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Abstract: In many real-world classification problems, the labels of train-
ing examples are randomly corrupted. Most previous theoretical work on
classification with label noise assumes that the two classes are separable,
that the label noise is independent of the true class label, or that the noise
proportions for each class are known. In this work, we give conditions that
are necessary and sufficient for the true class-conditional distributions to be
identifiable. These conditions are weaker than those analyzed previously,
and allow for the classes to be nonseparable and the noise levels to be
asymmetric and unknown. The conditions essentially state that a majority
of the observed labels are correct and that the true class-conditional distri-
butions are “mutually irreducible,” a concept we introduce that limits the
similarity of the two distributions. For any label noise problem, there is a
unique pair of true class-conditional distributions satisfying the proposed
conditions, and we argue that this pair corresponds in a certain sense to
maximal denoising of the observed distributions.
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Our results are facilitated by a connection to “mixture proportion es-
timation,” which is the problem of estimating the maximal proportion of
one distribution that is present in another. We establish a novel rate of
convergence result for mixture proportion estimation, and apply this to
obtain consistency of a discrimination rule based on surrogate loss mini-
mization. Experimental results on benchmark data and a nuclear particle
classification problem demonstrate the efficacy of our approach.
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Keywords and phrases: Classification, label noise, mixture proportion
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1. Introduction

In binary classification, one observes multiple realizations of two different classes,

X1
0 , . . . , X

m
0

iid∼ P0,

X1
1 , . . . , X

n
1

iid∼ P1,

where P0 and P1, the class-conditional distributions, are probability distribu-
tions on a Borel space (X ,S). The feature vector Xi

y ∈ X denotes the i-th
realization from class y ∈ {0, 1}. The general goal is to construct a classifier
from this data.

There are several kinds of noise that can affect a classification problem. A first
type of noise occurs when P0 and P1 have overlapping supports, meaning that
the label is not a deterministic function of the feature vector. In this situation,
even an optimal classifier makes mistakes. In this work, we consider a second
type of noise, label noise, that can occur in addition to the first type of noise.
With label noise, some of the labels of the training examples are corrupted. We
focus in particular on random label noise, as opposed to feature-dependent or
adversarial label noise.

To model label noise, we represent the training data via contamination mod-
els:

X1
0 , . . . , X

m
0

iid∼ P̃0 := (1− π0)P0 + π0P1, (1)

X1
1 , . . . , X

n
1

iid∼ P̃1 := (1− π1)P1 + π1P0. (2)

According to these mixture representations, each “apparent” class-conditional
distribution is in fact a contaminated version of the true class-conditional distri-
bution, where the contamination comes from the other class. Thus, P̃0 governs
the training data with apparent class label 0. A proportion 1− π0 of these ex-
amples have 0 as their true label, while the remaining π0 have a true label of 1.
Similar remarks apply to P̃1. The noise is asymmetric in that π0 need not equal
π1. We emphasize that π0 and π1 are unknown. The distributions P0 and P1 are
also unknown, and we do not wish to impose models for them. In particular,
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the supports of P0 and P1 may overlap, so that the classes are not separable.
Previous work on classification with random label noise, reviewed below, has
not considered the problem in this generality.

Our first contribution is to introduce necessary and sufficient conditions on
the elements P0, P1, π0, π1 of the contamination models such that these elements
are uniquely determined given P̃0 and P̃1. These conditions are the following:

• (Total noise level) π0 + π1 < 1,
• (Mutual irreducibility) It is not possible to write P0 as a nontrivial mixture

of P1 and some other distribution, and vice versa.

To shed some light on these conditions, we remark that in the absence of any
assumption, the solution (P0, P1, π0, π1) to (1)–(2), when the contaminated dis-
tributions P̃0, P̃1 are given (i.e., in the limit of infinite sample sizes, or population
version of the problem), is non-unique. For example, were the condition on total
label noise not required, for any solution, swapping the role of classes 0 and
1 would also be a solution (with complementary contamination probabilities),
while leaving the apparent labels unchanged.

Furthermore, we describe in detail (at the population level) the geometry
of the set of all possible solutions (P0, P1, π0, π1) to (1)–(2). We argue that for
any pair P̃0 �= P̃1, there always exists a unique solution satisfying the above
two conditions. Moreover, this solution uniquely corresponds to the maximum
possible total label noise level (π1 + π0) compatible with the observed contami-
nated distributions, and also to the maximum possible total variation separation
‖P1 − P0‖TV under the condition π1 + π0 < 1. In this sense, P0 and P1 satisfy-
ing the second condition are maximally denoised versions of the contaminated
distributions.

Our second contribution is to develop a discrimination rule that is universally
consistent in the sense that for any P̃0, P̃1, it consistently estimates the optimal
classification performance as defined with respect to the maximally denoised
distributions (which are the underlying uncontaminated distributions under the
above conditions). A key aspect of our contribution is that the label noise pro-
portions π0 and π1 are unknown, in contrast to previous work, and the linchpin
of our solution is a method for accurately estimating π0 and π1. We argue that
these proportions can be estimated using methods for mixture proportion esti-
mation (MPE), which is the problem of estimating the mixing proportion of one
distribution in another. We review previous work on MPE and also establish a
new rate of convergence result for MPE that is employed in our analysis.

As a third contribution, we present experimental results indicating that the
proposed methodology is practically viable. In particular, we show that π0 and
π1 can be accurately estimated using the same principles guiding our theory. To
illustrate this point, we examine some standard benchmark data sets as well as
a real data set from a nuclear particle classification problem that is naturally
described by our label noise model.

Portions of this work appeared earlier in Scott et al. [41] and Scott [40].
This longer version integrates those versions and extends them by establishing
the necessity of the proposed conditions, a consistency analysis featuring clip-
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pable losses, a connection to class probability estimation, and a more thorough
literature review.

1.1. Motivating application

This work is motivated by a nuclear particle classification problem that is criti-
cal for nuclear nonproliferation and nuclear safeguards. An organic scintillation
detector is a device commonly used to detect high-energy neutrons. When a par-
ticle interacts with the detector, the energy deposited by the particle is converted
to a pulse-shaped voltage waveform, which is then digitally sampled to obtain
a feature vector X ∈ R

d, where d is the number of digital samples. The energy
distribution of detected neutrons is characteristic of the nuclear source material,
and these energy distributions can be inferred from the heights of the observed
pulses. However, these detectors are also sensitive to gamma rays, which are
frequently emitted by the same fission events that produce neutrons, and which
are also strongly present in background radiation. Therefore, to render organic
scintillation detectors useful for characterization of nuclear materials, it is nec-
essary to classify between neutron and gamma-ray pulses, a problem referred to
as pulse shape discrimination (PSD) [1, 3].

Unfortunately, even in controlled laboratory settings, it is very difficult to
obtain pure samples of neutron and gamma-ray pulses. As previously mentioned,
the fission events that produce neutrons also yield gamma rays, and gamma
rays also arrive from background radiation. Although pure gamma-ray sources
do exist, when collecting measurements from such sources, neutrons from the
background cannot be completely eliminated. If we view gamma-rays as class 0,
by taking a strong and pure gamma-ray source, π0 will be small but nonzero.
On the other hand, the proportion of gamma-rays emitted during fission is
intrinsic to the source material, and cannot be changed. Thus π1 could be in
the neighborhood of one-half. With additional time-of-flight information, this
proportion can be reduced, but is still non-negligible [3]. Thus, PSD is naturally
described by the proposed label noise model. We study this problem empirically
in Section 11.

1.2. Label flipping model for label noise

Random label noise can also be modeled according to the label flipping proba-
bilities

μi := Pr(Ỹ = 1− i |Y = i).

In the label flipping model, a “clean” training data set is corrupted by flipping
the labels according to μ0 and μ1, independent of X. If we assume Y and Ỹ
are jointly distributed, then πi and μi are related via Bayes’ rule. The preferred
perspective for a given label noise problem, contamination or label flipping, is
application dependent. For example, the contamination model better suits the
nuclear particle classification problem described above. We also find it more
natural to discuss identifiability in terms of the contamination model.
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1.3. Related work

Classification in the presence of label noise has drawn the attention of numerous
researchers [17]. One common approach is to assume that corrupted labels are
more likely to be associated with outlying data points. This has inspired methods
to clean, correct, or reweight the training data [10, 34], as well as the use of
robust (usually nonconvex) losses [29, 45, 28, 16, 14]. The above approaches are
not necessarily based on a random label noise model, but rather assume that
noisy labels are more common near the decision boundary.

Generative models have also been applied in the context of random label
noise. These impose parametric models on the data-generating distributions,
and include the label noise as part of the model. The parameters are then
estimated using an EM algorithm [9]. The method of [23] employs kernels in
this approach, allowing for the modeling of more flexible distributions.

Negative results for convex risk minimization in the presence of label noise
have been established by Long and Servido [26] and Manwani and Sastry [27].
These works demonstrate a lack of noise tolerance for boosting and empirical
risk minimization based on convex losses, and suggest that any approach based
on convex risk minimization will require modification of the loss, such that
the risk minimizer is the optimal classifier with respect to the uncontaminated
distributions. Along these lines, Stempfel and Ralaivola [44], Natarajan et al. [32]
recently developed such algorithms based on convex losses. The works, however,
assume knowledge of the label noise proportions. In the sequel, we establish a
consistent discrimination rule that does not assume knowledge of π0 and π1; in
fact the main focus of the present work is on the estimation of those quantities.

Recently Yang et al. [46] established performance guarantees for multiple
kernel learning with noisy labels. This work does not assume label noise is inde-
pendent of the feature vector, but does require knowledge of the total amount
of label noise.

Classification with random label noise has also been studied in the PAC liter-
ature. Most PAC formulations assume that (i) P0 and P1 have non-overlapping
support (i.e., there is a deterministic “target concept” that provides the true la-
bels), (ii) the label noise is symmetric (i.e., independent of the true class label),
and (iii) the performance measure is the probability of error [4, 20, 5, 13, 11, 19].
Under these conditions, it typically suffices to train on the contaminated data;
only the sample complexity changes. The case of asymmetric label noise was ad-
dressed by Blum and Mitchell [8] under condition (i), as the basis of co-training.
Some new directions and a thorough review of this body of work were recently
presented in [18]. As we discuss in the next section, new challenges emerge when
conditions (i), (ii), and (iii) are not assumed.

To our knowledge, previous work under the asymmetric noise model has not
addressed a minimal set of conditions for either consistent classification or for
consistent estimation of the label noise proportions.

Classification with label noise is related to several other machine learning
problems. When π1 = 0, we have “one-sided” label noise, and the problem
reduces to learning from positive and unlabeled examples (LPUE), also known
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as semi-supervised novelty detection (SSND); see Blanchard et al. [7] for a review
of this literature. In particular, Blanchard et al. [7] develop theory for “mixture
proportion estimation” that we leverage in our analysis.

A basic version of multiple instance learning can be reduced to classification
with one-sided label noise [see 36]. In multiple instance learning, the learner
is presented with bags of instances. In one basic setting, the bags are labeled
negative if they contain only negative instances, and positive if they contain at
least one positive instance. If one assumes that the instances in positive bags
follow a mixture model P̃1 = (1−π)P1+πP0, and the instances are iid according
to P0 or P̃1, the setting is that of one-sided label noise.

As mentioned above, classification with label noise is the basis of co-training
[8], which is a framework for classifying instances that are represented by two
distinct “views.” The original analysis of co-training considers the “realizable”
case, where labels are a deterministic function of inputs. Our results allow us to
state a result for co-training without making this restrictive assumption. This
result is presented in Section 8.

There is also a connection between classification with label noise and class
probability estimation. As pointed out in our initial technical report [42], there
is a simple way to express mutual irreducibility in terms of the class probability
function. From this relationship, and given other developments in this paper, it
is straightforward to express π0 and π1 in terms of the maximum and minimum
values of the contaminated class probability function. This suggests an alter-
native estimation strategy for the label noise proportions, which has recently
been investigated by Liu and Tao [25] and Menon et al. [30]. In Section 9, we
elaborate on this approach and connections to these works. We also investigate
this approach experimentally in Section 11.

As a final connection with existing literature, we note that an alternative way
to view the contamination model (1)–(2) is to interpret it as a source separa-
tion problem. In the usual source separation setting, the realizations from the
different sources are linearly mixed, whereas in the present model, the source
probability distributions are (we do not observe a signal superposition, but a
signal coming randomly from one or the other source). As a common point with
the source separation setting, it is necessary to postulate additional constraints
on the sources in order to resolve non-uniqueness of the possible solutions. In
independent component analysis, for instance, sources are assumed to be inde-
pendent. Our assumption of mutual irreducibility between the sources plays a
conceptually comparable role here. Similarly, the assumption on the total noise
level resolves the ambiguity that the sources would otherwise only be identifiable
up to permutation.

