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Abstract: We study nonparametric clustering of smooth random curves
on the basis of the L2 gradient flow associated to a pseudo-density func-
tional and we discuss the conditions under which the clustering is well-
defined both at the population and at the sample level. We provide an al-
gorithm to idenify significant local modes of the estimated pseudo-density,
which are associated to informative sample clusters, and we prove its consis-
tency and other statistical properties. Our theory is developed under weak
assumptions, which essentially reduce to the integrability of the random
curves. If the underlying probability distribution is supported on a finite-
dimensional subspace, we show that the proposed pseudo-density functional
and the expectation of a kernel density estimator induce the same gradient
flow, hence the same population clustering. Although our theory is devel-
oped for smooth curves that belong to a potentially infinite-dimensional
functional space, we provide consistent procedures that can be used with
real functional data (discretized and noisy curves). We illustrate these pro-
cedures by means of applications both on simulated and real datasets.
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1. Introduction

In Functional Data Analysis (Ramsay and Silverman, 2005; Ferraty and Vieu,
2006; Ferraty and Romain, 2011; Horváth and Kokoszka, 2012; Zhang, 2013;
Hsing and Eubank, 2015), henceforth FDA, we think of curves (and other func-
tions) as the fundamental unit of measurement. Clustering is an important
problem in FDA because it is often of critical interest to identify subpopulations
based on the shapes of the measured curves. In this paper, we study the problem
of functional clustering in a fully infinite-dimensional setting. We are motivated
by recent work on modal clustering in finite dimensions (Chacón, 2015, and ref-
erences therein) that, in contrast to many commonly-used clustering methods,
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has a population formulation, and by recent advances in clustering of functional
data (Bongiorno and Goia, 2015). Specifically, we prove the existence of popula-
tion clusters in the infinite-dimensional functional case, under mild conditions.
We show that an analogue of the mean-shift algorithm (see, for example, Fuku-
naga and Hostetler, 1975; Cheng, 1995, and the more recent works of Comaniciu,
Ramesh and Meer, 2001; Carreira-Perpiñán, 2006) can identify local modes of
a “pseudo-density”. We devise an algorithm to classify local modes as repre-
sentatives of significant clusters, and under some regularity assumptions on the
pseudo-density, we further show that the algorithm is consistent. We develop
our theory assuming that the data are observed as continuous curves defined on
some interval. Because in practice one does not observe continuous curves, we
also show how to apply the procedures that we propose to real data (e.g. noisy
measurements of random curves on a grid).

Modal clustering is typically a finite-dimensional problem, but motivated by
the flourishing literature on FDA and by the increasing interest in developing
sound frameworks and algorithms for clustering of random curves, we extend
the idea of modal clustering to the case where X is a functional random vari-
able valued in an infinite-dimensional space. In particular, we develop a theory
of modal clustering for smooth random curves that are assumed to belong to the
Hölder space H1([0, 1]) of curves defined on the standard unit interval whose
first weak derivative is square integrable. We focus on H1([0, 1]) for concrete-
ness, but our theory generalizes to any more general spaces. Furthermore, our
theory is density-free and nonparametric, as no assumptions are made regard-
ing the existence of a dominating measure for the law P of the functional data,
nor it is assumed that P can be parametrized by a finite number of parame-
ters.

In the finite-dimensional modal clustering problem, we have that p : X → R+

is the probability density function associated to the law P of a random variable
X valued in X ⊆ R

d. If p is a Morse function (i.e. p is smooth and its Hessian is
not singular at the critical points), then the local modes of p, μ1, . . . , μk, induce
an partition of the sample space X = C1∪C2∪· · ·∪Ck where the sets Ci satisfy

1. P (Ci) > 0 ∀i = 1, . . . , k
2. P (Ci ∩ Cj) = 0 if i �= j
3. P (∪k

i=1Ci) = 1
4. x ∈ Ci ⇐⇒ the gradient ascent path on p that starts from x eventually

converges to μi.

Note that this framework characterizes Ci as a high-density region surrounding
the local mode μi of p and each set Ci ∈ C is thought of as a cluster at the
population level. Unlike other approaches to clustering which define clusters ex-
clusively at the sample level (consider k-means, for instance), modal clustering
provides an inferential framework in which the essential partition C is a popu-
lation parameter that one wants to infer from the data. In fact, as soon as an
i.i.d. sample X1, . . . , Xn ∼ P and an estimator p̂ of p are available, the goals of
modal clustering are exactly
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• estimating the local modes of p by means of the local modes of p̂
• estimating the population clustering C = {C1, . . . , Ck} by means of the

empirical partition Ĉ = {Ĉ1, . . . , Ĉk̂} induced by p̂

Thus, the typical output of a modal clustering procedure consists of the esti-
mated clustering structure Ĉ and a set of cluster representatives μ̂1, . . . , μ̂k̂. At

the sample level, each data point is then uniquely assigned to a cluster Ĉi ∈ Ĉ
and represented by the corresponding local mode μ̂i.

Because it is generally not possible to define a probability density function
in infinite-dimensional Hilbert spaces, we instead focus on a surrogate notion of
density which we call “pseudo-density”. Generally, by pseudo-density we mean
any suitably smooth functional which maps the sample space X into the positive
reals R+ = [0,∞). In particular, we focus on a family of pseudo-densities P =
{ph : X → R+;h > 0} which is parametrized by a bandwidth parameter h and,
more specifically, ph is the expected value of a kernel density estimator,

ph(x) = EP K

(‖X − x‖2L2

h

)
, (1.1)

where K is an appropriately chosen kernel function and h is the bandwidth
parameter. Clusters of curves are then defined in terms of the L2 gradient flow
associated to ph.

The gradient flow associated to ph ∈ P is the collection of the gradient ascent
paths πx : R+ → X corresponding to the solution of the initial value problem{

d
dtπx(t) = ∇ph(πx(t))

πx(0) = x,
(1.2)

where ∇ph(x) is the L
2 functional gradient of ph at x ∈ X . In complete analogy

with the finite-dimensional case, the gradient of ph induces a vector field and
a gradient ascent path is a path in H1([0, 1]), πx ⊂ H1([0, 1]), that solves the
initial value problem and flows along the direction of the vector field (at any
time t ≥ 0, πx(t) is an element of H1([0, 1])). The path πx has the property
that, at any time t ≥ 0, the derivative of πx(t) corresponds to the gradient of
ph evaluated at πx(t). If the trajectory πx converges to a local mode μi = μi(h)
of ph as t → ∞, then x is said to belong to the i-th cluster of ph, Ci = Ci(h).
Thus, the cluster Ci is defined as the set

Ci =
{
x ∈ H1([0, 1]) : lim

t→∞
‖πx(t)− μi‖L2([0,1]) → 0

}
, (1.3)

where πx is a solution of the initial value problem of equation (1.2). Accord-
ing to the above definition, the i-th cluster of ph corresponds to the basin of
attraction of the i-th local mode μi of ph, and the collection of the clusters Ci

provides a summary of the subpopulations associated to the probability mea-
sure P .

The main contribution of our work is to identify conditions under which
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1. there exist population clusters in functional data, i.e. the population clus-
ters defined in equation (1.3) exist and are well-defined

2. these clusters are estimable.

Additionally, we describe a procedure to estimate the clusters and assess their
statistical significance. This procedure can also be used as a means to perform
bandwidth selection in practice.

As we further discuss later in the paper, the most remarkable challenge aris-
ing in the infinite-dimensional setting is the lack of compactness. As opposed
to the finite-dimensional setting, in the functional case it is hard to show the
existence, the uniqueness, and the convergence of the gradient ascent paths de-
scribed by the initial value problem of equation (1.2), unless the sample space X
can be compactly embedded in another space. We show that we can overcome
this challenge by exploiting the compact embedding of H1([0, 1]) in L2([0, 1]),
the space of square-integrable functions on the unit interval, and by studying
equation (1.2) using these two non-equivalent topologies. For convenience, we
focus on functional data belonging to H1([0, 1]) and on the gradient flow under
the L2 norm, but the exact same theory carries over to other function spaces,
different norms and different pseudo-density functionals, as long as it is possi-
ble to compactly embed the sample space X in a larger space and the chosen
pseudo-density functional is sufficiently smooth. In particular, we remark that
the results of this paper can be straightforwardly generalized to arbitrary pairs
of Sobolev spaces of integer order satisfying the compact embedding require-
ment.

The theory of clustering that we develop in this work is projection-free, since
it does not involve projecting the random curves onto a finite-dimensional space.
However, if the probability law P of the functional data is supported on a finite-
dimensional space and admits a proper density with respect to the Lebesgue
measure, we show that the gradient flow on the pseudo-density ph and the
gradient flow on the expectation of the kernel density estimator of the data
coincide (and so coincide the corresponding population clusterings).

One of the most important practical tasks in modal clustering is to iden-
tify significant local modes, as these are associated to informative clusters. We
provide an algorithm that

• identifies the local modes of the population pseudo-density ph by analyzing
its sample version p̂h; furthermore, all of the local modes of p̂h identified by
the algorithm converge asymptotically to their population correspondents
of ph

• is consistent (under additional regularity assumptions on ph), in the sense
that it establishes a one-to-one correspondence between the sample local
modes that it identifies and their population equivalents.

While from a purely mathematical standpoint a sample of functional data
{Xi}ni=1 is thought of as a collection of continuous curves defined on an interval,
we never observe such objects in practice. Rather, we typically only observe noisy
measurements of the Xi’s at a set of design points {tj}mj=1. As an intermediate



2926 M. Ciollaro et al.

step, we therefore estimate the Xi’s from these observations (which constitutes
a typical regression problem), and then use the estimates as the input of our
procedure.

The remainder of the paper is organized as follows. Section 2 provides a con-
cise literature review. Section 3 is devoted to the development of our theory of
population clustering for smooth random curves. In particular, there we study
in detail the L2 gradient flow on the pseudo-density ph and establish that, in
analogy to the finite-dimensional case, population clusters of smooth random
curves can be defined in terms of the basins of attraction of the critical points of
ph. Section 4 describes the behavior of the L2 gradient flow of ph when the prob-
ability law P of the data is supported on a finite-dimensional subspace. Section
5 provides an algorithm to identify the significant local modes of p̂h and shows
that, under additional regularity assumptions, the algorithm is consistent. Sec-
tion 6 extends the results of Section 5 to discretized and noisy functional data,
and Section 7 provides examples of application of the clustering methodology
described in this paper both to simulated and real functional data. Section 8
contains a discussion on the choice of the pseudo-density functional while Section
9 provides guidelines for the selection of the bandwidth parameter h. Section
10 summarizes the contributions of this paper. The proofs of the main results
can be found in Appendix A, while auxiliary results (such as probability bounds
for the estimation of the pseudo-density functional ph and its derivatives) are
deferred to Appendix B.

2. Related literature

The difficulties associated to the lack of proper density functions in infinite-
dimensional spaces are well-known among statisticians. This has stimulated the
introduction of various surrogate notions of density for functional spaces. The
literature on pseudo-densities includes the work of Gasser, Hall and Presnell
(1998), Hall and Heckman (2002), Delaigle and Hall (2010), and Ferraty, Ku-
draszow and Vieu (2012).

A population framework based on Morse theory for nonparametric modal
clustering in the finite dimensional setting is presented in Chacón (2015). When-
ever a proper density p : X → R

d exists and it is a Morse function, the problem
of equation (1.2) induces an essential partition of the sample space X ⊆ Rd in
the sense that each set Ci in the partition of X such that P (Ci) > 0 corre-
sponds to the basin of attraction of a local mode μi of p, i.e. Ci = {x ∈ X :
limt→∞ πx(t) = μi}. Furthermore, if p has saddle points, the basin of attraction
of each saddle is a null probability set (similarly, the basin of attraction of a
local minimum is a singleton and hence negligible as well).

A number of gradient ascent algorithms have been developed to perform
modal clustering in the finite-dimensional case. One of the most popular mode-
finding and modal clustering algorithms is the mean-shift algorithm (Fukunaga
and Hostetler, 1975; Cheng, 1995). A version of the mean-shift algorithm for
functional data is discussed in Ciollaro et al. (2014). A gradient ascent algorithm
for functional data is proposed in Hall and Heckman (2002).
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The international FDA community is very vibrant. The most recent literature
includes the work of Cuevas (2014) and Goia and Vieu (2015), who provide a
general overview and an account of some key advances in high and infinite-
dimensional statistics, as well as a book on functional ANOVA by Zhang (2013)
and a book on the theoretical foundations of FDA by Hsing and Eubank (2015).

With particular focus on clustering, we would like to point out the recent work
Bongiorno and Goia (2015) where the authors propose a clustering method for
functional data based on the small ball probability function ϕh(x) = P (‖X −
x‖2 ≤ h) and on functional principal components. Finally, a recent overview
of other clustering techniques for functional data can be found in Jacques and
Preda (2013).

3. A population background for pseudo-density clustering of
functional data

We denote by X ∼ P a functional random variable valued in L2([0, 1]), the
space of square integrable functions on the unit interval with its canonical in-

ner product 〈x, y〉L2 =
∫ 1

0
x(s)y(s) ds and induced norm ‖x‖L2 =

√
〈x, x〉L2 .

As we previously mentioned, it is not possible to define a proper probability
density function for P . Instead, we study the L2 gradient flow of equation (1.2)
associated to the functional

ph(x) = EP K

(‖X − x‖2L2

h

)
=

∫
R

K(s) dP‖X−x‖2
L2/h

(s) (3.1)

mapping L2([0, 1]) into R+, where h > 0 is a bandwidth parameter, K : R+ →
R+ is a kernel function, and P‖X−x‖2

L2/h
denotes the probability measure in-

duced by P through the map X �→ ‖X−x‖2L2/h. Note that ph is closely related
to the so-called small-ball probability function ϕh(x) = P (‖X − x‖2L2 ≤ h). It
is easy to see that ph(x) = ϕh(x) when K(s) = 1[0,1](s), therefore ph can be
thought of as a smoother version of ϕh.

Unless otherwise noted, we make the following assumptions throughout the
paper:

(H1) K : R+ → R+ is twice continuously differentiable and the following bounds
hold on the derivatives of Kh(·) = K(·/h):

– supt∈R+

∣∣Kh(t
2)
∣∣ ≤ K0 < ∞

– supt∈R+

∣∣K ′
h(t

2)t
∣∣ ≤ K1 < ∞

– supt∈R+

{∣∣∣K(�−1)
h (t2)t�−2

∣∣∣+ ∣∣∣K(�)
h (t2)t�

∣∣∣} ≤ K� < ∞, for � = 2, 3

where the constants K0,K1,K� may depend on h.
(H2) K ′(t2) +K(t2) ≤ 0 for all t ∈ R+.
(H3) X is P -almost surely absolutely continuous and its moments satisfy

EP ‖X‖L2 ≤ M1 < ∞ and EP ‖X ′‖L2 ≤ N1 < ∞ for some constants
M1 and N1.
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(H4) All the non-trivial critical points of ph are isolated under the L2 norm,
i.e. there exists an open L2 neighborhood around each critical point x∗ of
ph with ph(x

∗) > 0 such that there are no other critical points of ph that
also belong to that neighborhood.

Various kernels can be shown to satisfy assumptions (H1) and (H2). For instance,
both the compactly supported kernel K(t) ∝ (1−t)31[0,1](t) and the exponential
kernel K(t) ∝ e−t1[0,∞)(t) satisfy our assumptions. (H3) is an assumption on
the smoothness of the random curves. Intuitively, (H3) corresponds to assuming
that the probablility law P does not favor curves that are too irregular or wiggly.
(H4) is a regularity assumption on the functional ph: essentially, under the above
assumptions on K, (H4) corresponds to assuming that the functional ph does
not have flat “ridges” in regions where it is positive.

Remark 1. A sufficient condition for (H4) to hold is that ph is a Morse functional.
The following Proposition provides a sufficient condition under which ph is a
Morse functional.

Proposition 1. Suppose that P has density p with respect to the Lebesgue
measure and p is supported on a finite-dimensional compact domain Sc ⊂ R

d.
Suppose furthermore that p and ∂Sc, the boundary of Sc, satisfy

• ∂Sc is smooth enough so that the normal vector n(x) exists for any x ∈ ∂Sc

• p is continuous on R
d

• p is twice differentiable in the interior of Sc, int(Sc)
• ∇p is not vanishing on ∂Sc.

Then, for h sufficiently small, all the critical points of ph in int(Sc) are non-
degenerate and there are no non-trivial critical points outside of int(Sc).

In order to simplify the discussion, from now on we focus on the shifted ran-
dom curvesX−X(0); however, with a little abuse of notation, we will keep using
the letter X to mean X −X(0). This choice is just made for convenience as it
significantly simplifies the proofs of many of the results that we present. Fol-
lowing this notational convention, X thus belongs P -almost surely to the space
H1

0 ([0, 1]) = {x : [0, 1] → R such that ‖x′‖L2 < ∞ and x(0) = 0}. Poincaré
inequality ensures that the semi-norm ‖x′‖L2 is in fact a norm on H1

0 ([0, 1])
and ‖x‖L2 ≤ Cp‖x′‖L2 with Cp = 1 (i.e. H1

0 ([0, 1]) can be continuously em-
bedded in L2([0, 1])). In the following, we denote ‖x‖H1

0
= ‖x′‖L2 for x ∈ H1

0 .

Moreover, to alleviate the notation, from now on we denote L2 = L2([0, 1]) and
H1

0 = H1
0 ([0, 1]). If the curves were not shifted so thatX(0) = 0, then they would

belong P -almost surely to H1 = H1([0, 1]) = {x : [0, 1] → R such that ‖x‖L2 +
‖x′‖L2 < ∞}, which can still be continuously embedded in L2.

The main goal of this section is to show that the L2 gradient flow associated
to ph is well-defined. In particular, we establish the following facts:

1. the L2 gradient flow associated to ph is a flow in H1
0

2. for any initial value in H1
0 , there exists exactly one trajectory of such flow

which is a solution to the initial value problem of equation (1.2)
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3. for any initial value in H1
0 , the unique solution of the initial value problem

of equation (1.2) converges to a critical point of ph as t → ∞ and the
convergence is with respect to the L2 norm

4. all the non-trivial critical points of ph are in H1
0 , the support of P .

These facts guarantee that the clusters described in equation (1.3) exist and are
well-defined.

Remark 2. In general, in an infinite dimensional Hilbert space, the trajectory of
the solution of an ordinary differential equation such as the one of equation (1.2)
may not converge as t → ∞. In fact, such trajectory can be entirely contained
in a closed and bounded set without converging to any particular point of that
set. To guarantee the convergence of the gradient flow trajectories, one needs
that (see Jost, 2011)

1. the trajectories satisfy some compactness property
2. the functional of interest (in our case ph) is reasonably well-behaved: for

instance it is smooth, with isolated critical points.

In L2, compactness is a delicate problem: no closed bounded ball in L2 is com-
pact. However, any closed and bounded H1 ball is compact with respect to the
L2 norm (and so is any closed and bounded H1

0 ball). In fact, H1 can be com-
pactly embedded in L2 (see, for instance, Chapter 5.7 of Evans, 1998), which
means that every bounded set in H1 is totally bounded in L2 and H1 can be
continuously embedded in L2. Since H1

0 is a closed subspace of H1, H1
0 can also

be compactly embedded in L2. From a theoretical point of view, L2 is strictly
larger than H1. However, H1 is dense in L2.

The remainder of our discussion focuses on the main results of this section,
which concern the computation of the derivatives of ph and their properties,
the existence, the uniqueness, and the convergence of the solution of the initial
value problem of equation (1.2).

Before we state our results, let us recall that for a functional random variable
X ∼ P valued in L2([0, 1]) the expected value of X is defined as the element
EP X ∈ L2([0, 1]) such that EP 〈X, y〉L2 = 〈EP X, y〉L2 for all y ∈ L2([0, 1])
(Horváth and Kokoszka, 2012). Furthermore, the expectation commutes with
bounded operators. Also, recall that for a functional F mapping a Banach space
B1 into another Banach space B2, the Frechét derivative of F at a point a ∈ B1

is defined, if it exists, as the bounded linear operator DF such that ‖F (a+ δ)−
F (a)−DF (δ)‖B2 = o(‖δ‖B1). The most common case in this paper setsB1 = L2,
B2 = R+, and F = ph. Because DF is a bounded linear operator, if B1 is also
an Hilbert space then the Riesz representation theorem guarantees the existence
of an element ∇F (a) ∈ B1 such that, for any b ∈ B1, DF (b) = 〈b,∇F (a)〉B1 .
The element ∇F (a) corresponds to the gradient of F at a ∈ B1. In this way,
the gradient ∇F (a) and the first derivative operator DF at a ∈ B1 can be
identified. In the following, with a slight abuse of notation, we will use DF
both to mean the functional gradient of the operator F (which is an element of
B1) and its Frechét derivative (which is a bounded linear operator from B1 to
B2). It will be clear from the context whether we are referring to the derivative
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operator or to the functional gradient. Note that higher order Frechét derivatives
can be similarly identified with multilinear operators on B1 (see, for example,
Ambrosetti and Prodi, 1995).

Recall that, by assumption, the function Kh(‖X − x‖2L2) is bounded from
above by a constant K0. Furthermore, it is three times differentiable and its
first Frechét derivative at x is

DKh(‖X − x‖2L2) = 2K ′
h

(
‖X − x‖2L2

)
(x−X). (3.2)

The second Frechét derivative at x corresponds to the symmetric bilinear oper-
ator

D2Kh(‖X − x‖2L2)(z1, z2) = 2K ′
h

(
‖X − x‖2L2

)
〈z1, z2〉L2

+ 4K ′′
h

(
‖X − x‖2L2

)
〈x−X, z1〉L2〈x−X, z2〉L2

(3.3)

for z1, z2 ∈ L2.

Remark 3. Any bounded bilinear operator B on L2 can be represented as a
bounded linear operator from L2 to L2. In fact, let z1 be any element of L2; then,
B(z1, ·) is a bounded linear operator from L2 to R. By the Riesz representation
theorem, one can define B(z1) ∈ L2 by letting 〈B(z1), z2〉L2 = B(z1, z2) for any
z2 ∈ L2. The operator norm of B is then defined by

‖B‖ = sup
{v :‖v‖L2=1}

‖B(v)‖L2 . (3.4)

It is straightforward to check that both derivatives correspond to bounded
linear operators under assumption (H1). The following Lemma provides the first
and the second Frechét derivatives of ph.

Lemma 1. Under assumption (H1) the Frechét derivative of ph : L2 → R at x
corresponds to the L2 element

Dph(x) = 2EP K ′
h

(
‖X − x‖2L2

)
(x−X). (3.5)

The second Frechét derivative of ph at x corresponds to the symmetric bilinear
operator

D2ph(x)(z1, z2) = EP

[
4K ′′

h

(
‖X − x‖2L2

)
〈x−X, z1〉L2〈x−X, z2〉L2

+2K ′
h

(
‖X − x‖2L2

)
〈z1, z2〉L2

]
.

(3.6)

Furthermore, both derivatives have bounded operator norm for any x ∈ L2([0, 1]).

We state without proof the following standard Lemma.

Lemma 2. Let v ∈ C∞
c ([0, 1]) be a compactly supported infinitely differentiable

function. Suppose f ∈ L2([0, 1]) is such that 〈f, v′〉L2 = L(v) for any such v,
where L ∈ L2([0, 1])∗ is a bounded linear operator. Then the weak first derivative
f ′ of f exists, f ′ ∈ L2([0, 1]), and ‖f ′‖L2 = ‖L‖(L2)∗ . Moreover, 〈f ′, v〉L2 =
−L(v) for any v ∈ C∞

c ([0, 1]) and therefore for any v ∈ L2([0, 1]).
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The following Proposition shows that the L2 gradient of ph is an element of
H1

0 . Intuitively, this means that if the starting point of the initial value problem
of equation (1.2) is in H1

0 (and a solution exists for that starting point), then we
should expect that the path πx only visits elements of H1

0 , i.e. the L2 gradient
flow associated to ph is a H1

0 flow.

Proposition 2. For any x ∈ H1
0 , the L2 gradient of ph at x, Dph(x), is an

element of H1
0 such that for any y ∈ L2,

〈Dph(x)
′, y〉L2 = EP

[
−2K ′

h(‖X − x‖2L2)〈x′ −X ′, y〉L2

]
. (3.7)

Proposition 2 also implies that the equation d
dtπx(t) = Dph(πx(t)) is mean-

ingful when restricted to H1
0 . The next Lemma, Lemma 3, establishes that Dph

is locally Lipschitz under the H1
0 norm. The subsequent Lemma, Lemma 4,

guarantees that a solution of the problem (if it exists) is necessarily bounded.
These two Lemmas allow us to claim that if the starting point πx(0) = x is an
element of H1

0 , then the initial value problem of equation (1.2) has a unique
solution in H1

0 . This claim is summarized in Proposition 3.

Lemma 3. Under (H1), the L2 gradient of ph corresponds to a locally Lipschitz
map in H1

0 ([0, 1]).

Lemma 4. The following two results hold under (H1) and (H2)

1. Suppose that ph(πx(0))≥ δ > 0. If ‖πx(t)‖H1
0
≥ K2N1/δ, then 〈Dph(πx(t)),

πx(t)〉H1
0
≤ 0.

2. Let M > 0. If ‖X‖H1
0
≤ M a.s., then 〈Dph(πx(t)), πx(t)〉H1

0
≤ 0 as soon

as ‖πx(t)‖H1
0
> M .

The intutive interpretation of Lemma 4 is that a trajectory πx that is a
solution to the initial value problem of equation (1.2) cannot wander too far
from the origin in H1

0 . In fact, if the H1
0 norm of πx increases too much, then

the path πx is eventually pushed back into the closed and bounded H1
0 ball

of radius K2N1/δ (or radius M if one makes the stronger assumption that
the probability law P of the random curves is completely concentrated on the
H1

0 ball of radius M). This “push-back” effect is captured by the condition
〈Dph(πx(t)), πx(t)〉H1

0
≤ 0. By combining Lemma 3 and Lemma 4, we obtain

the following

Proposition 3. Under assumptions (H1), (H2), and (H3), the initial value
problem π′

x(t) = Dph(πx(t)) with x = πx(0) ∈ H1
0 has a unique solution in H1

0

with respect to the H1
0 topology. Moreover, if ‖x‖H1

0
≤ R, then ‖πx(t)‖H1

0
≤ C1

for all t ≥ 0, where C1 = C1(R,K2, N1, ph(x)).

Remark 4. Proposition 3 establishes the existence and the uniqueness of a so-
lution to the initial value problem of equation (1.2) in the H1

0 topology. The
initial value problem can be solved uniquely in the L2 topology as well. In fact,
it is easily verified that, because D2ph is bounded, then the first derivative of
ph, Dph : L2 → L2, is uniformly Lipschitz with respect to the L2 norm. Thus,
one only has to show that the H1

0 flow πx of Proposition 3 solved in the H1
0
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topology corresponds to the L2 gradient flow associated to ph. To verify this,
one needs to check that the H1

0 solution also satisfies the initial value problem
of equation (1.2) under the L2 norm. Specifically, consider the H1

0 solution πx

of Proposition 3 with any πx(0) = x ∈ H1
0 . The path πx is continuously differ-

entiable as a map from R+ to H1
0 . It suffices to check that πx(t) is continuously

differentiable as a map from R+ to L2 as well. This is easily established using
Poincaré inequality since

‖πx(t+ δ)− πx(t) +Dph(πx(t))‖L2

≤ Cp‖πx(t+ δ)− πx(t) +Dph(πx(t))‖H1
0
= o(δ),

(3.8)

where the Poincaré constant is Cp = 1 for the pair (L2, H1
0 ). It is clear from

equation (3.8) and the definition of Frechét derivative that the H1
0 solution πx

also satisfies the initial value problem of equation (1.2) under the L2 norm.
Thus, πx is the unique L2 solution of the intial value problem of equation (1.2).

The following Theorem, based on Proposition 3, guarantees the convergence
of πx to a critical point of ph as t → ∞. The statement about the convergence
strongly relies on the compact embedding of H1

0 in L2, the boundedness of the
first two derivatives of ph, and assumption (H4).

Theorem 1. Assume (H1), (H2), (H3), and (H4) hold. Let πx be the H1
0 so-

lution of the initial value problem of equation (1.2) with x = πx(0) ∈ H1
0 . Let

C1 > 0 be such that ‖πx(t)‖H1
0
≤ C1 for all t ≥ 0. Then there exists a unique

πx(∞) ∈ L2 such that ‖πx(∞)‖H1
0
≤ C1, limt→∞ ‖πx(t) − πx(∞)‖L2 = 0, and

Dph(πx(∞)) = 0.

The results above show that the L2 gradient flow on ph is well-defined and
its trajectories converge to critical points of ph that are in H1

0 whenever the
starting point x = πx(0) is an element of H1

0 . We conclude this section with
the following Lemma which states that all the non-trivial critical points of ph
belong to H1

0 : thus, even though the functional ph “spreads” the probability
law P of the random curves outside of its support H1

0 (in fact, it is easily seen
that there exists points x ∈ L2 that are not in H1

0 with ph(x) > 0), all of its
non-trivial critical points still lie in the support of P .

Lemma 5. Assume (H1), (H2), and (H3) hold. Let x ∈ L2 be a critical point of
ph such that ph(x) > 0 (i.e. x is a nontrivial critical point of ph). Then x ∈ H1

0 .
Furthermore, if ‖X‖H1

0
≤ M P -almost surely, then all the nontrivial critical

points of ph are contained in BH1
0
(0,M).

Note that the stronger assumption that P (‖X‖H1
0
≤ M) = 1 is a functional

analogue of the boundedness assumption which is frequently made with finite-
dimensional data.

4. Finite-dimensional adaptivity

If X ∼ P is a functional random variable and P is supported in a finite-
dimensional subspace of L2 of dimension d, there is a d-dimensional orthonor-
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mal system that one can use to represent X in terms of a d-dimensional vector
of Fourier coefficients. In this case X is just a d-dimensional random vector,
hence the statistical model is multivariate and not really a functional one. Sup-
pose now that P admits a proper density p which is supported on the span
of this d-dimensional orthonormal system. Then, in this case, one could use a
traditional kernel density estimator p̂KDE

h of p and estimate its population clus-
ters based on its gradient flow. This section clarifies that the gradient flow of
ph(x) = EPKh(‖X − x‖2L2) (which is a functional defined on L2) and the gra-
dient flow of EP p̂KDE

h (which is a function defined on R
d) are equivalent. Since

the two gradient flows are equivalent, the population clustering induced by ph
and EP p̂KDE

h is the same. This is essentially a consequence of the isometric
isomorphism between any d-dimensional finite-dimensional subspace of L2 and
R

d.
Keeping this in mind, we can now move on to the mathematical details. For

the remainder of this section, we assume that the distribution of the random
function X is supported on some compact subset Sc of a finite dimensional
vector space. In other words,

P (X ∈ Sc) = 1, (4.1)

where Sc is a compact subset of a finite-dimensional subspace S ⊂ L2. We
discuss two insightful facts.

1. Under some mild extra assumptions on the finite dimensional distribution
of X, it is shown in Lemma 7 that ph, as a functional from L2 to R+, is
a Morse functional. This provides an important sufficient condition under
which (H4) holds.

2. If the functional random variable X admits a finite-dimensional distri-
bution on Sc, it is natural to ask whether the L2 gradient flow on ph
corresponds to the finite-dimensional gradient flow associated to the ex-
pectation of a kernel density estimator of the density of X on S. This
section provides a positive answer to this question. Furthermore, we show
that such finite-dimensional gradient flow is entirely contained in S.

Suppose that the probability law P of the functional random variable X is
supported on a compact subset Sc of a finite-dimensional space S ⊂ L2. If this
is the case, there exists δ > 0 such that if 0 < h ≤ δ, then ph is a Morse function
on the interior of Sc (see Remark 1 and Proposition 1). Moreover, as implied
by Lemma 6 and Lemma 7 of this section, the trajectories of the L2 gradient
flow associated to ph are all contained in S and they end at critical points of
ph that belong to Sc. It is natural to ask whether the L2 gradient flow on ph
corresponds to the finite-dimensional gradient flow associated to some pseudo-
density on S. This section answers this question and shows that, if X admits a
density function p (when X is viewed as a finite-dimensional random vector in
Sc), then the L2 gradient flow associated to ph corresponds to the gradient flow
associated to the expectation of a kernel density estimator of p with bandwidth
h.
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Let S = span{f1 . . . fd} be a linear subspace of L2. Without loss of generality,
assume that the fi’s form an orthonormal basis of S equipped with the L2

norm and that X ∈ Sc almost surely. Then, X admits the decomposition X =
a1f1 + . . . + adfd for some random coefficients {ai}di=1. Let X̃ = [a1, . . . , ad]

T

and suppose that the distribution of X̃ has density p : Rd → R+ with respect
to the Lebesgue measure. We have the following

Lemma 6. Assume (H1) and (H2) hold and P (X ∈ Sc) = 1. If x = πx(0) ∈ S,
then πx(t) ∈ S for any t ≥ 0. Furthermore, all the non-trivial critical points of
ph belong to S.

For the rest of this section, let us replace assumption (H4) with

(H4’) X is an element of Sc with probability 1, X ∼ P admits density p on Sc,
and p satisfies the assumptions of Proposition 1.

Consider x = x1f1 + · · · + xdfd ∈ S. Let x̃ = [x1, . . . , xd]
T ∈ R

d. Define
p̃h(x̃) : Rd → R+ to be p̃h(x̃) = EP Kh(‖X̃ − x̃‖22), where ‖ · ‖2 denotes the
standard Euclidean norm. Note that 1

hd p̃h(x̃) is the expectation of a standard

finite dimensional kernel density estimator at x̃. Since ‖X − x‖2L2 = ‖X̃ − x̃‖22,
it is clear that ph(x) = p̃h(x̃). To see the connection between the functional
gradient Dph(x) and ∇p̃h(x̃), the gradient of p̃h at x̃, note that the random
variable

〈Dph(x), fi〉L2 = 〈EP 2K ′
h(‖X − x‖2L2)(x−X), fi〉L2

= EP 2K ′
h(‖X − x‖2L2)〈x−X, fi〉L2

= 2EPK
′
h(‖X̃ − x̃‖22)(xi − ai)

(4.2)

agrees with the i-th component of the gradient of p̃h at x̃. This equivalence
implies that the gradient flow (with starting points in the subspace S) on ph
and p̃h coincide (note that scaling the p̃h by h−d does affect the associated
gradient flow). Furthermore, there exists a δ > 0 depending on p such that
p̃h(x̃) is a Morse function for 0 < h ≤ δ (see Remark 1). Therefore, all the
non-trivial critical points of p̃h are separated in R

d. In light of Lemma 6, all the
non-trivial critical points of ph are thus separated in S (and in L2).

Next, we have the following Lemma which guarantees that if p is a Morse
density on Sc, then the non-trivial critical points of ph are non-degenerate for
h sufficiently small and they all belong to Sc (a critical point x∗ of ph is non-
degenerate if D2ph(x

∗) is an isomorphism from L2 to L2).

Lemma 7. Under assumption (H1) (H2) and (H4’), all the non-trivial critical
points of ph lie in Sc and are non-degenerate for h sufficiently small. Thus, for
sufficiently small h, (H4) holds.

In the finite-dimensional case considered in this section, we can say more
about the behavior of the L2 gradient flow on ph. In particular, we can char-
acterize the solutions to the initial value problem of equation (1.2) also for the
case in which the starting point x = πx(0) does not belong to the support of P
(which is, in this case, Sc ⊂ L2). In fact, let x be an element of L2 which does
not belong to S. The Gram-Schmidt orthogonalization process guarantees that
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there exists S′ ⊃ S such that x = πx(0) ∈ S′ and S′ = span{f1, . . . fd, fd+1},
where fd+1 is orthogonal to {fi}di=1 and ‖fd+1‖L2 = 1. The following Lemma
guarantees that the gradient ascent path originating from x is entirely contained
in S′. Its proof is identical to that of Lemma 6.

Lemma 8. Assume (H1) and (H2) hold and that P (X ∈ Sc) = 1. Suppose
x = πx(0) ∈ S′. Then πx(t) ∈ S′ for all t ≥ 0.

Remark 5. In the finite-dimensional setting of this section (in particular under
assumption (H4’)), and for h sufficiently small, the basin of attraction of a
saddle point of ph is negligible: in fact, from the above disussion, it is clear that
if the random function X ∼ P is valued in a compact subset Sc of a finite-
dimensional linear subspace S of L2 and P has a proper Morse density p on
Sc, then the basin of attraction of any saddle point of ph is neglibible for h
sufficiently small (since ph is Morse on int(Sc) for h small enough). Stated more
precisely, for h sufficiently small, if x∗

0 ∈ int(Sc) is a saddle point of ph then
P ({x ∈ S : limt→∞ ‖πx(t)− x∗

0‖L2 = 0}) = 0.

5. Statistical relevance of the estimated local modes

The empirical counterpart of ph(x) = EP Kh(‖X − x‖2L2) is the functional
p̂h(x) = 1

n

∑n
i=1 Kh(‖Xi − x‖2L2), where {Xi}ni=1 are i.i.d functional random

variables with probability law P . The critical points of p̂h can be found, for ex-
ample, by using a functional version of the mean-shift algorithm (see Hall and
Heckman, 2002; Ciollaro et al., 2014). In this section, we provide a statistical al-
gorithm to detect whether a critical point of p̂h corresponds to a local maximum
of ph. This algorithm provides two insights for functional mode clustering.

1. For finite-dimensional clustering problems, if the underlying density p is
a Morse function, then the basin of attraction of a saddle point of p has
null probability content as it corresponds to a manifold of lower dimen-
sion. In functional data clustering, however, the structure of the functional
space is more complicated in the sense that there is no guarantee that the
probability content of the basin of attraction of a saddle point of ph is
negligible, even if ph is a Morse function. However, in analogy with the
finite-dimensional case, clusters associated to non-degenerate local modes
should generally be considered more informative as opposed to clusters
associated with saddle points.

2. Several results in the previous section are derived under assumption (H4),
which essentially states that the relevant critical points of ph are well-
behaved. Without assuming (H4), the algorithm provides a simple way to
classify well-behaved local modes of ph by analyzing p̂h. Thus, informative
clusters can still be revealed in a less restrictive setting.

Since the local modes of p̂h that correspond to non-degenerate local modes
of ph provide the greatest insight about the population clustering, we refer to
these local modes as “significant” local modes. In the following, we derive a
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procedure that allows us to discriminate the significant local modes from the
non-significant ones.

Before giving the definition non-degeneracy for a critical point of a func-
tional defined on an Hilbert space (L2 in our case), it is convenient to adopt
the convention that a linear operator from an Hilbert space to itself can be
associated to a bilinear form on the Hilbert space and vice versa. For example
if T : L2 → L2 is a linear operator, then it can be associated to a bilinear form
by letting T (v, w) = 〈Tv,w〉L2 .

Definition 1. Let T : L2 → L2 be a bounded linear operator. T is said to be
self-adjoint if 〈Tv,w〉 = 〈v, Tw〉. T is said to be positive (respecively negative)
definite if 〈Tv, v〉 > 0 (respectively < 0) for all v �= 0. Furthermore, T is said
to be an isomorphism if both T and T−1 are bounded.

Definition 2. Let f : L2 → R be twice continuously differentiable with bounded
third derivative. Suppose x∗ is a critical point of f , i.e. Df(x∗) = 0. Then, x∗ is
said to be a non-degenerate local maximum (respectively minimum) if D2f(x∗)
is a negative (respectively positive) definite isomorphism on L2.

It is a known fact that for any x, the second derivative of f , D2f(x), is a self-
adjoint linear operator. Furthermore, the following Lemma follows as a simple
consequence of the fact that the second derivative of f at a non-degenerate local
maximum is a self-adjoint negative-definite isomorphism.

Lemma 9. Suppose that x∗ is a non-degenerate local maximum of f . Then
there exist δ > 0 such that

sup
‖v‖L2=1

D2f(x∗)(v, v) ≤ −δ. (5.1)

Let now f1, f2 : L2 → R+ be twice continuously differentiable with bounded
third derivative. Consider the following abstract setting for f1 and f2.

(C1) The non-trivial critical points of f1 and f2 are all in H1
0 .

(C2) For i = 1, 2, if x ∈ H1
0 then Dfi(x) ∈ H1. Moreover,{

π′
i(t) = Dfi(πi(t))

πi(0) ∈ H1
0 ,

(5.2)

have H1
0 solutions whose trajectories admit a convergent subsequence in

L2.
(C3) For � = 0, 1, 2, let η� denote

η� = sup
x∈B

H1
0
(0,M)

‖D�f1(x)−D�f2(x)‖, (5.3)

where ‖ · ‖ stands for the appropriate norms. Also, for i = 1, 2 and k =
0, 1, 2, 3, let

βk = sup
x∈L2

‖Dkfi(x)‖ < ∞. (5.4)
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Remark 6. Of course, the results that we obtain here are most useful for the
particular case where

f1(x) = ph(x) = EP Kh(‖X − x‖2L2)

f2(x) = p̂h(x) =
1

n

n∑
i=1

Kh(‖Xi − x‖2L2)
(5.5)

and X1, . . . , Xn ∼ P are i.i.d. functional random variables valued in H1
0 . In this

case, Lemma 5 and Proposition 3 provide sufficient conditions for (C1) and (C2),
respectively. The boundedness for βk is ensured by (H1), and the probability
bounds in Appendix B guarantee that ηl converges to 0 as the sample size n
increases.

Lemma 10. Suppose conditions (C1), (C2) and (C3) hold. Let x∗
2 be a non-

degenerate local maximum of f2 such that ‖x∗
2‖H1

0
≤ M . By Lemma 9, there

exists δ(x∗
2) > 0 such that sup‖u‖L2=1 D

2f2(x
∗
2)(u, u) := −δ(x∗

2) < 0. If η1 ≤
δ2(x∗

2)/(8β3) and η2 ≤ δ(x∗
2)/8, there exists x∗

1 ∈ BL2(x∗
2, δ(x

∗
2)/(2β3)), such

that

1. x∗
1 is a unique local maximum of f1 in BL2(x∗

2, δ(x
∗
2)/(2β3))

2. sup‖u‖L2=1 D
2f1(x

∗
1)(u, u) ≤ −3δ(x∗

2)/8

3. ‖x∗
1 − x∗

2‖L2 ≤ 8η1/δ(x
∗
2).

Consider f1(x) = ph, f2(x) = p̂h(x) as in equation (5.5). For any α ∈ (0, 1),
we can derive a procedure based on Lemma 10 which allows us to classify non-
degenerate local modes of p̂h as significant and construct an L2 neighbor around
them with the property that the probability that each of such neighbors contains
a non-degenerate local mode of ph is at least 1 − α for n large enough. The
procedure is summarized in Display 1 and its statistical guarantees are described
in Proposition 4.

Learning non-degenerate local modes

Input: data, X1, . . . , Xn; kernel function, K; bandwidth, h > 0;
significance level α ∈ (0, 1).

Output: a set R̂ of significant local modes of p̂h.

1. Compute p̂h and determine the set of non trivial local max of p̂h, Ĉ (here non-trivial

means x̂∗ ∈ Ĉ ⇒ p̂h(x̂
∗) > 0).

2. If x̂∗ ∈ Ĉ is such that δ(x̂∗) := − sup‖u‖
L2=1 D

2p̂h(x̂
∗)(u, u) ≥

max{
√

8β3C1(α), 8C2(α)} where

C1(α) =

(
125MK2

1K2

2n

) 1
3

+

(
25K2

1 log(2 log(n)/α)

4n

) 1
2

and

C2(α) =

(
125MK2

2K3

4n

) 1
3

+

(
25K2

2 log (2 log(n)/α)

8n

) 1
2

then classify x̂∗ as a significant local mode of p̂h. Here β3 = 12K3.

Display 1
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Proposition 4. Consider f1(x) = ph, f2(x) = p̂h(x). Assume (H1) and (H2)
hold and P (‖X‖H1

0
≤ M) = 1 for some known M > 0. Let R̂ denote the set of

points classified by the algorithm of Display 1. Then, for large enough n, with
probability 1− α the following holds for all x̂∗ ∈ R̂:

1. the random ball BL2(x̂∗, δ(x̂∗)/(2β3)) contains a unique non-degenerate
local mode x∗ of ph

2. ‖x∗ − x̂∗‖L2 ≤ 8C1(α)/δ(x̂
∗).

Let R denote the set of non-degenerate local modes of ph. Consider the map
Φ : R̂ → R by letting

Φ(x̂∗) = BL2(x̂∗, δ(x̂∗)/(2β3)) ∩R ∩BL2(x̂∗, log(n)C1(α)/δ(x̂
∗)). (5.6)

According to Proposition 4, with probability 1 − α, for every x̂∗ ∈ R̂, there
exists a unique x∗ ∈ R contained in the right hand side of equation (5.6). In
other words, with probability 1 − α, Φ is a well-defined map. Under suitable
assumptions on ph(x), more can be said.

Proposition 5. Assume that (H1) and (H2) hold and that P (‖X‖H1
0
≤ M) =

1 for some known M > 0. Suppose further that ph has finitely many non-
degenerate local modes. Let R denote the collection of non-trivial local maxima
of ph. Then, with probability converging to 1 as n → ∞, every x∗ ∈ R has a
unique preimage of Φ in R̂.

Remark 7. Under the assumptions of Proposition 4 and 5, one can conclude
that with probability converging to 1 − α, the map Φ : R̂ → R is bijective. In
other words, the algorithm of Display 1 is consistent.

6. From theory to applications

So far, all the results have been developed in an infinite-dimensional functional
space. In this section, we connect the theory that we developed to practical
applications and, in particular, we address the following challenges.

1. Complete functional data can never be observed: a functional datum is
always observed on a discrete grid. For example, let {Xi}ni=1 be an i.i.d
sample from a distribution P on H1

0 and let {tj}mj=1 be a set of equally
spaced design points. In practice, only noisy measurements of the Xi’s at
{tj}mj=1 are available. It is therefore important to design procedures that
work with discretized curves.

2. While the theory is developed in an infinite-dimensional functional space,
in practice any functional clustering method relies on the use of only
finitely many basis functions. However, a flexible algorithm for functional
data clustering should be asymptotically consistent with the infinite-dimen-
sional theory.

One way to accomplish these two tasks at the same time is to apply a projection
method. As shown later in this section, projections onto a linear space intro-
duce small L2 perturbations to the functional data and to the pseudo-density.
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Nonetheless, the procedure that we describe is tolerant to such perturbations
(see Corollary 1 for more details).

Before turning to the technical arguments, let us describe the following simple
example which motivates the projection approach.

Example 1. Consider the simple model y = X(t)+ε, where X ∼ P is a random
function and ε is a random variable independent of X. Instead of observing n
complete random function samples {Xi}ni=1, one only observes the discrete noisy
measurements {yij}, where yij = Xi(tj) + εij. Here, {tj}mj=1 is a set of equally
spaced design points for the samples and the measurement errors εij ∼ N(0, σ)
are independent of {Xi}ni=1.

In Gasser and Müller (1984), for example, if one assumes further that the
random function X is bounded in H2, i.e.∫ 1

0

|X ′′(t)|dt ≤ M2 P -almost surely, (6.1)

it is shown that there exists a kernel W so that an approximation of X can be
constructed as

X̃(t) =

m∑
j=1

yij
b

∫ tj

tj−1

W

(
t− u

b

)
du. (6.2)

If b is chosen to be of order m−1/5, the above estimator also satisfies

E(‖X − X̃‖2L2 |X) ≤ C(M2,W )m−4/5 (6.3)

and
E(‖X ′ − X̃ ′‖2L2 |X) ≤ C(M2,W )m−2/5, (6.4)

where C(M2,W ) is a constant only depending on M2 and W , and the expectation
is taken with respect to ε only.

As shown in the example, with noisy discrete measurements of the functional
datum X, one can construct an approximation

X̃ ∈ span

{∫ tj

tj−1

W

(
t− u

b

)
du

}m

j=1

, (6.5)

where b is of order O(m−1/5). This approximation corresponds to a perturbed
version of the underlying complete functional datum. The perturbation vanishes
asymptotically as the number of discrete measurements m goes to infinity. This
motivates the following assumption.

(H5) The collection {X̃i}ni=1 of the i.i.d approximations of {Xi}ni=1 based on the
equally spaced design points {tj}mj=1 ⊂ [0, 1] is such that {X̃i}ni=1 ⊂ H1

0

and
E(‖Xi − X̃i‖L2 |Xi) ≤ φ(m), (6.6)

where φ(m) does not depend on {Xi}ni=1 and φ(m) → 0 as m → ∞.
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Recall that in our theoretical results, the sample version of the pseudo density
takes the form

p̂h(x) =
1

n

n∑
i=1

Kh(‖Xi − x‖2L2) (6.7)

When the only available functional data are {X̃i}ni=1 instead of {Xi}ni=1, one
should consider

p̃h(x) =
1

n

n∑
i=1

Kh(‖X̃i − x‖2L2). (6.8)

The following simple Lemma is useful to characterize the aforementioned L2

perturbation and allows us to derive Corollary 1.

Lemma 11. Let {Xi}ni=1 be an i.i.d. sample of functional data. Under assump-
tions (H1), (H2), (H3), and (H5), for l = 0, 1, 2,

P

(
sup
x∈L2

‖Dlp̂h(x)−Dlp̃h(x)‖ ≥ ε

)
≤ 2lKl+1φ(m)

ε
(6.9)

where ‖ · ‖ stands for the appropriate L2 operator norm.

Corollary 1. Consider a modified version of the algorithm of Display 1, where
p̂h is replaced by p̃h and C1(α), C2(α) are replaced by

C̃1(α) =

(
125MK2

1K2

2n

) 1
3

+

(
25K2

1 log(4 log(n)/α)

4n

) 1
2

+
8K2φ(m)

α

C̃2(α) =

(
125MK2

2K3

4n

) 1
3

+

(
25K2

2 log (4 log(n)/α)

8n

) 1
2

+
16K3φ(m)

α
.

(6.10)

Let R̃ be the significant local modes learned by this modified version of the algo-
rithm. Then, the following statements are true.

1. The probability that all random balls BL2(x̃∗, δ(x̃∗)/(2β3)) with x̃∗ ∈ R̃
contain a unique non-degenerate local mode x∗ of ph and that ‖x∗ −
x̃∗‖L2 ≤ 8C̃1(α)/δ(x̃

∗) is at least 1− α for sufficiently large n.
2. Consider the map Φ : R̃ → R such that

Φ(x̃∗) = BL2(x̃∗, δ(x̃∗)/(2β3)) ∩R ∩B(x̃∗, logn C̃1(α)/δ(x̃
∗)), (6.11)

where R denotes the collection of non-degenerate local modes of ph. Sup-
pose further that ph has finitely many non-trivial local modes and that they
are non-degenerate. Assume that {X̃i}ni=1 ∈ BH1

0
(0,M). Then, with prob-

ability converging to 1 as n → ∞, every x∗ ∈ R has a unique preimage in
R̃ with respect to Φ.

Remark 8. Let S̃ = span{
∫ tj
tj−1

W ( t−u
b )du}mj=1, with b = O(m−1/5). Although

{X̃i}ni=1 ⊂ S̃, p̃h(x) as defined in equation (6.8) is still a functional on L2.



Nonparametric clustering of functional data using pseudo-densities 2941

It is desirable to have a method that does not use infinitely many L2 ba-
sis functions to compute a non-degenerate local mode x̃∗ of p̃h and δ(x̃∗) :=
− sup‖u‖L2=1 Dp̃h(x̃

∗)(u, u). Lemma 6, together with the assumption that

{X̃i}ni=1 ⊂ S̃, ensures that all the non-trivial critical points of p̃h(x) belong
to S̃. Equation (A.31) of Appendix A shows that for any v ∈ (S̃)⊥,

D2p̃h(x)(v, v) =
2

n

n∑
i=1

K ′
h(‖X̃i − x‖2L2)‖v‖2L2 < 0. (6.12)

Therefore, in analogy to the results of Section 4, in order to classify the signif-
icant local modes of p̃h it is not required to consider infinitely many L2 basis
functions.

Remark 9. The assumptions of Example 1 do not immediately guarantee that
{X̃i}ni=1 ⊂ BH1

0
(0,M) as we assume in the second claim of Corollary 1. However,

simple computations show that

P
(
X̃i ∈ BH1

0
(0,M) ∀i ∈ {1, . . . , n}

)
≥ 1− Cnm− 2

5 (6.13)

for some positive constant C. Therefore, as long as n = o(m
2
5 ), the consistency

result (the second claim) of Corollary 1 still holds. Projection using regression
estimators introduces some bias to the pseudo density. However, as long as the
observation grid is sufficiently fine (m is large enough), then the bias is of lower
order. For example, if n = o(m2/5), then φ(m) = O(m−4/5) = o(n−2), which is
of lower order in (6.10). Thus, in this case, one can simply focus on the projected
version of the observed functional data.

7. Simulations and applications

In this section, we apply the methodology that we discussed on two simulated
functional datasets and on a real dataset. In the following examples, we describe
two practical ways to select the bandwidth and we show that both lead to
meaningful estimated clusters. We use the mean-shift algorithm (Fukunaga and
Hostetler, 1975; Cheng, 1995) with the exponential kernel to identify the local
modes and cluster the data.

The mean-shift algorithm is a recursive algorithm that is equivalent to gra-
dient ascent with a particular choice of adaptive step-size. In particular, the
mean-shift algorithm approximates the gradient ascent path of p̂h starting at a
point x = x0 by means of the recursive update

x ←
∑n

i=1 K
(‖Xi−x‖2

L2

h

)
Xi∑n

i=1 K
(‖Xi−x‖2

L2

h

) . (7.1)

In practice, one typically takes x0 ∈ {X1, . . . , Xn}.
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Fig 1. Integrated Brownian motion trajectories with drift.

In what follows, the constants C1(α) and C2(α) of the algorithm of Display
1 are determined by using the nonparametric Bootstrap. Recall that C1(α) and
C2(α) are simply the 1 − α quantiles of the random variables η1 and η2 of
equation (5.3). The expressions of C1(α) and C2(α) reported in Display 1 allow
us to deduce the convergence rate of the procedure, but they represent rather
conservative bounds. In practice, it is advisable to determine this quantities
in a data-driven way (for example, use non-parametric bootstrap to find the
quantiles of equation (5.3)).

7.1. Integrated Brownian motion

DATA Let Wi denote a realization of the standard Brownian motion process
on t ∈ [0, 1]. We generate i.i.d. trajectories of the integrated Brownian motion
process with drift

Xi(t) = σ

∫ t

0

Wi(s) ds+ bit
2, (7.2)

where σ = 2 and

bi =

⎧⎪⎨
⎪⎩
0 for i = 1, . . . , 100

5 for i = 101, . . . , 200

−7 for i = 201, . . . , 300.

(7.3)

The curves above are generated on a grid of 200 equally-spaced points in [0, 1]
and they are displayed in Figure 1. Because of the variability of the process
and the noise level σ, it is hard to distinguish the presence of the three distinct
clusters in the observed trajectories.

PROCEDURE We run the mean-shift algorithm using the exponential ker-
nel and a set of candidate bandwidths corresponding to the 10, 15, 20, 25, . . . 100
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Fig 2. Number of estimated local modes as a function of the bandwidth in the integrated
Brownian motion example.

percentiles of the distribution of all pairwise L2 distances between the trajecto-
ries X1, . . . , X300.

RESULTS Figure 2 depicts how the number of estimated local modes (hence
the number of estimated clusters) varies as the bandwidth increases: when the
bandwidth is too small (overclustering), p̂h has a large numbers of noninforma-
tive local modes, whereas when the bandwidth is too large (underclustering) all
the data points are eventually merged in a unique cluster corresponding to the
unique mode of p̂h.

Frequently, one observes a relatively large intermediate range of bandwidths
where the clustering structure is stable. In Figure 2, we notice the presence of
such range. There, the number of clusters is stable and equal to 3. This gives a
heuristic to choose h in practice.

Figure 3, depicts the estimated clustering structure when h is chosen within
the aforementioned range. Note that the estimated local modes (continuous light
blue lines) are very closed to the quadratic drift functions of equations (7.2) and
(7.3) (broken light blue lines).

7.2. Two-dimensional linear space with added noise

DATA We generate 2000 i.i.d. pairs of coefficients (αi, βi) from the bivariate
Normal mixture

1

2
N
((

0
0.2

)
,

(
0.032 0
0 0.032

))
+

1

2
N
((

0
−0.2

)
,

(
0.032 0
0 0.032

))
. (7.4)
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Fig 3. Estimated local modes (continuous light blue lines) and estimated clusters (red, grey,
and black) in the integrated Brownian motion example. The broken lines (quadratic drifts)
correspond to the true local modes.

These random coefficients are used to generate noiseless functional data accord-
ing to

Xi(t) = αi
1√
2
sin(8tπ) + βi

1√
2
sin((8t− 1)π). (7.5)

Noisy measurements of these curves are then obtained from the model

Yi(tj) = Xi(tj) + εi,j , (7.6)

where {tj , j = 1, . . . , 500}, are equally-spaced points in [0, 1] and εi,j are i.i.d.
draws from N (0, 0.52).

Figure 4 depicts two noisy observations of these curves while Figure 5 is a
pairs scatterplot representing the coefficients of the projection of the Yi’s on an
8-dimensional cosine orthonormal basis. Because of the very low signal-to-noise
ratio of the Yi’s, neither of these plots clearly provides conclusive evidence about
the presence of two distinct clusters.

PROCEDURE The goal is once again to choose h and recover the hidden
clustering structure. We proceed as follows.

1. For all i = 1, . . . , 2000, we obtain X̃i, an estimate of Xi, by using an
orthogonal projection estimator on the canonical cosine orthonormal basis.
We use Generalized Cross Validation to optimally pick the number of basis
functions (which is 8 in this case).

2. We randomly split the set of X̃i’s in two subsamples of size 1000 each.
3. We form a set of candidate values for h.
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Fig 4. Examples of noisy functional data in the two-dimensional linear space example. The
hollow dots represent the noisy observations, i.e. the Yi’s. The continuous lines represent the
orthogonal projection estimate X̃i of the corresponding noiseless functional datum Xi.

Fig 5. Pairs plot of the orthogonal projection coefficients.

4. For each candidate value of h, the first subsample of X̃i’s is used to esti-
mate the functional modes and the corresponding clusters.

5. For each estimated clustering structure, the second subsample of X̃i’s is
used to test for the clusters’ significance (α = 0.10).

Thanks to the availability of a test for the significance of the local modes, we have
a principled way of selecting the bandwidth and an alternative to the heuristic
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Fig 6. Number of estimated local modes and number of significant estimated local modes as
a function of the bandwidth in the two-dimensional linear space example.

proposed in the previous application. In particular, h should be chosen as the
bandwidth which reveals the largest amount of statistically significant structure
in the data, i.e. as the bandwidth that maximizes the number of significant
clusters.

RESULTS The final result of this procedure is summarized in Figure 6. In this
case, the final bandwidth is h = 0.05 and, despite the low signal-to-noise ratio
of the observed data, we detect the presence of two distinct significant clusters.

Note once again that, for too large values of the bandwidth, we observe a
single cluster corresponding to the entire sample.

7.3. Neural activity curves

Figure 7 100 out of 1000 curves which correspond to recordings of neural activity
at 32 equally-spaced time points. These data come from a behavioral experiment
performed at the Andrew Schwartz’s Motorlab (University of Pittsburgh) on a
macaque monkey. The monkey performs a center-out and out-center target-
reaching task with 26 targets in a virtual 3D environment and these curves
represent voltage changes over time in the monkey’s neurons.

It is known that in this dataset there are three distinct clusters (see Tay-
lor, Tillery Helms and Schwartz, 2002 for more details). In this example, we
show that our procedure allows us to recover the true clustering structure, even
if we did not have any a priori information about the true number of clus-
ters.

We follow the same strategy outlined in the previous example regarding the
two-dimensional linear space spanned by the sine functions. While we only
show 100 curves in Figure 7, the clustering procedure is run on the entire
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Fig 7. A subset of 100 curves representing neural activity over time.

Fig 8. Number of estimated local modes and number of significant estimated local modes as
a function of the bandwidth in the neural activity example.

dataset (1000 curves). Figure 8 displays the number of clusters and the num-
ber of significant clusters as the bandwidth is varied. Once again, the band-
width is chosen to be the value which maximizes the number of significant
local modes (α = 0.10). In this case, this corresponds to h = 140 or h =
150, both of which produce three significant clusters. Finally, Figure 9 dis-
plays the same subset of curves of Figure 7, this time colored by the clus-
ter membership, together with the three local modes associated to the clus-
ters.
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Fig 9. Estimated local modes and clusters in the neural activity curves (only a subset of 100
curves shown). The estimated local modes correspond to the three thicker lines.

8. On the choice of the pseudo-density functional

It is well-known that the Lebesgue measure does not exist in infinite-dimensional
spaces. As a consequence, a proper density function for a functional random
variable cannot generally be defined (Delaigle and Hall, 2010). Developing a
theory of modal clustering for functional data necessarily requires a choice of
a surrogate notion of density that substitutes the probability density function
associated with the data. A pseudo-density should satisfy some basic differen-
tiability properties, so that one can study the associated gradient flow. While
we explicitly choose to use the functional ph of equation (3.1), one could in
principle work with a different functional. The choice of the pseudo-density is
not an easy one, however.

First of all, with particular emphasis on the setting that we consider, we point
out that, while tempting, one cannot naively assume that the pseudo-density
is L2 differentiable (or even just continuous) and also vanishes as the H1

0 norm
diverges.

Fact 1. Let p : L2([0, 1]) → R+ be a pseudo-density for the functional random
variable X valued in H1

0 ([0, 1]) such that p is L2 continuous and p(x) → 0 as
‖x‖H1

0
→ ∞. Then p = 0 everywhere on H1

0 ([0, 1]).

Proof. Consider the sequence of functions xn(t) = n−1 sin(n2t) for n ≥ 1 and
t ∈ [0, 1]. Clearly, xn ∈ H1

0 ([0, 1] for any n ≥ 1. Notice that ‖xn‖L2 → 0 and
‖xn‖H1

0
→ ∞ as n → ∞. Thus, by assumption, p(xn) → p(0) = 0 as n → ∞.

Consider now zn = y + xn where y ∈ H1
0 ([0, 1]). We have ‖zn‖L2 → ‖y‖L2 as

n → ∞, hence p(zn) → p(y) as n → ∞. However ‖zn‖H1
0
≥ ‖xn‖H1

0
− ‖y‖H1

0
.

Hence ‖zn‖H1
0
→ ∞ as n → ∞. We thus have p(zn) → p(y) = 0 as n → ∞ for

any y ∈ H1
0 ([0, 1]), implying that p is null on H1

0 ([0, 1]).
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The argument above shows that requiring a pseudo-density to be L2 continu-
ous and to vanish outside of H1

0 necessarily leads to an uninteresting scenario for
modal clustering, despite the fact that these two requirements apparently sound
reasonable at first and carry some resemblance with the standard assumptions
that are made on density functions in finite-dimensional problems.

Secondly, analyzing the asymptotic regime where h = hn → 0 makes little
sense even in the most well-understood situations. In fact, let us consider the
following two settings in which one typically chooses h = hn → 0 as n → ∞.

1. If the law P of X is supported on a finite-dimensional space and admits a
density p, then the bias of p̂h is easy to compute and one can choose hn → 0
to optimally balance the bias-variance trade-off as it is usually done in den-
sity estimation. However, if p is defined over a finite-dimensional vector
space S, the gradient flow is not well-defined outside of S. As discussed in
Section 6, all of the observed functional data are generally reconstructed
from noisy discrete measurements. As a result, neither the observed dis-
crete measurements nor the reconstructed functional data are in S, and
the gradient flow with respect to p starting at any of these elements is not
well-defined.

2. If the law of P of X is supported on an infinite-dimensional space (for
example X is a diffusion process), then some authors (see, for instance,
Gasser, Hall and Presnell, 1998 and Ferraty, Kudraszow and Vieu, 2012)
suggest to implicitly define a pseudo-density by assuming a particular fac-
torization of the small-probability function associated to P . In particular,
it is assumed that

P (‖X − x‖ ≤ h) = p(x)φ(h) + o(φ(h)) (8.1)

as h → 0 for some pseudo-density functional p depending only on the
center of the ball x and some function φ depending only on the radius
of the ball h. In this second case, p is non-zero only on its domain S1,
which is typically taken to be a compact subset of the infinite-dimensional
functional space. Compact subsets of L2 are singular in the sense that any
L2 closed ball is not compact. As a result, the pseudo-density p is also
singular, hence not L2 differentiable. One might then assume that p is
differentiable with respect to norm induced by S1 and study the gradient
flow associated to p using the S1 topology. In light of the first point just
given, one should then assume that S1 is the closure of an open set of
an infinite-dimensional functional subspace. This leads to an even more
serious problem: closed bounded balls in S1 are not compact under the S1

topology. The lack of compactness implies that the gradient ascent paths
are not guaranteed to converge.

On the other hand, the pseudo-density functional ph(x) = EP K(
‖X−x‖2

L2

h )
with h > 0 is a natural candidate to develop a theory of modal clustering of
smooth random curves in a density-free setting. Furthermore, the functional
ph corresponds to the functional discussed by Hall and Heckman (2002), who
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proposed a mode-finding algorithm for functional data and had the intuition
that their algorithm was approximating a gradient flow on the estimator p̂h.

Of course, from a practical point of view, one still has to choose a value for
h. The next section describes two bandwidth selection strategies.

9. Bandwidth selection

The choice of the bandwidth is generally a difficult task in nonparametric prob-
lems. Furthermore, the difficulty increases as the dimension of the model in-
creases (see for instance Scott, 2015).

For multivariate data, the behavior of the topological structure of p̂ (the
estimator of the underlying density function) often exhibits a phase-transition:
for small values of h (undersmoothing) the estimated density generates many
irrelevant clusters (overclustering), while for large values of h (undersmoothing)
p̂ generates few uninformative clusters (underclustering) which eventually merge
into a single cluster once h becomes large enough. Interestingly, one can usually
identify a relatively broad range of intermediate values of h for which the number
of clusters associated to p̂ is stable (see for instance, Genovese et al., 2016).

As we illustrate in Section 7, p̂h tends to behave in a very similar way when h
varies (see also Figure 2). This leads to a simple yet effective heuristic for band-
width selection: h should be chosen in the range where the clustering structure
is stable.

If a test for the significance of the estimated local modes of p̂h is available,
then one can use a complementary and more principled approach: h should be
chosen so to reveal the largest amount of statistically significant structure in
the data (Genovese et al., 2016). In particular, in the context of nonparametric
modal clustering for functional data, h should be chosen to maximize the number
of significant local modes of p̂h using, for example, the test proposed in Section
5. This second approach to bandwidth selection is illustrated by means of two
applications in Section 7 (see Figure 6 and Figure 9).

10. Discussion and conclusions

In this paper, we provide a general theoretical background for clustering of
functional data based on pseudo-densities. We show that clusters of functional
data can be characterized in terms of the basins of attraction of the critical
points of a pseudo-density functional, both at the population and at the sample
level. Our theory can be generalized to different functional spaces, as long as
the chosen pseudo-density functional is sufficiently smooth and the range of the
functional random variable X can be compactly embedded in a larger space to
guarantee the compactness of the gradient flow trajectories. Because of the need
of a compact embedding, one has to consider two non-equivalent topologies at
the same time (in our case the L2 and the H1 topologies): from a statistical
viewpoint, this means that the data need to be smoother than the ambient
space in which they are embedded.



Nonparametric clustering of functional data using pseudo-densities 2951

Besides compactness, there is another element that makes the theory of popu-
lation clustering in the functional data setting more challenging when compared
to the finite-dimensional case. This is the fact that the basin of attraction of a
saddle point of ph is not necessarily negligible. While in the finite-dimensional
setting the basin of attraction of a saddle point of the Morse density function p
is a manifold whose dimension is strictly smaller than the dimension of the do-
main of p (and therefore its probability content is null), the same property is not
necessarily satisfied by a pseudo-density functional in the infinite-dimensional
and density-free setting that we consider. Nonetheless, in analogy to the finite-
dimensional case, one expects that clusters that are associated to the local modes
of ph are more informative than those associated to the saddle points of the same
functional.

It becomes natural to ask whether it is possible to derive a statistical pro-
cedure that marks a local mode of p̂h (and its associated empirical cluster)
as significant whenever it corresponds to a non-degenerate local mode of ph.
We provide a consistent algorithm to achieve this task that can be applied to
real data, such as noisy measurements of random curves on a grid. When only
noisy and discretized versions of the functional data are observed, one typi-
cally projects the noisy observations onto a linear space and use the resulting
projections (which correspond to perturbed versions of the partially observed
underlying functional data) for subsequent statistical analyses. We show that
the asymptotic properties of the proposed algorithm are preserved with noisy
and discretized functional data, as long as the size of the discretization grid
grows suitably fast with the sample size.

The algorithm that we propose can also be used to appropriately select the
bandwidth parameter in practice: h should be chosen as the bandwidth that
maximizes the number of significant local modes (and therefore the number of
significant clusters) in the data. We demonstrate the this bandwidth selection
criterion performs well both on simulated and real data in Section 7. The logic
behind this rule is that one wants to uncover as much structure as possible
based on the observed data, while at the same time being confident that the
uncovered structure corresponds to actual population features.

Finally, it should be mentioned that kNN (k-Nearest Neighbors) bandwidth
parameters have gained a growing popularity in nonparametric FDA. kNN band-
widths have the advantage of being more sensitive to local features of the empir-
ical distribution of the data. The kNN bandwidth at location x ∈ L2 is defined
as

Hn,k(x) = min

{
h > 0 :

n∑
i=1

1BL2 (x,h)(Xi) = k

}
, (10.1)

i.e. Hn,k(x) is the smallest positive real number h such that the L2 ball of
radius h centered at x ∈ L2 contains exactly k sample observations (see, for
instance, Kudraszow and Vieu, 2013). It is clear from the definition that Hn,k is
a random variable that depends on the sample and the sample size. Extending
our theory to kNN bandwidths is a challenging task because the population
functional becomes much more involved. Specifically, the population pseudo-
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density corresponding to a kNN bandwidth is

pHn,k(x) = EP K

(‖X − x‖2L2

Hn,k(x)

)
. (10.2)

Future work shall investigate the extent to which our theory can be general-
ized to these types of local bandwidths and the practical advantages that these
may have in the context of nonparametric clustering based on local modes and
gradient flows.

Appendix A: Proofs of the results

Proof of Proposition 1. For convenience, we prove the result under the addi-
tional assumption that K is compactly supported on [0, 1]. The proof that we
present can be easily extended to exponentially decaying kernel functions and
this extra assumption can be safely removed.

Consider the set of assumptions of the Proposition. Furthermore, let K̄2 =
supx∈Rd ‖∇2p(x)‖2 and K1 = infx∈∂Sc ‖∇p(x)‖2. Note that since ∂Sc is com-
pact, K1 > 0. Consider now the set Sε = {x ∈ Sc : d(x, ∂Sc) ≥ ε}. Then, there
exists a set Ω such that S2ε ⊂ Ω ⊂ Sε and ∂Ω is also smooth. As a result,
if x ∈ ∂Ω, then ε ≤ d(x, ∂S) ≤ 2ε and infx∈S∩Ωc ‖∇p(x)‖2 ≥ K1/3. Since p
is Morse on Ω and twice continuously differentiable on int(Sc), then standard
mollification results guarantee that there exist η > 0 and h1 > 0 such that if
0 < h ≤ h1, then supx∈Ω ‖∇(i)ph(x) − ∇(i)p(x)‖2 ≤ η for i = 0, 1, 2. Then,
Lemma 16 of Chazal et al. (2014) guarantees that ph is Morse on Ω. It is only
left to show that if x ∈ Ωc is such that L(BRd(x, h) ∩ Sc) > 0 then ∇ph �= 0.

Consider h <
K1

6K̄2
and let n(·) denote the outward normal vector to Sc with

unitary norm. We have

∇ph(x) = ∇x

∫
Rd

K

(
‖y − x‖22

h

)
p(y) dy

=

∫
Sc∩B

Rd
(x,h)

∇xK

(
‖y − x‖22

h

)
p(y) dy

=

∫
Sc∩B

Rd
(x,h)

−∇yK

(
‖y − x‖22

h

)
p(y) dy

=

∫
Sc∩B

Rd
(x,h)

K

(
‖y − x‖22

h

)
∇yp(y) dy

−
∫
∂Sc∩B

Rd
(x,h)

K

(
‖y − x‖22

h

)
n(y)p(y) dy

−
∫
Sc∩∂B

Rd
(x,h)

K

(
‖y − x‖22

h

)
n(y)p(y) dy.

(A.1)

Note that p(y) = 0 if y ∈ ∂Sc and, since K is compactly supported on [0, 1],
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K(
‖y−x‖2

L2

h ) = 0 if y ∈ ∂BRd(x, h). Hence, the last two integrals on the bound-
aries are null. Now, since ∇p is K̄2-Lipschitz, we have

‖∇ph(x)‖2 =

∥∥∥∥∥
∫
Sc∩B

Rd
(x,h)

K

(
‖y − x‖22

h

)
∇p(y) dy

∥∥∥∥∥
2

≥ −
∥∥∥∥∥
∫
Sc∩B

Rd
(x,h)

K

(
‖y − x‖22

h

)
∇p(y) dy

−
∫
Sc∩B

Rd
(x,h)

K

(
‖y − x‖22

h

)
∇p(x) dy

∥∥∥∥∥
2

+

∥∥∥∥∥
∫
Sc∩B

Rd
(x,h)

K

(
‖y − x‖22

h

)
∇p(x) dy

∥∥∥∥∥
2

≥ −K̄2h

∫
Sc∩B

Rd
(x,h)

K

(
‖y − x‖22

h

)
dy

+ ‖∇p(x)‖2
∫
Sc∩B

Rd
(x,h)

K

(
‖y − x‖22

h

)
dy

≥
(
K1

3
− K̄2h

)∫
Sc∩B

Rd
(x,h)

K

(
‖y − x‖22

h

)
dy > 0

(A.2)

since −K̄2h > −K1/6 and L(BRd(x, h) ∩ Sc) > 0. This shows that ph has no
non-trivial critical points outside of Ω.

Proof of Lemma 1.

|Kh(‖X − (x+ δ)‖2L2)| −Kh(‖X − x‖2L2)

− 〈DKh(‖X − x‖2L2), δ〉L2 |

≤ sup
s∈[0,1]

1

2
|D2Kh(‖X − (x+ sδ)‖2L2)(δ, δ)|

(A.3)

Now, using the bounds on the derivatives of Kh and equation (3.3), we have

|D2Kh(‖X − (x+ sδ)‖2L2)(δ, δ)|
≤ 4

∣∣K ′′
h(‖X − (x+ sδ)‖2L2)

∣∣ ‖X − (x+ sδ)‖2L2‖δ‖2L2

+ 2
∣∣K ′

h(‖X − (x+ sδ)‖2L2)
∣∣ ‖δ‖2L2

≤ 4K2‖δ‖2L2 = o(‖δ‖L2).

(A.4)

Taking the expectation and applying Jensen’s inequality in equation (A.3) yields

|EP Kh(‖X − (x+ δ)‖2L2)| − EP Kh(‖X − x‖2L2)

− EP 〈DKh(‖X − x‖2L2), δ〉L2 | = o(‖δ‖L2)
(A.5)
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which implies that

〈Dph(x), · 〉L2 = EP 〈DKh(‖X − x‖2L2 , · 〉L2

= EP 〈2K ′
h

(
‖X − x‖2L2

)
(x−X), · 〉L2

= 〈EP 2K ′
h

(
‖X − x‖2L2

)
(x−X), · 〉L2 .

(A.6)

Thus, by definition, equation (3.5) is established. It is clear from assumption
(H1) that ‖Dph(x)‖L2 ≤ 2K1. In order to deriveD2ph(x), a similar computation
is used. The Taylor expansion of F (x) = K ′

h(‖X − x‖2L2)(x−X) as a function
of x gives

‖F (x+ δ)− F (x)−DF (x)(δ)‖L2 ≤ sup
s∈[0,1]

1

2
‖D2F (x+ sδ)(δ, δ)‖L2 (A.7)

where
DF (x)(δ) = 2K ′′

h

(
‖X − x‖2L2

)
〈x−X, δ〉L2(x−X)

+K ′
h

(
‖X − x‖2L2

)
δ.

