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Abstract: Let Sm be the set of all m × m density matrices (Hermitian
positively semi-definite matrices of unit trace). Consider a problem of esti-
mation of an unknown density matrix ρ ∈ Sm based on outcomes of n mea-
surements of observables X1, . . . , Xn ∈ Hm (Hm being the space of m×m
Hermitian matrices) for a quantum system identically prepared n times in
state ρ. Outcomes Y1, . . . , Yn of such measurements could be described by
a trace regression model in which Eρ(Yj |Xj) = tr(ρXj), j = 1, . . . , n. The
design variables X1, . . . , Xn are often sampled at random from the uniform
distribution in an orthonormal basis {E1, . . . , Em2} of Hm (such as Pauli
basis). The goal is to estimate the unknown density matrix ρ based on the
data (X1, Y1), . . . , (Xn, Yn). Let

Ẑ :=
m2

n

n∑
j=1

YjXj

and let ρ̌ be the projection of Ẑ onto the convex set Sm of density matrices.
It is shown that for estimator ρ̌ the minimax lower bounds in classes of
low rank density matrices (established earlier) are attained up logarithmic
factors for all Schatten p-norm distances, p ∈ [1,∞] and for Bures version
of quantum Hellinger distance. Moreover, for a slightly modified version
of estimator ρ̌ the same property holds also for quantum relative entropy
(Kullback-Leibler) distance between density matrices.
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1. Introduction

Let Mm be the set of all m × m matrices with entries in C. For A ∈ Mm, let
A∗ denote its conjugate transpose and let tr(A) denote the trace of A. The
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complex linear space Mm of dimension m2 will be equipped with the Hilbert-
Schmidt inner product 〈A,B〉 = tr(AB∗), A,B ∈ Mm. Let

Hm := {A ∈ Mm : A = A∗}

be the set of all Hermitian matrices. Clearly, Hm is a linear space of dimension
m2 over the field of real numbers (and it is a real Euclidean space with inner
product 〈·, ·〉). For A ∈ Hm, the notation A � 0 means that A is positively
semi-definite. A density matrix is a positively semi-definite Hermitian matrix of
unit trace. The set of all m×m density matrices will be denoted by

Sm := {S ∈ Hm : S � 0, tr(S) = 1}.

Density matrices are used in quantum mechanics to characterize the states of
quantum systems. More generally, the states are represented by self-adjoint
positively semidefinite operators of unit trace acting in an infinite-dimensional
Hilbert space. In this case, density matrices of a large dimension m could be
used to approximate the states of the system.

The goal of quantum state tomography is to estimate the density matrix for a
system prepared in an unknown state based on specially designed measurements.
Let X ∈ Hm be a Hermitian matrix (an observable) with spectral representa-
tion X =

∑m′

j=1 λjPj , where m′ ≤ m, λj ∈ R, j = 1, . . . ,m′ being the distinct
eigenvalues of X and Pj , j = 1, . . . ,m′ being the corresponding eigenprojections.
For a system prepared in state ρ ∈ Sm, possible outcomes of a measurement of
observable X are the eigenvalues λj , j = 1, . . . ,m′ and they occur with proba-
bilities pj := tr(ρPj), j = 1, . . . ,m′. If Y is a random variable representing such
an outcome, then

EρY = tr(ρX) = 〈ρ,X〉.
In a simple model of quantum state tomography considered in this paper, an
observable X is sampled at random from some probability distribution Π in
Hm, Eρ(Y |X) = 〈ρ,X〉 and Y = 〈ρ,X〉+ ξ with noise ξ such that Eρ(ξ|X) = 0.
Given a sample X1, . . . , Xn of n i.i.d. copies of X, n measurements of observ-
ables X1, . . . , Xn are performed for a system identically prepared n times in the
same unknown state ρ ∈ Sm resulting in outcomes Y1, . . . , Yn. This leads to the
following trace regression model

Yj = 〈ρ,Xj〉 + ξj , j = 1, . . . , n (1.1)

with design variables Xj , j = 1, . . . , n, response variables Yj , j = 1, . . . , n and
noise ξj , j = 1, . . . , n satisfying the assumption Eρ(ξj |Xj) = 0, j = 1, . . . , n and
Eρ(Yj |Xj) = 〈ρ,Xj〉. The goal is to estimate the target density matrix ρ based
on the data (X1, Y1), . . . , (Xn, Yn), with the estimation error being measured by
one of the statistically meaningful distances between density matrices such as
the Schatten p-norm distances for p ∈ [1,∞] or quantum versions of Hellinger
and Kullback-Leibler distances.

This version of the problem of quantum state tomography has been inten-
sively studied in the recent years. The noiseless case (quantum compressed sens-
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ing) was considered in [13] and [12]. In these papers, sharp bounds on the number
n of measurements needed to recover a density matrix of rank r were obtained
based on a subtle argument (so called “golfing scheme”) utilizing matrix Bern-
stein type inequalities. These developments were related to an earlier work on
low rank matrix completion [8]. In the noisy case, trace regression problems have
been studied by many authors (see, e.g., [18] and references therein). The main
focus was on nuclear norm penalized least squares estimator (matrix LASSO)
and related methods such as matrix Dantzig selector (see [7], [22], [28], [17]).
In [24], sharp bounds for matrix LASSO and matrix Dantzig selector, in par-
ticular, for Pauli measurements in quantum state tomography were obtained.
Most of the results in these papers included upper bounds on the estimation
error in Hilbert–Schmidt (Frobenius) norm as well as low rank oracle inequal-
ities ([22], [18], [21]). In [22], an upper bound on the operator norm error of a
nuclear norm penalized modified least squares estimator was also proved. This
result was further developed in [25]. In [19], upper bounds and low rank or-
acle inequalities for von Neumann entropy penalized least squares estimators
were studied (including the bounds on the error in Bures distance and quan-
tum relative entropy distance). A rank penalized estimator of density matrix
was studied in [1]. The minimax lower bounds on the Frobenius norm error for
matrix completion problems in classes of matrices of rank r were obtained in
[22] (the operator norm version could be found in [25]). In [26], a method of
deriving lower bounds for unitary invariant matrix norms (including Schatten
p-norms) was developed and, among other matrix estimation problems, such
bounds were obtained for matrix completion. Minimax lower bounds on the
nuclear norm error in density matrix estimation were obtained in [10], where
it was also shown that these bounds are attained (up to logarithmic factors)
for the matrix versions of LASSO and Dantzig selector. In [5], estimators of
density matrices based on spectral thresholding along with their versions based
on subsequent projecting onto the set of density matrices (somewhat similar to
what is done in the current paper, but for a somewhat different measurement
model) were studied. The main focus in this paper was on the upper bounds and
minimax lower bounds in the Frobenius norm. Another recent paper [14] deals
with low-rank matrix recovery, in particular, in the case of positive semi-definite
matrices, for several measurement models that do not seem to cover the Pauli
measurements. On the other hand, this paper treats the under-determined case
and provides uniform bounds over the choice of design.