1.4. Some initial notation

Let f : X → {0, 1} be a classifier. Denote the (uncontaminated) Type I and
Type II errors

R0(f) := P0(f(X) = 1)
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R1(f) := P1(f(X) = 0).

These quantities are what define many classification performance measures of
interest, such as the so-called minmax criterion, R(f) = max{R0(f), R1(f)}, or
the probability of error, R(f) = νR1(f) + (1− ν)R0(f), where ν is the a priori
probability of class 1.

We also define the corresponding contaminated Type I and II errors

R̃0(f) := P̃0(f(X) = 1)

= (1− π0)R0(f) + π0(1−R1(f)) (3)

R̃1(f) := P̃1(f(X) = 0)

= (1− π1)R1(f) + π1(1−R0(f)). (4)

These quantities can easily be estimated from the training data by their basic
empirical counterparts.

1.5. Outline

The remainder of the paper is outlined as follows. Section 2 discusses the chal-
lenges posed by label noise for classifier design. Section 3 presents an alternate
representation of the contamination models that reduces the problem to that of
mixture proportion estimation, which is discussed in Section 4. In Section 5 we
introduce our proposed identifiability conditions, establish their sufficiency and
necessity, and also discuss maximal denoising. A method for mixture proportion
estimation is discussed in Section 6, where a novel rate of convergence result is
presented and subsequently applied to develop a consistent discrimination rule
in Section 7. In Section 8, we apply our label noise results to generalize an ear-
lier result on co-training. Section 9 makes a connection between our label noise
framework and the problem of class probability estimation. Algorithm imple-
mentations are described in Section 10, and experimental results are provided
in Section 11. Shorter proofs tend to be found in the body of the paper, while
longer ones are in an appendix.

2. The challenge of label noise

Before delving into more technical matters, we first offer an overview of the
challenges posed by label noise. We focus on the population setting (n0, n1 =
∞) and compare classifier design based on the contaminated distributions, P̃0

and P̃1, versus the true ones, P0 and P1. To begin, we introduce the following
condition on the total amount of label noise.

(A) π0 + π1 < 1.

This condition states, in a certain sense, that a majority of the labels are correct
on average. It even allows that one of the proportions be very close to one if the
other proportion is small enough. This condition was previously adopted by [8].
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Let p0 and p1 be densities of P0 and P1, respectively, with respect to a
common dominating measure. Then

p̃0(x) := (1− π0)p0(x) + π0p1(x),

p̃1(x) := (1− π1)p1(x) + π1p0(x),

are respective densities of P̃0 and P̃1.

Proposition 1. Assume (A) holds. For all γ ≥ 0, and every x such that
p0(x) > 0 and p̃0(x) > 0,

p1(x)

p0(x)
> γ ⇐⇒ p̃1(x)

p̃0(x)
> λ,

where

λ =
π1 + γ(1− π1)

1− π0 + γπ0
. (5)

The proof involves a sequence of simple algebraic steps to transform one
likelihood ratio into the other, and the use of (A) to ensure that the direction
of the inequality is preserved.

For most performance measures of interest (probability of error, Neyman-
Pearson, etc.), it is well-known that the optimal classifier takes the form of a
likelihood ratio test (LRT) based on the true densities [24, 21]. According to the
proposition, every true LRT is identical to a contaminated LRT with a different
threshold. As the threshold of one LRT sweeps over its range, so too does the
threshold of the other LRT. Equivalently, both LRTs generate the same receiver
operating characteristic (ROC).

However, if we design a classifier with respect to the contaminated estimates
of performance, we will not obtain a classifier that is optimal with respect to
the true performance measure, except in very special circumstances. To make
this point concrete, we now consider four specific performance measures.

Probability of error. When the feature vector X and label Y are jointly
distributed, the probability of misclassification is minimized by a LRT, where
the threshold γ is given by the ratio of a priori class probabilities. If γ = 1, then
the corresponding threshold for the contaminated LRT is also 1, regardless of
π0 and π1, which follows directly from (5). Furthermore, assuming π0, π1 > 0
and with some simple algebra it is easy to show that λ = γ only if γ = 1. Thus,
treating the contaminated data as if it were clean is suboptimal whenever the a
priori class probabilities are unequal.

Neyman-Pearson. As noted above, the true and contaminated LRTs have
the same ROC. If a point on this ROC is chosen such that R̃0(f) = α, it
will generally not be the case that R0(f) = α. This follows because R̃0(f) =
(1−π0)R0(f)+π0R1(f). Simple algebra shows that R0(f) = R̃0(f) iff π0 = 0 or
R0(f) +R1(f) = 1. The latter condition is not satisfied by an optimal classifier
unless P0 = P1, since it corresponds to random guessing. The former case,
π0 = 0, means the negative class has no contamination, and is equivalent (after
swapping class labels) to learning from positive and unlabeled examples.
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Minmax. The minmax criterion is defined as R(f) := max{R0(f), R1(f)},
and the minmax classifier is the minimizer of this quantity. The minmax clas-
sifier corresponds to the point on the ROC of the true and contaminated LRTs
where R0(f) = R1(f). Indeed, if R0(f) �= R1(f), then max{R0(f), R1(f)} can
be decreased by moving along the ROC such that the larger of R0(f), R1(f) is
decreased. Thus, designing a classifier with respect to the contaminated distribu-
tions yields a point on the optimal ROC where R̃0(f) = R̃1(f). Using equations
(3) and (4), simple algebra reveals that R̃0(f) = R̃1(f) and R0(f) = R1(f) for
the same f iff π0 = π1 or R0(f) = R1(f) =

1
2 . The first condition is not satisfied

for asymmetric label noise, and the latter condition is not true for an optimal
classifier unless P0 = P1.

Balanced Error. Menon et al. [30] actually show that the balanced error,
given by 1

2 (R0(f) +R1(f)), is the only performance measure that is a function
of R0(f) and R1(f), such that optimizing the corrupted performance measure is
equivalent to optimizing the clean performance measure regardless of the label
noise proportions or prior class probabilities.

In summary, a classifier that is optimal with respect to a contaminated per-
formance measure is not optimal for the uncontaminated performance measure
except in special cases. Accurate estimation of the true performance measure is
thus a critical issue for classifier design. In the next section, we expose a tech-
nique for estimating performance using estimates of the label noise proportions.

3. Alternate contamination model

We introduce an alternate contamination model that will later be used to obtain
estimates of the label noise proportions, and consequently estimates of classifier
performance.

Lemma 2. If P0 �= P1 and (A) holds, then P̃1 �= P̃0, and there exist unique
0 ≤ π̃0, π̃1 < 1 such that

P̃0 = (1− π̃0)P0 + π̃0P̃1 (6)

P̃1 = (1− π̃1)P1 + π̃1P̃0. (7)

In particular π̃0 = π0

1−π1
< 1 and π̃1 = π1

1−π0
< 1.

Proof. To see that P̃1 �= P̃0, assume that equality holds. Plugging in (1)–(2), we
obtain

(1− π1 − π0)P1 = (1− π1 − π0)P0,

which, since P0 �= P1, would imply π1 + π0 = 1 and contradict (A).
We turn to identity (6). Matching distributions, the identity holds iff

P1(π0 − π̃0(1− π1)) = P0(1− π̃0 + π1π̃0 − (1− π0))

= P0(π0 − π̃0(1− π1)).

Since P0 �= P1, the unique solution is π̃0 = π0

1−π1
. From (A) it follows that

π̃0 < 1. Similar reasoning applies to the second identity.
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This lemma motivates estimates of the true Type I and Type II errors. For
any classifier f , we may express the contaminated Type I and Type II errors as

R̃0(f) = P̃0(f(X) = 1)

= (1− π̃0)R0(f) + π̃0(1− R̃1(f)) (8)

R̃1(f) = P̃1(f(X) = 0)

= (1− π̃1)R1(f) + π̃1(1− R̃0(f)), (9)

where Equations (8) and (9) follow from Lemma 2. By solving for R0(f) and
R1(f) in (8) and (9), we find

R0(f) =
R̃0(f)− π̃0(1− R̃1(f))

1− π̃0
= 1− R̃1(f)−

1− R̃0(f)− R̃1(f)

1− π̃0
(10)

R1(f) =
R̃1(f)− π̃1(1− R̃0(f))

1− π̃1
= 1− R̃0(f)−

1− R̃1(f)− R̃0(f)

1− π̃1
. (11)

We can estimate R̃0(f) and R̃1(f) from the training data. Therefore, if we can
estimate π̃0 and π̃1, then we can estimate R0(f) and R1(f), and thereby design
a classifier. This approach was analyzed in Scott et al. [41]. In Sec. 7 we describe
another approach to classifier design based on surrogate loss minimization that
also relies on estimates of π̃0 and π̃1. In the next section we describe a framework
that is used to estimate π̃0 and π̃1.

We conclude this section with a converse to Lemma 2:

Lemma 3. Assume that (6)–(7) hold and P̃1 �= P̃0. Then P1 �= P0 and there

exist unique π1, π0 ∈ [0, 1) (namely π0 = π̃0(1−π̃1)
1−π̃1π̃0

and π1 = π̃1(1−π̃0)
1−π̃1π̃0

) so that
(1)–(2) hold; furthermore, (A) is satisfied.

Proof. Assume (6)–(7) hold. Since we assume P̃1 �= P̃0, it holds that π̃1, π̃0 < 1.
To see that P0 �= P1, assume that equality holds. Plugging in (6)–(7) and after
straightforward manipulation, we obtain equivalently

1− π̃1π̃0

(1− π̃1)(1− π̃0)
P̃1 =

1− π̃1π̃0

(1− π̃1)(1− π̃0)
P̃0,

which would contradict the assumption P̃1 �= P̃0.
Next, in order for identity (1) to hold, by matching distributions in a similar

way as in the proof of Lemma 2, we arrive at the equivalent relation (π̃0(1 −
π1) − π0)P̃0 = (π̃0(1 − π1) − π0)P̃1. Since P̃1 �= P̃0, the unique solution is
π0 = π̃0(1−π1). Similarly, for (2) to hold the unique solution is π1 = π̃1(1−π0).
From these we derive the announced expression for π0, π1. It is then easy to

check that π0 + π1 − 1 = − (1−π̃1)(1−π̃0)
1−π̃1π̃0

< 0, so that (A) holds.

Together, Lemmas 2 and 3 imply that for known, distinct uncontaminated
distributions P0 �= P1, there is an explicit one-to-one correspondence between
the contamination proportions (π1, π0) of the initial contamination models (1)–
(2) under constraint (A), and the proportions (π̃1, π̃0) in the representation
(6)–(7) (with the only constraint 0 ≤ π̃1, π̃0 < 1).



2790 G. Blanchard et al.

The alternate representations (6)–(7) are decoupled in the sense that (6) does
not involve P1, while (7) does not involve P0. This allows us to estimate π̃0

and π̃1 separately, by reducing to the problem of “mixture proportion estima-
tion” (see next section). It further motivates the mutual irreducibility condition
on (P0, P1) that, together with (A), ensures that π̃0, π̃1 are identifiable. The
decoupling perspective also allows us to address the following question: Given
the contaminated distributions P̃1, P̃0, while (P0, P1) are unknown, what are
the solutions (π0, π1, P0, P1) satisfying model (1)–(2)? Obviously, (0, 0, P̃1, P̃0)
is a trivial solution; we will argue that mutual irreducibility ensures that the
solution is unique and non-trivial, and furthermore that the resulting P0, P1

correspond to maximally denoised versions of P̃1, P̃0. The issues are developed
in Section 5. In the next section, we review the work of Blanchard et al. [7].

4. Irreducibility and mixture proportion estimation

Let F , G, and H be distributions on (X ,S) such that

F = (1− κ)G+ κH,

where 0 ≤ κ ≤ 1. Mixture proportion estimation is the following problem: given
iid realizations from both F and H, estimate κ. This problem was previously
addressed by [7], and here we relate the essential definitions and results from
that work.

Without additional assumptions, κ is not an identifiable parameter, as noted
by Blanchard et al. [7]. In particular, if F = (1 − κ)G + κH holds, then any
alternate decomposition of the form F = (1− κ+ δ)G′ + (κ− δ)H , with G′ =
(1− κ+ δ)−1((1− κ)G+ δH) , and δ ∈ [0, κ) , is also valid. Because we have no
direct knowledge of G , we cannot decide which representation is the correct one.
Therefore, to make κ identifiable, some additional condition must be assumed.
The following definition will be useful.

Definition 4. Let G , H be probability distributions. We say that G is irre-
ducible with respect to H if there exists no decomposition of the form G =
γH + (1 − γ)F ′, where F ′ is some probability distribution and 0 < γ ≤ 1 . We
say that G and H are mutually irreducible if G is irreducible with respect to H
and vice versa.

The following was established by Blanchard et al. [7].

Proposition 5. Let F , H be probability distributions. If F �= H, there is a
unique κ∗ ∈ [0, 1) and G such that the decomposition F = (1 − κ∗)G + κ∗H
holds, and such that G is irreducible with respect to H . If we additionally define
κ∗ = 1 when F = H, then in all cases

κ∗ = max{α ∈ [0, 1] : ∃G′ probability distribution: F = (1− α)G′ + αH} .

By this result, the following is well-defined.
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Definition 6. For any two probability distributions F , H, define

κ∗(F |H) := max{α ∈ [0, 1] : ∃G′ probability distribution: F = (1−α)G′+αH},

the maximal proportion of H in F .

Clearly, G is irreducible with respect to H if and only if κ∗(G|H) = 0. It is
also interesting to note that 1−κ∗(F |H) is an example of a statistical distance.
That is, 1 − κ∗(F |H) is always nonnegative, and is equal to zero if and only
if F = H, by Proposition 5. Furthermore, Proposition 8 below states that this
distance can be expressed in terms of the likelihood ratio, like Kullback-Liebler
and other information divergences. This statistical distance has been studied
previously for discrete distributions in the analysis of Markov chains [2], where
it is called the “separation distance.” In general, κ∗(F |H) �= κ∗(H|F ), so that
this is not actually a metric on distributions.

To consolidate the above notions, we state the following corollary which ex-
presses that irreducibility of G with respect to H is sufficient for the mixture
proportion to be identifiable.

Corollary 7. If F = (1 − γ)G + γH, and G is irreducible with respect to H,
then γ = κ∗(F |H).

Some intuition for κ∗ and irreducibility come from the following result. Part
of the result is in terms of the receiver operating characteristic (ROC) for the
problem of testing the null hypothesis X ∼ H against the alternative X ∼ F .
Given a measurable set S ∈ S, we can think of S as a rejection region (where
the null hypothesis is rejected). Then H(S) is the false positive rate and F (S)
is the true positive rate, and the optimal ROC is defined as

β(τ) := sup{F (S) |H(S) ≤ τ, S ∈ S}.

The ensuing result follows from Theorem 6 of Blanchard et al. [7].

Proposition 8 (Blanchard et al. [7]).

κ∗(F |H) = inf
S∈S,H(S)>0

F (S)

H(S)
= inf

τ∈[0,1)

{
1− β(τ)

1− τ

}
.

If f and h are densities of F and H, respectively, with respect to a common
dominating measure, then

κ∗(F |H) = ess inf
x∈supp(H)

f(x)

h(x)
.

Proof. The first two identities are established by Blanchard et al. [7]. See also
[39]. The proof of the first identity is very similar to the proof of the third identity
given below. Intuition for the second identity comes from the first identity and
the observation that the optimal ROC is concave. To prove the third identity,
let

γ∗ = ess inf
x∈supp(H)

f(x)

h(x)
.
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Fig 1. Three one-dimensional examples that illustrate assumption (C). In each example
(row), P0 is on the left (solid line) and P1 on the right (dotted line). In the first two examples,
mutual irreducibility holds, but in the third example it does not. See text for details.

We need to show (i) ∃g such that f = (1− γ∗)g + γ∗h, and (ii) if γ > γ∗, then
no such g exists. To see (i), take g = (f−γ∗h)/(1−γ∗), which clearly integrates
to one, and is a.s. nonnegative by definition of γ∗. To see (ii), suppose that for
some γ > γ∗, there exists a density g with f = (1 − γ)g + γh. Then for all x
such that h(x) > 0,

f(x)

h(x)
= γ + (1− γ)

g(x)

h(x)
≥ γ > γ∗,

which contradicts the definition of γ∗.

An alternate proof of the last statement, based on properties of ROC curves
of likelihood ratio tests, is given in an appendix.

The result κ∗(F |H) = infS∈S,H(S)>0
F (S)
H(S) motivates the universally consis-

tent estimator of κ∗ due to [7], reviewed below in Section 6. The second identity,
which states that κ∗(F |H) is the slope of the optimal ROC at its right end-point,
motivates a more practical estimator discussed in Section 11.

Proposition 8 makes it possible to check irreducibility for certain distribu-
tions. For example, κ∗(G|H) = 0 whenever the support of G does not contain
the support of H. Irreducibility is also possible even if G and H have the same
support, as in the case where G and H are Gaussian distributions with different
means, and the variance of H is no more than the variance of G. This follows
easily from the density ratio characterization of κ∗.

Proposition 8 also makes it easy to check mutual irreducibility for various
distributions P0 and P1. Indeed, two continuous distributions are mutually ir-
reducible iff the (essential) infimum and supremum of their density ratio are
0 and ∞, respectively. Figure 1 shows three examples where X = R. In the
first example, P0 and P1 are such that the support of one is not contained in
the support of the other, and therefore mutual irreducibility is satisfied. In the
second example, P0 and P1 are Gaussian distributions with equal variances and
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unequal means. By plugging in the formulas for the Gaussian densities, it is easy
to verify that mutual irreducibility again holds. In the third example, P0 and P1

are again Gaussian densities with unequal means, but this time with unequal
variances. In this case, it is again not hard to show that κ∗(P0|P1) = 0, but
κ∗(P1|P0) > 0, where P1 has the larger variance. Thus, mutual irreducibility
does not hold in this case. We do note, however, that κ∗(P1|P0) tends to zero
very fast as the means move apart.

5. Mutual irreducibility: Sufficiency, necessity, and maximal
denoising

We argue that mutual irreducibility of P0 and P1 is both necessary and sufficient
for identifiability of the elements (π0, π1, P0, P1) of the contamination models,
and relate it to the notion of maximal denoising of the contaminated distribu-
tions. Since our focus in this section is identifiability and not estimation, our
discussion is at the population level.

5.1. Sufficiency of mutual irreducibility for identifiability

Recalling the result of Lemma 2, the distributions P̃0 and P̃1 can be written

P̃0 = (1− π̃0)P0 + π̃0P̃1

P̃1 = (1− π̃1)P1 + π̃1P̃0.

By Corollary 7, we can identify π̃0 and π̃1 provided the following condition holds:

(B) P0 is irreducible with respect to P̃1 and P1 is irreducible with respect to
P̃0.

We prefer an irreducibility assumption based on the true class-conditional
distributions, and so introduce the following:

(C) P0 and P1 are mutually irreducible.

Note that it follows from assumption (C) that P0 �= P1, which is a hypothesis
of Lemma 2. We now establish that (C) and (B) are essentially equivalent.

Lemma 9. P0 is irreducible with respect to P̃1 if and only if P0 is irreducible
with respect to P1 and π1 < 1. The same statement holds when exchanging the
roles of the two classes. In particular, under assumption (A), (C) is equivalent
to (B) .

Proof. This will be a proof by contraposition. Assume first that P0 is not irre-
ducible with respect to P̃1. Then there exists a probability distribution Q′ and
0 < γ ≤ 1 such that

P0 = γP̃1 + (1− γ)Q′.
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Now, plugging in Equation (2) for P̃1 yields

P0 = γ((1− π1)P1 + π1P0) + (1− γ)Q′.

Solving for P0 produces

P0 = (1− β)Q′ + βP1,

where β = γ( 1−π1

1−γπ1
). Now, in the case where π1 < 1, then 1 − γπ1 > 0, and

γ−γπ1 > 0. Since 0 < γ ≤ 1, we deduce 0 < β ≤ 1, so that P0 is not irreducible
with respect to P1.

Conversely, assume by contradiction that P0 is not irreducible with respect
to P1, i.e., there exists a decomposition P0 = γP1 + (1− γ)Q′ with γ > 0. Then
the decomposition P0 = βP̃1 + (1− β)Q′ holds with β = γ

γ+(1−π1)(1−γ) ∈ (0, 1],

so that P0 is not irreducible with respect to P̃1. Finally, in the case π1 = 1, we
have P̃1 = P0, in which case, trivially, P0 is not irreducible with respect to P̃1

either.

The following corollary summarizes the discussion of sufficiency.

Corollary 10. If (A) and (C) hold, then π0 = π̃0(1−π̃1)
1−π̃1π̃0

and π1 = π̃1(1−π̃0)
1−π̃1π̃0

,

where π̃0 = κ∗(P̃0|P̃1) and π̃1 = κ∗(P̃1|P̃0).

Thus, π0 and π1 are explicit functions of P̃0 and P̃1 under (A) and (C) . It
follows that P0 and P1 can then be recovered by solving the identities (6)–(7). In
fact, using these identities, it is easy to check that a slightly stronger statement
holds: for any arbitrary given P̃0 �= P̃1, there is a unique solution (π0, π1, P0, P1)
of (1)–(2) satisfying (A) and (C) . For short, we call this solution the unique
mutually irreducible solution of the problem (condition (A) being tacitly re-
quired.) The uniqueness and various properties of this particular solution will
be explored in more detail in Theorem 12 below; in the next Section, we first ar-
gue that conditions (A) and (C) are necessary for decontamination in a certain
sense.

5.2. Necessity

As noted earlier, given P̃0 �= P̃1, there are in general many (π0, π1, P0, P1) solving
equations (1)–(2), so that decontamination is not well-defined in the absence of
additional conditions. Requesting mutual irreducibility of (P0, P1) is one way
to ensure unicity of the solution, and also has an interpretation in terms of
maximum denoising (see Theorem 12 below). But is it in any way a natural
assumption? We now argue that this condition is also the only one ensuring
some relatively natural properties of the decontamination operation.

We introduce some additional notation: let P denote the set of probabil-
ity distributions on X . Denote P2

∗ the set of couples (P,Q) ∈ P2 with P �=
Q. We denote ψ the contamination operator from [0, 1]2 × P2 to P2, with
ψ(π0, π1, P0, P1) = (P̃0, P̃1) given by (1)–(2).
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Let φ denote a decontamination operator, i.e., a function from a subset of
P2 to [0, 1]2 × P2 such that φ(P̃0, P̃1) returns a solution of (1)–(2), in other
words ψ ◦φ is the identity on the domain of φ. We further denote φ := (φπ, φP ),
where φπ(P̃0, P̃1) are the solution contamination weights and φP (P̃0, P̃1) are the
solution source distributions. Finally, given a decontamination operator φ, call
the image of φP the set of φ-sources – this is the set of probability distribution
couples that are considered as the uncontaminated sources by the operator φ in
at least one configuration of observed contaminated distributions.

Theorem 11. Let φ denote a decontamination operator satisfying the following
conditions:

(i) Universality: the domain of φ is P2
∗;

(ii) Symmetry: if φ(P̃0, P̃1) = (π0, π1, P0, P1), then φ(P̃1, P̃0) =
(π1, π0, P1, P0) ;

(iii) Continuity of recovered contamination weights: for any fixed P0 �= P1,
the mapping

(π0, π1) ∈
{
(π0, π1) ∈ [0, 1]2;π0 + π1 < 1

}
�→ φπ(ψ(π0, π1, P0, P1))

is continuous ;

(iv) Stability of recovered sources: for any φ-source (P0, P1), there exists ε > 0
such that for all π0, π1 ≤ ε:

φP (ψ(π0, π1, P0, P1)) = (P0, P1) . (12)

Then φ(P̃0, P̃1) must be the unique mutually irreducible solution of (1)–(2) for
all P̃0 �= P̃1.

The interpretation of this result is that mutual irreducibility is a necessary
condition for decontamination if conditions (i) to (iv) are required. Condition (i)
states that the decontamination operation should be defined on the full domain
of possible (distinct) observed distributions and can thus be seen as a univer-
sality condition. Condition (ii) is a natural symmetry requirement. Condition
(iii) is a continuity assumption (changing the mixing weights by an arbitrarily
small amount should not result in a “jump” in the returned estimated contami-
nation proportions) and condition (iv) is a stability condition (a couple (P0, P1)
identified as a source should still be output as a source by the decontamination
operator under small enough mutual mixing proportions.)

