we determined the distribution of C,U and W by ex-
posure status. U and W came from either a normal or a
uniform distribution, with U,W |A = 0 ∼ N (0,1.5),
and U,W |A = 1 ∼ N (2,1.5), or U,W |A = 0 ∼
uniform(1,9) and U,W |A = 1 ∼ uniform(3,13). The
observed confounder was generated under C|A = 0 ∼
N (0,1),C|A = 1 ∼ N (0.5,1).

Note that a naïve analysis ignoring the possibility
of unmeasured confounding between exposure groups
would attribute the difference in means

E[Y |A = 1,C] − E[Y |A = 0,C]
= α + (

E[U |A = 1] − E[U |A = 0]) × σy

solely to the effect of treatment, when the term (E[U |
A = 1] − E[U |A = 0]) × σy is in fact the bias, and is

equal to 6 when U and W are normally distributed, and
9 when they are uniformly distributed.

Briefly consider the assumptions that our estimators
are based on in light of the generating models for the
simulations. First, it is clear that U and C (W and C)
are associated with both Y (N ) and A, so that C and
U , and C and W comprise of all the confounders of the
A–Y and A–N associations respectively, satisfying As-
sumption 2. Further, because U and W have the same
distributions, the distributional equi-confounding bias
Assumption 5 (and, therefore, the weaker Assump-
tion 4) is satisfied. Assumption 3 is clearly satisfied.
Finally, note that under the uniform distribution sce-
nario, the positivity Assumption 6 does not hold and,
therefore, the estimators α̂1 and α̂2 from Section 3.2
may be biased. However, the estimators α̂3 and α̂4 that
assume FN(·) = FY (·) should not be biased, since in
this case the positivity assumption is not required.

We generated data with n = 100,500 observations,
and n/2 observations in each exposure group. We com-
pared the accuracy of the estimators proposed in Sec-
tion 3.2 over 1000 simulations. Note that although both
outcomes are generated under homoscedastic errors,
with U and W following a common distribution given
A and C, nonetheless, we consider inferences about the
marginal ETT α using the NOC methods developed in
previous sections both with and without imposing these
assumptions. In addition, we compare the estimator of
α using NOC to the naïve regression-based estimator
that simply regresses Y on A and C.

Table 1 provides the absolute bias and MSE of the
estimator of treatment effect on the treated for each
of the various scenarios and assumptions described
above. Using N for negative outcome control assum-
ing a location-scale model yields very good results.
The data were simulated with homoscedastic errors
and a common location-scale family for Y and N ,
so that the qq-transformation between the standard-
ized Y and N in the unexposed group is the iden-
tity. Accordingly, when homoscedasticity and iden-
tity qq-transformations were assumed (estimator α̂4),
the estimated effects are unbiased and the MSE is
smallest compared to other scenarios. Relaxing the ho-
moscedasticity assumption and modeling the variance
via a log-linear model (estimator α̂1) resulted in only
slightly larger MSEs. However, nonparametric estima-
tion of the qq-transformation had mixed effects. Under
normal distribution of the unobserved confounders, es-
timating the qq-transformation (estimators α̂1 and α̂2)
had little effect on the bias and efficiency of the esti-
mators. However, under uniform distribution of the un-
measured confounders, estimating this transformation
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TABLE 1
Finite sample bias and MSE (in parenthesis) averaged over 1000 simulations, for estimating the effect of treatment on the treated (α = 3)

via indirect adjustment, under the location-scale model. The unmeasured confounders were sampled from either the normal or the uniform
family. “Standard” is the naïve regression estimator of Y on C and A. Other estimators either model the qq-transfomation between the

standardized primary outcome Y and the negative control outcome N in the unexposed group nonparametrically (α1, α2, “Nonparametric
qq”), or assume that this it the identity (α3, α4, “Identity qq”), and either model the variance as a function of covariates C (α1, α3), or

assume homoscedasticity (α2, α4)

Nonparametric qq Identity qq

Family n Standard α1 α2 α3 α4

Normal 100 5.99 (36.83) 0.52 (02.65) 0.47 (02.54) 0.13 (02.99) 0.05 (02.72)
Normal 500 5.99 (36.06) 0.12 (00.61) 0.12 (00.57) 0.03 (00.59) 0.01 (00.53)
Uniform 100 9.09 (85.15) 2.59 (10.03) 2.61 (10.06) 0.03 (05.98) 0.03 (05.65)
Uniform 500 8.97 (81.02) 2.31 (06.10) 2.34 (06.22) 0.03 (01.27) 0.01 (01.23)

resulted in substantially larger MSEs and biased esti-
mators. This may be because the positivity condition
did not hold in this setting. The naïve estimator that
regresses Y against A and C had the expected bias.

5. DATA ANALYSIS

We implemented the proposed NOC indirect adjust-
ment to account for confounding in studying the ef-
fect of short term (4 weeks) exposure to black car-
bon (BC, an air pollution component) on fibrinogen,
a blood inflammation marker. We selected BMI as the
negative control outcome, since BMI is likely not af-
fected by short term exposure to air pollution, while
it likely shares unmeasured confounders with inflam-
mation markers. In prior work by Zeka et al. (2006),
fibrinogen levels were shown to be associated with
4 weeks of exposure to BC in the Normative Aging
Study (NAS) cohort. The investigators took 4 weeks
moving averages of BC, measured at an areal sensor,
just prior to a clinic visit as the exposure, and adjusted
for multiple confounders, including BMI. We now re-
analyze this data set.

The NAS is a longitudinal study following a co-
hort of US veterans. They report to the clinic every
3–4 years. We consider a data set of 1727 complete
cases (i.e., with observed exposures, measured covari-
ates and outcome values) from visits between Novem-
ber 14, 2000, and December 31, 2004, as in Zeka et al.
(2006). We use BC values measured either at the areal
sensor in Boston (as in Zeka et al., 2006), or geospa-
tial model-predicted values at participants’ home ad-
dresses (Gryparis et al., 2007). The covariates were age
and weather-related variables: season, mean baromet-
ric pressure, relative humidity and temperature in the
24 hours preceding the clinic visit. Table 2 provides

TABLE 2
NAS cohort characteristics, for participants observed between
November 2000 and December 2004. Measures are given in

medians and ranges are in parentheses

Characteristic Value

Number of participants 616
Number of visits 703
Age 74 (58, 92)
BMI 27.6 (17.9, 46)
Fibrinogen 328 (109, 741)
Black carbon concentration (Areal) 1.18 (0.32, 2.02)
Black carbon concentration (Address) 0.75 (0.42, 1.17)

the cohort characteristics. BC is dichotomized and set
to 0 if BC is less than the median observed in the
data (“low exposure”), and 1 otherwise (“high expo-
sure”). We implemented the four estimators compared
in the simulations, that is, the more robust models al-
lowing for heteroscedasticity, and/or different location-
scale family and the model that assumes homoscedas-
ticity and a common location-scale family. In addition
to these estimators, we also compared the analysis to
the naïve analysis that regresses log-fibrinogen on the
BC measure of interest, covariates and BMI, as well as
to a NOC approach under additive equi-confounding,
which amounts to a standard DID-type analysis that
assumes that the negative control outcome log-BMI is
measured on the same scale as the primary outcome
log-fibrinogen.

In order to evaluate the assumption of a common
location-scale family, we considered the histograms
of scaled residuals of BMI, fibrinogens and their log-
transformation in the low-exposure group, after re-
gressing on covariates. These histograms are provided
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in Figure 4. One can see that after log-transformation
both the primary and control outcomes have symmet-
ric distributions, and it may be reasonable to assume
that they are from a common location-scale family.
We also observed that log-fibrinogen and log-BMI are
measured on different scales. We also considered the
empirical qq-transformation F̂−1

Y ◦ F̂N(u) in Figure 4.
Upon inspection of the figure, this empirical curve
clearly departs from the identity function, although
such informal inspection does not appropriately ac-
count for uncertainty. This suggests that assuming a
common location-scale family for the primary and neg-
ative control outcomes may not be appropriate.

Next, we assessed the homoscedasticity assumption.
We used a 5-fold cross-validation of the restricted
data set, where in each “fold” we took four-fifth of
the participants to form a training set in which we
estimated mean and variance models used to predict
the outcomes (log-fibrinogen) of the held-out vali-
dation data set. We calculated the mean squared er-
rors for these predictions as

∑nk

i=1((yi − Ci β̂y)
2 −

exp(Ciω̂y))
2, where nk is the number of observation

in the k = 1, . . . ,5 set of observations, β̂y is the vec-
tor of regression coefficients of the outcome y and ω
is the vector of regression coefficients in the log-linear
models of the residuals. The cross-validated prediction
score is the mean of these 5 scores. Table 3 provides
cross validation results, suggesting that modeling the
variances of both Y and N conditional on covariates is
beneficial.

Figure 5 provides effect estimates using the vari-
ous models described above, and their 95% bootstrap
confidence intervals from 1000 bootstrap samples. One
can see that when using more robust models (that make
fewer assumptions, α̂1 and α̂2), the confidence inter-
vals are wider, in agreement with the simulations stud-
ies. Next, consider our second set of analyses in which
the dichotomized (high vs. low) BC exposure was mea-
sured at an areal sensor. For this model, based on the

TABLE 3
5-fold cross-validated prediction scores comparing two models for

the variances. The “homoscedasticity” option assumes
homoscedasticity across all levels of the confounding variables,

and “model variance” assumes that the covariates affect the error
variance via a log-linear model

Outcome Homoscedasticity Model variance

log-fibrinogen 0.032 0.007
log-BMI 0.032 0.001

FIG. 5. Estimates of the effect of exposures to BC on log-fib-
rinogen as a binary variable, with values either predicted at par-
ticipants’ home addresses (left), or measured at an areal sensor
at Boston (right), and 95% bootstrap confidence intervals. Effects
were estimated using the four estimators α1, . . . , α4, with log-BMI
as the negative control outcome, and compared to standard regres-
sion adjusted to BMI, and to the naïve DID method that assumes
that the negative control outcome log-BMI is measured at the same
scale as the primary outcome.

histograms in Figure 6 and the results from assess-
ing heteroscedasticity in Table 3, the most appropri-
ate estimators assumes that Y and N come from the
same location-scale family (α̂3 and α̂4) and with het-
eroscedastic error (α̂1 and α̂3). Interestingly, in this
case the effect estimates of BC are larger than the stan-
dard regression estimate.

The “DID” analysis had hardly any impact on the
results compared to the ordinary regression analysis,
since log-BMI is measured on a different scale than
log-fibrinogen, and more accurately—in values much
closer to zero. This demonstrates the importance of
accounting for the outcome’s scale in DID-type anal-
ysis and the restrictive nature of the additive equi-
confounding assumption in this application. More gen-
erally, even if the negative outcome is the pre-exposure
value of the primary outcome, there may be important
differences in variances across groups.

Interestingly, when using the predicted BC measures
at the participants’ home addresses, BC effect esti-
mates are closer to null. This may be due to measure-
ment error from the geospatial model used to predict
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FIG. 6. Histograms of the residuals of the primary outcome (fibrinogen) and negative control outcome (BMI), and their log transformations,
after regressing on the covariates in the low-exposure group.

the BC measurements. Such models were shown to of-
ten lead to biases toward the null in estimating air pol-
lution effects (Zeger et al., 2000).

In contrast with standard regression, estimates based
on NOC approaches allowing for different location-
scale families found no significant exposure effect;
however, confidence intervals from all models con-
tained the point estimate obtained using standard re-
gression, suggesting that BMI does not provide any
significant evidence of unobserved confounding bias.

6. DISCUSSION

In this paper, we propose identification conditions
paired with a principled approach for negative outcome
control of unmeasured confounding to make inferences
about ETT. Our approach draws on simple relations
between DID and NOC to obtain simple identifying
conditions for NOC. Our work also further generalizes
such identifying assumptions by leveraging previous
work by Athey and Imbens (2006). Another important
contribution of this paper has been in addition to draw-
ing parallels between seemingly unrelated literature, to
propose a fairly flexible mode of inference for practi-
cal NOC application under a general location-scale for-
mulation. Our simulation studies demonstrate that our
proposed estimators perform well when the assump-
tions we posit are met; however, the approach appears
to be particularly sensitive to violation of the positiv-
ity assumption, which is violated when the support of
the scaled residuals of N in the exposed is not entirely

contained in the support of the scaled residuals of N in
the unexposed.

The location-scale model we use for estimation is
an example of a so-called “transformation model”. The
main assumption of the location-model is that the as-
sociation between the covariates and the outcome is
only on the mean and variance scale, so that once cen-
tered and standardized, the outcome (i.e., scaled resid-
ual) is independent of covariates. A more familiar for-
mulation of the model is Y = μ(X) + σ(X)ε where ε

is an independent mean zero error with unit variance,
and σ 2(X) is the variance of Y |X. This formulation
highlights the connection to standard regression anal-
ysis with heteroscedastic error. It is customary to as-
sumed that both μ(X) and σ(X) follow simple para-
metric models as posited in the paper. The semipara-
metric efficiency bound of this model is given in Bickel
et al. (1993) where they show that the efficient score of
regression and variance parameters depend on the den-
sity of ε. Another known example of a transformation
model is the accelerated failure time model (Robins
and Tsiatis, 1992; Cox and Oakes, 1984).

An outstanding question not directly addressed in
this paper is how to select a good negative control vari-
able in a given application. In general, a useful nega-
tive control outcome is easy to come about if the ex-
posure has a specific target, for example, a vaccina-
tion for a specific disease. Then the selection of an
outcome known to have no causal relation to the ex-
posure in view can be better informed. Prior informa-
tion on the possible source of unmeasured confound-



NEGATIVE OUTCOME CONTROL 359

ing might also help identify a compelling control out-
come. For instance, in a recent paper, Richardson et al.
(2014) were interested in assessing possible confound-
ing by (unmeasured) smoking behavior in evaluating
the causal link between radon exposure and lung can-
cer. Both specificity of the exposure-outcome relation
and the hypothesized confounder led the authors to se-
lecting COPD as a credible negative control outcome.
In our application, it is less clear. Many variables that
likely share the same confounders as fibrinogen, share
its biological pathways and that a causal link between
BC exposures and such potential variables cannot a pri-
ory be ruled out with certainty. Therefore, our criterion
for selecting a negative control outcome was sharpened
by incorporating a restriction on the hypothesized time
frame required to affect the negative control outcome
to rule out the possibility of such a causal link. While
many inflammation-related markers can be modified in
short time frames such as 4 weeks, BMI will typically
remain unchanged in this short time frame.

The instrumental variable approach is a well-known
common approach to address unmeasured confound-
ing in the social sciences and epidemiology. Although
both IV and NOC address the challenging issue of un-
measured confounding, their assumptions have impor-
tant differences. A valid IV must be directly related to
the exposure, only affect the outcome through the ex-
posure and must be independent of unmeasured con-
founders. Therefore, while a good negative control out-
come is in essence as closely related to the unmeasured
confounder as possible, the opposite is desirable of a
valid IV. Despite this important distinction, both ap-
proaches can be viewed as a way to estimate the de-
gree of selection bias due to unobserved confounding
(Tchetgen Tchetgen and Vansteelandt, 2013).

SOFTWARE

An R function implementing the proposed estima-
tors and an example simulation code can be found
at: https://github.com/tamartsi/NOC_adjustment_to_
estimate_ETT.

APPENDIX A: MATHEMATICAL DERIVATIONS

Define the inverse of the cumulative distribution
function as

F−1
Y |A=0,C(u) = min

{
v : p(Y < v|A = 0,C) = u

}
.

PROOF OF THEOREM 1. Let SN |A,C(n) = P {N ≥
n|A,C} and FN |A,C(n) = P {N < n|A,C}.

First, we establish that Assumption 4 is equivalent to

FY0|A=0,C ◦ F−1
Y0|A=1,C(v) = FN |A=0,C ◦ F−1

N |A=1,C(v)

since

FY0|A=0,C ◦ F−1
Y0|A=1,C(v)

= Pr
{
Y0 ≤ F−1

Y0|A=1,C(v)|C,A = 0
}

= Pr
{
hy(U,C) ≤ F−1

Y0|A=1,C(v)|C,A = 0
}

and also

FY0|A=1,C(y) = Pr{Y0 ≤ y|C,A = 1}
= Pr

{
hy(U,C) ≤ y|C,A = 1

}
= Pr

{
U ≤ h−1

y (y,C)|C,A = 1
}

= FU |C,A=1
(
h−1

y (y,C)
)
,

where the third equality holds due to the monotonicity
Assumption 3, taking the inverse and using Assump-
tion 3 we get

(A.1) F−1
Y0|A=1,C(v) = hy

(
F−1

U |C,A=1(v),C
)

and, therefore, by plugging-in (A.1) into the expression
for FY0|A=0,C ◦ F−1

Y0|A=1,C(v), we may conclude that

FY0|A=0,C ◦ F−1
Y0|A=1,C(v)

= Pr
{
hy(U,C) ≤ F−1

Y0|A=1,C(v)|C,A = 0
}

= Pr
{
hy(U,C) ≤ hy

(
F−1

U |C,A=1(v),C
)|C,A = 0

}
= Pr

{
U ≤ F−1

U |C,A=1(v)|C,A = 0
}

= FU |A=0,C ◦ F−1
U |A=1,C(v),

where we used Assumption 3 in the third identity and
the definition of the cumulative distribution function in
the last. Likewise,

FN |A=0,C ◦ F−1
N |A=1,C(v) = FW |A=0,C ◦ F−1

W |A=1,C(v).

Therefore, by the quantile–quantile equi-confounding
Assumption 4,

FU |A=0,C ◦ F−1
U |A=1,C(v)

= FW |A=0,C ◦ F−1
W |A=1,C(v)

(A.2)
⇐⇒ FY0|A=0,C ◦ F−1

Y0|A=1,C(v)

= FN |A=0,C ◦ F−1
N |A=1,C(v).

Finally, we get

F−1
Y0|A=1,C(v) = F−1

Y0|A=0,C ◦ FN |A=0,C ◦ F−1
N |A=1,C(v)

https://github.com/tamartsi/NOC_adjustment_to_estimate_ETT
https://github.com/tamartsi/NOC_adjustment_to_estimate_ETT
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since N∗ ∼ N |A = 1,C, or equivalently, N∗ ∼
F−1

N |A=1,C(V ), where V is a uniformly distributed ran-
dom variable, and using the positivity Assumption 6,
and the consistency Assumption 1, we get that

Ỹ = F−1
Y0|A=1,C(v) = F−1

Y |A=0,C ◦ FN |A=0,C

(
N∗)

proving the result. In the last equation, note that if
F−1

Y0|A=0,C ◦ FN |A=0,C(u) = u, the positivity assump-
tion is not required, since the FN |A=0,C is not applied
to N∗. �

PROOF OF COROLLARY 1. From Theorem 1,

Ỹ ∼ F−1
Y |A=0,C ◦ FN |A=0,C

(
N∗)

.

First, note that

FN |A=0,C(v)

= p(N < v|A = 0,C)

= p

(
N − μn(C)

sn(C)
<

v − μn(C)

sn(C)

∣∣∣ A = 0,C

)

= Fδ

(
v − μn(C)

sn(C)

)
.

Second, let F−1
Y |A=0,C(u) = v, for 0 < u < 1. Then

u = FY |A=0,C(v) = p(Y < v|A = 0,C)

= p

(
Y − μy(C)

sy(C)
<

v − μy(C)

sy(C)

∣∣∣ A = 0,C

)

= Fε

(
v − μy(C)

sy(C)

)
.

Thus,

v = sy(C)F−1
ε (u) + μy(C) = F−1

Y |A=0,C(u).

Combining the two results, we get

Ỹ = sy(C)F−1
ε ◦ Fδ

(
N∗ − μn(C)

sn(C)

)
+ μy(C).

Now, if Fε(·) = Fδ(·), trivially

Ỹ = sy(C)

(
N∗ − μn(C)

sn(C)

)
+ μy(C). �

APPENDIX B: ASYMPTOTIC VARIANCE OF THE
LOCATION-SCALE NOC ESTIMATE

Assume that sy(Ci) = sy , sn(Ci) = sn. Let βy , βn

be the covariates effects on the outcomes Y and N , re-
spectively, in a model where μy(C) = CT βy,μn(C) =

CT βn. An estimating equation U(θ) for θ = (βy,βn,

sy, sn, α) is given by

U(θ) =

⎛
⎜⎜⎜⎜⎜⎝

U(βy)

U(βn)

U
(
s2
y;βy

)
U

(
s2
n;βn

)
U(α)

⎞
⎟⎟⎟⎟⎟⎠

with influence function

E

[
∂

∂θ
U(θ)

]−1
U(θ)

with:

U(βy) = 1∑
i:Ai=0 1

∑
i:Ai=0

Ci

(
Yi − CT

i βy

)
,

U(βn) = 1∑
i:Ai=0 1

∑
i:Ai=0

Ci

(
Ni − CT

i βn

)
,

U(sy) = 1∑
i:Ai=0 1

∑
i:Ai=0

(
Yi − CT

i βy

)2 − s2
y,

U(sn) = 1∑
i:Ai=0 1

∑
i:Ai=0

(
Ni − CT

i βn

)2 − s2
n,

U(α) = 1∑
i:Ai=1 1

· ∑
i:Ai=1

[
Yi − sy

{
N∗ − CT

i βn

sn

}
− CT

i βy

]

− α.

The matrix ∂
∂θ U(θ) is given by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂βy

U(βy) 0 0 0 0

0
∂

∂βn

U(βn) 0 0 0

∂

∂βy

U(sy) 0
∂

∂sy
U(sy) 0 0

0
∂

∂βn

U(sn) 0
∂

∂sn
U(sn) 0

∂

∂βy

U(α)
∂

∂βn

U(α)
∂

∂sy
U(α)

∂

∂sn
U(α)

∂

∂α
U(α)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with
∂

∂βy

U(βy) = − 1∑
i:Ai=0 1

∑
i:Ai=0

CiC
T
i ,

∂

∂βn

U(βn) = − 1∑
i:Ai=0 1

∑
i:Ai=0

CiC
T
i ,

∂

∂βy

U(sy) = − 2∑
i:Ai=0 1

∑
i:Ai=0

Ci

(
Yi − CT

i βy

)
,
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∂

∂sy
U(sy) = −2sy,

∂

∂βn

U(sn) = − 2∑
i:Ai=0 1

∑
i:Ai=0

Ci

(
Ni − CT

i βn

)
,

∂

∂sn
U(sy) = −2sn,

∂

∂βy

U(α) = − 1∑
i:Ai=1 1

∑
i:Ai=1

CT
i ,

∂

∂βn

U(α) = 1∑
i:Ai=1 1

∑
i:Ai=1

sy

sn
CT

i ,

∂

∂sy
U(α) = − 1∑

i:Ai=1 1

∑
i:Ai=1

{
N∗ − CT

i βn

sn

}
,

∂

∂sn
U(α) = 1∑

i:Ai=1 1

∑
i:Ai=1

sy

{
N∗ − CT

i βn

s2
n

}
,

∂

∂α
U(α) = −1.

Finally, the covariance matrix of the estimators is
given by[

∂

∂θ
U(θ)

]−1
Pn

[
Ui(θ)UT

i (θ)
][ ∂

∂θ
U(θ)

]−1
,

where Ui is an individual equation for subject i, and
Pn[xi] = 1/n

∑n
i=1 xi .
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