In our recent paper [23], we derived minimax lower bounds in classes of low
rank density matrices for the whole range of Schatten p-norm distances as well
as for Bures (quantum Hellinger) and quantum relative entropy distance. We
also showed that these minimax bounds are attained (up to logarithmic factors)
for von Neumann entropy penalized least squares estimators introduced in [19]
simultaneously for Bures, relative entropy and Schatten p-norm distances for
p ∈ [1, 2].

The current paper could be viewed as a continuation of [23]. Our main goal is
to study a minimal distance estimator ρ̌ of ρ (initially proposed in [20]) defined
as the projection of a simple unbiased estimator
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Ẑ = m2

n

n∑
j=1

YjXj

onto the convex set of density matrices Sm. We show that the minimax error
rates established in [23] for the classes of low rank density matrices are attained
for this estimator up to logarithmic factors in the whole range of Schatten p-
norm distances for p ∈ [1,∞] as well as for Bures and relative entropy distance.
The proof of these results relies on simple properties of projections of Hermitian
matrices onto the convex set Sm of density matrices (see Theorems 3.4 and 3.5)
that might be of independent interest.

Throughout the paper, 〈·, ·〉 denotes either Hilbert–Schmidt inner product
(defined above), or (with a little abuse of notation) the canonical inner product
of C

m. The corresponding norm in C
m is denoted by | · |. For A,B ≥ 0, the

notation A � B means that A ≤ CB for a numerical constant C > 0, A � B
means that B � A and A � B means that B � A � B. If needed, these
signs might be provided with subscripts indicating that the constant is allowed
to depend on parameters. Say, A �γ B would mean that A ≤ CB with C
depending on γ.

2. Preliminaries

2.1. Distances between density matrices

The Schatten p-norm of a matrix A ∈ Hm is defined as

‖A‖p :=
( m∑

j=1
|λj(A)|p

)1/p
, p ∈ [1,+∞],

where λ1(A) ≥ · · · ≥ λm(A) are the eigenvalues of A arranged in a non-
increasing order. For p = 1, the norm ‖A‖1 is called the nuclear or the trace
norm; for p = 2, ‖A‖2 is the Hilbert–Schmidt (generated by the Hilbert–Schmidt
inner product) or Frobenius norm; for p = +∞, ‖A‖∞ = max1≤j≤m |λj(A)| is
called the operator or the spectral norm. Note that, for all A ∈ Hm, [1,∞] 

p �→ ‖A‖p is a non-increasing function. The following interpolation inequality is
well known and can be easily deduced from a similar result for �p-norms. Let
1 ≤ p < q < r ≤ ∞ and let μ ∈ [0, 1] be such that μ

p + 1−μ
r = 1

q , then

‖A‖q ≤ ‖A‖μp‖A‖1−μ
r , A ∈ Hm. (2.1)

In addition to the distances generated by the Schatten p-norms, the following
two distances (extending well known distances between probability distributions
used in the classical statistics) are of importance in quantum statistics: Bures
distance and Kullback-Leibler divergence. The Bures distance is a quantum
version of Hellinger distance and it is defined as follows:

H2(S1, S2) := 2 − 2tr
√
S

1/2
1 S2S

1/2
1 , S1, S2 ∈ Sm.
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The quantity tr
√
S

1/2
1 S2S

1/2
1 is called the fidelity of states S1, S2 (a quantum

version of Hellinger affinity). Note that 0 ≤ H2(S1, S2) ≤ 2 and that H(S1, S2)
defines a metric in the space Sm.

Given a density matrix S =
∑r

j=1 λj(φj ⊗ φj) with nonzero eigenvalues λj

and eigenvectors φj , let supp(S) be the linear span of vectors φ1, . . . , φr ∈ Cm.
The non-commutative Kullback-Leibler divergence, or relative entropy distance
is defined as

K(S1‖S2) := tr(S1 logS1 − S1 logS2), S1, S2 ∈ Sm

provided that supp(S1) ⊂ supp(S2) (in particular, if S2 is of full rank), and
K(S1‖S2) := +∞ otherwise. Clearly, K(S1‖S2) is not a metric (it is not even
symmetric). It is well known that K(S1‖S2) is the supremum of classical
Kullback-Leibler divergences between the distributions of outcomes of all possi-
ble measurements (represented by positive operator valued measures (POVM))
for the system prepared in states S1 and S2. Similar property holds also for the
Bures (Hellinger) distance and for the nuclear norm distance ‖S1 − S2‖1 which
is the supremum of classical total variation distances between the distributions
of outcomes of all measurements (see [29], [16]). These observations easily imply
the following inequalities:

1
4‖S1 − S2‖2

1 ≤ H2(S1, S2) ≤ K(S1‖S2) ∧ ‖S1 − S2‖1 (2.2)

(see also [19]).

2.2. Sampling from an orthonormal basis

Uniform sampling from an orthonormal basis is a model of design distribution in
trace regression (1.1) that has been frequently used in the literature on quantum
compressed sensing (see, [13], [12]). Let E := {E1, . . . , Em2} be an orthonormal
basis of the space Hm of Hermitian matrices. Let

U := max
1≤j≤m2

‖Ej‖∞.

Clearly, U ≤ 1 and
1 = max

1≤j≤m2
‖Ej‖2 ≤ m1/2U,

implying that U ≥ m−1/2. In what follows, it will be assumed that Π is a uniform
distribution on the basis E . As a result, the response variables Yj , j = 1, . . . , n
of trace regression model (1.1) could be viewed as noisy measurements of n
randomly picked Fourier coefficients of the target density matrix ρ in basis
E . This model includes, in particular, the so called Pauli measurements, an
important approach to quantum state tomography (see, e.g., [13], [12]).