Remark. Removing one of the “natural” requirements (i)–(iv) invalidates the
conclusion. For example, restricting decontamination to a certain specific model
of sources – say Gaussian distributions – could give rise to a non-mutually irre-
ducible decontamination, coherent within that model but forgoing universality
(i). If we remove continuity requirement (iii), we can find a decontamination
operator that is not mutually irreducible and satisfies the other conditions by
“tiling” the solution space: for any (P0, P1) mutually irreducible, any (π0, π1)
such that π0 + π1 < 1, (P̃0, P̃1) = ψ(π0, π1, P0, P1), for πi ∈ [ki

n , ki+1
n ) (n can be
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chosen arbitrarily), define the decontamination φ as φ = (φπ, φP ) with{
φπ(P̃0, P̃1) :=

(
π0−k0/n

1−(k0+k1)/n
, π1−k1/n
1−(k0+k1)/n

)
;

φP (P̃0, P̃1) := ψ
(
k0

n , k1

n , P0, P1

)
.

It is easy to check that π0+π1 < 1 implies φπ(P̃0, P̃1) ∈ [0, 1]2 and satisfies (A).
Then the above φ satisfies (i), (ii) and (iv) but is not the mutually irreducible
decontamination. Finally, stability condition (iv) is needed in order to prevent
“trivial” decontaminations such as φ(P̃0, P̃1) = (0, 0, P̃0, P̃1), which is obviously
continuous. Excluding the everywhere trivial decontamination is not enough, as
a decontamination could also be trivial on part of the space only.

5.3. Maximal denoising

To conclude this section, we present a result that rounds out the discussion
of the initial and modified contamination models, and mutual irreducibility.
In particular, we describe all possible solutions (π0, π1, P0, P1) to our model
equations (1)–(2) when P̃0, P̃1 are given and arbitrary, and an equivalent char-
acterization of the unique mutually irreducible solution. It can be seen as an
analogue of Proposition 5 for the label noise contamination models.

Theorem 12. Let P̃1 �= P̃0 be two given distinct probability distributions. De-
note by Λ the feasible set of quadruples (π0, π1, P0, P1) such that (A) and equa-
tions (1)–(2) are satisfied.

1. There is a unique quadruple (π∗
0 , π

∗
1 , P

∗
0 , P

∗
1 ) ∈ Λ so that (C) holds.

2. Denoting π̃∗
0 := κ∗(P̃0|P̃1) < 1 and π̃∗

1 := κ∗(P̃1|P̃0) < 1, it holds

π∗
0 =

π̃∗
0(1− π̃∗

1)

1− π̃∗
1 π̃

∗
0

, π∗
1 =

π̃∗
1(1− π̃∗

0)

1− π̃∗
1 π̃

∗
0

. (13)

3. The feasible region R for the proportions (π0, π1) (that is, the projection
of Λ to its first two coordinates, which is also one-to-one), is the closed
quadrilateral defined by the intersection of the positive quadrant of R2 with
the half-planes given by

π0 + π1π̃
∗
0 ≤ π̃∗

0 , π1 + π0π̃
∗
1 ≤ π̃∗

1 . (14)

4. The mutually irreducible solution (π∗
0 , π

∗
1 , P

∗
0 , P

∗
1 ) is also equivalently char-

acterized as:

• the unique maximizer of (π0 + π1) over Λ;

• the unique extremal point of Λ where both of the constraints in (14)
are active;

• the unique maximizer over Λ of ‖P0 − P1‖TV , the total variation
distance between the source distributions.
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Fig 2. Geometry of the feasible region Λ for proportions (π0, π1) solutions of the contam-
ination model (1)–(2), when contaminated distributions (P̃0, P̃1) are observed and the true
distributions (P0, P1) are unknown. Each feasible (π0, π1) corresponds to a single associated
solution (P0, P1). The extremal point (π∗

0 , π
∗
1) is the unique point corresponding to a mutually

irreducible solution (P ∗
0 , P

∗
1 ). The dashed line indicates the maximal level line (π0 + π1) = c

intersecting with Λ.

The proof of the theorem relies on the explicit one-to-one correspondence es-
tablished in Lemmas 2 and 3 between the solutions of the original decomposition
(1)–(2) and its decoupled reformulation (6)–(7). The result of Proposition 5 is
applied to the decoupled formulation, then pulled back, via the correspondence,
in the original representation. The last statement concerning the total variation
norm is based on the relation

(P1 − P0) = (1− π0 − π1)
−1(P̃1 − P̃0),

obtained by subtracting (1) from (2). Therefore, the maximum feasible value of
‖P1 − P0‖TV corresponds to the maximum of (π0+π1), i.e., the unique mutually
irreducible solution.

The geometrical interpretation of this theorem is visualized on Figure 2.
In particular, point 1 of the theorem shows that conditions (A) and (C) do
not restrict the class of possible observable contaminated distributions (P̃1, P̃0);
rather, they ensure in all cases the identifiability of the mixture model. Point
4 indicates that the unique solution satisfying the mutual irreducibility con-
dition (C) can be characterized as maximizing the possible total label noise
level (π0 + π1), or, still equivalently, the total variation separation of the source
probabilities P0, P1. In this sense, the mutually irreducible solution can also
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be interpreted as maximal label denoising or maximal source separation of the
observed contaminated distributions.

6. Mixture proportion estimation and a rate of convergence

Blanchard et al. [7] present a universally consistent estimator κ̂ of κ∗(F |H).
We review this estimator below. They also establish a “no free lunch” result
stating that no estimator of κ∗(F |H) can converge at a fixed rate for all F and
H. In this section we also introduce distributional assumptions under which the
estimator of Blanchard et al. [7] converges at a known rate.

We begin by reviewing the universally consistent estimator of κ∗(F |H) intro-
duced by Blanchard et al. [7]. Let F and H be probability measures on a Borel
space (X ,S). Recall from Proposition 8

κ∗(F |H) = inf
S∈S,H(S)>0

F (S)

H(S)
.

The basic idea is to replace F and H by empirical estimates and take the
infimum over a union of VC classes. Thus, consider a sequence of VC classes of
sets, (Sk)k≥1, with respective (finite) VC dimensions (Vk)k≥1. Define εi(k, δi) :=

3
√

Vk log(ni+1)−log δi/2
ni

for i = 0, 1. By the VC inequality, for any i = 0, 1,

δi ∈ (0, 1), k ≥ 1 and any distribution Q on X , with probability at least 1− δi
over the draw of an i.i.d. sample of size ni according to Q , we have

∀S ∈ Sk

∣∣∣Q(S)− Q̂(S)
∣∣∣ ≤ εi(k, δi) , (15)

where Q̂ denotes the empirical distribution built on the sample.
In MPE we have training data

X1
0 , . . . , X

n0
0

iid∼ H, (16)

X1
1 , . . . , X

n1
1

iid∼ F. (17)

For k ≥ 1, define

κ̂(k, δ0, δ1) := inf
S∈Sk

F̂ (S) + ε1(k, δ1)

(Ĥ(S)− ε0(k, δ0))+
(18)

where (·)+ is the max of its argument and zero (the ratio is defined to be∞ if the

denominator is zero), and where F̂ (S) and Ĥ(S) are the empirical true positive
and false positive probabilities associated with the rejection region S. By the
VC inequality and Proposition 8, κ̂(k, δ0, δ1) is an upper bound on κ∗(F |H),
with probability at least 1− δ0 − δ1.

Next, define
κ̂(δ0, δ1) := inf

k≥1
κ̂(k, δ0k

−2, δ1k
−2).
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By the union bound, this is also an upper bound on κ∗, with probability at
least 1− 2(δ0 + δ1), since

∑
k k

−2 = π2/6 < 2. To ensure that this upper bound
approaches κ∗ as n0, n1 → ∞, the sequence (Sk)

∞
k=1 is assumed to satisfy the

following universal approximation property, which we refer to as (AP1): For
any S∗ ∈ S , and any distribution Q ,

lim inf
k→∞

inf
S∈Sk

Q(SΔS∗) = 0 ,

where SΔS∗ = S\S∗ ∪ S∗\S is the symmetric set difference.
Finally, κ̂ is defined as κ̂ = κ̂( 1

n0
, 1
n1

). Blanchard et al. [7] show the following,
which makes no assumption on the distributions F and H and thus establishes
a universally consistent method for MPE.

Theorem 13 (Blanchard et al. [7]). With probability at least 1 − 2( 1
n0

+ 1
n1

),

κ̂ ≥ κ∗(F |H). Furthermore, if (Sk)
∞
k=1 satisfies (AP1), then κ̂

i.p.−→ κ∗(F |H) as
min{n0, n1} → ∞.

It should be noted that the statement of the consistency result of Blanchard
et al. [7] contains a slight error. We present a correction to the statement of the
consistency result in an appendix; see also Scott [39]. The error/correction does
not affect the present work.

We now introduce an assumption on F and H that will ensure a certain
rate of convergence for κ̂ above. This rate will be used in the next section to
establish consistency of a discrimination rule. The support of a distribution
Q, denoted supp(Q), is the smallest closed set whose complement has measure
zero.

(D) There exists a distribution G and γ ∈ [0, 1] such that supp(H) �⊂ supp(G)
and F = (1− γ)G+ γH.

The assumption supp(H) �⊂ supp(G) clearly implies that G is irreducible with
respect to H, and therefore γ in (D) is equal to κ∗(F |H).

In addition, we adopt a modified approximation condition on the sequence
(Sk), referred to as (AP2): For all G, H with supp(H) �⊂ supp(G) there exists
k ≥ 1 and S ∈ Sk s.t. G(S) = 0 and H(S) > 0.

Remark. (AP1) requires that the sets in Sk become increasingly complex, so
that Vk → ∞. On the other hand, (AP2) does not. For example, if X = R

d and
S is the Borel σ-algebra generated by the standard topology on R

d, (AP2) is
satisfied taking S1 to be the VC class of all open balls {x : ‖x − c‖ < r}, c ∈
R

d, r > 0, and Sk = ∅ for k ≥ 2. In this case, we could even simplify the
estimator of κ∗ to be κ̂′ := κ̂(1, 1

n0
, 1
n1

), and the rate of convergence presented
below would still hold (the proof requires only minor modifications). However,
we elect to work with the definition of κ̂ above to emphasize that the rate of
convergence applies to the universally consistent estimator.

Theorem 14. Suppose (Sk)k≥1 is chosen to satisfy (AP2). If F and H are
such that (D) holds, then there exists a constant C > 0 such that for n0 and n1
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sufficiently large, the estimator κ̂ satisfies

Pr

(
|κ̂− κ∗| ≥ C

[√
log n0

n0
+

√
log n1

n1

])
≤ 2

n0
+

2

n1
(19)

where κ∗ = κ∗(F |H).

In the next section, assume κ̂ is defined in terms of VC classes satisfying
(AP2).

7. Consistent classification with unknown label noise proportions

The consistent estimator of κ∗ just discussed provides a clear path to the de-
sign of a consistent discrimination rule when the label noise proportions are
unknown. The estimator of κ∗, together with Corollary 10, can be combined
to give consistent estimators of π̃0 and π̃1 under assumptions (A) and (C).
Plugging in these estimators, along with empirical estimates of R̃0 and R̃1, into
Eqns. (10) and (11), yields estimates of R0 and R1 that can be shown to con-
verge uniformly over a VC class of classifiers to their true values. By allowing
the size of the VC class to grow as the sample size(s) grow, empirical risk mini-
mization can be shown to be a consistent discrimination rule with respect to any
performance measure defined in terms of R0 and R1. This idea utilizes standard
ideas in learning theory and is illustrated for the minmax criterion in Scott et al.
[41].

One drawback of empirical risk minimization over VC classes is that it is
computationally intractable for most VC classes of interest. In the remainder of
this section we establish a computationally tractable consistent discrimination
rule based on surrogate risk minimization.

7.1. Problem formulation

Let (X,Y ) be random on X ×{0, 1} where X is a Borel space, and let P denote
the probability measure governing (X,Y ). Let M denote the set of decision
functions, i.e., the set of measurable functions X → R. Every f ∈ M induces a
classifier x �→ u(f(x)) where u(t) is the unit step function

u(t) :=

{
1, t > 0
0, t ≤ 0.

For any f ∈ M, define the cost-insensitive P-risk of f

RP (f) := E(X,Y )∼P [1{u(f(X)) 	=Y }].

Define the cost-insensitive Bayes P -risk R∗
P := inff∈M RP (f). It is well known

[15] that for any f ∈ M, the excess P -risk satisfies

RP (f)−R∗
P = 2EX [1{u(f(X)) 	=u(η(X)− 1

2 )}|η(X)− 1
2 |], (20)

where η(x) := P (Y = 1 |X = x).
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Generalizing the above, for any α ∈ (0, 1) we can define the α-cost-sensitive
P -risk for any f ∈ M,

RP,α(f) := E(X,Y )∼P [(1− α)1{Y=1}1{f(X)≤0}

+ α1{Y=0}1{f(X)>0}].

The corresponding Bayes risk is R∗
P,α := inff∈M RP,α(f), and the analogue to

(20) is [38]:

Rα(f)−R∗
α = EX [1{u(f(X)) 	=u(η(X)−α)}|η(X)− α|] . (21)

Observe (20) corresponds to the case α = 1
2 .

With this background, we turn to the problem of classification with label
noise. We assume (X,Y, Ỹ ) are jointly distributed, where Y is the true but
unobserved label, and Ỹ is the observed but noisy label. As in the rest of the
paper, we focus on label noise that is independent of the feature vector X,
meaning that the conditional distribution of Ỹ given X and Y depends only
on Y .

We would like to minimize RP (f), but we only have access to data from P̃ ,
the joint distribution of (X, Ỹ ). Natarajan et al. [32] show that minimizing a
cost-sensitive P̃ -risk is equivalent to minimizing the cost-insensitive P -risk. We
state and prove an equivalent result which has a simpler proof. In this setting,
πi = Pr(Y = 1− i | Ỹ = i), i = 0, 1. We introduce the following assumption on
the amount of label noise, which slightly strengthens (A).

(A’) π0 < 1
2 and π1 < 1

2 .

The following result connects the cost-sensitive P̃ -risk to the cost-insensitive
P -risk.

Lemma 15. If (A’) holds, then for any f ∈ M,

RP (f)−R∗
P = 2(1− π1 − π0)(RP̃ ,α(f)−R∗

P̃ ,α
) , (22)

where α = (12 − π0)/(1− π1 − π0).

Proof. Note that (A’) ensures α ∈ (0, 1). Define η̃(x) in analogy to η(x) by
η̃(x) := Pr(Ỹ = 1|X = x), leading to

η(x) = Pr(Y = 1, Ỹ = 1|X = x) + Pr(Y = 1, Ỹ = 0|X = x)

= Pr(Y = 1|Ỹ = 1, X = x)η̃(x) + Pr(Y = 1|Ỹ = 0, X = x)(1− η̃(x))

= (1− π1)η̃(x) + π0(1− η̃(x))

= (1− π0 − π1)η̃(x) + π0.

Observe that

η(x)− 1
2 = (1− π0 − π1)η̃(x) + π0 − 1

2

= (1− π0 − π1)[η̃(x)− α].



2802 G. Blanchard et al.

The result follows now from (20) and (21):

RP (f)−R∗
P = 2EX

[
1{u(f(X)) 	=u(η(x)−1

2 )}
|η(x)− 1

2 |
]

= 2(1− π0 − π1)EX

[
1{u(f(X)) 	=u(η̃(x)−α)}|η̃(x)− α|

]
= 2(1− π1 − π0)(RP̃ ,α(f)−R∗

P̃ ,α
).

The problem we will address is the construction of a discrimination rule f̂n
that is computationally tractable, does not know α, π0, or π1, and is such that
RP (f̂n) − R∗

P → 0 in probability. To achieve this, we develop an algorithm

f̂n based on surrogate risk minimization such that RP̃ ,α(f̂n) − R∗
P̃ ,α

→ 0 in

probability.

7.2. Surrogate losses

A loss is any measurable function L : {0, 1} × R → [0,∞). For example, the
P -risk is defined in terms of the 0 − 1 loss, L(y, t) = 1{y 	=u(t)}. Given a loss L
we define the risk

RP,L(f) = E(X,Y )∼P [L(Y, f(X))],

and the corresponding optimal risk R∗
P,L = inff∈M RP,L(f).

A surrogate loss is one that is used as a surrogate for another, such as a loss L
that is convex in its second argument in lieu of the 0-1 loss. Surrogate losses are
common in machine learning because they can often be optimized efficiently,
unlike the 0-1 loss and its cost-sensitive variants. The notion of classification
calibration was developed to theoretically justify the use of surrogate losses. A
loss L is said to be α-classification calibrated iff there exists an increasing and
continuous function θ with θ(0) = 0 such that for all f ∈ M,

RP,α(f)−R∗
P,α ≤ θ(RP,L(f)−R∗

P,L).

An equivalent and more technical characterization of α-CC is provided by [38],
but the above definition suffices for our purposes. The point is that driving the
surrogate excess risk to zero drives the target excess risk to zero for α-CC losses,
and the former can be accomplished by computationally tractable methods like
support vector machines, as shown below.

Any loss L can be expressed as L(y, t) = 1{y=1}L1(t)+1{y=0}L0(t). Given a
loss L and α ∈ (0, 1), define

Lα(y, t) := (1− α)1{y=1}L1(t) + α1{y=0}L0(t). (23)

[38] establishes that L is 1
2 -CC iff Lα is α-CC. Several examples of 1

2 -CC losses
are known, so these readily translate to examples of α-CC losses via Eqn. (23).
In particular, Bartlett et al. [6] establish that if L(y, t) = φ((2y − 1)t) where φ
is convex and differentiable at 0 with φ′(0) < 0, then L is 1

2 -CC. This justifies
several common losses including the hinge loss (φ(z) = max{0, 1− z}) and the
logistic loss (φ(z) = log(1 + exp(−z))). Combining these ideas with Lemma 15
leads to the following result.
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Corollary 16. Suppose L is 1
2 -CC, assume (B) is satisfied and let α = ( 12 −

π0)/(1 − π1 − π0). Then there exists an increasing and continuous function θ
with θ(0) = 0 such that for all f ∈ M,

RP (f)−R∗
P ≤ θ(RP̃ ,Lα

(f)−R∗
P̃ ,Lα

).

Natarajan et al. [32] consider the setting where π0 and π1 are known. Using
the above result, they apply Rademacher complexity analysis to establish per-
formance guarantees for a classification strategy based on regularized empirical
risk minimization with a surrogate loss Lα.

7.3. Estimating α

When π0 and π1 are unknown, a natural strategy is to base a learning algorithm
on a surrogate loss Lα̂, where α̂ is an estimate of α. We propose an estimate of
the form

α̂ =
1
2 − π̂0

1− π̂0 − π̂1
,

where π̂0 and π̂1 are estimates based on our previously developed results. In
particular, suppose we observe noisy data

(X1, Ỹ1), . . . , (Xn, Ỹn)
iid∼ P̃ ,

One difference to note going forward is that the sample sizes n0 and n1 are now
random, whereas before they were considered to be nonrandom. This turns out
to be a minor difference; see the proof of Proposition 17 below.

Now, let ̂̃π0 and ̂̃π1 be estimates of π̃0 and π̃1 obtained by applying the
estimator κ̂ of Section 6 twice. The formulas from Lemma 3 lead to the estimates

π̂0 =
̂̃π0(1− ̂̃π1)

1− ̂̃π0
̂̃π1

and π̂1 =
̂̃π1(1− ̂̃π0)

1− ̂̃π0
̂̃π1

. (24)

By Corollary 10, if (A) and (C) hold, then π̃0 = κ∗(P̃0|P̃1) and π̃1 = κ∗(P̃1|P̃0),
and consequently π̂0 and π̂1 are consistent estimators of π0 and π1, respectively.
For some of our subsequent analysis, we actually want π̂0 and π̂1 (and therefore
α̂) to converge at a known rate. Hence, we want P̃0 and P̃1 to satisfy assumption
(D) in both directions. The following assumption, which strengthens (C), is
sufficient for this purpose.

(C’) supp(P0) �⊂ supp(P1) and supp(P1) �⊂ supp(P0).

This assumption is reasonable in many classification problems. It essentially
says that for each of the two (noise-free) classes, there exist patterns belonging
to that class that could not possibly be confused with patterns from the other
class. We have the following.
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Proposition 17. If (A’) and (C’) hold, then there exist C1, C2 > 0 such that
for n sufficiently large,

Pr

(
|α̂− α| ≥ C1

√
logn

n

)
≤ C2

n
.

Proof. (A’) implies π0 + π1 < 1, and by (C’), P0 and P1 are mutually irre-
ducible. Thus Corollary 10 implies π̃0 = κ∗(P̃0|P̃1) and π̃1 = κ∗(P̃1|P̃0). We

will apply Theorem 14 to both of the estimators ̂̃π0 and ̂̃π1. To verify the as-
sumptions of that theorem, we need to verify (D) for both (F,H) = (P̃1, P̃0)
and (F,H) = (P̃0, P̃1). We will show (D) for (F,H) = (P̃1, P̃0), the other case
being similar. From (7), it suffices to show supp(P̃1) �⊂ supp(P0). But this holds
because P̃1 = (1 − π1)P1 + π1P0 (see Eqn. (2)) and supp(P1) �⊂ supp(P0) and

π1 < 1. We can now apply Theorem 14 to both ̂̃π0 and ̂̃π1. To do so, since n0

and n1 are nonrandom in that result, we must condition on n0 and n1, and
appeal to the fact that, with high probability, n0 and n1 are proportional to
n. In particular, if q̃ = Pr(Ỹ = 1), then the relative Chernoff bound implies
that with high probability, n1 ∈ ( 12 q̃n,

3
2 q̃n) and n0 ∈ ( 12 (1 − q̃)n, 3

2 (1 − q̃)n).
Conditioning on n0 and n1 belonging to these intervals, Theorem 14 implies
that both ̂̃π1 and ̂̃π0 converge at rates that are O(

√
logn/n). These rates lead

to similar rates for π̂1 and π̂0 (note in particular that assumption (A’) implies
that the denominators in (24) are bounded away from 0 by a fixed margin with
large probability for n large enough, independently of π1, π0). This in turn leads
to the desired rate for α̂.

7.4. Algorithm

We now introduce a consistent classification procedure based on surrogate losses
in the case of unknown label noise proportions. The algorithm relies on the
framework of reproducing kernel Hilbert spaces. Thus, let H be a RKHS, and
let L be a loss for binary classification. We say that L is Lipschitz if L(y, t) is a
Lipschitz function of t for each y. The algorithm returns the classifier

f̂n = arg min
f∈H

1

n

n∑
i=1

Lα̂(Ỹi, f(Xi)) + λn‖f‖2H, (25)

where Lα̂ is the α̂-weighted cost-sensitive loss associated with L, as defined in
(23). For example, if L(y, t) = max{0, 1 − (2y − 1)t} is the hinge loss, f̂n is a
cost-sensitive support vector machine.

7.5. First consistency result

We will assume that the reproducing kernel k associated with H is universal and
bounded [43]. The former property implies that elements of the RKHS can get
arbitrarily close to the Bayes risk. The latter property states that supx k(x, x) =:
B2 < ∞. The Gaussian kernel is an example satisfying both of these properties.
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Theorem 18. Assume (A’) and (C’) hold, that the reproducing kernel associ-
ated with H is universal and bounded, and that L is a Lipschitz, 1

2 -CC loss. Let

λn > 0 tend to zero as n → ∞ such that λn

√
n/ log n → ∞. Then

RP (f̂n)−R∗
P → 0 in probability ,

as n → ∞.

7.6. Alternate consistency result with clippable losses

It is possible to establish a consistency theorem without requiring a rate of
convergence on α̂ (thus only requiring the milder condition (C) rather than
(C’)), at the expense of treating a more narrow class of losses.

A T -clippable loss L(y, t) (see 43, Section 2.2) satisfies the following property:

∀y ∈ {0, 1} , ∀t ∈ R : L(y,ClipT (t)) ≤ L(y, t) ,

where ClipT (t) := min(T,max(−T, t)) . It is shown by [43], Lemma 2.23, that a
convex loss is T -clippable iff ∀y ∈ {0, 1}, the function t ∈ R �→ L(y, t) admits
a minimum which is attained for some t ∈ [−T, T ]. As a consequence, many
common surrogate losses are clippable; for instance the hinge loss, the squared
loss and the truncated squared loss are 1-clippable. On the other hand, the
logistic and the exponential losses are not clippable.

Theorem 19. Assume (A’) and (C) hold, that the reproducing kernel asso-
ciated with H is universal and bounded, and that L is a Lipschitz, T -clippable,
1
2 -CC loss. Let λn > 0 tend to zero as n → ∞ such that λnn → ∞. Define

f̆n := ClipT (f̂n) , where f̂n is defined by (25). Then

RP (f̆n)−R∗
P → 0 in probability,

as n → ∞.

8. A more general analysis of co-training

Co-training is a model for binary classification in which the feature vector can be
partitioned into two sets of variables, called “views.” The critical assumption of
co-training is that the views are conditionally independent, given the class label.
We refer to this assumption as the co-training assumption. Blum and Mitchell
[8] show that under this assumption, the optimal classifier can be learned from
unlabeled data only, provided the learner has access to a “weakly-useful pre-
dictor,” which is a classifier that, roughly speaking, is at least slightly better
than random guessing. The basic idea is to apply the weakly-useful predictor to
one of the views to generate noisy labels for the other view. By the co-training
assumption, the problem now reduces to classification with label noise. The
original analysis assumes that the true label is a deterministic function of either
view. Our framework allows us to relax this assumption.
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To state our result, we assume that the feature vector X and label Y are
jointly distributed with joint distribution Q. Let P0 and P1 be the class condi-
tional distributions of Q. Furthermore, let X be expressed as (XA, XB), rep-
resenting the two views. Under the co-training assumption, XA and XB are
conditionally independent given Y . The unlabeled training data are X1, . . . , Xn.
A weakly-useful classifier is a classifier h such that 0 < Q({x : h(x) = 1}) < 1
and q0(h) + q1(h) < 1, where

qi(h) = Q(Y = 1− i |h(X) = i).

Theorem 20. Let hA be a known weakly-useful classifier based on view A. As-
sume that the class-conditional distributions of XB are mutually irreducible, and
let X1, . . . , Xn be iid. Under the co-training assumption, there exists a classifi-
cation algorithm f̂n such that RQ(f̂n) → R∗

Q in probability as n → ∞.

Proof. Consider the data set

(XB
1 , Ỹ1), . . . , (X

B
n , Ỹn),

where Ỹi = hA(XA). By the co-training assumption, the class-conditional distri-
bution of Ỹ givenXB and the true label Y is not dependent onXB . Therefore we
have the setting of a label noise problem. Since 0 < Q({xA : hA(xA) = 1}) < 1,
the numbers of examples n0 and n1 with each noisy label grow with n. Further-
more, the contamination probabilities

πi = Pr(Y = 1− i | Ỹ = i)

are just πi = qi(h
A). Since hA is weakly-useful, we have that π0 + π1 < 1.

We also have mutual irreducibility for this label noise problem, by assumption.
Therefore, a consistent classification rule exists by the construction in Scott
et al. [41].

The key point is that this result weakens the assumption of deterministic
class labels to a mutual irreducibility assumption. The existence of a weakly-
useful classifier could be guaranteed, for example, if a small amount of labeled
training data was available.

The previous argument relies on the consistent classification rule from [41].
The consistency result for classifiers based on clippable surrogate losses, from
earlier in this paper, could also be employed provided the definition of a weakly-
useful classifier is strengthened to require that qi(h) <

1
2 for each i.

9. Mutual irreducibility and class probability estimation

In this section, we relate mutual irreducibility of P0 and P1 to the problem
of class probability estimation. Let p0 and p1 be densities of P0 and P1 with
respect to a common dominating measure. Further assume that the feature
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vector X and label Y are jointly distributed with joint distribution P , and that
q := P (Y = 1) ∈ (0, 1). The posterior probability that Y = 1 is denoted

η(x) := P (Y = 1 |X = x).

The problem of estimating η from data is known as class probability estimation
[12, 35]. The most well-known approach to class probability estimation is logistic
regression, which posits the model

η̂(x) =
1

1 + exp{−(wTx+ b)} ,

where w and x have the same dimension, and b ∈ R. The parameters w and
b are fit to the data by maximum likelihood. More generally, estimates for η
commonly have the form

η̂(x) = ψ−1(h(x))

where ψ : [0, 1] �→ R is a link function, and h is a decision function of some sort.
Now define

ηmin := ess inf
x∈X

η(x) and ηmax := ess sup
x∈X

η(x).

The following result connects the posterior class probability to mutual irre-
ducibility.

Proposition 21. With the notation defined above,

ηmax =
1

1 + 1−q
q κ∗(P1|P0)

(26)

and

ηmin = 1− 1

1 + q
1−qκ

∗(P0|P1)
. (27)

Therefore, P0 and P1 are mutually irreducible if and only if ηmin = 0 and
ηmax = 1.

Proof. By Bayes’ rule, it is true that almost everywhere,

η(x) =
qp1(x)

qp1(x) + (1− q)p0(x)

=
1

1 + 1−q
q

p0(x)
p1(x)

.

Equation (26) now follows from Proposition 8. Similarly, we have (almost ev-
erywhere)

η(x) = 1− (1− q)p0(x)

(1− q)p0(x) + qp1(x)

= 1− 1

1 + q
1−q

p1(x)
p0(x)

.
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Now (27) follows from Proposition 8. The final statement follows from (26) and
(27) and the definition of mutual irreducibility.

Thus, estimates of κ∗(P0|P1) and κ∗(P1|P0) could be used to inform choices
about the design of the link function (e.g., its domain) and model class of deci-
sion functions.

Proposition 21 also suggest another possible approach to mixture proportion
estimation. Suppose η̂ is an estimator for η that is consistent with respect to the
supremum norm, and let q̂ be the empirical estimate of q based on a random
sample from P . Inverting Equation (26),

κ̂1,0 :=

(
1

supx∈X η̂(x)
− 1

)
q̂

1− q̂
,

is a consistent estimate of κ∗(P1|P0). Similar remarks apply to κ∗(P0|P1). Al-
though this suggests that class probability estimation solves mixture proportion
estimation in the binary classification context, we note that sup-norm consis-
tency will require distributional assumptions, and therefore the distribution-free
estimator of Blanchard et al. [7] is a more general solution.

All of the above observations were present in our original technical report on
this topic [42]. Since then, Liu and Tao [25] and Menon et al. [30] have further
explored the idea of estimating label noise proportions from the minimum and
maximum of the contaminated class probability function. In particular, we note
the following.

An immediate corollary of Proposition 21 is the following. Let P̃ be the joint
distribution on (X, Ỹ ), q̃ = P̃ (Ỹ = 1), η̃(x) = P̃ (Y = 1 |X = x), and let η̃max

and η̃min denote the essential supremum and infimum of η̃. Further let P̃1 and
P̃0 denote the class conditional distributions of X given Ỹ = 1, 0, respectively.

Corollary 22. Consider the setting of the previous paragraph. If (A) and (C)
hold, then

π0 =
η̃min(η̃max − q̃)

q̃(η̃max − η̃min)
(28)

and

π1 =
(1− η̃max)(q̃ − η̃min)

(1− q̃)(η̃max − η̃min)
. (29)

Proof. By Proposition 21, we have that

η̃max =
1

1 + 1−q̃
q̃ κ∗(P̃1|P̃0)

and

η̃min = 1− 1

1 + q̃
1−q̃κ

∗(P̃0|P̃1)
.

The result now follows from these equations, Corollary 10, and algebra.
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Fig 3. κ∗(F |H) is the slope of the optimal receiver operating characteristic for testing H0 :
X ∼ H versus H1 : X ∼ F at its right endpoint.

Note that q̃ is easily estimated from the fraction of contaminated training
examples with Ỹ = 1. Therefore, estimates of η̃max and η̃min lead directly to
estimates of the contamination proportions π0 and π1. This approach to es-
timating label noise proportions is explored experimentally below, where it is
compared with the ROC-based estimator.

Menon et al. [30] adopt the conditions ηmax = 1 and ηmin = 0 together with
(A) as their identifiability conditions for label noise under the contamination
model. From the above discussion, these conditions are clearly equivalent to ours.
Liu and Tao [25] consider the label flipping model for label noise. They consider
an equivalent sufficient condition based on η in that context. Connections with
our mutual irreducibility assumption are noted in each of these works.

10. Implementation of estimators

The ROC characterization from Proposition 8 says that κ∗ is the minimum slope
of any line passing through the point (1, 1) in ROC space and any other point
on the optimal ROC. If the optimal ROC happens to be concave, this is the
slope of the ROC at its right end-point. See Fig. 3.

Motivated by this idea, we suggest the following practical algorithm for MPE.
First, split each of the two samples (1) and (2) into two portions according to a
common ratio. Using the first portion of each data set, run a universally consis-
tent classification algorithm that yields a full ROC. In our implementation, we
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run kernel logistic regression (KLR) with a Gaussian kernel, and vary the thresh-
old on the posterior probability estimate to obtain an ROC. Note that KLR is
run on the contaminated data. The bandwidth and regularization parameters
of KLR are set using cross-validation.

Using the second half of each sample, construct conservative estimates (as
in Eqn. (18)) of the ROC for a discrete set of thresholds on the KLR posterior
probability function. To obtain these conservative estimates, we do not use the
empirical error plus or minus a VC bound. Instead, we use direct binomial tail
inversion (also known as one-sided exact Clopper-Pearson confidence interval),
which is the tightest possible deviation bound for a binomial random variable
[22]. Using these conservative estimates, we then compute the minimum slope
of all line segments joining points on the ROC to the point (1, 1).

We also considered an alternative approach to estimating the label noise
proportions, based on class probability estimation as discussed in Section 9. As
in the preceding estimator, we split each sample into two portions, and used
the first portion of each sample to train a KLR estimate of the class probability
function η̃. We then used the second portion of each sample to estimate the
minimum and maximum values of η̃, which we then plugged into the formulas
(28)–(29) to obtain estimates of π0 and π1. To obtain some robustness to outliers,
we estimated the maximum and minimum using the 99th and 1st percentiles,
respectively, as suggested by [30].

The estimates based on the ROC method are denoted π̂roc
0 and π̂roc

1 , while the
estimates based on class probability estimation are denoted π̂cpe

0 and π̂cpe
1 . The

former estimates are based on a 20/80 split of each sample, and the latter on a
80/20 split, as these seemed to give the best results. The latter ratio was also
employed by Menon et al. [30]. A detailed Matlab implementation, reproducing
our results, is available at http://web.eecs.umich.edu/~cscott.

11. Experiments

To study the performance of the above estimators, we examined the problem of
classification with label noise using three data sets. The waveform data set is
available from the UCI Repository, and consists of three classes of synthetically
generated waveforms. The classes are overlapping, as the Bayes risk for this data
set is known to be around 10 %. We generated data for a binary classification
problem (using only two of the classes) with label noise proportions π0 and π1

specified as in Table 1. Sample sizes of n0 = n1 = 1000 were chosen. We also
used the MNIST handwritten digits data set, digits 3 and 8, with a similar setup
as to the waveform data. In this case the sample sizes were n0 = n1 = 2000.

A third data set comes from nuclear particle classification, where the train-
ing data are realistically described by the label noise model. The data are ob-
tained from organic scintillation detectors, which detect both gamma-rays and
neutrons, and associate every detected particle with a digitally sampled pulse-
shaped waveform [1]. The goal is to classify gamma-ray pulses (class 0) from
neutron pulses (class 1). See discussion in Section 1.1. Training data were ob-
tained by measuring particles emitted from a Cf-252 source, which undergoes

http://web.eecs.umich.edu/~cscott
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Table 1

Results for mixture proportion estimation as applied to classification with label noise.

data set π0 π1 π̂roc
0 π̂roc

1 π̂cpe
0 π̂cpe

1
waveform 0.1 0.25 0.0979 0.2792 0.1919 0.1393
waveform 0.15 0.05 0.1437 0.0589 0.0369 0.0831
digits 0.1 0.25 0.1325 0.2573 0.1065 0.0555
digits 0.15 0.05 0.1633 0.0597 0.0191 0.0479
nuclear N/A N/A 0.0100 0.0641 0.0151 0.0007

spontaneous decay and emits both neutrons and gamma rays. Data were prepro-
cessed by aligning pulse peaks and by eliminating signals with multiple peaks
(corresponding to multiple detected events within a single observation window).
Through a special experimental configuration [3], the time of flight (TOF) for
each particle hitting the detector was also measured. Since neutrons travel more
slowly than gamma-rays, this gives noisy labels by looking only at those parti-
cles with TOF in a certain window. Gamma-rays travel at the speed of light,
so a data set with mostly gamma-ray pulses was obtained by focusing on those
particles with TOFs around the speed of light (TOF < 5 ns). However, neu-
trons can still have TOFs in this window because they were generated from
either a background event or from another fission event that occurred just an
instant before the one being measured. A neutron TOF-window was also se-
lected (45 < TOF < 55 ns), and as with the other window, this one will also
contain some proportion of gamma-ray pulses. We obtained samples of size
n0 = n1 = 3000 from each window. It is important to keep in mind that in this
application, the ground truth π0 and π1 are unknown, and it can only be as-
sessed whether our estimates of these quantities are reasonable based on physics
knowledge.

The results are reported in Table 1. Regarding the ROC method, the re-
sults indicate that this method provides reasonably accurate estimates of the
label noise proportions in the four experimental settings where the true propor-
tions are known. These results also suggest that mutual irreducibility can be
a reasonable assumption in practice. In the nuclear particle classification prob-
lem, although ground truth labels are unavailable, the proportions estimated by
the ROC method are at least consistent with the expectation that noisy labels
should be relatively rare (given the high rate of Cf-252 fission events relative
to the expected rate of background events), and also with the knowledge that
neutrons are rarer background events than gamma-rays (i.e., π0 < π1).

With regards to the CPE method, the results indicate that the method is
sometime accurate, but other times incurs considerable error. We also note that
for the nuclear data, π1 is estimated to be smaller than π0, which is inconsistent
with the knowledge that contaminating neutrons are more rare than contami-
nating gamma-rays. To further investigate this issue, we formed Table 2. The
first two columns are the same as in the previous table, restricted to the wave-
form and digits data for which ground truth is known. The third and fourth
columns show the empirical percentiles of the ground truth values of η̃min and
η̃max, which should ideally be near 0 and 1.
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Table 2

Percentiles of the true η̃min and η̃max for those experiments with ground truth. The 3rd and
4th columns should ideally be zero and 1.

data set π0 π1 η̃min %ile η̃max %ile
waveform 0.1 0.25 0 0.79
waveform 0.15 0.05 0.28 0.99
digits 0.1 0.25 0.07 0.70
digits 0.15 0.05 0.31 0.93

We see that our implementation of the CPE estimator can be both conser-
vative (estimating more noise than is actually present), and overly optimistic
(estimating less noise than is present). Indeed, percentiles far from 0 or 1 reflect
over optimism. On the other hand, percentiles of exactly 0 and 1 (of which there
is one instance in Table 2) are quite likely signs of conservitism. In this case,
the empirical values of η̃ do not cover the full range [η̃min, η̃max].

CPE-based estimators were also studied by Liu and Tao [25], Menon et al.
[30], who report more favorable results for this method. We use KLR to esti-
mate the class probabilities, whereas they employ different techniques. Given
this discrepancy in findings, the issue warrants further investigation. There are
two factors that may favor the ROC-method. First, the ROC method employs
uncertainty quantification (on the deviation between true and empirical proba-
bilities) in the form of direct binomial tail inversion when estimating the slope
of the ROC at its right endpoint. Similar uncertainty quantification would likely
benefit the CPE method and make it less overly optimistic. Second, the ROC
method leverages the shape constraint that it is typically concave.

To illustrate the importance of accounting for label noise, we further exam-
ine nuclear particle classification. As noted in Section 2, training a classifier
on contaminated training data generates the same ROC as training with un-
contaminated data, and the real impact of accounting for label noise occurs in
performance evaluation. In Fig. 4, the solid curve plots the ROC for the nuclear
particle data, using contaminated test data to estimate the false positive and
true positive rates. The dotted curve relies on Eqns. (10)–(11) to correct these
probabilities, revealing that the classifier actually classifies the particles much
more accurately than one would expect if label noise was not accounted for. This
makes intuitive sense, because many of the particles from the contaminated test
data that appear to be incorrectly classified are actually correctly classified, and
just have erroneous labels.

12. Conclusion

We argue that consistent classification with label noise is possible if a majority
of the labels are correct on average, and the class-conditional distributions P0

and P1 are mutually irreducible. Under these conditions, we leverage results
of [7] on mixture proportion estimation to design consistent estimators of the
noise proportions. These estimators are applied to establish a consistent discrim-
ination rule based on surrogate loss minimization, although other performance
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Fig 4. The ROC for the nuclear classification problem, where the solid curve plots the uncor-
rected errors (R̃0, 1− R̃1), and the dotted curve plots the corrected errors (R0, 1−R1) which
account for the presence of label noise in the test data.

measures could be analyzed similarly. Unlike previous theoretical work on this
problem, we handle the cases where the supports of P0 and P1 may overlap or
even be equal, and the noise proportions are asymmetric and unknown.

We also argue that mutual irreducibility is necessary if we require the de-
contamination operation at population level to satisfy some natural conditions
(universality, symmetry, continuity and stability.) Additionally, requiring mu-
tual irreducibility can be equivalently seen as aiming at maximum denoising of
the contaminated distributions, or maximum separation of the unknown sources
P0, P1 for given contaminated distributions. Thus, our discrimination rule is uni-
versally consistent in the sense that its performance tends to the optimal per-
formance corresponding to the maximally denoised P0, P1, regardless of P̃0, P̃1.

Finally, we investigate two practical implementations of MPE, one based on
the ROC for the contaminated data, and the other based on class probability
estimation for the contaminated data. The ROC method exhibits good accuracy
in the label noise setting on three different data sets, including the nuclear
particle classification problem that originally motivated this work. Our CPE
implementation, on the other hand, still requires further development.

Appendix A: Mixture proportion consistency result

Blanchard et al. [7] establish strong consistency of κ̂, that is, convergence almost
surely, although the statement of that consistency result requires a slight correc-
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tion. In particular, it is necessary to additionally assume that logmax(n0, n1) =
o(min(n0, n1)) for the argument to hold. Although the focus of that work is al-
most sure convergence, the proof can be easily modified to establish convergence
in probability, and for that type of convergence, the aforementioned qualifica-
tion on the growth of the sample sizes is not necessary. Since the present work
focuses on convergence in probability, our results also require no additional
qualification. See [39] for additional details.

Appendix B: Remaining proofs

B.1. Proof of Proposition 1

Proof. First note that under (A), λ is well-defined and nonnegative. Solving for
γ we obtain

γ =
λ(1− π0)− π1

1− π1 − λπ0
.

The denominator in this expression is positive, which can be seen as follows.

λ =
π1 + γ(1− π1)

1− π0 + γπ0

<
1− π0 + γ(1− π1)

1− π0 + γπ0

<
γ(1− π1)

γπ0

=
1− π1

π0
.

The first inequality follows from (A), while the second follows from the fact
that the mapping t �→ (a+ t)/(b+ t) is strictly decreasing in t ≥ 0 when a > b.
Here a = γ(1− π1) and b = γπ0.

Therefore,

p1(x)

p0(x)
> γ ⇐⇒ p1(x)

p0(x)
>

λ(1− π0)− π1

1− π1 − λπ0

⇐⇒ [1− π1 − λπ0]p1(x) > [λ(1− π0)− π1]p0(x)

⇐⇒ (1− π1)p1(x) + π1p0(x) > λ[(1− π0)p0(x) + π0p1(x)]

⇐⇒ p̃1(x)

p̃0(x)
> λ.

B.2. Proof of Theorem 11

Proof. Let (P0, P1) be mutually irreducible and fixed for the rest of the proof.
Observe that if conditions (i) and (ii) are satisfied, (P0, P1) must be a φ-source.
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Namely, by (i) (P0, P1) belongs to the domain of φ; and since (P0, P1) are mu-
tually irreducible, the only possible values for φ(P0, P1) are (0, 0, P0, P1) and
(1, 1, P1, P0). In any case, by the symmetry condition (ii), (P0, P1) and (P1, P0)
are both φ-sources. Finally, by stability condition (iv), it must be the case that
φ(P0, P1) = (0, 0, P0, P1).

Let us now denote ε∗ the supremum of values ε such that, for all (π0, π1) ∈
[0, 1]2 with π0 + π1 < ε, (12) is satisfied. Condition (iv) implies ε∗ > 0. If
ε∗ = 1, this means that φ returns the mutually irreducible solution for mutual
contamination with arbitrary contamination weights of (P0, P1).

We now consider the case where ε∗ < 1 and will come to a contradiction.
Fix arbitrarily ε ∈ (ε∗, 1). By definition of ε∗, there exists (π0, π1) such that
ε∗ < π0 + π1 < ε and (12) is not satisfied.

Let (ν0, ν1, P
ε
0 , P

ε
1 ) = φ(ψ(π0, π1, P0, P1)) be the contamination proportions

and sources identified by φ for the contamination ψ(π0, π1, P0, P1). Since (12)
is not satisfied, and the identified sources uniquely determine the associated
contamination proportions, it holds that (P ε

0 , P
ε
1 ) is a φ-source distinct from

(P0, P1). Finally let us denote (η0, η1) the contamination weights of (P ε
0 , P

ε
1 ) in

its mutually irreducible decontamination in terms of (P0, P1). (Observe that P ε
0

and P ε
1 both belong to the convex hull of P0 and P1; this implies that (P ε

0 , P
ε
1 )

decontaminate irreducibly either to (P0, P1) or to (P1, P0). We assume for now
the former case and will come back to the latter case later.)

It must hold that η0 + η1 ≥ ε∗, otherwise we would have (by definition of
ε∗) φ(P ε

0 , P
ε
1 ) = (η0, η1, P0, P1) = φ(ψ(0, 0, P ε

0 , P
ε
1 )), contradicting (iv) for the

source (P ε
0 , P

ε
1 ). Moreover, straightforward computations and coefficient identi-

fication in the unique representation in terms of (P0, P1) lead to the relations

(ν0, ν1) =

(
π0 − η0

1− (η0 + η1)
,

π1 − η1
1− (η0 + η1)

)
.

It follows that

ν0 + ν1 = 1− 1− (π0 + π1)

1− (η0 + η1)
≤ 1− 1− ε

1− ε∗
.

In the case where (P ε
0 , P

ε
1 ) decomposes irreducibly to (P1, P0), the first equality

above still holds when replacing ηi by (1 − ηi). We deduce that in that case
ν0 + ν1 > 1.

Now consider a sequence εn ↘ ε∗, and the associated sequences (π
(n)
0 , π

(n)
1 )

and (η
(n)
0 , η

(n)
1 ) constructed as above. By compactness, we can extract a sub-

sequence so that (π
(n)
0 , π

(n)
1 ) converges to some (π∗

0 , π
∗
1). Then by construction

π∗
0 + π∗

1 = ε∗ ∈ (0, 1). On the other hand, for all n either ν
(n)
0 + ν

(n)
1 ≤ 1− 1−εn

1−ε∗

(which gets arbitrarily close to 0) or ν
(n)
0 +ν

(n)
1 ≥ 1. This contradicts the continu-

ity assumption (iii) at point (π∗
0 , π

∗
1), since by definition of ε∗ and (iii), it should

hold φπ(ψ(π
∗
0 , π

∗
1 , P0, P1)) = (π∗

0 , π
∗
1) and thus we should have ν

(n)
0 + ν

(n)
1 → ε∗.

Conversely, if φ is the mutually irreducible decontamination operator, it sat-
isfies (i)–(iv), and is therefore the only decontamination operator having these
properties.
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B.3. Proof of Theorem 12

Proof. By Lemmas 2 and 3, feasible quadruples (π0, π1, P0, P1) for decomposi-
tions (1)–(2) under condition (A) are in one-to-one correspondence with feasible
quadruples (π̃0, π̃1, P0, P1) for decompositions (6)–(7) .

Define π̃∗
0 := κ∗(P̃1|P̃0). Proposition 5 applied to (6) easily implies that for

any value π̃0 ∈ [0, π̃∗
0 ] , there exists a unique P0 such that (π̃0, P0) satisfies (6);

also, the solution (π̃∗
0 , P

∗
0 ) corresponding to the maximal feasible value of π̃0 is

the unique one satisfying (B). A similar conclusion is valid concerning solutions
of (7).

Therefore, the feasible region R for proportions (π0, π1) in the original model
(1)–(2) is obtained as the image of the rectangle [0, π̃∗

0 ]×[0, π̃∗
1 ] via the above one-

to-one correspondence. Using the explicit expression for (π̃1, π̃0) of Lemma 2, the
constraints (14) simply translate the equivalent constraints π̃0 ≤ π̃∗

0 , π̃1 ≤ π̃∗
1 .

Since by Lemma 9 , under the assumption (A) conditions (B) and (C) are
equivalent, then again via the above correspondence, we get existence and unic-
ity of (π∗

0 , π
∗
1 , P

∗
0 , P

∗
1 ) for the original formulation (1)–(2), under condition (C).

The explicit expression (13) for (π∗
0 , π

∗
1) is obtained via Lemma 3.

The equality π0 + π1 = 1 − (1−π̃1)(1−π̃0)
1−π̃1π̃0

implies that π0 + π1 is a monotone
(strictly) increasing function of π̃1 and π̃0. Therefore, the maximum of π0 + π1

can only be reached when both (π̃1, π̃0) take their maximum value. Since the
latter values are attained for the unique feasible quadruple (π̃∗

0 , π̃
∗
1 , P

∗
0 , P

∗
1 ) in

the decoupled problem, the corresponding maximum of π0 + π1 for the original
formulation is also uniquely attained for the quadruple (π∗

0 , π
∗
1 , P

∗
0 , P

∗
1 ).

Finally, by subtracting (1) from (2), we obtain the relation

(P1 − P0) = (1− π0 − π1)
−1(P̃1 − P̃0)

implying

‖P1 − P0‖TV = (1− π0 − π1)
−1

∥∥∥P̃1 − P̃0

∥∥∥
TV

.

Therefore, the maximum (over Λ) of the total variation distance ‖P1 − P0‖TV

is precisely attained for the maximum value of (π0+π1), and hence corresponds
to the unique mutually irreducible solution.

B.4. Alternate proof of density ratio formula for κ∗

Proposition 23. Assume that the ROC of the likelihood ratio tests

x �→ 1{f(x)/h(x)>γ}

is left-differentiable at (1, 1). Then κ∗(F |H) is the slope (left-derivative) of the
ROC at (1, 1).

Proof. The slope of the ROC of an LRT with threshold γ is equal to γ wherever
the slope is well defined [33, 37]. The right end-point of the ROC corresponds

to γ∗ = ess infx∈supp(H)
f(x)
h(x) . That is, for all γ > γ∗, the Type I error of the

LRT is strictly less than 1, whereas it equals 1 at γ∗.
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B.5. Proof of Theorem 14

We begin by establishing (19) without the absolute value, which is the more
challenging direction. The reverse direction will follow easily by the first part of
Theorem 13.

By (D), there exists a distribution G and γ ∈ [0, 1] such that F = (1 −
γ)G + γH and supp(H) �⊂ supp(G). Then G is irreducible with respect to H,
and Corollary 7 implies that γ = κ∗. By (AP2), there exists j ≥ 1 and S ∈ Sj

such that G(S) = 0 and H(S) > 0. But then

F (S)

H(S)
= (1− γ)

G(S)

H(S)
+ γ = κ∗.

By the VC inequality and union bound, we have that with probability at least
1− 2( 1

n0
+ 1

n1
),

κ̂ ≤ F (S) + 2ε1(j, j
−2/n1)

(H(S)− 2ε0(j, j−2/n0))+
≤ F (S) + ε

(H(S)− ε)+

where ε := 2(ε1(j, j
−2/n1)+ε0(j, j

−2/n0)). Now let ν be such that ε = ν
1+νH(S),

which is achieved by ν = ε
H(S)−ε . Let N be such that n0, n1 ≥ N implies

ε ≤ 1
2H(S). Then, for n0, n1 ≥ N and with probability at least 1− 2( 1

n0
+ 1

n1
),

κ̂ ≤ (1 + ν)
F (S) + ε

H(S)

= (1 + ν)κ∗ + ν

≤ κ∗ + 2ν

≤ κ∗ +
4

H(S)
ε.

This establishes the existence of a constant C such that for n0, n1 ≥ N ,

Pr

(
κ̂− κ∗ ≥ C

[√
log n0

n0
+

√
logn1

n1

])
≤ 2

n0
+

2

n1
.

The same inequality holds with the absolute value by the first part of Theorem
13, which holds on the same event (samples where the VC bounds hold for all
k ≥ 1) as was used to establish the above inequality.

B.6. Proof of Theorem 18

By Corollary 16, it suffices to show RP̃ ,Lα
(f̂n) − R∗

P̃ ,Lα
→ 0 in probability.

Toward this end we employ Rademacher complexity analysis. In particular, we
will leverage the following result.
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Theorem 24. Let Z,Z1, . . . , Zn be iid random variables taking values in a set
Z. Let σ1, . . . , σn be iid Rademacher random variables, independent of Z,Z1, . . . ,
Zn. Consider a set of functions G ⊆ [a, b]Z . ∀δ > 0, with probability ≥ 1 − δ
with respect to the draw of Z1, . . . , Zn, we have

∀g ∈ G,
∣∣∣∣∣E[g(Z)]− 1

n

n∑
i=1

g(Zi)

∣∣∣∣∣ ≤ 2Rn(G) + (b− a)

√
log 2/δ

2n
, (30)

where

Rn(G) = E
Z1,...,Zn
σ1,...,σn

[
sup
g∈G

1

n

n∑
i=1

σig(Zi)

]
is the Rademacher complexity of G.

A proof may be found in Mohri et al. [31, Thm. 3.1].
For any f ∈ H and loss L′, denote the empirical L′-risk

R̂L′(f) :=
1

n

n∑
i=1

L′(Ỹi, f(Xi)),

and denote the objective function J(f) := R̂Lα̂
(f) + λn‖f‖2. Also define C0 :=

max{L(0, 0), L(1, 0)}. Observe that J(f̂n) ≤ J(0) ≤ C0. Therefore λn‖f̂n‖2 ≤
C0 − R̂Lα̂

(f̂n) ≤ C0, and we deduce that f̂n ∈ BH(Mn), the ball of radius Mn

in H, where Mn :=
√

C0/λn.
Let ε > 0, and let fε ∈ H be such that RP̃ ,Lα

(fε) < R∗
P̃ ,Lα

+ ε
2 , which is

possible since the the reproducing kernel associated with H is universal [43].
Then

RP̃ ,Lα
(f̂n)−RP̃ ,Lα

(fε) = RP̃ ,Lα
(f̂n)− R̂Lα(f̂n)

+ R̂Lα(f̂n)− R̂Lα̂
(f̂n)

+ R̂Lα̂
(f̂n)− R̂Lα̂

(fε)

+ R̂Lα̂
(fε)− R̂Lα(fε)

+ R̂Lα(fε)−RP̃ ,Lα
(fε).

The first term can be bounded, with probability at least 1− 1/n, by

2DBMn√
n

+ (C0 +DBMn)

√
ln 2n

2n

using the Rademacher complexity bound applied to the class of functions G =
{(x, ỹ) �→ L(ỹ, f(x)), f ∈ BH(Mn)}, where BH(Mn) is the ball of radius Mn

(centered at the origin) in H. By the Lipschitz composition property of Radem-
acher complexity [31, Lemma 4.2], Rn(G) ≤ DRn(BH(Mn)). The Rademacher
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complexity of BH(Mn) is further bounded by BMn/
√
n [31, Thm 5.5], which

gives the first term on the RHS. The second term comes from the observation
that functions in G have ranges confined to [0, C0 +DBMn]. To see this, recall
that losses are by definition nonnegative, that L is Lipschitz in its second ar-
gument, and that for any f ∈ BH(Mn), we have ‖f‖∞ = supx∈X |〈f, k(·, x)〉| ≤
BMn by the reproducing property and Cauchy-Schwarz.

The fifth term is bounded similarly, with the only additional observation
being that fε ∈ BH(Mn) for n sufficiently large.

The middle term can be bounded by λn‖fε‖2, which tends to zero as n → ∞.

This follows from the definition of f̂n, since J(f̂n) ≤ J(fε) implies R̂Lα̂
(f̂n) −

R̂Lα̂
(fε) ≤ λn‖fε‖2 − λn‖f̂n‖2 ≤ λn‖fε‖2.

To bound the second term, observe that for any f ∈ BH(Mn),

R̂Lα(f)− R̂Lα̂
(f) =

1

n

[ ∑
i:Ỹi=1

(α̂− α)L(1, f(Xi))

+
∑

i:Ỹi=0

(α− α̂)L(0, f(Xi))

]
≤ |α̂− α| sup

x,ỹ
L(ỹ, f(x))

≤ |α̂− α| (C0 +D‖f‖∞) ,

where D is the Lipschitz constant of L. By Cauchy-Schwarz and the reproducing
property,

‖f‖∞ = sup
x

|〈f, k(·, x)〉| ≤ ‖f‖HB

where B is the bound on the kernel. Now ‖f‖H ≤
√

C0

λn
, and so for the second

term to go to zero, we need |α̂− α|/λn to go to zero. Under (A’) and (C’), we

know that |α̂− α| converges at a rate of
√

logn
n , and by our assumption on the

rate of decay of λn, |α̂−α|/λn tends to zero as n → ∞, except on a vanishingly
small event.

The fourth term is handled in a similar manner, where again we observe that
fε ∈ BH(Mn) for n sufficiently large.

In summary, we have shown that RP̃ ,Lα
(f̂n) − R∗

P̃ ,Lα
≤ ε with probability

tending to one as n (and with it n0 and n1) tends to infinity. This concludes
the proof.

B.7. Proof of Theorem 19

We start by establishing that Lα is T -clippable and its clipped version is Lips-
chitz and bounded with constants independent of α ∈ (0, 1). The loss L being
T -clippable implies by definition that both L0(t) = L(0, t) and L1(t) = L(1, t)
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are clippable. Therefore, Lα(y, t) = (1 − α)1{y=1}L1(t) + α1{y=0}L0(t) is T -
clippable (regardless of α ∈ (0, 1).) Denote

L̃α(y, t) := Lα(y,ClipT (t)) = (1−α)1{y=1}L1(ClipT (t))+α1{y=0}L0(ClipT (t)) ,

and define C0 := max{L(0, 0), L(1, 0)} . Since L is assumed Lipschitz with con-
stant D, both L1 and L0 are Lipschitz and since ClipT is 1-Lipschitz, by com-

position L̃α is also a Lipschitz loss (with the same constant D, regardless of
α ∈ (0, 1).) Furthermore, since ClipT (t) ∈ [−T, T ] , we have for all (y, t) and α:∣∣∣L̃α(y, t)

∣∣∣ ≤ max
t∈[−T,T ]

max (L0(t), L1(t)) ≤ C0 +DT .

We proceed to proving the main claim. By Corollary 16, it suffices to show
RP̃ ,Lα

(f̆n)−R∗
P̃ ,Lα

→ 0 in probability. For any f and loss L′, denote by R̂L′(f)

the empirical L′-risk of f . Denote the objective function J(f) := R̂Lα̂
(f) +

λn‖f‖2. Observe that J(f̂n) ≤ J(0) ≤ C0. Therefore λn‖f̂n‖2 ≤ C0−R̂Lα̂
(f̂n) ≤

C0, and we deduce that f̂n ∈ BH(Mn), the ball of radius Mn in H, where
Mn :=

√
C0/λn.

Let ε > 0, and let fε ∈ H be such that RP̃ ,Lα
(fε) < R∗

P̃ ,Lα
+ ε

2 , which is

possible since the the reproducing kernel associated with H is universal [43]. We
have

RP̃ ,Lα
(f̆n)−RP̃ ,Lα

(fε) = RP̃ ,L̃α
(f̂n)−RP̃ ,Lα

(fε)

= RP̃ ,L̃α
(f̂n)− R̂L̃α

(f̂n)

+ R̂L̃α
(f̂n)− R̂L̃α̂

(f̂n)

+ R̂L̃α̂
(f̂n)− R̂Lα̂

(f̂n)

+ R̂Lα̂
(f̂n)− R̂Lα̂

(fε)

+ R̂Lα̂
(fε)− R̂Lα(fε)

+ R̂Lα(fε)−RP̃ ,Lα
(fε).

The first and last terms can be bounded, with probability at least 1− 1/n, by

2DBMn√
n

+ (C0 +Dmax(T,B ‖fε‖∞))

√
ln 4n

2n

using Rademacher complexity analysis as was done in the preceding proof. Here
D is the Lipschitz constant for L (and thus also for L̃) and B is the bound on
the kernel. Note that since a different loss is used for the first and last terms,
we use a union bound and thus introduce an additional factor in the log term.

The third term equals R̂Lα̂
(f̆n)− R̂Lα̂

(f̂n) and is nonpositive by definition of
an T -clippable loss.
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The middle (4th) term can be bounded (as in the preceding proof) by λn‖fε‖2,
which tends to zero as n → ∞.

To bound the second term, observe that for any f ,

R̂L̃α
(f)− R̂L̃α̂

(f) =
1

n

[ ∑
i:Ỹi=1

(α̂− α)L̃(1, f(Xi))

+
∑

i:Ỹi=0

(α− α̂)L̃(0, f(Xi))

]

≤ |α̂− α| sup
x,ỹ

L̃(ỹ, f(x))

≤ |α̂− α|(C0 +DT ) .

The fifth term is handled in a similar manner, but with the non-clipped loss
L instead of L̃; in this case we have

R̂L̃α
(f)− R̂L̃α̂

(f) ≤ |α̂− α| (C0 +D‖fε‖∞) .

In summary, we have shown that RP̃ ,Lα
(f̂n) − R∗

P̃ ,Lα
≤ ε with probability

tending to one as n (and with it n0 and n1) tends to infinity. This concludes
the proof.
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