(A.8)

Furthermore,

D2F (x+ sδ)(δ1, δ2)

= 4K ′′′
h

(
‖X − x‖2L2

)
〈x−X, δ1〉L2〈x−X, δ2〉L2(x−X)

+ 2K ′′
h

(
‖X − x‖2L2

)
〈δ1, δ2〉L2(x−X)

+ 2K ′′
h

(
‖X − x‖2L2

)
〈x−X, δ1〉L2δ2

+ 2K ′′
h

(
‖X − x‖2L2

)
〈x−X, δ2〉L2δ1

(A.9)

By assumption (H1), sups∈[0,1] ‖D2F (x+ sδ)(δ, δ)‖L2 ≤ 6K3‖δ‖2L2 . Thus,

‖EPF (x+ δ)− EPF (x)− EP DF (x)(δ)‖L2

≤ EP ‖F (x+ δ)− F (x)−DF (x)(δ)‖L2 ≤ 3K3‖δ‖2L2 ,
(A.10)

and the claim then easily follows.

Proof of Proposition 2.

〈Dph(x), v
′〉L2 =

〈
EP 2K ′

h

(
‖X − x‖2L2

)
(x−X), v′

〉
L2

= EP 2K ′
h

(
‖X − x‖2L2

)
〈x−X, v′〉L2

= EP − 2K ′
h

(
‖X − x‖2L2

)
〈x′ −X ′, v〉L2

≤ EP − 2K ′
h

(
‖X − x‖2L2

)
‖x′ −X ′‖L2‖v‖L2

≤ 2K2(‖x′‖L2 + EP ‖X ′‖L2)‖v‖L2

≤ 2K2(‖x′‖L2 +N1)‖v‖L2

(A.11)

where the second equality holds by integration by parts. An application of
Lemma 2 with L(v) = EP −2K ′ (‖X − x‖2L2

)
〈x′−X ′, v〉L2 yields ‖Dph(x)‖H1

0
=

‖Dph(x)
′‖L2 ≤ 2K1(‖x′‖L2 +N1) and therefore Dph(x) ∈ H1

0 .
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Proof of Lemma 3. Let ‖x‖H1
0
, ‖y‖H1

0
≤ L < ∞. It suffices to show that ∃0 <

C(L) < ∞ such that ‖Dph(x) − Dph(y)‖H1
0
≤ C(L)‖x − y‖H1

0
. Equivalently,

one has to show that ‖Dph(x)
′ −Dph(y)

′‖L2 ≤ C(L)‖x′ − y′‖L2 . By Lemma 2
and Proposition 2 we have that, for any v ∈ L2,

〈Dph(x)
′ −Dph(y)

′, v〉L2

= 2EP K ′
h

(
‖X − x‖2L2

)
〈x′ −X ′, v〉L2

−K ′
h

(
‖X − y‖2L2

)
〈y′ −X ′, v〉L2

= 2EP

[
K ′

h

(
‖X − x‖2L2

)
−K ′

h

(
‖X − y‖2L2

)]
〈x′ −X ′, v〉L2

+ 2EP K ′
h

(
‖X − y‖2L2

)
〈x′ − y′, v〉L2

(A.12)

Since d
dtK

′
h(t

2) = 2K ′′
h(t

2)t ≤ 2K3 by assumption (H1), K ′
h(t

2) is Lipschitz with
Lipschitz constant not larger that 2K3. Therefore,∣∣K ′

h

(
‖X − y‖2L2

)
−K ′

h

(
‖X − x‖2L2

)∣∣
≤ 2K2

∣∣‖X − y‖L2 − ‖X − x‖L2

∣∣
≤ 2K2‖x− y‖L2 ≤ 2K2Cp‖x′ − y′‖L2 .

(A.13)

We have

EP

[
K ′

h

(
‖X − y‖2L2

)
−K ′

h

(
‖X − x‖2L2

)
〈x′ −X ′, v〉L2

]
≤ 2K2Cp‖x′ − y′‖L2 (‖x′‖L2 + EP ‖X ′‖L2) ‖v‖L2

≤ 2K2Cp‖x′ − y′‖L2(L+N1)‖v‖L2

(A.14)

and

EP K ′
h

(
‖X − y‖2L2

)
〈x′ − y′, v〉L2 ≤ K2‖x′ − y′‖L2‖v‖L2 . (A.15)

By putting together equations (A.14) and (A.15) we then have the following
bound for equation (A.12):

〈Dph(x)
′ −Dph(y)

′, v〉L2 ≤ C(L)‖x′ − y′‖L2‖v‖L2 , (A.16)

with C(L) = 2 [K3(L+N1) +K2], which obviously implies ‖Dph(x)
′ −

Dph(y)
′‖L2 ≤ C(L)‖x′ − y′‖L2 .

Proof of Lemma 4. Lemma 2 and Proposition 2 allow us to write

〈Dph(πx(t)), πx(t)〉H1
0
= 〈Dph(πx(t))

′, πx(t)
′〉L2

= 2EP K ′
h

(
‖X − πx(t)‖2L2

)
〈πx(t)

′ −X ′, πx(t)
′〉L2

= 2EP K ′
h

(
‖X − πx(t)‖2L2

) (
‖πx(t)

′‖2L2 − 〈X ′, πx(t)
′〉L2

)
≤ 2EP K ′

h

(
‖X − πx(t)‖2L2

)
‖πx(t)

′‖2L2

− 2EP K ′
h

(
‖X − πx(t)‖2L2

)
‖X ′‖L2‖πx(t)

′‖L2 ,

(A.17)

where the last inequality follows because (H2) guarantees that K ′
h(t

2) ≤ 0.
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For the first claim, assumption (H2) and ph(πx(t)) ≥ ph(πx(0)) ≥ δ imply

EP K ′
h

(
‖X − πx(t)‖2L2

)
≤ −EP Kh

(
‖X − πx(t)‖2L2

)
= −ph(πx(t)) ≤ −δ.

(A.18)

Thus, if ‖πx(t)‖H1
0
≥ K2N1/δ,

〈Dph(πx(t)), π(t)〉H1
0
≤ −2δ‖πx(t)‖2H1

0
+ 2K2N1‖πx(t)‖H1

0
≤ 0. (A.19)

For the second part, equation (A.17) gives

〈Dph(π(t)), π(t)〉H1
0

≤ 2EP K ′
h

(
‖X − πx(t)‖2L2

)
‖πx(t)

′‖2L2

− 2EP K ′
h

(
‖X − πx(t)‖2L2

)
‖X ′‖L2‖πx(t)

′‖L2

≤ 2EP K ′
h

(
‖X − πx(t)‖2L2

)
}
(
‖πx(t)

′‖2L2 −M‖πx(t)
′‖L2

)
.

(A.20)

Thus, 〈Dph(πx(t)), πx(t)〉H1
0
≤ 0 as soon as ‖πx(t)

′‖L2 = ‖πx(t)‖H1
0
> M .

Proof of Proposition 3. Proposition 2 and Lemma 3 guarantee the existence and
uniqueness of a local solution under the H1

0 norm from the standard theory of
ordinary differential equations. Some extra work is needed to extend the local
solution to a global one. We provide a complete proof in three steps which
builds on Theorem 3.10 of Hunter and Nachtergaele (2001) (their Theorem 3.10
holds more generally on Banach spaces, see for instance Schechter, 2004) and
the authors’ subsequent remark concerning the extension of the local solution
to a global one.

Step 1. In this step, we show that if the solution πx(t) exists for any time interval
[0, T ], then there exists C1 > 0 such that ‖πx(t)‖H1

0
≤ C1.

If ph(x) = 0, then x is a trivial local minimum of ph(x). As a result,
Dph(πx(0)) = 0 and πx(t) = πx(0) for all t. Thus, in this case it suf-
fices to take C1 = R. Suppose instead that ph(x) = δ > 0. Consider
g(t) = ‖πx(t)‖2H1

0
. Clearly, d

dtg(t) = 2
〈
πx(t),

d
dtπx(t)

〉
H1

0
= 2〈πx(t),

Dph(πx(t))〉H1
0
. Note that g(0) ≤ R2. Take C1 = max{R,K2N1/δ}.

Fix an arbitrary ε > 0 and suppose that there exists T ′ such that
0 ≤ T ′ ≤ T and g(T ′) ≥ C2

1 + ε. Then, there must exist 0 ≤ t∗ ≤ T ′

such that
g′(t∗) = 2 〈πx(t

∗), Dph(πx(t
∗))〉H1

0
> 0 (A.21)

and g(t∗) ∈ (C2
1 , C

2
1 + ε). This is a contradiction because, by Lemma 4,

if ‖πx(t
∗)‖H1

0
> K2N1/δ then 〈πx(t

∗), Dph(πx(t
∗))〉H1

0
≤ 0.

Step 2. Let πx : [0, T1] → H1
0 be the local solution of the ordinary differential

equation π′
x(t) = Dph(πx(t)) with πx(0) = x. Suppose that ‖πx(t)‖H1

0
≤

C1 if t ≤ T1. Given C2 > C1, we show that there exists T2 > 0 such
that the solution can be uniquely extended to πx : [0, T1 + T2] → H1

0

with ‖πx(t)‖H1
0
≤ C2 if t ≤ T1 + T2. To see this, consider the ordinary
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differential equation d
dtφ(t) = Dph(φ(t)) with φ(0) = πx(T1). Note that

‖φ(0)‖H1
0
= ‖πx(T1)‖H1

0
≤ C1 < C2 by assumption. Also, let N > 0 be

such that
sup

x∈B
H1

0
(0,M2)

‖Dph(x)‖H1
0
≤ N. (A.22)

Now, by the Picard-Lindelöf theorem on Banach spaces, if one takes
T2 = (C2 − C1)/N then the solution φ exists on [0, T2] and φ(t) ∈
BH1

0
(πx(T1), C2 − C1). Consider the extension πx(t) given by

πx(t) =

{
πx(t) if t ≤ T1

φ(t− T1) if T1 ≤ t ≤ T1 + T2.
(A.23)

The newly defined πx is well-defined and continuous. Since

d

dt
πx(t) =

d

dt
φ(t− T1) = Dph(φ(t− T1)) = Dph(πx(t)) (A.24)

if t ∈ [T1, T1 + T2], the new πx is an extension of the solution. Further-
more, clearly πx(t) ∈ BH1

0
(0, C2) for t ∈ [0, T1 + T2]. The uniqueness

of the extended solution follows from the fact that Dph is Lipschitz on
BH1

0
(0, C2).

Step 3. Since ‖x‖H1
0

≤ R, by Picard’s theorem there exists a local solution

πx(t) : [0, T1] → H0
1 and ‖πx(t)‖H1

0
≤ C1. Step 2 guarantees that the

solution can be uniquely extended to [0, T1+T2]. Step 1 then implies that
such extended solution πx satisfies ‖πx(t)‖H1

0
≤ C1 for all t ∈ [0, T1+T2].

By Step 2 again, the extended solution πx can be extended again to the
larger time interval [0, T1+2T2] and, once again, by Step 1 the extended
solution is entirely contained in the H1

0 ball of radius C1. By iterating
this procedure, one sees that the unique solution πx can be extended to
all of R+ and ‖πx(t)‖H1

0
≤ C1 for all t ≥ 0.

Proof of Theorem 1. Since ph is a bounded functional and both Dph and D2ph
are bounded operators on L2, it is clear that

lim
t→∞

‖Dph(πx(t))‖L2 = 0 (A.25)

(see Lemma 7.4.4 in Jost, 2011). Furthermore, since ‖πx(t)‖H1
0
≤ C1 for all

t ≥ 0 and closed H1
0 balls are compact with respect to the L2 norm, there exist

{π(tk)}∞k=1 such that limk→∞ ‖πx(tk) − πx(∞)‖L2 → 0 for some πx(∞) ∈ L2.
By the continuity of Dph : L2 → L2, one also has that Dph(πx(∞)) = 0.

Recall that by assumption (H4), all the non-trivial critical points of ph are
isolated. Hence, for any non-trivial critical point of ph, one can find a L2 neigh-
borhood around it in which there are no other critical points of ph. Let δ1 > 0 be
the radius of such neighborhood around πx(∞). Suppose now that the sequence
{πx(t)}t≥0 does not converge to πx(∞) in the L2 sense. Then, there exists δ2 > 0
and a subsequence {πx(sk)}k≥1 such that ‖πx(∞)−πx(sk)‖L2 ≥ δ2 for all k ≥ 1.
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Without loss of generality, one can assume that ‖πx(tk)−πx(∞)‖L2 ≤ δ1/3 and
that tk < sk < tk+1 for all k. But then, by the continuity of the path πx, there
exists rk such that tk ≤ rk ≤ sk and ‖πx(∞) − πx(rk)‖L2 = min{δ1, δ2}/2 for
all k ≥ 1. Since ‖πx(rk)‖H1

0
≤ C1, {πx(rk)}k≥1 also has a subsequence which

converges with respect to the L2 norm as well. Without loss of generality assume
that πx(rk) → π̃x(∞) in L2 sense. By the continuity of Dph(x), π̃x(∞) is also a
critical point of ph. But then, ‖πx(∞)− π̃x(∞)‖L2 = min{δ1, δ2}/2 < δ1, which
is a contradiction. This establishes the uniqueness of πx(∞) and concludes the
proof.

Proof of Lemma 5. By assumption, Dph(x) = 2EP K ′
h(‖X − x‖2L2)(x−X) = 0

and EP K ′
h(‖X − x‖2L2) ≤ −EP Kh(‖X − x‖2L2) = −ph(x) < 0. Thus,

x =
EP K ′

h(‖X − x‖2L2)X

EP K ′
h(‖X − x‖2L2)

. (A.26)

Note that, by assumption (H2), EP K ′
h(‖X−x‖2L2) ≤ −EP Kh(‖X−x‖2L2) < 0.

Therefore, it suffices to show that EP K ′
h(‖X − x‖2L2)X ∈ H1

0 . We have

〈EP K ′
h(‖X − x‖2L2)X, v′〉L2 = EP K ′

h(‖X − x‖2L2)〈X, v′〉L2

= EP K ′
h(‖X − x‖2L2)〈−X ′, v〉L2 ≤ K2N1‖v‖L2 .

(A.27)

Thus, EP K ′
h(‖X − x‖2L2)X ∈ H1

0 by Lemma 2. For the second claim of the
Lemma, suppose that ‖X‖H1

0
≤ M P -almost surely. Then, any x which is a

non-trivial critical point of p(x) satisfies equation (A.26). As a result, for any
v ∈ C∞

c ([0, 1]),

〈x, v′〉L2 =
EPK

′
h(‖X − x‖2L2)〈X, v′〉L2

EPK ′
h(‖X − x‖2L2)

=
EP K ′

h(‖X − x‖2L2)〈−X ′, v〉L2

EP K ′
h(‖X − x‖2L2)

≤
EP K ′

h(‖X − x‖2L2)‖X‖H1
0
‖v‖L2

EP K ′
h(‖X − x‖2L2)

≤ M‖v‖L2 .

(A.28)

By Lemma 2, it follows that ‖x‖H1
0
≤ M and the proof is complete.

Proof of Lemma 6. In light of Proposition 2, for the first claim it suffices to
show that if x ∈ S, then Dph(x) ∈ S. Note that S is a closed subspace of L2.
As a result, there exists another subspace S⊥ ⊂ L2 which is the orthogonal
complement of S. Let g ∈ S⊥, so that 〈X, g〉L2 = 0 almost surely. Then,

〈Dph(x), g〉L2 = 2EP K ′
h(‖X − x‖2L2)〈x−X, g〉L2 = 0, (A.29)

and thus Dph(x) ∈ S. The second claim is established in a similar way as in
Lemma 5.



Nonparametric clustering of functional data using pseudo-densities 2959

Proof of Lemma 7. By Lemma 6, if x∗ is a non-trivial critical point then x∗ ∈ S.
If one views D2ph(x

∗) as a linear operator from L2 to L2, it is sufficient to show
that D2ph(x

∗) is an isomorphism (i.e. a continuous map from L2 to L2 such
that its inverse is also continuous). Note first that for any v ∈ L2

D2ph(x
∗)(v) = EP

[
4K ′′

h(‖X − x∗‖2L2)〈x∗ −X, v〉L2(x∗ −X)

+2K ′
h(‖X − x∗‖2L2)v

]
.

(A.30)

Observe that

1. If v ∈ S, then D2ph(x
∗)(v) ∈ S. One can use a similar computation as in

equation (4.2) to show that D2ph(x
∗)(v) = D2p̃h(x̃

∗)(ṽ), where ṽ is the
vector in Rd corresponding to v.

2. Suppose v ∈ S⊥. Since 〈x∗ − X, v〉L2 = 0 a.s., D2ph(x
∗)(v) ∈ S⊥. More

specifically,
D2ph(x

∗)(v) = 2EP K ′
h(‖X − x∗‖2L2)v. (A.31)

Thus, S and S⊥ are invariant subspaces of D2ph(x
∗). In order to see that

D2ph(x
∗) is indeed an isomorphism, it is therefore enough to show that it is

isomorphism on both S and S⊥ separately. Under assumption (H4’), p is a
Morse density on Sc and there exists h > 0 small enough so that ph is also a
Morse function on the interior of Sc (see Remark 1). Then, x∗ is in Sc by Propo-
sition 1 and since D2ph(x

∗) is equivalent to ∇2p̃h(x̃
∗) (the Hessian of p̃h at x̃∗),

for h small enough D2ph(x
∗) is an isomorphism on S. Since x∗ is a non-trivial

critical point of ph, ph(x
∗) = δ > 0. By (H2), EP K ′

h(‖X − x∗‖L2)) ≤ −δ < 0.
According to equation (A.31), D2ph(x

∗) acts on S⊥ by multiplying every vector
in S⊥ by 2EP K ′

h(‖X − x∗‖L2) and hence D2ph(x
∗) is clearly an isomorphism

on S⊥.

Proof of Lemma 9. Denote T = −D2f(x∗) for simplicity. Then, T is a positive
definite isomorphism on L2. Thus, there exists C > 0 such that ‖T−1‖ ≤ C
where ‖ · ‖ here denotes the operator norm. Also, it is straightforward to check
that T induces a well-defined inner product 〈·, ·〉T on L2 by 〈v, w〉T = 〈Tv,w〉L2 .
Now, for any v ∈ L2 we have

‖v‖2L2 = 〈v, v〉L2 = 〈T (T−1v), v〉L2 = 〈T−1v, Tv〉L2 = 〈T−1v, v〉T
≤ ‖T−1v‖T ‖v‖T = ‖v‖T

√
〈T−1v, T−1v〉T

= ‖v‖T
√
〈T (T−1v), T−1v〉L2 ≤ ‖v‖T

√
‖T−1v‖L2‖v‖L2

= ‖v‖T
√
C‖v‖L2 .

(A.32)

This implies that ‖v‖2L2 ≤ C‖v‖2T , and thus

sup
‖v‖L2=1

Df2(x∗)(v, v) = sup
‖v‖L2=1

−T (v, v)

= sup
‖v‖L2=1

−‖v‖2T ≤ −1/C.
(A.33)

Therefore, by taking δ = 1/C the claim of the Lemma follows.
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Proof of Lemma 10. Let δ = δ(x∗
2). The proof is in three steps.

Step 1. Suppose that η1 ≤ δ2/8β3. Then, if ε = δ/2β3, the solution of the
initial value problem π′

1(t) = Df1(π1(t)), with π1(0) = x∗
2 is con-

tained in BL2(x∗
2, ε). In fact, suppose that the trajectory π1 is not con-

tained in BL2(x∗
2, ε). Since π1(0) = x∗

2, there must exist t0 > 0 such
‖π1(t0)−x∗

2‖ = ε. Denote π(t0) = x0. Then since Df2(x
∗
2) = 0, a Taylor

expansion implies that

f1(x0) ≤ f1(x
∗
2) + 〈Df1(x

∗
2), x0 − x∗

2〉L2

+
1

2
D2f1(x

∗
2)(x0 − x∗

2, x0 − x∗
2)

+
1

6
β3‖x0 − x∗

2‖3L2

≤ f1(x
∗
2) + 〈Df2(x

∗
2), x0 − x∗

2〉L2

+ ‖Df1(x
∗
2)−Df2(x

∗
2)‖L2‖x0 − x∗

2‖L2

+
1

2
D2f2(x

∗
2)(x0 − x∗

2, x0 − x∗
2)

+
1

2
‖D2f1(x

∗
2)−D2f2(x

∗
2)‖L2‖x0 − x∗

2‖2L2

+
1

6
β3‖x0 − x∗

2‖3L2

≤ f1(x
∗
2) + η1ε−

1

2
δε2 +

1

2
η2ε

2 +
1

6
β3ε

3

≤ f1(x
∗
2) +

1

4
δε2 − 1

2
δε2 +

1

16
δε2 +

1

12
δε2

< f1(x
∗
2),

(A.34)

which is a contradiction because f1(π1(t)) is an non-decreasing function
of t.

Step 2. By condition (C2), π1 admits a convergent subsequence in L2. Thus
there is a subsequence {tk}∞k=1 and a critical point x∗

1 such that ‖π1(tk)−
x∗
1‖L2 → 0 as k → ∞ and x∗

1 ∈ BL2(x∗
2, ε). In order to show that x∗

1 is a
non-degenerate local maximum in BL2(x∗

2, ε), consider η2 ≤ δ/8. Given
any ‖u‖L2 = 1, for any x ∈ BL2(x∗

2, ε) one has

D2f1(x)(u, u)

≤ D2f1(x
∗
2)(u, u) + |D2f1(x

∗
2)(u, u)−D2f1(x)(u, u)|

≤ D2f2(x
∗
2)(u, u) + |D2f2(x

∗
2)(u, u)−D2f1(x

∗
2)(u, u)|

+ β3‖x∗
2 − x‖L2

≤ −δ + η2 + β3ε = −3

8
δ.

(A.35)

Therefore sup‖u‖L2=1 D
2f1(x)(u, u) ≤ −3δ/8 and Df1(x

∗
1) is negative

definite. If one views −Df1(x
∗
1) as a linear operator from L2 to L2,



Nonparametric clustering of functional data using pseudo-densities 2961

then by the Lax-Milgram theorem, it is an isomorphism and hence x∗
1

is a non-degenerate local maximum. Moreover, x∗
1 is the unique max-

imum in BL2(x∗
2, ε): suppose that y∗1 is another local maximum of f1

in BL2(x∗
2, ε); then, Df1(x

∗
1) = 0 and Df1(y

∗
1) = 0, and by equation

(A.35), sup‖u‖L2=1 D
2f1(y

∗
1)(u, u) ≤ −3δ/8. A Taylor expansion shows

that

f1(x
∗
1) ≤ f1(y

∗
1) +

1

2
D2f1(y

∗
1)(x

∗
1 − y∗1 , x

∗
1 − y∗1)

+
1

6
β3‖x∗

1 − y∗1‖3

≤ f1(y
∗
1)−

3

16
δ‖x∗

1 − y∗1‖2 +
1

6
εβ3‖x∗

1 − y∗1‖2

≤ f1(y
∗
1)−

5

48
δ‖x∗

1 − y∗1‖2

(A.36)

and by symmetry, f1(y
∗
1) ≤ f1(x

∗
1)− 5

48δ‖x∗
1 − y∗1‖2, which is a contra-

diction unless y∗1 = x∗
1.

Step 3. Now it is only left to show that ‖x∗
1 − x∗

2‖L2 ≤ Cη1. Since Df1(x) is
a twice continuously differentiable function, a Taylor expansion around
x∗
2 allows us to write

〈Df1(x
∗
2), ·〉L2 = 〈Df1(x

∗
1), ·〉L2 +D2f1(x

∗
1)(x

∗
2 − x∗

1, ·)

+

∫ 1

0

1

2
D3f1(x

∗
1 + s(x∗

2 − x∗
1))(x

∗
2 − x∗

1, x
∗
2 − x∗

1, ·) ds.
(A.37)

Note that one can replace Df1(x
∗
1) by Df2(x

∗
2) as both of them are 0.

Apply this identity to x∗
2 − x∗

1, then

〈Df1(x
∗
2)−Df1(x

∗
2), x

∗
2 − x∗

1〉L2

≤ D2f1(x
∗
1)(x

∗
2 − x∗

1, x
∗
2 − x∗

1) +
1

2
β3‖x∗

1 − x∗
2‖3L2

≤ −3

8
δ‖x∗

1 − x∗
2‖2 +

1

4
δ‖x∗

1 − x∗
2‖2

≤ −1

8
δ‖x∗

1 − x∗
2‖2.

(A.38)

This is equivalent to

‖x∗
1 − x∗

2‖2 ≤ 8

δ
‖Df1(x

∗
2)−Df2(x

∗
2)‖‖x∗

1 − x∗
2‖. (A.39)

Taking C = 8 completes the step.

Proof of Proposition 4. First of all note that since P (‖X‖H1
0
≤ M) = 1, lemma

5 ensures that all the non trivial critical points of f1(x) = ph(x) and f2(x) =
p̂h(x) are contained in BH1

0
(0,M). Let

η1 = sup
x∈B

H1
0
(0,M)

‖Dp̂h(x)−Dph(x)‖L2 (A.40)
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and

η2 = sup
x∈B

H1
0
(0,M)

‖D2p̂h(x)−D2ph(x)‖. (A.41)

Consider the events A = {η1 ≤ C1(α)} and B = {η2 ≤ C2(α)} where C1(α)
and C2(α) are defined in Display 1. We can then use the uniform exponential
inequalities on the first and second derivatives of Lemma 13 and Lemma 15 of
p̂h to ensure P ((A ∩ B)c) = P (Ac + Bc) ≤ P (Ac) + P (Bc) ≤ α for n large
enough (which will be justified later in the proof). For now, under the event
A ∩ B, for each point x̂∗ marked by the algorithm of Display 1, i.e, x̂∗ ∈ R̂ we
have

δ2 ≥ 8β3C1(α) ≥ 8β3η1 (A.42)

and

δ ≥ 8C2(α) ≥ 8η2, (A.43)

hence the assumptions of Lemma 10 are satisfied. Furthermore, Lemma 10 en-
sures that the ball BL2(x̂∗, δ(x̂∗)/(2β3)) contains a unique non-degenerate local
mode x∗ of ph and that ‖x̂∗ − x∗‖L2 ≤ 8η1/δ(x̂

∗) ≤ 8C1(α)/δ(x̂
∗) under the

event A ∩B.

To justify P (Ac) = P (η1 ≥ C1(α)) ≤ α/2, consider the inequality of Lemma
13. We have

P

⎛
⎝ sup

x∈B
H1

0
(0,M)

‖Dp̂h(x)−Dph(x)‖L2 ≥ ε

⎞
⎠

≤ C exp

(
− 4nε2

25K2
1

+
10MK2

ε

)
.

(A.44)

Let a = 4/(25K2
1 ), b = 10MK2, d = log

(
α
2C

)
< 0. Take

ε =

(
b

a

) 1
3

n− 1
3 +

(
−d

a

) 1
2

n− 1
2 . (A.45)

Then,

− 4nε2

25K2
1

+
10MK2

ε

= −anε2 +
b

ε
≤ −an

((
b

a

) 1
3

n
1
3 +

(
−d

a

) 1
2

n
1
2

)2

+
b(

b
a

) 1
3 n− 1

3

≤ −an

((
b

a

) 2
3

n− 2
3 +

−d

a
n−1

)
+ a

1
3 b

2
3n

1
3

= −a
1
3 b

2
3n

1
3 + d+ a

1
3 b

2
3n

1
3 = d = log

( α

2C

)
.

(A.46)
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With this particular choice of ε = C1(α) it then follows that

P

⎛
⎝ sup

x∈B
H1

0
(0,M)

‖Dp̂h(x)−Dph(x)‖L2 ≥ ε

⎞
⎠

≤ Ced = C
α

2C
= α/2.

(A.47)

An almost identical argument is used to justify P (B) = P (η2 ≥ C2(α)) ≤
α/2.

Proof of Proposition 5. Taking f1(x) = p̂h(x) and f2(x) = ph(x), the goal is to
apply Lemma 10 for all non-trivial critical points of ph. It is worth to mention
that, under the given assumption, R is a finite set and R ⊂ BH1

0
(0,M). As a

result, there exists a γ such that

− γ := sup
x∗∈C

sup
‖u‖L2=1

D2ph(x
∗)(u, u) < 0. (A.48)

According to Lemmas 13 and 15, for l = 1, 2 there exist constants 0 < Hl < ∞
and 0 < hl < ∞ depending only on K1, K2 and K3 and M such that

P

⎛
⎝ sup

x∈B
H1

0
(0,M)

‖Dlp̂h(x)−Dlph(x)‖ ≥ Hl

n1/3

⎞
⎠ ≤ C exp

(
−hln

1/3
)
. (A.49)

Let ηl, l = 1, 2 be defined as in (C3). Let Fn := {η1 ≤ H1

n1/3 } ∩ {η2 ≤ H2

n1/3 }.
Then, P (Fn) → 1. The rest of the argument follows by assuming that Fn holds.

Suppose that, for large n, H1n
−1/3 ≤ γ2/(8β3) and H2n

−1/3 ≤ γ/8. Then,
for all x∗ ∈ R, one has

η1 ≤ H1n
−1/3 ≤ γ2/(8β3) ≤ δ(x∗)2/(8β3)

η2 ≤ H2n
−1/3 ≤ γ/8 ≤ δ(x∗)/8,

(A.50)

where as before

− δ(x∗) := sup
‖u‖L2=1

D2ph(x
∗)(u, u) < 0. (A.51)

One can apply Lemma 10 to all x∗ to conclude that there exists a x̂∗ such that

1. x̂∗ is the unique local maximum of p̂h in BL2(x∗, δ(x∗)/(2β3));
2. δ(x̂∗) := − sup‖u‖L2=1 D

2p̂h(x̂
∗)(u, u) ≥ 3δ(x∗)/8 ≥ 3γ/8;

3. ‖x∗ − x̂∗‖L2 ≤ 8η1/δ(x
∗).

The following three steps complete the proof.

step 1. In this step, one shows that x̂∗ ∈ R̂. According to item 2. in the first
paragraph, −δ(x̂∗) := sup‖u‖L2=1 D

2p̂h(x̂
∗)(u, u) ≤ −3γ/8. Thus,

− sup
‖u‖L2=1

D2p̂h(x̂
∗)(u, u) ≥ 3γ/8 ≥ max{

√
8β3C1(α), 8C2(α)} (A.52)

because both C1(α) and C2(α) are of order O(n−1/3).
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step 2. One shows that Φ(x̂∗) = x∗, where Φ is defined in equation (5.6). Then,
according to equation (5.6), it suffices to show that

x∗ ∈ BL2(x̂∗, δ(x̂∗)/(2β3)) ∩B(x̂∗, log(n)C1(α)/δ(x̂
∗)). (A.53)

From item 3. in the first paragraph, ‖x̂∗ − x∗‖ ≤ 8η1/δ(x
∗). Thus it

suffices to show that

B(x̂∗, 8η1/δ(x
∗)) ⊂

BL2(x̂∗, δ(x̂∗)/(2β3)) ∩B(x̂∗, log(n)C1(α)/δ(x̂
∗)).

(A.54)

This is equivalent to

8η1/δ(x
∗) ≤ δ(x̂∗)/(2β3) and 8η1/δ(x

∗) ≤ log(n)C1(α)/δ(x̂
∗). (A.55)

The first inequality of (A.55) is clear because

δ(x̂∗) ≥ 3γ/8 and 8η1/δ(x
∗) ≤ 8H1n

−1/3/γ = O(n−1/3). (A.56)

The second one holds for large n because

8η1/δ(x
∗) ≤ 8H1n

−1/3/γ (A.57)

while

log(n)C1(α)/δ(x̂
∗)

≥ log(n)C1(α)/β2 = C(α,K1,K2,K3,M)n−1/3 log(n).
(A.58)

step 3. To complete the argument, it suffices to show that if Φ(ŷ∗) = x∗ for
some ŷ∗ ∈ R̂, then ŷ∗ = x̂∗. Since ŷ∗ ∈ R̂, by the algorithm of Display
1,

δ(ŷ∗) ≥ max{
√
8β3C1(α), 8C2(α)}. (A.59)

Thus, δ(ŷ∗) ≥ c(α,M,K1,K2,K3)n
−1/6 for some c(α,MK1,K2,K3) >

0 independent of n. As a result, since Φ(ŷ∗) = x∗,

‖x∗ − ŷ∗‖L2 ≤ log(n)C1(α)/δ(ŷ
∗) = O(log(n)n−1/6). (A.60)

Then, for large n

‖ŷ∗ − x∗‖L2 ≤ γ/(2β3) ≤ δ(x∗)/(2β3) (A.61)

and therefore ŷ∗ ∈ B(x∗, δ(x∗)/(2β3)). According to item 1. in the first
paragraph, x̂∗ is the unique local maximum of p̂h in B(x∗, δ(x∗)/(2β3)).
It thus follows that ŷ∗ = x̂∗.
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Proof of Lemma 11. We discuss the case l = 1. Only the constants differ in the
remaining cases. For any x ∈ L2

‖Dp̂h(x)−Dp̃h(x)‖

≤ 2

n

n∑
i=1

∥∥∥K ′
h(‖Xi − x‖2)L2(x−Xi)−K ′

h(‖X̃i − x‖L2)(x− X̃i)
∥∥∥

≤ 2

n

n∑
i=1

K2‖Xi − x− (X̃i − x)‖

=
2

n

n∑
i=1

K2‖Xi − X̃i‖

(A.62)

Thus,

E

(
sup
x∈L2

‖Dp̂h(x)−Dp̃h(x)‖
∣∣X1, . . . , Xn

)
≤ 2K2φ(m), (A.63)

where φ(m) does not depend on Xi. Therefore, this implies

E

(
sup
x∈L2

‖Dp̂h(x)−Dp̃h(x)‖
)

≤ 2K2φ(m). (A.64)

As a result,

P

(
sup
x∈L2

‖Dp̂h(x)−Dp̃h(x)‖ ≥ ε

)
≤ 2K2φ(m)

ε
. (A.65)

Proof of Corollary 1. The argument for the first part is almost the same as the
one in Proposition 4, except that in this case one makes use of the fact that

P

(
sup

x∈BH1 (0,M)

‖Dph(x)−Dp̃h(x)‖ ≥ C̃1(α)

)

≤P

(
sup

x∈BH1 (0,M)

‖Dph(x)−Dp̂h(x)‖ ≥ C1(α/2)

)

+P

(
sup

x∈BH1 (0,M)

‖Dp̂h(x)−Dp̃h(x)‖ ≥ 8K2φ(m)

α

)

≤α/4 + α/4 = α/2,

(A.66)

and that

P

(
sup

x∈BH1 (0,M)

‖D2ph(x)−D2p̃h(x)‖ ≥ C̃2(α)

)
≤ α/2. (A.67)
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The argument for the second part is the same as the one in Proposition 5, except
that equation (A.49) becomes

P

⎛
⎝ sup

x∈B
H1

0
(0,M)

‖Dlp̃h(x)−Dlph(x)‖ ≥ Hl

n1/3
+
√
φ(m)

⎞
⎠

≤P

⎛
⎝ sup

x∈B
H1

0
(0,M)

‖Dlp̃h(x)−Dlp̂h(x)‖ ≥
√

φ(m)

⎞
⎠

+P

⎛
⎝ sup

x∈B
H1

0
(0,M)

‖Dlph(x)−Dlp̂h(x)‖ ≥ Hl

n1/3

⎞
⎠

≤C
(
exp(−hln

1/3) +
√

φ(m)
)
.

(A.68)

Appendix B: Additional results

Lemma 12. Under the assumptions (H1), (H2), and (H3),

P

⎛
⎝ sup

x∈B
H1

0
(0,M)

|p̂h(x)− ph(x)| ≥ ε

⎞
⎠

≤ C exp

(
−32nε2

25K2
0

+
10MK1

ε

) (B.1)

for ε sufficiently small.

Proof. By Chapter 7 of Shiryayev (1993), the covering number Nε of the ball
BH1

0
(0,M) satisfies Nε ≤ C exp

(
M
ε

)
. Let ε′ = ε/(10K1). For a fixed radius M ,

pick {xk}Nε′
k=1 such that if x ∈ BH1

0
(0,M) then there exists ‖xk−x‖L2 ≤ ε′. Note

that for any fixed x ∈ BH1
0
(0,M),

|p̂h(x)− p̂h(xk)| =
∣∣∣∣∣ 1n

n∑
i=1

Kh(‖x−Xi‖2L2)−Kh(‖xk −Xi‖2L2)

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣Kh(‖x−Xi‖2L2)−Kh(‖xk −Xi‖2L2)
∣∣

≤ 1

n

n∑
i=1

K1‖x− xk‖L2 =
ε

10
.

(B.2)

Thus, |ph(x)− ph(xk)| ≤ EP |p̂h(x)− p̂h(xk)| ≤ ε
10 . Since for any x,

|p̂h(x)− ph(x)|
≤ |p̂h(x)− p̂h(xk)|+ |p̂h(xk)− ph(xk)|+ |ph(xk)− ph(x)|

≤ |p̂h(xk)− ph(xk)|+
ε

5
,

(B.3)
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it follows that

P

⎛
⎝ sup

x∈B
H1

0
(0,M)

|p̂h(x)− ph(x)| ≥ ε

⎞
⎠

≤ P

(
sup

1≤k≤Nε′
|p̂h(xk)− ph(xk)| ≥

4ε

5

)

≤ Nε′P

(
|p̂h(x1)− ph(x1)| ≥

4ε

5

)

≤ C exp

(
10MK1

ε

)
exp

(
−32nε2

25K2
0

)
,

(B.4)

where the last step uses Hoeffding’s inequality.

Lemma 13. Under the same assumptions of the last Lemma, for ε sufficiently
small,

P

⎛
⎝ sup

x∈B
H1

0
(0,M)

‖Dp̂h(x)−Dph(x)‖L2 ≥ ε

⎞
⎠

≤ C exp

(
− 4nε2

25K2
1

+
10MK2

ε

)
.

(B.5)

Proof. The proof is very similar to that of the previous Lemma. Notice first that∥∥K ′
h(‖x−Xi‖2L2)(x−Xi)−K ′

h(‖xk −Xi‖2L2)(xk −Xi)
∥∥
L2

≤ K2‖x− xk‖L2 .
(B.6)

By taking ε′ = ε/(10K2) and using the same argument of the previous Lemma,
we have

P

⎛
⎝ sup

x∈B
H1

0
(0,M)

‖Dp̂h(x)−Dph(x)‖L2 ≥ ε

⎞
⎠

≤ Nε′P

(
‖Dp̂h(x1)−Dph(x1)‖L2 ≥ 4ε

5

)
.

(B.7)

In oder to proceed, we need an Hoeffding-type inequality for Hilbert spaces.
Specifically, using Lemma 1, one has

Dph(x1) =
2

n

n∑
i=1

EPK
′
h(‖Xi − x1‖2L2)(x1 −Xi). (B.8)

Now, if one denotes Zi as

Zi = 2K ′
h(‖Xi − x1‖2L2)(x1 −Xi)− 2EPK

′
h(‖Xi − x1‖2L2)(x1 −Xi), (B.9)

then

Dp̂h(x1)−Dph(x1) =
1

n

n∑
i=1

Zi. (B.10)



2968 M. Ciollaro et al.

Thus, EPZi = 0 as a L2 function and ‖Zi‖L2 ≤ 4K1.
Finally, by using the exponential inequality of the Corollary of Lemma 4.3 in

Yurinskĭı (1976),

P

(∥∥∥∥∥ 1n
n∑

i=1

Zi

∥∥∥∥∥
L2

≥ 4ε

5

)
≤ 2 exp

{
−16nε2

50K2
1

(
1 +

1.62ε
1
5K1

)−1
}

(B.11)

and for ε sufficient small that
(
1 + 1.62ε

K1/5

)
≤ 2, one gets the desired result.

Next we derive a similar result for the second derivative. Obtaining such a
result is a little more difficult because the operator norm of a linear operator de-
fined on a Hilbert space does not induce a Hilbert space structure. The following
discussion and intermediate results are useful to circumvent this problem.

Definition 3. Let A : L2 → L2 be a linear operator. A is said to be a Hilbert-
Schmidt operator on L2 if

‖A‖2HS :=
∞∑
i=1

‖Aei‖2L2 < ∞ (B.12)

where {ei}∞i=1 is an orthonormal basis of L2.

Remark 10. The above definition is independent of the choice of the orthonormal
basis. Furthermore, Hilbert-Schmidt operators form a Hilbert space with the
following inner product: for two Hilbert-Schmidt operators A and B, the Hilbert-
Schmidt inner product between A and B is defined as

〈A,B〉HS =

∞∑
i=1

〈Aei, Bei〉L2 (B.13)

where {e1}∞i=1 is any orthonormal basis of L2. Recall that the operator norm of
bilinear operator A is defined as

‖A‖ = sup
{v : ‖v‖L2=1}

‖A(v)‖L2 (B.14)

A standard result guarantees that ‖A‖ ≤ ‖A‖HS .

Lemma 14. Let

B(·, ·) = 4K ′′
h(‖X − x‖2L2)〈x−X, ·〉L2〈x−X, ·〉L2 . (B.15)

Then ‖B‖HS ≤ 4K2 P -almost surely.

Proof. Let Y = 2
√
K ′′

h(‖X − x‖2L2)(x − X), hence Y ∈ L2. It is easily seen

that ‖Y ‖L2 ≤ 2
√
K2 P -almost surely by (H1). Consider B̄(v) = 〈Y, v〉L2 and

let {ei}∞i=1 be an orthonormal basis. We can write Y =
∑∞

i=1 yiei, where yi
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are random coefficients. Therefore, ‖Y ‖2L2 =
∑∞

i=1 y
2
i ≤ 4K2 P -almost surely.

Finally, B : L2 → L2 can be expressed as B(v) = B̄(v)Y and

‖B‖2HS =

∞∑
i=1

‖B̄(ei)Y ‖2L2 =

∞∑
i=1

‖〈Y, ei〉L2Y ‖2L2 =

∞∑
i=1

‖yiY ‖2L2

= ‖Y ‖2L2

∞∑
i=1

y2i = ‖Y ‖4L2 .

(B.16)

This complete the proof.

Lemma 15. Under the same assumption of Lemma 12, for ε small enough so

that
(
1 + 1.62ε

K1/5

)
≤ 2, we have

P

⎛
⎝ sup

x∈B
H1

0
(0,M)

‖D2p̂h(x)−D2ph(x)‖ ≥ ε

⎞
⎠

≤ C exp

(
− nε2

25K2
2

+
10MK3

ε

)
.

(B.17)

Proof. If ε′ is taken to be ε/(10K3), one has

P

⎛
⎝ sup

x∈B
H1

0
(0,M)

‖D2p̂h(x)−D2ph(x)‖ ≥ ε

⎞
⎠

≤ Nε′P

(
‖D2p̂h(x1)−D2ph(x1)‖ ≥ 4ε

5

)
.

(B.18)

Let
Bi(·, ·) = 4K ′′

h(‖Xi − x‖2L2)〈x−Xi, ·〉L2〈x−Xi, ·〉L2 (B.19)

and
Ci(·, ·) = 2K ′

h(‖Xi − x‖2L2)〈·, ·〉L2 . (B.20)

For any bilinear operator T (v, w) = t〈v, w〉, where t ∈ R, then ‖T‖ = |t|. Thus,

‖D2p̂h(x)−D2ph(x)‖

=

∥∥∥∥∥ 1n
n∑

i=1

(Bi − EP (Bi)) +
1

n

n∑
i=1

(Ci − EP (Ci))

∥∥∥∥∥
≤
∥∥∥∥∥ 1n

n∑
i=1

(Bi − EP (Bi))

∥∥∥∥∥+
∥∥∥∥∥ 1n

n∑
i=1

(Ci − EP (Ci))

∥∥∥∥∥
≤
∥∥∥∥∥ 1n

n∑
i=1

(Bi − EP (Bi))

∥∥∥∥∥
+ 2

∣∣∣∣∣ 1n
n∑

i=1

K ′
h(‖x−Xi‖2L2)− EPK

′
h(‖x−X‖2L2)

∣∣∣∣∣ .

(B.21)
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As a result,

P

(
‖D2p̂h(x1)− ph(x1)‖ ≥ 4ε

5

)

≤ P

(∥∥∥∥∥
n∑

i=1

1

n
(Bi − Ep(Bi))

∥∥∥∥∥ ≥ 2ε

5

)

+ P

(
2

∣∣∣∣∣ 1n
n∑

i=1

K ′
h(‖x−Xi‖2L2)− EPK

′
h(‖x−X‖2L2)

∣∣∣∣∣ ≥ 2ε

5

)
.

(B.22)

Since |K ′
h(‖x−Xi‖2L2)| ≤ K2, Hoeffding’s inequality implies

P

(∣∣∣∣∣ 1n
n∑

i=1

K ′
h(‖x−Xi‖2L2)− EPK

′
h(‖x−X‖2L2)

∣∣∣∣∣ ≥ 2ε

5

)

≤ 2 exp

(
− 8nε2

25K2
2

)
.

(B.23)

In order to apply the Corollary of Lemma 4.3 in Yurinskĭı (1976) on the Hilbert-
Schmidt operator norm, it suffices to check that Bi − EP (Bi) has bounded
Hilbert-Schmidt norm. Lemma 14 guarantees that

‖Bi − EP (Bi)‖HS ≤ 8K2 (B.24)

almost surely. Therefore, since ‖A‖ ≤ ‖A‖HS for any bilinear operator A, with
small enough ε, then

P

(∥∥∥∥∥
n∑

i=1

1

n
(Bi − Ep(Bi))

∥∥∥∥∥ ≥ 2ε

5

)

≤ P

(∥∥∥∥∥
n∑

i=1

1

n
(Bi − Ep(Bi))

∥∥∥∥∥
HS

≥ 2ε

5

)

≤ 2 exp

(
− 4nε2

50K2
2

(
1 +

1.62ε
1
5K1

)−1
)

≤ 2 exp

(
− nε2

25K2
2

)
.

(B.25)
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