Example: Pauli bases and Pauli measurements. The space of observ-
ables for a single qubit system is the space H2 of 2 × 2 Hermitian matrices.
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Let

σ0 :=
(

1 0
0 1

)
, σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 i
−i 0

)
, σ3 :=

(
1 0
0 −1

)
.

The matrices σ1, σ2, σ3 (often denoted σx, σy, σz) are called Pauli matrices. The
matrices Wi = 1√

2σi, i = 0, 1, 2, 3 form an orthonormal basis of the space H2

(the Pauli basis). For a system consisting of k qubits, the space of observables
is Hm, where m = 2k. The Pauli basis of this space is defined by tensorizing
the Pauli basis of H2 : 1 it consists of m2 = 4k tensor products Wi1 ⊗ . . . ⊗
Wik , (i1, . . . , ik) ∈ {0, 1, 2, 3}k. Let E1 = W0 ⊗ . . . ⊗ W0 and let E2, . . . , Em2

be the rest of the matrices of the Pauli basis of Hm. It is straightforward to
check that E1 = 1√

m
Im, where Im denotes m × m identity matrix (thus, 1√

m

is the only eigenvalue of E1). Matrices E2, . . . , Em2 have eigenvalues ± 1√
m
.

Therefore, ‖Ej‖∞ = m−1/2, implying that, for the Pauli basis, U = m−1/2. The
fact that the matrices of this basis have the smallest possible operator norms
has been used in quantum compressed sensing (see [13], [12], [24]). Matrices
Ej have the following spectral representations: Ej = 1√

m
P+
j − 1√

m
P−
j with

eigenprojections P+
j , P−

j , j = 1, . . . ,m2 (for E1, P
−
1 = 0). A measurement of Ej

for a k qubit system prepared in state ρ results in a random outcome τj with
two possible values ± 1√

m
taken with probabilities

〈
ρ, P±

j

〉
. For random variable

τj , Eρτj = 〈ρ,Ej〉. The density matrix ρ admits the following representation in
the Pauli basis:

ρ =
m2∑
j=1

αj√
m
Ej

with α1 = 1 and with some αj ∈ R, j = 2, . . . ,m2. This implies that Eρτj = αj√
m
,

Pρ

{
τj = ± 1√

m

}
= 1 ± αj

2

and Varρ(τj) = 1−α2
j

m . Note that, for j = 1, α1 = 1, Pρ

{
τ1 = 1√

m

}
= 1 and

Varρ(τ1) = 0. For j = 2, . . . ,m2, |αj | ≤ 1 (αj = ±1 if and only if Varρ(τj) = 0).
Let ν be picked at random from the set {1, . . . ,m2} (with the uniform distri-

bution) and let X = Eν , Y = τν (which corresponds to random sampling from
the Pauli basis with a subsequent measurement of observable X resulting in the
outcome Y ). Then Eρ(Y |X) = 〈ρ,X〉 and Varρ(Y |X) = 1−α2

ν

m . Moreover, we
have

P

{
Varρ(Y |X) ≤ 1

2m

}
= P

{
α2
ν ≥ 1

2

}
≤ 2Eα2

ν = 2
m

m2∑
j=1

α2
j

m
= 2‖ρ‖2

2
m

.

1In what follows, the sign ⊗ denotes the tensor product of vectors or matrices (linear
transformations). For instance, for u, v ∈ Cm, u ⊗ v is a linear transformation from Cm into
itself defined as follows: (u⊗ v)x = u〈x, v〉, x ∈ Cm.
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Since, for ρ ∈ Sm, ‖ρ‖2 ≤ 1, this means that, for m > 2 with probability at
least 1 − 2

m , Varρ(Y |X) > 1
2m . In other words, the number of j = 1, . . . ,m2

such that Varρ(τj) > 1
2m is at least m2 − 2m implying that, for the most of the

values of j, Varρ(τj) � 1
m .

The variance could be further reduced by repeating the measurement of the
observable X K times (for a system identically prepared in state ρ) and av-
eraging the outcomes of the resulting K measurements. In this case, the re-
sponse variable becomes Y = 〈ρ,X〉 + ξ, where Eρ(ξ|X) = 0 and Eρ(ξ2|X) =
Varρ(Y |X) = 1−α2

ν

Km .

2.3. Minimax lower bounds

In [23], the problem of density matrix estimation was studied in the case of trace
regression model (1.1) with i.i.d. random design variables X1, . . . , Xn sampled
from the uniform distribution in an orthonormal basis E = {E1, . . . , Em2} in
two different settings: trace regression with Gaussian noise and trace regression
with a bounded response. In both cases, minimax lower bounds on the estimation
error of the unknown target density matrix ρ of rank at most r were obtained
for the Schatten p-norm distances (p ∈ [1,+∞]) as well as for the Bures version
of quantum Hellinger distance and for the quantum Kullback-Leibler (relative
entropy) distance. These results of [23] are stated below.

Denote by Sr,m the set of all density matrices of rank at most r (1 ≤ r ≤ m).

Assumption 1 (Trace regression with Gaussian noise). Let (X,Y ) be a random
couple with X being a random matrix sampled from the uniform distribution Π in
an orthonormal basis E = {E1, . . . , Em2} ⊂ Hm. Suppose that, for some density
matrix ρ ∈ Sm, Y = 〈ρ,X〉+ ξ, where ξ is a mean zero normal random variable
with variance σ2

ξ independent of X. Let (X1, Y1), . . . , (Xn, Yn) be n i.i.d. copies
of (X,Y ).

In this model, the level of the noise ξ is characterized by its variance which
should be involved in the error bound (this could be viewed as a normal approx-
imation of the noise in the case when repeated measurements are performed for
each observable Xj with averaging of the outcomes).

Theorem 2.1. Suppose Assumption 1 holds. For all p ∈ [1,+∞], there exist
constants c, c′ > 0 such that, the following bounds hold:2

inf
ρ̂

sup
ρ∈Sr,m

Pρ

{
‖ρ̂− ρ‖p ≥ c

(
r1/pσξm

3
2

√
n

∧(
σξm

3/2
√
n

)1− 1
p ∧

1
)}

≥ c′, (2.3)

inf
ρ̂

sup
ρ∈Sr,m

Pρ

{
H2(ρ̂, ρ) ≥ c

(
r
σξm

3
2

√
n

∧
1
)}

≥ c′, (2.4)

2Here Pρ denotes a probability measure such that Assumption 1 is satisfied with density
matrix ρ.
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and

inf
ρ̂

sup
ρ∈Sr,m

Pρ

{
K(ρ‖ρ̂) ≥ c

(
r
σξm

3
2

√
n

∧
1
)}

≥ c′, (2.5)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data
(X1, Y1), . . . , (Xn, Yn) satisfying the Gaussian trace regression model with noise
variance σ2

ξ .

The trace regression model with a bounded response is characterized by the
size U of the range of response variable Y, which usually coincides with the bound
on the operator norms of the basis matrices Ej . It includes, in particular, Pauli
measurements discussed above (for which U = m−1/2).

Assumption 2 (Trace regression with a bounded response). Let (X,Y ) be
a random couple with X being a random matrix sampled from the uniform
distribution Π in an orthonormal basis E = {E1, . . . , Em2} ⊂ Hm with U :=
max1≤j≤m2 ‖Ej‖∞ and Y being a random variable with values in the interval
[−U,U ]. Suppose that, for some density matrix ρ ∈ Sm, E(Y |X) = 〈ρ,X〉 a.s.
Let (X1, Y1), . . . , (Xn, Yn) be n i.i.d. copies of (X,Y ).

Let Pr,m(U) denote the class of all distributions P of (X,Y ) such that As-
sumption 2 holds for some U > 0 and E(Y |X) = 〈ρP , X〉 for some ρP ∈ Sr,m.
For a given P ∈ Pr,m(U), PP denotes the corresponding probability measure
such that (X1, Y1), . . . , (Xn, Yn) are i.i.d. copies of (X,Y ).

Theorem 2.2. Suppose Assumption 2 is satisfied and, for some constant γ ∈
(0, 1), ∣∣∣tr(Ek)

∣∣∣ ≤ (1 − γ)Um, k = 1, . . . ,m2. (2.6)

Then, for all p ∈ [1,+∞], there exist constants cγ , c′γ > 0 such that the following
bounds hold:

inf
ρ̂

sup
P∈Pr,m(U)

PP

{
‖ρ̂− ρP ‖p ≥ cγ

(
r1/pUm

3
2

√
n

∧(
Um3/2
√
n

)1− 1
p ∧

1
)}

≥ c′γ ,

(2.7)

inf
ρ̂

sup
P∈Pr,m(U)

PP

{
H2(ρ̂, ρP ) ≥ cγ

(
r
Um

3
2

√
n

∧
1
)}

≥ c′γ , (2.8)

and

inf
ρ̂

sup
P∈Pr,m(U)

PP

{
K(ρP ‖ρ̂) ≥ cγ

(
r
Um

3
2

√
n

∧
1
)}

≥ c′γ , (2.9)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the i.i.d.
data (X1, Y1), . . . , (Xn, Yn) sampled from P.

As it was pointed out in [23] (see Remark 12), if γ in condition (2.6) is small
enough (say, γ < 1 − 1√

2 ), then, in a given orthonormal basis E , there exists at
most one matrix Ej such that tr(Ej) > (1 − γ)Um. In the case of Pauli basis,
such a matrix indeed exists and it is E1 = W0 ⊗ · · · ⊗W0. Thus, Theorem 2.2
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does not apply directly to the Pauli measurement model. However, the following
result does hold (see [23], Theorem 10).

Theorem 2.3. Let {E1, . . . , Em2} be the Pauli basis in the space Hm of m×m
Hermitian matrices and let X1, . . . , Xn be i.i.d. random variables sampled from
the uniform distribution in {E1, . . . , Em2}. Let Y1, . . . , Yn be outcomes of mea-
surements of observables X1, . . . , Xn for the system being identically prepared n
times in state ρ. The corresponding probability measure will be denoted by Pρ.
Then, for all p ∈ [1,+∞], there exist constants c, c′ > 0 such that the following
bounds hold:

inf
ρ̂

sup
ρ∈Sr,m

Pρ

{
‖ρ̂− ρ‖p ≥ c

(
r1/p m√

n

∧(
m√
n

)1− 1
p ∧

1
)}

≥ c′, (2.10)

inf
ρ̂

sup
ρ∈Sr,m

Pρ

{
H2(ρ̂, ρ) ≥ c

(
r
m√
n

∧
1
)}

≥ c′, (2.11)

and
inf
ρ̂

sup
ρ∈Sr,m

Pρ

{
K(ρ‖ρ̂) ≥ c

(
r
m√
n

∧
1
)}

≥ c′, (2.12)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data
(X1, Y1), . . . , (Xn, Yn).

It was also shown in [23] that, in the case of Schatten p-norm distances for
p ∈ [1, 2], Bures distance and Kullback-Leibler distance, the minimax lower
bounds of Theorems 2.1, 2.2 and 2.3 are attained up to logarithmic factors
in m and n for a penalized least squares estimator with von Neumann entropy
penalty introduced in [19]. In the current paper, our main goal is to show that the
minimax optimal rates are attained up to logarithmic factors for a very simple
minimal distance estimator (that does not require any penalization) in the whole
range of Schatten p-norms, p ∈ [1,∞], as well as for Bures and Kullback-Leibler
distances.

3. Main results

For the model of uniform sampling from an orthonormal basis E = {E1, . . . , Em2},
the following simple estimator of unknown state ρ ∈ Sm is unbiased:

Ẑ := m2

n

n∑
j=1

YjXj .

Indeed,

EρẐ = m2
Eρ(Y X) = m2

E(Eρ(Y |X)X) = m2
Etr(ρX)X

= m2
E〈ρ,X〉X = m2 1

m2

m2∑
j=1

〈ρ,Ej〉Ej = ρ.

Clearly, Ẑ is not necessarily a density matrix.
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We will now define the minimal distance estimator ρ̌ as the projection of Ẑ
onto the convex set Sm of all density matrices. More precisely, for an arbitrary
Z ∈ Hm, define

πSm(Z) := argminS∈Sm
‖Z − S‖2

2. (3.1)
Clearly, πSm(Z) is the closest density matrix to Z with respect to the Hilbert–
Schmidt norm distance (that is, the projection of Z onto Sm; such a closest
density matrix exists in view of compactness of Sm and it is unique in view of
strict convexity of S �→ ‖Z − S‖2

2). Let

ρ̌ := πSm(Ẑ).

Remark 1. This definition is equivalent to the following

ρ̌ := argminS∈Sm

[
− 2

n

∑n
j=1 Yj〈S,Xj〉 + m−2‖S‖2

2

]
=

argminS∈Sm

[
1
n

∑n
j=1 Y

2
j − 2

n

∑n
j=1 Yj〈S,Xj〉 + m−2‖S‖2

2

]
(3.2)

that was considered in [20] (in [22], similar estimators involving nuclear norm
penalty were studied). Note that replacing the term m−2‖S‖2

2 in the right hand
side of (3.2) by its unbiased estimator n−1 ∑n

j=1〈S,Xj〉2 yields the usual least
squares estimator

ρ̂ := argminS∈Sm

[
n−1

n∑
j=1

(Yj − 〈S,Xj〉)2
]
. (3.3)

Note that we also have

ρ̂ := argminS∈Sm

[
n−1

n∑
j=1

(Yj − 〈S,Xj〉)2 + ε‖S‖1

]
(3.4)

since, for S ∈ Sm, ‖S‖1 = tr(S) = 1. Thus, ρ̂ coincides with the nuclear
norm penalized least squares estimator (also called the matrix LASSO estimator)
for any value of the regularization parameter ε. The fact that nuclear norm
penalization is implicitly present in quantum state tomography due to positive
semi-definiteness and trace constraint for density matrices was emphasized in
[20] and [15].

We will show that the upper bounds on the error rates in Schatten p-norm
distances for p ∈ [1,∞] and in Bures distance that match the minimax lower
bounds of Theorems 2.1, 2.2 and 2.3 up to logarithmic factors hold for the
estimator ρ̌. We will then introduce a simple modification of this estimator for
which a matching upper bound holds also for Kullback-Leibler distance.

3.1. Upper bounds on the risk of estimator ρ̌

First, we consider the case of Gaussian trace regression model (Assumption 1).
We need an additional assumption that σξ ≥ U

m1/2 (the variance of the noise is
not too small).
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Theorem 3.1. Suppose Assumption 1 holds and σξ ≥ U
m1/2 . For all p ∈ [1,+∞],

there exists a constant C > 0 such that, for all A ≥ 1 the following bounds hold:

sup
ρ∈Sr,m

Pρ

{
‖ρ̌− ρ‖p

≥C

(
r1/pσξm

3
2
√
A log(2m)√
n

∧(
σξm

3/2
√
A log(2m)√
n

)1− 1
p ∧

1
)}

≤ (2m)−A

(3.5)

and

sup
ρ∈Sr,m

Pρ

{
H2(ρ̌, ρ) ≥ c

(
r
σξm

3
2
√
A log(2m)√
n

∧
1
)}

≤ (2m)−A. (3.6)

If σξ < U
m1/2 , the bounds still hold with σξ replaced by U

m1/2 .

Remark 2. In a number of previous results on low rank matrix recovery, the
focus has been on the under-determined case when the number of measurements
n could be of the order mr (up to logarithmic factors) which is smaller than m2

(when the rank r is small). Moreover, some of these results cover the noiseless
case when σξ = 0 (see, e.g., [7] and [24]). This is usually done for such estima-
tors as unconstrained matrix LASSO or Dantzig selector by checking a matrix
version of Restricted Isometry Principle (RIP) for the corresponding measure-
ment model. Despite the fact that the assumption on the standard deviation
σξ ≥ U

m1/2 is needed in Theorem 3.1 and the resulting bounds do not apply to
the noiseless case, they still cover some instances of under-determined problems.
Consider, for instance, the case of repeated Pauli measurements in which m ob-
servations are performed for each observable Xj and Yj represents the average
of their outcomes. Then, U = m−1/2 and the noise ξj is approximately normal
(for large m) with standard deviation σξ � m−1. Thus, for p = 2, the first term

r1/pσξm
3
2
√

A log(2m)√
n

�
√

mrA log(2m)
n

of bound (3.5) becomes nontrivial (smaller than 1) as soon as n � mrA log(2m)
(which is a standard assumption in low rank recovery problems) while the second
term (

σξm
3/2

√
A log(2m)√
n

)1− 1
p

�
(√

Am log(2m)√
n

)1− 1
p

is nontrivial even when n � mA log(2m) (which does not depend on the rank
r). However, it looks like such estimators as ρ̌ (or the unbiased estimator Ẑ it
is based upon) do not provide an exact recovery in the noiseless case and the
assumption that σξ is bounded away from zero is needed for bounds of Theo-
rem 3.1 to hold (at least with our approach to its proof). This is due to the fact
that the error of estimator Ẑ involves a part related to the randomness of design
distribution (see representation (3.12) and bound (3.13) in the proof), which is
not equal to zero even in the noiseless case.
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In the case of trace regression with a bounded response, the following result
holds.

Theorem 3.2. Suppose Assumption 2 is satisfied. Then, for all p ∈ [1,+∞],
there exists a constant C > 0 such that, for all A ≥ 1, the following bounds
hold:

sup
P∈Pr,m(U)

PP

{
‖ρ̌− ρP ‖p

≥ C

(
r1/pUm

3
2
√

A log(2m)√
n

∧(
Um3/2

√
A log(2m)√
n

)1− 1
p ∧

1
)}

≤ (2m)−A

(3.7)

and

sup
P∈Pr,m(U)

PP

{
H2(ρ̌, ρP ) ≥ C

(
r
Um

3
2
√
A log(2m)√
n

∧
1
)}

≤ (2m)−A. (3.8)

For completeness, we state also the upper bounds in the case of Pauli mea-
surements (that immediately follow from Theorem 3.2).

Theorem 3.3. Suppose the assumptions of Theorem 2.3 hold. Then, for all
p ∈ [1,+∞], there exists a constant C such that, for all A ≥ 1, the following
bounds hold:

sup
ρ∈Sr,m

Pρ

{
‖ρ̌− ρ‖p ≥ c

(
r1/pm

√
A log(2m)√

n

∧(
m
√
A log(2m)√

n

)1− 1
p ∧

1
)}

≤ (2m)−A

(3.9)

and
sup

ρ∈Sr,m

Pρ

{
H2(ρ̌, ρ) ≥ c

(
r
m√
n

∧
1
)}

≤ (2m)−A. (3.10)

3.2. Proof of the upper bounds

The proof of the upper bounds relies on the following fact that might be of in-
dependent interest and that essentially shows that πSm(Z) is the closest density
matrix to Z not only in the Hilbert–Schmidt norm distance, but also in the
operator norm distance.

Theorem 3.4. For all Z ∈ Hm,

‖Z − πSm(Z)‖∞ = inf
S∈Sm

‖Z − S‖∞.

The proof of this theorem will be given in Section 4. Here we use it to establish
the next result that is the main ingredient of the proofs of Theorems 3.1, 3.2
and 3.3.
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Theorem 3.5. Let p ∈ [1,+∞]. For all Z ∈ Hm and all S ∈ Sr,m,

‖πSm(Z) − S‖p ≤ min
(
23/p+1r1/p‖Z − S‖∞, 2‖Z − S‖1−1/p

∞

)
.

The proof relies on Theorem 3.4 and on a simple lemma stated below.

Lemma 3.1. Let S, S′ ∈ Sm and rank(S) = r. Then, for all p ∈ [1,∞],

‖S′ − S‖p ≤ min
(
(8r)1/p‖S′ − S‖∞, 21/p‖S′ − S‖1−1/p

∞

)
.

Proof. Let L := supp(S) and denote by PL, PL⊥ the orthogonal projection op-
erators onto subspace L and its orthogonal complement L⊥, respectively. We
will need the following projection operators PL,P⊥

L : Hm �→ Hm :

P⊥
L (A) = PL⊥APL⊥ , PL(A) = A− PL⊥APL⊥ , A ∈ Hm.

The following bounds are obvious:

‖S‖1 = 1 = ‖S′‖1 = ‖S′ − S + S‖1 = ‖PL(S′ − S) + P⊥
L (S′ − S) + S‖1

≥ ‖P⊥
L (S′ − S) + S‖1 − ‖PL(S′ − S)‖1.

Since S = PLSPL, we can use the pinching inequality for unitary invariant norm
‖ · ‖1 (see [4], p. 97) to get:3

‖P⊥
L (S′ − S) + S‖1 = ‖PLSPL + PL⊥(S′ − S)PL⊥‖1

= ‖PLSPL‖1 + ‖PL⊥(S′ − S)PL⊥‖1 = ‖S‖1 + ‖P⊥
L (S′ − S)‖1.

Therefore,
‖S‖1 ≥ ‖S‖1 + ‖P⊥

L (S′ − S)‖1 − ‖PL(S′ − S)‖1,

implying that
‖P⊥

L (S′ − S)‖1 ≤ ‖PL(S′ − S)‖1.

It follows from the last bound that

‖S′ − S‖1 = ‖PL(S′ − S) + P⊥
L (S′ − S)‖1 ≤ 2‖PL(S′ − S)‖1.

Since dim(L) = r, the matrix PL(S′ − S) is of rank at most 2r. This implies
that

‖PL(S′ − S)‖1 ≤ 2r‖PL(S′ − S)‖∞
≤ 2r(‖(S′ − S)PL‖∞ + ‖PL(S′ − S)PL⊥‖∞) ≤ 4r‖S′ − S‖∞.

Therefore, ‖S′ − S‖1 ≤ 8r‖S′ − S‖∞, and since also ‖S′ − S‖1 ≤ 2, S, S′ ∈ Sm,
we conclude that

‖S′ − S‖1 ≤ min(8r‖S′ − S‖∞, 2).
Together with interpolation inequality this yields that for all p ∈ [1,∞]

‖S′ − S‖p ≤ ‖S′ − S‖1/p
1 ‖S′ − S‖1−1/p

∞

≤ min
(
(8r)1/p‖S′ − S‖∞, 21/p‖S′ − S‖1−1/p

∞

)
.

3It is combined with the triangle inequality for ‖ · ‖1 resulting in an equality.
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Proof. We now prove Theorem 3.5. It immediately follows from Theorem 3.4
that, for all S ∈ Sm,

‖πSm(Z) − S‖∞ ≤ ‖πSm(Z) − Z‖∞ + ‖Z − S‖∞ ≤ 2‖Z − S‖∞.

If S ∈ Sm is a density matrix of rank r, the last bound could be combined with
the bound of Lemma 3.1 to get that for all p ∈ [1,+∞]

‖πSm(Z) − S‖p ≤ min
(
23/p+1r1/p‖Z − S‖∞, 2‖Z − S‖1−1/p

∞

)
.

Proof. We now turn to the proof of Theorems 3.1, 3.2 and 3.3. To this end, we
use the bound of Theorem 3.5 with Z = Ẑ and S = ρ ∈ Sr,m that yields:

‖ρ̌− ρ‖p ≤ min
(
23/p+1r1/p‖Ẑ − ρ‖∞, 2‖Ẑ − ρ‖1−1/p

∞

)
. (3.11)

The control of

‖Ẑ − ρ‖∞ =
∥∥∥∥m2

n

n∑
j=1

YjXj − ρ

∥∥∥∥
∞

is based on a standard application of matrix Bernstein type inequalities. We give
a detailed argument for completeness. Note that ‖ρ̌− ρ‖p in the left-hand side
of bound (3.11) is upper bounded by 2, so, if Bernstein bound on ‖Ẑ − ρ‖∞ is
larger than 1 (or even � 1), it could be replaced by the trivial bound equal to 1.
In the case of Theorem 3.2, we use the following version of Bernstein inequality
for i.i.d. bounded random matrices (see, e.g., [31]).

Lemma 3.2. Let V, V1, . . . , Vn be i.i.d. random matrices in Hm with EV = 0.
Suppose that, for some constant U > 0, ‖V ‖∞ ≤ U a.s. Let σ2 := ‖EV 2‖∞.
Then, for all t > 0 with probability at least 1 − e−t,

∥∥∥∥V1 + · · · + Vn

n

∥∥∥∥
∞

≤ 2
[
σ

√
t + log(2m)

n

∨
U
t + log(2m)

n

]
.

For V = Y X − E(Y X), we get, under Assumption 2, that

σ2 = ‖EV 2‖∞ ≤ ‖E(Y 2X2)‖∞ ≤ U2‖EX2‖∞.

It is also well known that, under the same assumption, ‖EX2‖∞ = m−1. Indeed,
if {ej , j = 1, . . . ,m} is an orthonormal basis of Cm, then

‖EX2‖∞

= sup
v∈Cm,|v|≤1

E〈X2v, v〉 = sup
v∈Cm,|v|≤1

E|Xv|2 = sup
v∈Cm,|v|≤1

E

m∑
j=1

|〈Xv, ej〉|2

= sup
v∈Cm,|v|≤1

E

m∑
j=1

|〈X, v ⊗ ej〉|2 = sup
v∈Cm,|v|≤1

m∑
j=1

m−2
m2∑
k=1

|〈Ek, v ⊗ ej〉|2
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= sup
v∈Cm,|v|≤1

m−2
m∑
j=1

‖v ⊗ ej‖2
2 = sup

v∈Cm,|v|≤1
m−2

m∑
j=1

|v|2|ej |2 = m−1.

We use the bound of Lemma 3.2 with t = A log(2m), A ≥ 1 to get that with
probability at least 1 − (2m)−A,

∥∥∥∥m2

n

n∑
j=1

YjXj − ρ

∥∥∥∥
∞

≤ C

[
Um3/2

√
A log(2m)

n

∨ U2m2A log(2m)
n

]

with some absolute constant C ≥ 1. If

U2m2A log(2m)
n

≥ Um3/2

√
A log(2m)

n
,

then Um1/2
√

A log(2m)
n ≥ 1 implying that Um3/2

√
A log(2m)

n ≥ 1. Thus, when
the bound on ‖Ẑ − ρ‖∞ is substituted in bound (3.11), it is enough to keep
only the first term Um3/2

√
A log(2m)

n , the second term could be dropped. This
implies that with some constant C ′ > 0 (that does not depend on ρ ∈ Sr,m) the
inequality

‖ρ̌− ρ‖p ≤ C ′
(
r1/pUm

3
2
√
A log(2m)√
n

∧(
Um3/2

√
A log(2m)√
n

)1− 1
p ∧

1
)

holds with probability at least 1 − (2m)−A, implying the first bound of Theo-
rem 3.2. The second bound immediately follows from the inequality H2(ρ̌, ρ) ≤
‖ρ̌− ρ‖1 (see (2.2)). Theorem 3.3 is an immediate consequence of Theorem 3.2.

The proof of Theorem 3.1 is very similar. In this case, Assumption 1 holds
and it is natural to split Ẑ − ρ into two parts

Ẑ − ρ = m2

n

n∑
j=1

〈ρ,Xj〉Xj − ρ + m2

n

n∑
j=1

ξjXj . (3.12)

and to bound ‖Ẑ−ρ‖∞ by triangle inequality. For the first part, an application
of matrix Bernstein inequality of Lemma 3.2 yields the bound∥∥∥∥m2

n

n∑
j=1

〈ρ,Xj〉Xj − ρ

∥∥∥∥
∞

≤ C

[
Um

√
A log(2m)

n

∨ U2m2A log(2m)
n

]
(3.13)

that holds for some absolute constant C ≥ 1 with probability at least 1−(2m)−A.
Indeed, in this case V = 〈ρ,X〉X − E〈ρ,X〉X and

σ2 ≤ ‖E〈ρ,X〉2X2‖∞ ≤ U2
E〈ρ,X〉2 = U2‖ρ‖2

2
m2 ≤ U2

m2 ,

‖〈ρ,X〉X‖∞ ≤ ‖ρ‖1‖X‖2
∞ ≤ ‖X‖2

∞ ≤ U2,
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and Lemma 3.2 implies (3.13). As before, if U2m2A log(2m)
n ≥ Um

√
A log(2m)

n ,

then Um
√

A log(2m)
n ≥ 1. Thus, the second term U2m2A log(2m)

n could be dropped
when the bound on ‖Ẑ − ρ‖∞ (for which the right hand side of (3.13) is a part)
is substituted in (3.11).

As to the second part of representation (3.12) that involves normal random
variables ξj , it is bounded using another version of matrix Bernstein inequality
for not necessarily bounded random matrices (see [19], [18], [21]).

Lemma 3.3. Let V, V1, . . . , Vn be i.i.d. random matrices in Hm with EV =
0. Suppose that, for some α ≥ 1, U (α) := 2

∥∥‖V ‖∞
∥∥
ψα

< +∞. 4 Let σ2 :=
‖EV 2‖∞. Then, for all t > 0 with probability at least 1 − e−t,∥∥∥∥V1 + · · · + Vn

n

∥∥∥∥
∞

≤ C

[
σ

√
t + log(2m)

n

∨
U (α) log1/α

(
U (α)

σ

)
t + log(2m)

n

]
.

We apply the bound of Lemma 3.3 in the case when V := ξX, α = 2 and
t = A log(2m) for A ≥ 1. By an easy computation,

σ2 = σ2
ξ‖EX2‖∞ =

σ2
ξ

m

and
U (2) = 2

∥∥ξ‖X‖∞
∥∥
ψ2

≤ 2U‖ξ‖ψ2 ≤ 4σξU.

This yields the following bound∥∥∥∥m2

n

n∑
j=1

ξjXj

∥∥∥∥
∞
≤C

[
σξm

3/2

√
A log(2m)

n

∨
σξU

m2A log(2m) log1/2(4U
√
m)

n

]
(3.14)

that holds with probability at least 1−(2m)−A and with some absolute constant
C ≥ 1. If the second term in the maximum in the right hand side of (3.14) is
dominant, then Um1/2

√
A log(2m)

n log1/2(4U
√
m) ≥ 1. Under the condition that

σξ ≥ Um−1/2, this implies that also σξm
3/2

√
A log(2m)

n � 1. Thus, when the
bound in the right hand side of (3.14) (used to control ‖Ẑ−ρ‖∞) is substituted
in (3.11), it is enough to keep only the first term in the maximum. Finally, under
the assumption σξ ≥ Um−1/2, the first term of bound (3.14) dominates the first
term of (3.13), so, only this term is needed to control ‖Ẑ−ρ‖∞ in bound (3.11).
These considerations imply the bound

‖ρ̌− ρ‖p ≤ C ′
(
r1/pσξm

3
2
√
A log(2m)√
n

∧(
σξm

3/2
√
A log(2m)√
n

)1− 1
p ∧

1
)

4Here ‖ · ‖ψα denotes the ψα Orlicz norm in the space of random variables defined as
follows:

‖η‖ψα := inf
{
c > 0 : E exp

{ |η|α
cα

}
≤ 2

}
.
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that holds with some constant C ′ > 0 (that does not depend on ρ ∈ Sr,m) and
with probability at least 1−(2m)−A. The first bound of Theorem 3.1 now follows
for all p ∈ [1,∞] (which also implies the second bound in view of (2.2)).

3.3. A modified estimator and bounds on relative entropy distance

It turns out that for a slightly modified version of estimator ρ̌, minimax lower
bounds are also attained (up to logarithmic factors) in the case of Kullback-
Leibler distance. For S ∈ Sm and δ ∈ [0, 1], define Sδ = (1− δ)S + δ Im

m . Clearly,
Sδ ∈ Sm. Let Sm,δ := {Sδ : S ∈ Sm}. Define πSm,δ

(Z) the projection of Z ∈ Hm

onto the convex set Sm,δ :

πSm,δ
(Z) := argminS∈Sm,δ

‖Z − S‖2
2.

Let
ρ̌δ := πSm,δ

(Ẑ)
with ρ̌0 = ρ̌. This modification is needed to provide a way to control the relative
entropy distance K(ρ‖ρ̌δ) in terms of nuclear norm distance ‖ρ̌δ − ρ‖1 which
could be done for positively definite density matrices (see Lemma 3.5 below). We
will prove the following versions of Theorems 3.1, 3.2 and 3.3 for the estimator
ρ̌δ.

Theorem 3.6. Suppose Assumption 1 holds, σξ ≥ U
m1/2 and

δ ≤ σξm
3
2
√

log(2m)√
n

∧
1.

Then bounds (3.5) and (3.6) hold for estimator ρ̌δ. Moreover, for A ≥ 1, define

λ :=
rσξm

5/2
√

A log(2m)
n

∧
m

δ
.

Then, for some constant c > 0,

sup
ρ∈Sr,m

Pρ

{
K(ρ‖ρ̌δ) ≥ c

(
r
σξm

3
2
√

A log(2m)√
n

∧
1
)

log(1 + cλ)
}

≤ (2m)−A.

(3.15)
If σξ < U

m1/2 , the bounds still hold with σξ replaced by U
m1/2 .

Theorem 3.7. Suppose Assumption 2 is satisfied and

δ ≤ Um
3
2
√

log(2m)√
n

∧
1.

Then (3.7) and (3.8) hold for estimator ρ̌δ. Moreover, for A ≥ 1, define

λ :=
rUm5/2

√
A log(2m)

n

∧
m

δ
.
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Then, for some constant c > 0,

sup
ρ∈Sr,m

Pρ

{
K(ρ‖ρ̌δ) ≥ c

(
r
Um

3
2
√

A log(2m)√
n

∧
1
)

log(1 + cλ)
}

≤ (2m)−A.

(3.16)

Theorem 3.8. Suppose the assumptions of Theorem 2.3 hold and

δ ≤ m
√

log(2m)√
n

∧
1.

Then (3.9) and (3.10) hold for estimator ρ̌δ. Moreover, for A ≥ 1, define

λ :=
rm2

√
A log(2m)

n

∧
m

δ
.

Then, for some constant c > 0,

sup
ρ∈Sr,m

Pρ

{
K(ρ‖ρ̌δ) ≥ c

(
r
m
√
A log(2m)√

n

∧
1
)

log(1+ cλ)
}

≤ (2m)−A. (3.17)

Remark 3. If, under the assumptions of Theorem 3.7, we choose

δ =
Um

3
2
√

log(2m)√
n

∧
1,

then the logarithmic factor in bound (3.16) satisfies the inequality

log(1 + cλ) ≤ log(1 + crm
√
A),

so it is of the order logm. Under the assumptions of Theorem 3.6, this would
require the choice of δ

δ =
σξm

3
2
√

log(2m)√
n

∧
1,

so δ would depend on an unknown parameter σξ. Replacing σξ in the definition

of δ by the lower bound Um−1/2 would result in a logarithmic factor � log
(

1 +

crm
√
A

σξ

Um−1/2

)
.

Proof. We start with the following modification of Theorem 3.5.

Lemma 3.4. Let p ∈ [1,∞]. For all Z ∈ Hm and all S ∈ Sr,m, the following
bound holds:

‖πSm,δ
(Z) − S‖p

≤ min
(

23/p+1r1/p
(
‖Z −S‖∞ + 2δ

)
, 2(1− δ)1/p

(
‖Z −S‖∞ +2δ

)1−1/p
)

+ 2δ.
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Proof. The following formula is straightforward: for δ ∈ [0, 1),

πSm,δ
(Z) = (1 − δ)πSm

(
Z

1 − δ
− δ

1 − δ

Im
m

)
+ δ

Im
m

.

Indeed, πSm,δ
(Z) coincides with (1 − δ)S′ + δ Im

m , where

S′ := argminS∈Sm

∥∥∥∥Z − (1 − δ)S − δ
Im
m

∥∥∥∥
2

2

= argminS∈Sm

∥∥∥∥ Z

1 − δ
− δ

1 − δ

Im
m

− S

∥∥∥∥
2

2
= πSm

(
Z

1 − δ
− δ

1 − δ

Im
m

)
,

implying the claim.
Let S ∈ Sr,m. Then, for p ∈ [1,∞],

‖πSm,δ
(Z) − S‖p ≤ ‖πSm,δ

(Z) − Sδ‖p + ‖Sδ − S‖p (3.18)

≤ (1 − δ)
∥∥∥∥πSm

(
Z

1−δ − δ
1−δ

Im
m

)
− S

∥∥∥∥
p

+ 2δ.

To control the first term in the right hand side, we use the bound of Theorem 3.5,
which requires bounding

∥∥∥ Z
1−δ − δ

1−δ
Im
m − S

∥∥∥
∞
. We have

∥∥∥∥ Z
1−δ − δ

1−δ
Im
m − S

∥∥∥∥
∞

= 1
1−δ‖Z − Sδ‖∞ (3.19)

≤ 1
1−δ‖Z − S‖∞ + 1

1−δ‖S − Sδ‖∞ ≤ 1
1−δ‖Z − S‖∞ + 2δ

1−δ .

Using bounds (3.18), (3.19) along with the bound of Theorem 3.5, we get the
bound of the lemma.

We will use the bound of Lemma 3.4 to control ‖ρ̌δ−ρ‖p for ρ ