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Abstract: In this article, we review and compare a number of methods
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processes spatial data. To demonstrate the breadth of available choices,
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tors. Specifically, in our exposition we review: traditional stationary kriging,
smoothing splines, negative-exponential distance-weighting, fixed rank krig-
ing, modified predictive processes, a stochastic partial differential equation
approach, and lattice kriging. This comparison is meant to provide a ser-
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and motivation for each (deterministic and stochastic) spatial predictor.
We use a benchmark dataset of CO2 data from NASA’s AIRS instrument
to address computational efficiencies that include CPU time and memory
usage. Furthermore, the predictive performance of each spatial predictor is
assessed empirically using a hold-out subset of the AIRS data.
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1. Introduction

We are in an era of “big data,” where the sizes of available datasets are becom-
ing increasingly larger. For example, consider datasets on weather from the Na-
tional Oceanic and Atmospheric Administration (NOAA), on earnings from the
US Census Bureau’s Longitudinal Employer-Household Dynamics program, and
on public health from the Centers for Disease Control and Prevention (CDC).
In the commercial sector, big data is now available using technology that allows
companies to gather information on a myriad of purchases [23]. Pharmaceutical
organizations amass large amounts of drug-testing data through combinatorial
chemistry, medium-to-high-throughput screening (HTS), and other new tech-
nologies [6]. Many of these datasets can be very large in size; for example, the
National Aeronautics and Space Administration (NASA) collects millions of at-
mospheric CO2 measurements per month over the globe using the Atmospheric
Infrared Sounder (AIRS) instrument on the Aqua satellite and, more recently,
from the Orbiting Carbon Observatory-2 satellite.

As a result, big data is an important and growing topic in statistics. In the
spatial-data setting, there are additional challenges. For example, AIRS CO2

data have global extent, but they are spatially sparse, depending on the time
period of observation. Additionally, they exhibit complex spatial dependencies
that may be nonstationary. Thus, the complexity of “big spatial data” has moti-
vated many to propose new statistical methodologies for spatial prediction (e.g.,
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see 15, Ch. 4; 44, for reviews). For example, there are methods that use sepa-
rable covariance functions, tapered covariance matrices, composite likelihoods,
and low-dimensional latent Gaussian processes. These methodologies are all mo-
tivated by the fact that the Gaussian likelihood is difficult to compute when the
dataset is large. Specifically, the Gaussian likelihood involves the computation
of an inverse and a determinant of an n×n covariance matrix, a task that is on
the order of n3 computations, where n represents the size of the spatial dataset.

Despite the growing number of spatial predictors that are becoming available,
there has been no comprehensive comparison between (and among) both tradi-
tional and modern spatial predictors. Such a comparison would be highly useful
to the more general scientific community. In particular, the GIS community often
uses spatial interpolation and smoothing (e.g., see 29) and would benefit from
such a comparison. We take the approach of specifying a common task, where
we train prediction rules that will be scored in a well defined, universal way.
Here, we shall review the parameterization, the algorithm, and the motivation
of seven spatial predictors, also considered by Bradley et al. [4] in the context
of local spatial predictor selection. The predictors chosen are representative of
their genres.

We consider three traditional spatial predictors, namely traditional stationary
kriging, smoothing splines, and negative-exponential distance-weighting; and
we consider four more-recently-introduced spatial predictors, namely fixed rank
kriging, one based on modified predictive processes, one based on a stochas-
tic partial differential equation, and lattice kriging. Of these seven predictors,
smoothing splines and distance-weighting represent the deterministic approach,
and the remaining represent the stochastic approach. We use a benchmark
dataset of CO2 data from NASA’s AIRS instrument to empirically compare
the predictive performances, computation times, and memory usage of these
spatial predictors.

Kriging based on a stationary covariance function has become a method of
spatial prediction covered in standard textbooks [e.g., 1, 8, 11, 15, 40] and has
a rich history [see 10, and the references therein]. Since this method of spatial
prediction has become a staple, we consider it in our study of AIRS CO2 data
and call the approach traditional stationary kriging (TSK). Another common
approach is spatial interpolation using splines, which is obtained by minimizing
a penalized-least-squares criterion (e.g., see 35; 46). Hence, we also consider
smoothing splines (SSP) in our comparisons.

However, both TSK and SSP are not practical for large datasets; for example,
they cannot be computed for the entire AIRS dataset for computational reasons.
One simple ad hoc solution to this “big data” problem is to use a spatial predic-
tor based on negative-exponential distance-weighting (EDW) [see 11, p. 371, for
a discussion on these deterministic approaches]. Here, a datum’s negative log
weight is proportional to the Euclidean distance from the prediction location to
the datum’s location (see Section 3.3 for more details on EDW).

Although EDW is computationally efficient, we are predominantly interested
in spatial predictors that are derived from statistical models and are appropriate
for big data. For example, low-rank statistical models provide a computationally
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efficient way to obtain the optimal kriging predictor and associated measures
of prediction error. For this reason, low-rank statistical modeling for spatially
referenced data is a popular method in the literature. In the spatial univariate
setting, see Cressie and Johannesson [12], Shi and Cressie [42], Banerjee et al.
[2], Cressie and Johannesson [13], and Kang and Cressie [24]. In the spatio-
temporal setting, see Wikle and Cressie [48], Wikle et al. [49], Cressie et al. [14],
Kang et al. [25], Katzfuss and Cressie [27, 28], and Bradley et al. [5]. Among
the possible low-rank spatial predictors, we include two in our comparison: fixed
rank kriging (FRK), and the modified predictive process (MPP) approach.

FRK seeks efficient calculation of the kriging predictor in the setting where n
is very-large-to-massive. An advantage of FRK is that the inverse of the covari-
ance matrix can be achieved efficiently using the Sherman-Morrison-Woodbury
identity [e.g., 22] (see Section 3.4 for more details). The approach taken by MPP
is similar and starts by first predicting a low-rank random effect called the pre-
dictive process. Then, predictions of a latent process are found by multiplying
the prediction of the random effect by a set of basis functions (see Section 3.5
for more details). Some have criticized the use of a low-rank representation of a
latent Gaussian process and believe that in many settings much of the variabil-
ity occurs at high frequencies (see 30; 43, for discussions). However, it should
be noted that high-frequency or discontinuous basis functions can address this
criticism, making low-rank methods suitable for predicting processes with mixed
variability (see the rejoinder of 4).

The remaining two spatial predictors we considered impose parametric as-
sumptions on the precision matrix of the latent random process. One is based
on a stochastic partial differential equation (SPD) approach proposed by Lind-
gren et al. [30], and the other is lattice kriging (LTK) proposed by Nychka et al.
[36]. Computational efficiency is achieved by assuming sparseness of the spa-
tial precision matrix of the random-effects vector (see Sections 3.6–3.7 for more
details).

In Section 2, we provide a brief review of the spatial-predictor methodolo-
gies that are currently available, and we discuss the clear need to use bench-
mark datasets within this literature. That is, with the variety of spatial pre-
dictors available, benchmark datasets are essential in determining their rela-
tive usefulness, since one can compare both the predictive and computational
performances of competing spatial predictors. In Section 3, we present the
seven methods of spatial prediction, ranging from the classical to the more
recent ones designed to handle very-large-to-massive datasets; both determin-
istic and stochastic spatial predictors are considered. Details surrounding the
predictors are presented systematically, along with the motivation behind each
spatial predictor. In Section 4, we apply and compare these predictors us-
ing different-sized datasets of remotely sensed mid-tropospheric CO2 measure-
ments from NASA’s AIRS instrument. We include the computation time and
memory usage of each predictor in the comparison, along with an empirical
comparison of predictive performance using a hold-out dataset. A concluding
discussion is provided in Section 5, followed by two short technical appen-
dices.
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2. Motivation: Benchmarking spatial predictor methodologies

The goal of this article is to review and compare some of the more recently in-
troduced spatial predictors that are competitors for handling very large spatial
datasets. Hence, in our exposition, many spatial predictors that were devel-
oped in an era of smaller datasets are not compared. Nevertheless, we think
it is worthwhile here to give a brief review of the spatial predictors that were
prominent in that era.

Our original source for this brief review is Cressie [11, Section 5.9], where
stochastic and non-stochastic spatial predictors are compared. Of the seven
predictors compared in this article and presented in Section 3, two (SSP and
EDW) are deterministic (i.e., non-stochastic). Initially, one might think that
comparisons of deterministic and stochastic predictors would be of “apples and
oranges,” but Bradley et al. [4] and this manuscript show that when viewed as
algorithms that take data as input and produce spatial predictors as output,
there are “figures of merit” that can be applied to all predictors.

In the last 25 years, spatial mapping has become ubiquitous in our daily lives,
powered by map-querying software that gives us our present location and a path
(via private vehicle, public transport, walking, etc.) to a chosen location. Remote
sensing has filled in most of the holes in global mapping, however Earth is a
dynamic environment, particularly for geophysical variables such as greenhouse
gases. Satellites have well specified orbits that result in spatially incomplete
data in any one day, one week, or one month for that matter. Paradoxically, the
more data we collect, the more we realize that large fractions of the globe are
missing due to the orbit geometry. On top of this, instrument error results in
an imperfect measurement (i.e., “noise”). Thus, spatial-prediction technology is
needed that accounts for the “missingness” and the “noise” in potentially very
large datasets.

In the 1960s, G. Matheron and L.S. Gandin almost simultaneously developed
a spatial-prediction technology that recognized spatial correlation as a way to
solve the problem of missingness. However, they did not handle the noise appro-
priately; that came much later [9]. Of the seven predictors given in Section 3, five
are stochastic and built around the methodology developed by Matheron [32]
and Gandin [18], and some account for the noise. Their predecessors are sum-
marized in Cressie [11] and include: simple kriging, ordinary kriging, universal
kriging, optimal estimation, kriging with intrinsic random functions, Markov
random-field prediction, disjunctive kriging, and Bayesian spatial prediction.

The deterministic spatial predictors go back to Gauss [19]; Cressie [10] gives
the context in an article that traces the origins of kriging. The two deterministic
predictors we consider are joined by predictors such as spatial moving average,
inverse-distance-weighted average, Delauney triangulation, Natural-Neighbour
interpolation, splines, and multi-quadric biharmonic interpolation [11, Section
5.9].

In this article, we have chosen traditional stationary kriging (TSK) as a
placebo spatial-prediction method, and the other six spatial predictors were
chosen for their representativeness and for taking a more modern approach to
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handling very large spatial datasets. For researchers who have other spatial
predictors to add to our list of seven, we have made training and validation
datasets available in the Supplemental Material, making it easy for new com-
parisons to be made. Section 3 contains the definitions and genesis of all seven
spatial predictors. The vast literature available on performing spatial prediction
gives reason and motivation for providing up-to-date comparisons of recently
introduced predictors in practice. That is, as spatial predictors are introduced,
reviews and comparisons that reflect the concerns of the modern researcher are
helpful in solidifying a new spatial predictor’s role among the many choices that
are available. Since many of the aforementioned spatial predictors are motivated
by practical considerations, we consider both the predictive performance and the
practical performance of each spatial predictor.

We acknowledge that the practical performance of a predictor extends be-
yond statistical considerations. For example, the performance of each “spatial
predictor technology” depends on the efficiency of the code used to compute
the spatial predictor, both the computer and the software used to run the code,
and the way in which the spatial predictor is implemented. For example, if
MPP say is computed twice using two different scripts, one written in Matlab
and another in R, then one would expect differences in the practical perfor-
mance of the two different computations of the MPP predictor. This is partially
due to the fact that Matlab has built-in multithreading for multicore compute
machines, while R currently does not (e.g., see http://www.mathworks.com/

discovery/matlab-vs-r.html). Additionally, many of these methods are tra-
ditionally fitted using different numerical algorithms. For example, MPP is often
fitted using Markov Chain Monte Carlo (MCMC) with Metroplis updates [2],
while the SPD approach is traditionally fitted using integrated nested Laplacian
approximations (INLA), which was developed as a faster Bayesian alternative
to MCMC [38]. Furthermore, there is a Bayesian version of FRK [24], but no
public-use software is available.

Thus, there are a number of competing effects that may be used to explain
why one predictor is “better” than another. From this perspective, our practical
comparison is of the “spatial predictor technologies” provided by the statistics
community, which we define as the combination of the choice of computer, soft-
ware, code, statistical model, spatial predictor, and the method of fitting used
to obtain the spatial predictor. In particular, MPP, SPD, and TSK all have
R scripts that are open source [16, 37, 39], both SSP and FRK have Matlab
code that is available, and EDW can be easily written in either language (we
chose Matlab; see Appendix A for the Matlab code). Critically, our compari-
son is based on publicly available code, which is more useful to practitioners
uninterested in writing/optimizing/debugging their own programs.

3. Seven spatial predictors

In this section, we provide details on the spatial predictors considered. They
are: traditional stationary kriging (TSK), smoothing splines (SSP), negative-
exponential distance-weighting (EDW), fixed rank kriging (FRK), the modified

http://www.mathworks.com/discovery/matlab-vs-r.html
http://www.mathworks.com/discovery/matlab-vs-r.html
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predictive process approach (MPP), the SPDE approach (SPD), and lattice krig-
ing (LTK). Notice that the spatial predictors could be deterministic or stochas-
tic, and we have chosen several that have been proposed recently to handle big
spatial datasets. Details of the seven predictors are set out according to: the
parameterization associated with each spatial predictor; the algorithm used to
compute the spatial predictor; and the motivation behind the spatial predictor.

Several of the spatial predictors that we consider can be motivated by a
spatial mixed effects (SME) model [e.g., 12, 13]:

DataModel : Z(u) = Y (u) + ε(u) (3.1)

Process Model : Y (u) = μ(u) + ν(u) + ξ(u); u ∈ D, (3.2)

where Z(·) represents data or potential data; ε(·) represents measurement error;
μ(·) is a deterministic mean function; ν(·) models small-scale variation; ξ(·)
is a term that captures (often non-smooth) micro-scale variation; and D ≡
{uj : j = 1, . . . , N} ⊂ R

d is a generic finite set of prediction locations. All
stochastic components, ε(·), ν(·), and ξ(·) are assumed mutually independent.
A very flexible way to represent ν(·) is through a basis-function expansion,

ν(u) = Sr(u)
′η; u ∈ D, (3.3)

where Sr(·) is an r-dimensional vector of spatial basis functions and η is an
r-dimensional vector of random coefficients.

The spatial random process Z(·) is observed over a subset of the spatial
domain of interest D ⊂ R

d; that is, Z(·) is observed at locations in the set DO ≡
{si : i = 1, . . . , n} ⊂ D. The latent process Y (·) is of principal interest, and one
wishes to predict it from the data {Z(s) : s ∈ DO}. It is assumed that ε(·) is
a white-noise Gaussian process with mean zero and known var(ε(·))= σ2

εVε(·),
where Vε(·) > 0 is a known function that captures heteroskedasticity. Note that
often variance estimates are obtained from measuring-instrument calibration
and quality assurance [e.g., see 33, among others], in which case σ2

ε can also be
considered as known. Let μ(·) ≡ x(·)′β, where x(s) is a p-dimensional vector of
known spatial covariates defined on all s ∈ D, and β is a p-dimensional vector
of unknown regression coefficients.

The low-rank representation of ν(·) requires further explanation. For i =
1, . . . , r, the i-th element of Sr(·) is given by the function, Si,r : D → R; and
the r-dimensional random vector η is specified as a Gaussian process with mean
zero and r×r covariance matrix K. Finally, the random process ξ(·) is assumed
to be a Gaussian white-noise process with mean zero and variance σ2

ξVξ(·) > 0,
where Vξ(·) is a known positive function.

It will be seen below that the SME model motivates some of the stochastic
predictors, although clearly not so for the deterministic predictors. Critically,
it is not our intention in this article to fit a single stochastic model given by
(3.1) and (3.2); rather, we look at each of the spatial predictors algorithmically,
as it acts on the data {Z(si) : i = 1, . . . , n}. We also consider a “central”
spatial predictor for each prediction method, recognizing that embellishments
may be needed in a particular application. Our goal is to make the review and
comparison as straightforward and transparent as possible.
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3.1. Traditional Stationary Kriging (TSK)

Its parameterization: The statistical model, from which TSK is an optimal
spatial predictor, can be defined hierarchically. The data model is given by (3.1)
with Vε(·) ≡ 1, and σ2

ε is known. The process model is given by,

Y (u) = x(u)′β + ν(u) + ξ(u); u ∈ D, (3.4)

where x(u) is a p-dimensional vector of known spatial covariates that describes
the large-scale variation, ν(u) represents small-scale variation, and indepen-
dently ξ(u) represents fine-scale variation.

The spatial random process ν(·) is specified to have mean zero and a second-
order stationary covariance function,

cov(ν(u+ h), ν(u)) ≡ C(h); h ∈ R
d, (3.5)

where the function C(·) is positive-definite (e.g., Cressie, 1993, p.68). Specifi-
cally, in Section 4, we use the exponential covariance function given by,

C(h) = σ2
0exp

(
−||h||

θ

)
; h ∈ R

d, (3.6)

where θ > 0 and σ2
0 > 0. Additionally, in Section 4 it is assumed that Vξ(·) ≡ 1.

We organize these unknown parameters into the set θTSK ≡ {β, θ, σ2
0 , σ

2
ξ}.

The algorithm: To compute TSK for a given θTSK, first construct the n×n
covariance matrix,

Σ(θTSK) ≡
(
cov

(
ν(si), ν(sj)|θ, σ2

0

)
: i, j = 1, . . . , n

)
+ σ2

ξVξ + σ2
ε In, (3.7)

where the n× n diagonal matrix Vξ ≡ diag(Vξ(si) : i = 1, . . . , n), and In is the
n× n identity matrix. Also construct the n-dimensional vector,

cov(Z, Y (u)|θTSK) = cov(Z, ν(u)|θTSK) + σ2
ξVξ(u)(I(u = s1), . . . , I(u = sn))

′,

(3.8)

where I(·) represents the indicator function. Then define

Ŷ (u,Z|θTSK) ≡ x(u)′β + cov(Z, Y (u)|θTSK)′Σ(θTSK)−1(Z−Xβ), (3.9)

where X ≡ (x(s1), . . . ,x(sn))
′.

Modifying (3.9) to be a function only of the data Z, we substitute in the
ordinary least squares (OLS) estimate for β and maximum likelihood (ML)
estimates of the covariance parameters where the likelihood assumes mean zero,
covariance (3.7), and is based on detrended data [e.g., 11, p. 239 and pp. 291-

292]. The estimated parameters are denoted as θ̂TSK, and TSK is defined by
the predictor,

Ŷ TSK(u,Z) ≡ Ŷ (u,Z|θ̂TSK); u ∈ D. (3.10)

To compute Ŷ TSK, we use the R-package “geoR” version 1.7-4 [37]. The com-
putational complexity of TSK is O(n3), and it has memory size that is O(n2).
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The motivation: The spatial predictor given by (3.9) minimizes the mean
squared prediction error,

E
(
(Y (u)− Ŷ (u,Z))2|θTSK

)
,

among the class of linear predictors, Ŷ (u,Z) = � + k′Z (e.g., Cressie, 1993,
Section 3.4.5).

3.2. Smoothing Splines (SSP)

Its parameterization: In our implementation of smoothing splines, there is
a single parameter that trades off smoothness with goodness-of-fit, which we
denote as θSSP > 0.

The algorithm: The smoothing spline predictor, for a given θSSP, is

Ŷ (u,Z|θSSP) ≡ x(u)′β̂SSP +W(u)′(W+ θSSPIn)
−1(Z−Xβ̂SSP), (3.11)

where x(u) is a p-dimensional vector of known spatial covariates,X≡ (x(s1), . . . ,
x(sn))

′ is an n× p matrix, and

β̂SSP ≡ (X′(W+ θSSPIn)
−1X)−1X′(W+ θSSPIn)

−1Z.

In our implementation, the (i, j)-th entry of W, say Wij , is obtained from a
radial basis function as follows,

||si − sj ||2log (||si − sj ||) , (3.12)

and the n-dimensional vector W(u) has i-th entry, ||u−si||2log (||u− si||) [e.g.,
46, p. 31].

The value of θSSP is chosen based on minimizing a leave-one-out cross-
validation error [46, pp. 47–52]. Denote this minimized value as θ̂SSP, and hence
SSP is defined by the predictor,

Ŷ SSP(u,Z) ≡ Ŷ (u,Z|θ̂SSP); u ∈ D, (3.13)

which is a function only of the data Z. To compute Ŷ SSP, we use the Mat-
lab (Version 8.0) function “griddata.” The computational complexity of SSP is
O(n3), and it has memory size that is O(n2).

The motivation: The parameter θSSP is used to achieve a balance between
goodness-of-fit and degree-of-smoothness of the spatial predictor [46]. In R

2,
the smoothing spline predictor is the function f(·) that minimizes the following
penalized sum of squares (Wahba, 1990, p.31; Nychka, 2001),

1

n

n∑
i=1

(Z(si)− f(si))
2 + θSSP

∫ ∫ (
∂2f(u)

∂2u1
+ 2

∂2f(u)

∂u1∂u2
+

∂2f(u)

∂2u2

)
du1du2,

(3.14)
for u = (u1, u2)

′. Its generalization to R
d for any positive integer d, is straight-

forward.
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3.3. Negative-Exponential Distance-Weighting (EDW)

Its parameterization: There is a single parameter used for controlling the
weights in negative-exponential distance-weighting, which we denote as θEDW>0.

The algorithm: The data are weighted based on their Euclidean distance
from the prediction location u. Let di(u) ≡ ||u− si|| be the Euclidean distance
between u and si. The negative-exponential distance-weighting predictor, for a
given θEDW, is

Ŷ (u,Z|θEDW) ≡
∑n

i=1 exp{−θEDWdi(u)}Z(si)∑n
i=1 exp{−θEDWdi(u)}

; u ∈ D. (3.15)

The value of θEDW is often prespecified in advance. In this article, we estimate
θEDW by minimizing

n∑
i=1

(
Z(si)− Ŷ (u,Z|θEDW)

)2

.

Denote this minimized value as θ̂EDW, and hence EDW is defined by the pre-
dictor,

Ŷ EDW(u,Z) ≡ Ŷ (u,Z|θ̂EDW); u ∈ D. (3.16)

To compute θ̂EDW, we use the Matlab (Version 8.0) function “fminsearch.”
Additionally, to compute Ŷ EDW, we wrote a simple MATLAB script (provided
in the Appendix). The computational complexity of EDW is O(nN), and it has
memory size that is O(nN), where recall that N is the number of locations in
the entire spatial domain D.

The motivation: A datum closer to the prediction location gets more weight
than one further away. Also, for a prediction location that is the same as a
datum location, there can be positive weights on the other data.

3.4. Fixed Rank Kriging (FRK)

Its parameterization: The statistical model, from which FRK is derived as
an optimal spatial predictor, can be defined hierarchically. The data model is
given by (3.1) with both Vε(·) and σ2

ε known. The process model is,

Y (u) = x(u)′β + Sr(u)
′η + ξ(u); u ∈ D, (3.17)

where x(u) is a p-dimensional vector of known spatial covariates that describes
the large-scale variation, Sr(u)

′η represents small-scale variation, and indepen-
dently ξ(u) represents fine-scale variation. The p-dimensional vector β, the r-
dimensional random vector η, and the Gaussian white-noise process ξ(·) are all
defined below (3.3). In Section 4, it is assumed that Vξ(·) ≡ 1 and Sr(·) ≡ SBI

r (·),
an r-dimensional vector function of bisquare basis functions [e.g., 13]. Further,
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the value of r is specified to be much smaller than n; as will be discussed at the
end of this section, specifying r � n leads to computational advantages.

We organize the unknown parameters into the set θFRK ≡ {β,K, σ2
ξ}.

The algorithm: Define the n × n matrix Vε ≡ diag(Vε(s1), . . . , Vε(sn)) and
the n × r matrix SBI

r ≡ (SBI
r (s1), . . . , S

BI
r (sn))

′. To compute FRK, for a given
θFRK, first construct the n× n covariance matrix,

Σ(θFRK) ≡ cov(Z|θFRK,SBI
r ) = SBI

r K(SBI
r )′ + σ2

ξVξ + σ2
εVε,

where the n×n diagonal matrix Vξ ≡ diag(Vξ(si) : i = 1, . . . , n). Also construct
the n-dimensional vector,

cov(Z, Y (u)|θFRK,SBI
r )

= SBI
r KSBI

r (u) + σ2
ξVξ(u)(I(u = s1), . . . , I(u = sn))

′; u ∈ D, (3.18)

where recall that I(·) represents the indicator function. Then define

Ŷ (u,Z|θFRK)

≡ x(u)′β + cov(Z, Y (u)|θFRK,SBI
r )′Σ(θFRK)−1(Z−Xβ); u ∈ D, (3.19)

where X ≡ (x(s1), . . . ,x(sn))
′.

Modifying (3.19) to be a function only of the data Z, we substitute in the
OLS estimate for β and the Expectation Maximization (EM) estimates of the
covariance parameters; here the likelihood from which the EM estimates are
obtained assumes that the detrended data follow a Gaussian distribution with
mean zero and covariance (3.18) [26]. For a review of the EM algorithm in this

setting, see Bradley et al. [3]. The estimated parameters are denoted as θ̂FRK.
Then FRK is defined by the predictor,

Ŷ FRK(u,Z) ≡ Ŷ (u,Z|θ̂FRK); u ∈ D. (3.20)

To compute Ŷ FRK, we use Matlab code that is available on the website http://
niasra.uow.edu.au/cei/webprojects/UOW175995.html#1.

The motivation: The spatial predictor given by (3.19) minimizes the mean
squared prediction error,

E
(
(Y (u)− Ŷ (u,Z))2|θFRK

)
,

among the class of linear predictors, Ŷ (u,Z) = �+ k′Z [13].
The primary motivation for FRK, as described in Cressie and Johannesson

[12, 13], is that Σ(θFRK)−1 can be computed efficiently using the Sherman-
Morrison-Woodbury formula [e.g., 22]:

Σ(θFRK)−1 = (σ2
ξVξ + σ2

εVε)
−1 − (σ2

ξVξ + σ2
εVε)

−1SBI
r

× {K−1 + (SBI
r )′(σ2

ξVξ + σ2
εVε)

−1SBI
r }−1(SBI

r )′(σ2
ξVξ + σ2

εVε)
−1.

(3.21)

http://niasra.uow.edu.au/cei/webprojects/UOW175995.html#1
http://niasra.uow.edu.au/cei/webprojects/UOW175995.html#1
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Equation (3.21) allows efficient computation ofΣ(θFRK)−1 in (3.19), since (3.21)
involves inverses of r× r matrices and a diagonal n×n matrix. Specifically, the
computational complexity of the right-hand side of (3.21) is O(nr2), which is
linear in n [13]. Additionally, FRK has memory size that is O(nr).

3.5. Modified Predictive Process approach (MPP)

Its parameterization: The statistical model, from which MPP is derived as
an optimal spatial predictor, can be defined hierarchically. The data model is
given by (3.1) with Vε(·) ≡ 1, and σ2

ε is unknown. The process model is

Y (u) = x(u)′β + SPP
r (u;κ, σ2

ν)
′η + ξ(u); u ∈ D, (3.22)

where x(u) is a p-dimensional vector of known spatial covariates, SPP
r (u;κ, σ2

ν)
′η

represents small-scale variability, both κ and σ2
ν are unknown parameters, and

independently ξ(u) represents fine-scale variability. The p-dimensional vector β,
the r-dimensional random vector η, and the Gaussian white-noise process ξ(·)
are all defined below (3.3).

Let {u∗
1, . . . ,u

∗
r} ≡ D∗ ⊂ D be a set of (r � n) knots over the spatial domain

D. The r-dimensional random vector η is taken to be Gaussian with mean zero
and covariance matrix K∗, where K∗ ≡

{
C(u∗

i ,u
∗
j )
}
. The term SPP

r (·;κ, σ2
ν) is

an r-dimensional vector function defined as,

SPP
r (u;κ, σ2

ν)
′ ≡ k(u)′ (K∗)

−1
, (3.23)

where k(u) ≡ (C(u,u∗
i ) : i = 1, . . . , r)

′
also depends on parameters κ and σ2

ν . In
Section 4, C(u,v) is the exponential covariance function, a function of ||u−v||,
with scaling parameter κ > 0 and variance σ2

ν .
The original predictive-process approach, proposed by Banerjee et al. [2],

did not include a fine-scale variation process ξ(·), and this led to a variance
of the hidden process that was underestimated. Later Finley et al. [17] modi-
fied the approach by introducing ξ(·), resulting in (3.22). The spatial random
process ξ(·) is modeled as a mean-zero independent Gaussian process such that

var(ξ(u))= σ2
ξVξ(u) = C(u,u)− k(u)′ (K∗)

−1
k(u). This leads to

var
(
SPP
r (u;κ, σ2

ν)
′η + ξ(u)

)

= k(u)′ (K∗)
−1

k(u) + C(u,u)− k(u)′ (K∗)
−1

k(u) = C(u,u) = var (Y (u)) ,

as it should be. We organize the unknown parameters into the set θMPP ≡
{β, κ, σ2

ν , σ
2
ε }.

The algorithm: Markov Chain Monte Carlo (MCMC) techniques are used
for inference on parameters in this setting [2, 17]. The prior distributions are
taken as σ2

ν ∼ IG(aη, bη), κ ∼ U(aκ, bκ), σ
2
ε ∼ IG(aε, bε), and β has a flat prior,

where σ2
η, κ, σ

2
ε , and β are assumed mutually independent, IG(a, b) represents an
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inverted gamma distribution with parameters a and b, and U(a, b) represents a
uniform distribution with parameters a and b. Choices for the hyperparameters
depend on the application, but in Section 3 we use the suggestions from Finley
and Banerjee [16], who also give details of the MCMC computations.

We note here an undesirable feature of the MPP, namely that it predicts the
process Z(·). Recall that the data model is given by,

Z(u) = Y (u) + ε(u); u ∈ D, (3.24)

and hence MPP predicts the process with the measurement error included. Con-
sequently, MPP predictions will be exactly equal to the training data at training
data locations {si}, which is an undesirable property when σ2

ε > 0. Typically,
scientific interest is in Y (·) not in Z(·), and the measurement error (i.e., “noise”)
component ε(·) in (3.24) should be filtered out.

The MCMC generates samples {Z(u)1, . . . , Z(u)L} from the posterior distri-
bution of Z(u). Then MPP is defined by the predictor,

Ŷ MPP(u,Z) ≡ 1

L

L∑
�=1

Z(u)�; u ∈ D. (3.25)

To compute Ŷ MPP, we use the R-package “spBayes” [16]. The computational
complexity of MPP is O(nLr), and it has memory size that is O(nr).

The motivation: The spatial predictor given by (3.25) minimizes the mean
squared prediction error,

E(Z(u)− Ŷ (u,Z))2; u ∈ D, (3.26)

where here the expectation is taken over Z, Z(u), and θMPP. As we noted
above, instead of Y (u), the scientifically-less-interesting quantity Z(u) appears
in (3.26). The primary motivation of this approach is that since r � n, the
Sherman-Morrison-Woodbury identity can be used to compute the precision
matrix efficiently, and thus it was proposed for use with large spatial datasets.

3.6. SPDE approach (SPD)

Its parameterization: The statistical model, from which SPD is derived as
an optimal spatial predictor, can be defined hierarchically. The data model is
given by (3.1) with Vε(·) ≡ 1, and σ2

ε is unknown. The process model is given
by,

Y (u) = x(u)′β + SPL
r (u)′η; u ∈ D, (3.27)

where x(u) is a p-dimensional vector of known spatial covariates that describes
the large-scale variation, SPL

r (u)′η represents small-scale variability, and notice
in (3.27) that the fine-scale variability term ξ(·) ≡ 0. The p-dimensional vector
β and the r(> n)-dimensional vector η are defined below (3.3). Here the term
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SPL
r (·) is an r-dimensional vector function whose elements are piecewise-linear

basis functions; and in contrast to FRK and MPP, r > n.
On the Euclidean space, define a set of r knots {u∗

1, . . . ,u
∗
r} ≡ D∗, which

contains the n locations of DO; that is, r > n. The r-dimensional random vector
η is specified to be a mean-zero Gaussian Markov random field (GMRF) defined

on D∗. The precision matrix associated with η (i.e., K−1 ≡ cov (η)
−1

) is based
on parameters κ and σ2

ν . The functional form of this precision matrix, and hence
the neighborhood structure of the elements in η, is found by solving a stochastic
partial differential equation, which we describe below. We organize the unknown
parameters into the set θSPD ≡ {β,K−1, σ2

ε }.

The algorithm: Bayesian inference proceeds without using MCMC; it is
based on Integrated nested Laplacian approximations (INLA) in this setting
[30, 38]. The goal of INLA is to approximate the marginal distribution,

π(Y (s)|Z) =
∫

π(Y (s)|θSPD,Z)π(θSPD|Z)dθSPD; s ∈ D. (3.28)

The strategy of INLA is to make nested approximations of (3.28); in partic-
ular, both π(Y (s)|θSPD,Z) and π(θSPD|Z) are approximated, which we shall,
in general, denote as π̄(Y (s)|θSPD,Z) and π̄(θSPD|Z), respectively. The term
π(θSPD|Z) is approximated using a version of the Laplace approximation from
Tierney and Kadane [45]. Rue et al. [38] provide several choices to approximate
π(Y (s)|θSPD,Z), namely a Gaussian approximation, a full Laplace approxima-
tion, and a simplified Laplace approximation. Their results suggest that the
simplified Laplace approximation of π(Y (s)|θSPD,Z) is the most efficient and
leads to accurate estimates. Hence, this is used in SPD. Finally, a discrete sum
is used to approximate the integral in (3.28). That is,

π̄(Y (s)|Z) =
∑
k

π̄(Y (s)|θSPD
k ,Z)π̄(θSPD

k |Z)Δk; s ∈ D, (3.29)

where {Δk} are “area weights.” The choice of {θSPD
k } and {Δk} are made within

the R-INLA package.
For the parameter model, prior distributions are chosen for θSPD. As a de-

fault in the R-INLA package, β ∼ Gau(0, τ2βI), and log
(
1/σ2

ν

)
, log

(√
8/κ

)
,

and log
(
σ2
ε

)
are distributed as Log-Gamma. Further, β, σ2

ν , κ, and σ2
ε are as-

sumed to be mutually independent. The values of hyperparameters of the prior
distribution are chosen heuristically [39, personal communication]; we used the
default settings of the R-INLA package.

Denote the posterior probability density function of Y (u) as π(Y (u)|Z), and
the INLA-approximated version as π̄(Y (u)|Z) [e.g., 38, Section 3]. Rejection
sampling is then used to generate L values {Y (u)1, . . . , Y (u)L} from π̄(Y (u)|Z).
Finally, the SPD spatial predictor is,

Ŷ SPD(u,Z) ≡ 1

L

L∑
�=1

Y (u)�; u ∈ D. (3.30)
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To compute Ŷ SPD, we use the R-package “inla” [38, 39]. The computational
complexity of SPD is approximately O(n), and the memory size is not available.

The motivation: The spatial predictor given by (3.30) minimizes the (ap-
proximate) posterior mean squared prediction error,∫

(Y (u)− Ŷ (u,Z))2π̄(Y (u)|Z)dY (u). (3.31)

Computational efficiency is obtained through a connection between GMRFs
and Gaussian processes that have a Matérn covariance function [31],

σ2
ν

Γ(α)2α−1
(κ||h||)αKα(κ||h||); h ∈ R

d, (3.32)

where Kα(·) is the modified Bessel function of the second kind of order α > 0.
Here, 0 < α < ∞ is a smoothing parameter, κ > 0 is a scaling parameter, and
σ2
ν is the variance parameter.
A random process ν(·) in R

d with covariance function given by (3.32) with
σ2
ν = Γ(α)Γ(α + d/2)−1(4π)−d/2κ−2α is a solution to the following stochastic

partial differential equation [47]:

(κ2 −Δ)ζ/2ν(u) = W (u); u ∈ R
d, (3.33)

where W (·) is a Gaussian white-noise process with mean zero and variance 1,
and ζ ≡ α+d/2 is a positive integer, κ > 0, and σ2

ν > 0. In (3.33), the Laplacian
Δ is defined by,

Δ ≡
d∑

i=1

∂2

∂2ui
. (3.34)

Now write ν(u) = SPL
r (u)′η, and specify η to be a GMRF with precision

matrix, cov (η)
−1

. This precision is formed by solving (3.33) [30, Section 2.3],
but not for all values of the smoothness parameter α; the solution can only be
found for ζ(= α+ d/2) a positive integer.

Lindgren et al. [30] extend this modeling approach to handle nonstationarity
by letting some of the parameters depend on spatial coordinates; they find the
precision matrix associated with the random vector η that solves the following
stochastic partial differential equation,

(κ(u)2 −Δ)ζ/2{σν(u)
2SPL

r (u)′η} = W (u); u ∈ R
d, (3.35)

where ζ ≡ α + d/2 is a positive integer, κ(u) > 0, and σν(u)
2 > 0. Lindgren

et al. [30] propose the model,

log
(
σν(u)

2
)
≡

∑
i

β
(1)
i B

(1)
i (u) (3.36)

and
log

(
κ(u)2

)
≡

∑
i

β
(2)
i B

(2)
i (u), (3.37)
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where {B(1)
i (·)} and {B(2)

i (·)} represent two different finite sets of smooth basis
functions.

Finally, in our case of R2, K−1 is specified as follows: α = 1 and hence ζ = 2,

since d = 2; {B(1)
i (·)} is a set of four spherical basis functions of order three;

and {B(2)
i (·)} is a set of seven spherical basis function of order six [e.g., 30].

3.7. Lattice Kriging (LTK)

Its parameterization: The statistical model defining lattice kriging can be
defined hierarchically. The data model is given by (3.1) with Vε(·) ≡ 1; and σ2

ε

is assumed known. The process model is given by,

Y (u) = x(u)′β + Sr(u)
′η; u ∈ D, (3.38)

where x(u) is a p-dimensional vector of known spatial covariates, Sr(u)
′η rep-

resents small-scale variability, and notice in (3.38) that the fine-scale variability
term ξ(·) ≡ 0. The p-dimensional vector β and the r(> n)-dimensional vector η
are defined below (3.3). Here the term Sr(·) is an r-dimensional vector of spatial
basis functions. In Section 4, Sr(·) ≡ SWL

r , an r-dimensional vector of “smooth”
multiresolutional Wendland basis functions; notice that r > n.

We first give the single-resolution version of the spatial model. From Nychka
et al. [36], define a set of r nodes {u∗

1, . . . ,u
∗
r} ≡ D∗ on a regular grid contained

in D and ordered in some pre-specified manner. Given this ordering, for the
i-th node denote the set of its four-nearest neighbors as Ni. Then define the
r-dimensional random vector η ≡ B−1e, where e is an r-dimensional Gaussian
random vector with mean zero and variance σ2

ηIr. Note that Bη = e, which is
the form of a simultaneous autoregressive (SAR) model, and

Bi,j =

⎧⎨
⎩

4 + κ2, for j = i
−1, for j ∈ Ni

0, elsewhere.
(3.39)

Thus, in this single-resolution version, just one parameter κ2 is used to describe
the spatial dependence. For the LTK multi-resolution model with K resolutions,
B is block diagonal with K blocks, each taking the same form as (3.39), and
there are potentially K parameters, κ2

1, . . . , κ
2
K , that describe the spatial de-

pendence. A feature of LTK and the block-diagonal form of B is the following.
Consider two random effects in η corresponding to two basis functions at the
same location, but from different resolutions. Then the LTK model assumes
that the two random effects are conditionally independent; from a graphical
perspective, this means that two nodes are created at the common location, but
there is no edge between them, which seems counter-intuitive. We organize the
unknown parameters into the set θLTK ≡ {β, σ2

η, κ}.

The algorithm: Define SWL
r ≡ (SWL(s1), . . . ,S

WL(sn))
′. To compute LTK,

for a given θLTK, first construct the n× n covariance matrix,

Σ(θLTK) ≡ cov(Z|K,SWL
r ) = SWL

r K(SWL
r )′ + σ2

ε In, (3.40)



116 J. R. Bradley et al.

where recall that In is the n×n identity matrix and K ≡ cov(η). Also construct
the n-dimensional vector,

cov(Z, Y (u)|θLTK,SWL
r ) = SWL

r KSWL
r (u).

Then define,

Ŷ (u,Z|θLTK)

≡ x(u)′β + cov(Z, Y (u)|θLTK,SWL
r )′Σ(θLTK)−1(Z−Xβ); u ∈ D, (3.41)

where X ≡ (x(s1), . . . ,x(sn))
′.

Modifying (3.41) to be a function only of the data Z, we substitute in the

maximum likelihood estimate of θLTK (denoted θ̂LTK). Then LTK is defined by
the predictor,

Ŷ LTK(u,Z) ≡ Ŷ (u,Z|θ̂LTK); u ∈ D. (3.42)

To compute Ŷ LTK, we use the R package “LatticeKrig” [36]. The computational
complexity and memory size are not known for LTK; we refer the reader to
Figure 1 of Nychka et al. [36] for approximations.

The motivation: The spatial predictor given by (3.41) minimizes the mean
squared prediction error,

E
(
(Y (u)− Ŷ (u,Z))2|θLTK

)
, (3.43)

among the class of linear predictors, Ŷ (u,Z) = �+k′Z. A numerical motivation
for LTK is that Σ(θLTK)−1 can be found using sparse-matrix techniques [36].

4. A comparison of the seven spatial predictors: Mid-tropospheric
CO2 measurements

The Aqua satellite is part of the Earth Observing System (EOS), which is ad-
ministered by the National Aeronautics and Space Administration (NASA). The
Atmospheric Infrared Sounder (AIRS) is an instrument on board the Aqua satel-
lite that retrieves information on atmospheric variables, amongst other things,
CO2. Specifically, the AIRS instrument collects CO2 measurements in the form
of spectra that are then converted to mid-tropospheric CO2 values in parts per
million (ppm) [7]. This type of global information has been used to great ef-
fect in raising public awareness on greenhouse gases and in determining policy
regarding climate change (e.g., see https://www.ipcc.ch/).

The AIRS instrument records data over swaths (or paths) of Earth’s surface
(roughly 800 km wide) and extends from −60◦ to 90◦ latitude. We use AIRS
data retrieved from February 1 through February 9, 2010, which are converted
into level-2 CO2 data reported at a 17.6 km by 17.6 km spatial resolution.

The resulting AIRS CO2 dataset consists of 74,361 total observations, which
we shall use in a comparison of both the predictive performance and the com-
putational performance of the seven spatial predictors. However, not every pre-
dictor can be computed using all 74,361 observations. For example, it is well

https://www.ipcc.ch/
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Fig 1. A spatial dataset made up of 9 days of measurements of mid-tropospheric CO2 in
parts per million (ppm). The data considered are in North America between −49◦ degrees
and 36◦ degrees latitude and −80◦ degrees and −99.5◦ degrees longitude, from Februrary 1
through Februrary 9, 2010. The data are randomly split into training and validation datasets
with n = 57 and m = 14, respectively.

known that the traditional predictors, TSK and SSP, cannot handle datasets
this large (or larger). Hence, we take subsets of the globe (i.e., D) that contain
smaller numbers of data points than found in {Z(s) : s ∈ DO}.

In Figure 1, we display Study Region 1, which covers the Midwest region of
North America. Here, there is a total of just 71 observations, which we sepa-
rate into two subsets of size n = 57 and m = 14. The n observations are the
“training” data (top panel of Figure 1) used to fit the spatial predictors, and
the m observations are the “validation” data used to assess the predictive per-
formance of each spatial predictor (bottom panel of Figure 1); notice that we
reserve roughly 20% of the data for validation. Our main reason for analyzing
this small study region is to compare the predictive performance of all seven
spatial predictors, which we do in Section 4.1. For this particular dataset, we
found that trying other regions of the globe led to instability of one or more
predictors. However, it is important to note that TSK and SSP can certainly be
computed for a spatial datasets whose size is on the order of a thousand or less.

Although we are interested in comparing all the predictors, a number of
them are designed to handle larger datasets. In particular, EDW, FRK, MPP,
SPD, and LTK are relatively straightforward (but non-trivial) predictors that
are intended for larger spatial datasets. Consider Study Region 2 in Figure 2,
which covers the Americas and western Sahara between longitudes −125◦ to 3◦
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Fig 2. A spatial dataset made up of 9 days of measurements of mid-tropospheric CO2 in parts
per million (ppm). The data considered are between −20◦ degrees and 44◦ degrees latitude and
−125◦ degrees and 3◦ degrees longitude, from Februrary 1 through Februrary 9, 2010. The
data are randomly split into training and validation datasets with n = 12, 358 and m = 3, 090,
respectively.

and latitudes −20◦ to 44◦ (this is the same study region used in 25). There
are n = 12, 358 observations used to train each spatial predictor (top panel of
Figure 2), and m = 3, 090 observations used for validation (bottom panel of
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Fig 3. A spatial dataset made up of 9 days of measurements of global mid-tropospheric CO2

in parts per million (ppm). The data considered are between −60◦ degrees and 90◦ degrees
latitude from Februrary 1 through Februrary 9, 2010. The data are randomly split into training
and validation datasets with n = 44, 621 and m = 2, 000, respectively.

Figure 2). In Section 4.2, we use the data in Figure 2 to compare these five
spatial predictors.

Finally, in Section 4.3, we use the entire dataset in Figure 3, which is compu-
tationally feasible only for EDW, FRK, SPD, and LTK, but no longer for MPP.
There are n = 59, 488 observations used to train each spatial predictor (top
panel of Figure 3), and m = 14, 873 observations used for validation (bottom
panel of Figure 3). This is by no means an unusually large dataset that one
might process spatially; for example, Sengupta et al. [41] and Bradley et al. [5]
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process datasets on the order of millions. Note that in Appendix B, we consider
different specifications of Study Region 3. This is done in an effort to determine
the effect that the training and validation datasets have on our conclusions.

The training (validation) data are referenced by their locations,Dtrn ≡ {strnj :

j = 1, . . . , n} (Dval ≡ {svalj : j = 1, . . . ,m}), where DO = Dtrn∪Dval and Dtrn∩
Dval = ∅. Hence, the total size of the dataset is n + m. We use the validation
datasets to assess the predictive performance of each spatial predictor. Define
the root average squared testing error (RSTE) associated with the predictor
Ŷ PRD and the different study regions as,

RSTE(Ŷ PRD,m) ≡
(

1

m

∑m

j=1
(Z(svalj )− Ŷ PRD(svalj ,Z))2

)1/2

, (4.1)

where “PRD” notates a generic predictor. The RSTE will be used to compare
each of the seven spatial predictors (small values are desirable), PRD = TSK,
SSP, EDW, FRK, MPP, SPD, and LTK.

Another criterion that we consider is the predictive model choice criterion
(PMCC) from Gneiting and Raftery [20, see their Equation (27)],

PMCC(Ŷ PRD,m) ≡ 1

m

∑m

j=1

(Z(svalj )− Ŷ PRD(svalj ,Z))2

σ̂PRD(svalj ,Z)2
−log

(
σ̂PRD(svalj ,Z)2

)
,

(4.2)
where σ̂PRD( · , · )2 is the model-based posterior variance, and hence we can only
compute the PMCC for PRD = TSK, FRK, MPP, SPD, and LTK. Notice that
for the SME model in (3.1) and PRD = TSK, FRK, and LTK,

σ̂PRD(s,Z)2 = var(ν(s)|θ̂PRD) + var(ξ(s)|θ̂PRD)

− cov(Z, Y (s)|θ̂PRD)′cov(Z|θ̂PRD)−1cov(Z, Y (s)|θ̂PRD).

The posterior variance for the predictors that are derived using a fully Bayesian
approach are estimated by

σ̂PRD(s,Z)2 =

{
var (Z(s)� : � = 1, . . . , L) if PRD = MPP,
var (Y (s)� : � = 1, . . . , L) if PRD = SPD; s ∈ Dval,

where recall {Z(·)�} and {Y (·)�} are samples from their respective posterior
distributions defined in Sections 3.5 and 3.6, respectively. The PMCC is useful
for comparing predictors (small values are desirable) because it incorporates
information on the implicit model-based prediction errors. However, it has the
limitation of not allowing a comparison to deterministic predictors, something
that can be done with RSTE.

We are interested in evaluating other properties of the predictors in addition
to their predictive performance. In particular, to assess the amount of smooth-
ness in PRD, consider the lag-1 semivariogram,

1

2|C(1)|
∑
C(1)

(Ŷ PRD(ui)− Ŷ PRD(uj))
2, (4.3)
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where PRD = TSK, SSP, EDW, FRK, MPP, SPD, and LTK, C(h) ≡ {(i, j) :
||ui−uj || = h}, |C(h)| denotes the number of distinct elements in the set C(h), h
denotes the spatial lag, and h = 1 is in a unit of distance defined by the smallest
lag at which a semivariogram can be computed. In Study Regions 1, 2, and 3,
the unit of distance is 1.41◦, 1.5◦, and 1.5◦, respectively. A large (small) lag-1
semivariogram in (4.3) suggests that the map of PRD is non-smooth (smooth).

The exact specifications of each of the seven spatial predictors can be found
in Section 3. Here the covariates are x((latitude, longitude)′) ≡ (1, latitude),
since it is well known that mid-tropospheric CO2 values display a latitudinal
gradient [21]; that is, there are p = 2 covariates. Additionally, the measurement-
error variances are assumed known for TSK, FRK, and LTK; in practice, these
variances are estimated using a variogram-extrapolation technique used by Kang
et al. [25] and Katzfuss and Cressie [28]. We use their estimate of σ2

ε = 5.6062
ppm2 and, for simplicity, we shall take Vε(·) ≡ 1.

In Sections 4.1 through 4.3, all of our computations are performed on a
Dell Optiplex 7010 Desktop Computer with a quad-Core 3.40 GHz processor
and 8 Gbytes of memory. It is important to note that the timing and memory-
usage results may be different for different machines; however, to illustrate what
someone might expect in practice, we use a computer that has the specification of
a “typical personal desktop.” Additionally, FRK, EDW, and SSP were computed
using Matlab, which has built-in multithreading capabilities that allows all four
cores to be used; however, TSK, MPP, SPD, and LTK are written in R, and
thus they use a single core.

4.1. Comparison using a small dataset of mid-tropospheric CO2

In this section, we use the data in Study Region 1 (see Figure 1), which we
process using all seven spatial predictors, namely Ŷ TSK, Ŷ SSP, Ŷ EDW, Ŷ FRK,
Ŷ MPP, Ŷ SPD, and Ŷ LTK. Maps of the seven spatial predictors for Study Region
1 are given in Figure 4.

Each spatial predictor displays similar general patterns, with lower CO2 val-
ues near the Great Lakes. In general, we can separate the predictors in Figure 4
into two categories: smooth and non-smooth. The two deterministic predictors
(SSP and EDW) appear non-smooth, whereas the stochastic spatial predictors
appear quite smooth; this is also seen in the lag-1 semivariograms in Table 1.
This may be because the stochastic predictors rely on an underlying smooth
covariance function in this setting, where the dataset is small and fairly sparse
over the study region.

The RSTE results for this example (given in Table 1) indicate that FRK is
the predictor that has the most-favorable predictive performance, while LTK
has the least-favorable predictive performance among the seven spatial predic-
tors; however, it should be noted that the RSTE values are fairly similar across
different choices of PRD. The PMCC results for this example (given in Table 1)
indicate that TSK and MPP have the most-favorable predictive performance,
followed by FRK, and SPD and LTK have the least-favorable predictive per-
formance among the five stochastic spatial predictors; recall that PMCC is not
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Fig 4. Spatial prediction (in ppm) of mid-tropospheric CO2 concentrations using TSK, SSP,
EDW, FRK, MPP, SPD, and LTK. Predictions are indicated in the title headings and are
mapped over Study Region 1.

Table 1

Results from Study Region 1 (Section 4.1) for the root average squared testing error
(RSTE), PMCC, lag-1 semivariogram, CPU time (including model fitting and parameter
estimation), and peak memory-usage by predictor. These quantities are produced using the

data shown in Figure 1.

Predictor RSTE PMCC
Lag-1

Semivariogram
CPU Time
(in minutes)

Peak Memory-
Usage (in MB)

TSK 4.7063 -0.4845 0.5739 0.20 171.08
SSP 4.7151 N/A 4.9746 0.02 1,043.80
EDW 4.5126 N/A 7.8176 2.31 889.54
FRK 4.3097 12.5612 2.1298 1.01 791.12
MPP 4.9084 -0.5873 0.0339 3.37 239.51
SPD 4.7399 26.2548 1.1271 0.24 143.14
LTK 5.0163 39.5806 0.2536 2.73 205.84
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defined for deterministic predictors. As expected, there were no difficulties with
CPU time and memory usage for this small dataset, and each of the seven spatial
predictors were computed in a matter of seconds.

4.2. Comparison using a large dataset of mid-tropospheric CO2

It is well known that the inversion of a large n × n matrix makes TSK and
SSP computationally impractical. Hence, for this large dataset in Study Region
2 (see Figure 2) we consider the five spatial predictors that can be computed,
namely EDW, FRK, MPP, LTK, and SPD.

Maps of the five spatial predictors Ŷ EDW, Ŷ FRK, Ŷ MPP, Ŷ SPD, and Ŷ LTK

are given in Figure 5. Each spatial predictor displays similar general patterns;
in contrast to the results in Section 4.1, the large dataset used in this section
shows clearly that MPP is the smoothest predictor, EDW is the least smooth,
and FRK, LTK, and SPD have similar patterns of smoothness. These results
are further corroborated by inspecting the lag-1 semivariograms in Table 2.

The RSTE results for this example (see Table 2) are fairly constant across
different choices of PRD, with MPP (EDW) having the most-favorable (least-
favorable) predictive performance as measured by RSTE; recall that MPP is
the smoothest spatial predictor. Similar conclusions can be made from the
PMCC results in Table 2, where the reduced-rank prediction methods (i.e.,
FRK and MPP) appear to have the most-favorable predictive performances,
and the full-rank prediction methods (i.e., EDW, LTK, and SPD) appear to
have less-favorable predictive performances. Notice that for the small dataset
(in Section 4.1), some computation times are slightly larger than those for the
large dataset. This is caused by the iterative estimation of parameters in FRK
and LTK in small-data situations. The CPU time and memory usage are man-
ageable except for MPP, which has a CPU time of approximately 3.5 hours.

4.3. Comparison using a very large dataset of mid-tropospheric CO2

In this section, we use the data in Study Region 3 (the entire dataset; see Fig-
ure 3), and the four spatial predictors that can process a dataset of this size;
that is, we compare EDW, FRK, SPD, and LTK. Note that the MPP predictor,
which is computed using a Metropolis-within-Gibbs sampler, is too computa-
tionally intensive for very large spatial datasets and already had difficulty with
the large dataset in Section 4.2. Notice that the four spatial predictors that
can handle datasets of this size do not use MCMC algorithms for statistical
inference; specifically, FRK and LTK are empirical Bayesian, SPD uses a fully
Bayesian approach based on Rue et al. [38]’s INLA algorithm, and EDW does
not use a statistical model at all for inference.

Maps of the four spatial predictors, Ŷ EDW, Ŷ FRK, Ŷ SPD, and Ŷ LTK are given
in Figure 6. As was the case for Sections 4.1 and 4.2, each prediction method
displays similar general patterns. The lag-1 semivariograms indicate that SPD
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Fig 5. Spatial prediction (in ppm) of mid-tropospheric CO2 concentrations using FRK, MPP,
SPD, LTK, and EDW. Predictions are indicated in the title headings and are mapped over
Study Region 2.

Table 2

Results from Study Region 2 (Section 4.2) for the root average squared testing error
(RSTE), PMCC, lag-1 semivariogram, CPU time (including model fitting and parameter
estimation), and peak memory-usage by predictor. These quantities are produced using the

data shown in Figure 2.

Predictor RSTE PMCC
Lag-1

Semivariogram
CPU Time
(in minutes)

Peak Memory-
Usage (in MB)

EDW 3.0811 N/A 0.8167 28.49 910.4589
FRK 3.0067 12.6155 0.2075 0.52 841.0030
MPP 2.9243 -1.0327 0.0164 216.79 2042.6
SPD 2.9630 70.0529 0.1243 0.47 111.18
LTK 2.9855 27.3636 0.1470 1.72 1,971.8
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Fig 6. Spatial prediction (in ppm) of mid-tropospheric CO2 concentrations using EDW, SPD,
FRK, and LTK. Predictions are indicated in the title headings and are mapped over Study
Region 3. Note that there is no prediction given below latitude −60◦, since AIRS has not
released any observations there.

Table 3

Results from Study Region 3 (Section 4.3) for the root average squared testing error
(RSTE), PMCC, lag-1 semivariogram, CPU time (including model fitting and parameter
estimation), and peak memory-usage by predictor. These quantities are produced using the

data shown in Figure 3.

Predictor RSTE PMCC
Lag-1

Semivariogram
CPU Time
(in minutes)

Peak Memory-
Usage (in MB)

EDW 5.5203 N/A 1.5978 279.74 939.42
FRK 3.9841 12.0974 0.5080 0.51 1,025.40
SPD 3.9882 53.1760 2.1121 4.72 165.19
LTK 4.0026 45.1762 0.1440 85.13 490.60

is now the least smooth among the four predictors; LTK retains its property of
being much smoother than FRK, EDW, and SPD.

The RSTE results for this example (see Table 3) are fairly constant across
different choices of PRD (similar to the results in Sections 4.1 and 4.2), with
FRK (EDW) having the most-favorable (least-favorable) predictive performance
as measured by RSTE. As in Sections 4.1 and 4.2, the PMCC results show that
a reduced-rank method, FRK, has more-favorable predictive performance than
the full-rank methods, SPD and LTK. The CPU time for both FRK and SPD in-
dicate that both of these methods are highly computationally efficient for spatial
prediction. Moreover, the memory usage for each predictor is modest. However,
EDW and LTK required substantial CPU time to obtain spatial predictions
(around 1.5 hours and 4.7 hours, respectively).
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5. Discussion

In this article, we present a comparison of spatial predictors from an algorithmic
viewpoint. In particular, we systematically lay out the parameterization, the
algorithm, and the motivation of three traditional methods of spatial predic-
tion and four more-recently-introduced spatial predictors. The traditional spa-
tial predictors include: traditional stationary kriging (TSK), smoothing splines
(SSP), and negative-exponential distance-weighting (EDW). The more-recently-
introduced spatial predictors include: fixed rank kriging (FRK), a modified pre-
dictive processes approach (MPP), a stochastic partial differential equation ap-
proach (SPD), and lattice kriging (LTK). Additionally, we use a benchmark of
small, large, and very large mid-tropospheric CO2 datasets to compare com-
putation time, memory-usage, and the prediction performance of each spatial
predictor. For researchers who have other spatial predictors to add to our list
of seven, we have made training and validation datasets available in the Sup-
plemental Material, making it easy for new comparisons to be made.

Recent advances in technology, such as remote sensing, have made large-to-
massive spatial datasets more available, making spatial prediction with “big
spatial data” an important and growing problem in the statistics literature.
Consequently, the algorithmic concerns of CPU time and memory-usage are
featured in our comparison along with predictive performance.

Of the seven predictors we consider, FRK and SPD perform extremely well
in terms of CPU time and memory-usage. However, the remaining five spatial
predictors are not as efficient. Both EDW and LTK can be used for the very
large benchmark dataset, but the CPU time was quite long (approximately 1.5
and 4.7 hours, respectively). It is well known that TSK and SSP have very poor
CPU time and memory-usage properties for large datasets and, hence, we were
only able to use these predictors on the small benchmark dataset. The MPP
predictor also has limitations in CPU time; consequently, we were only able to
use MPP on the small and large benchmark datasets, the latter dataset resulting
in a significant CPU time (around 3.5 hours).

When visually comparing each of the seven spatial predictors, we see that
they each display similar general patterns. From an algorithmic point-of-view,
this is to be expected, since if the signal-to-noise ratio is “large enough,” then
any local-averaging scheme should be able to find the large-scale patterns. These
visual patterns are further corroborated using the lag-1 semivariogram, which is
consistently smaller (larger) for MPP (EDW and SPD). Of the three stochastic
predictors that can be computed for all study regions, FRK has more favorable
predictive performance than SPD and LTK, according to the PMCC criterion.
Of the four predictors that can be computed for all study regions, EDW had
the least-favorable predictive performance (among FRK, SPD, LTK, and EDW),
according to the RSTE criterion.

It is important to point out that each spatial predictor is motivated differently
and, consequently, there are clear differences in terms of the interpretation of
parameters. Our exposition has focused on a comparison of predictors rather
than on a comparison of models and parameters. However, it would also be
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interesting to compare estimates of parameters that have a unique meaning
across different predictors. For example, MPP, LTK, and TSK each have a
(equivalent) range parameter that could be estimated and compared.

Ultimately, which spatial predictor is “best” depends heavily on the dataset.
We suggest that the practical comparisons given in Section 4 be used to guide
which subset of predictors to use. In the case of the benchmark AIRS CO2

dataset, empirical comparisons between reduced-rank and full-rank spatial pre-
dictors in Section 4 shed new light on the recent criticisms of reduced-rank
statistical modeling [30, 43]. Reduced-rank methods have done well in a number
of settings [see, e.g., 2, 5, 12, 13, 14, 17, 24, 25, 27, 28, 34, 42, 48]. In terms
of predictive performance as measured by RSTE and PMCC, our results on a
benchmark dataset of CO2 data from NASA’s AIRS instrument showed that
reduced-rank methods outperform the viable full-rank alternatives.

The training and validation datasets for the very large mid-tropospheric CO2
dataset are available in the Supplemental Material.

Appendix A: Matlab code for negative-exponential
distance-weighting

Algorithm 1: Matlab code to compute EDW
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% Summary: The Matlab function used to compute the EDW predictor from Section 3.3.

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% Inputs:

% train_data: The n-dimensional vector of training data.

% train_locs: The n x 2 matrix of the training data’s lat/lon coordinates.

% thetaEDW: The positive real-valued smoothing parameter defined in Section 3.3.

% pred_locs: The m x 2 matrix consisting of the lat/lon coordinates associated with

% the prediction locations.

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% Outputs:

% YhatEDW: The m-dimensional EDW predictor.

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

function [YhatEDW] = EDW(train_data,train_locs,thetaEDW,pred_locs)

m = size(pred_locs,1);

n = size(train_data,1);

YhatEDW = zeros(m,1);

for i = 1:m

total = 0;

for j = 1:n

temp1 = sqrt(sum((pred_locs(i,:) - train_locs(j,:)).^2));

temp = exp(-thetaEDW*temp1);

total = temp+total;

YhatEDW(i) = train_data(j)*temp + YhatEDW(i);

end

disp(i);

YhatEDW(i) = YhatEDW(i)/total;

end

end
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Table 4

Entries in the table show root average squared testing error (RSTE) results based on the
very large dataset in Figure 3 (referred to as TVD 1), and based on two other random

selections of training and validation data (referred to as TVD 2 and TVD 3, respectively).

Predictor TVD 1 TVD 2 TVD 3
EDW 5.5203 5.7155 5.4825
FRK 3.9841 3.9891 3.9546
SPD 3.9882 3.9768 3.9898
LTK 4.0026 3.9923 3.9979

Appendix B: Hold-out sensitivity analysis

The relative differences of RSTE in Tables 1–3 are very small, indicating that
the predictive performance of each of these predictors are comparable. This is
notable considering a recent criticism of reduced-rank approaches [43]. These
small differences in RSTE motivated us to determine whether or not the differ-
ences in RSTE can be explained by the randomization used to divide up the
total data available into a training dataset and a validation dataset.

Thus, we considered different randomly generated training and validation
datasets for Study Region 3. We refer to the training and validation data in
Figure 3 as TVD 1, where “TVD” stands for “training and validation datasets.”
Then, we considered two other random generations of training and validation
datasets, which are referred to as TVD 2 and TVD 3, respectively. In Table 4,
we give the RSTE values by TVD. In general, we see that the relative rankings
of FRK to SPD may be due to the randomization of data into training and
validation; however, we consistently see that LTK performs worse than FRK
and SPD, and that EDW performs worse than all three of its competitors.
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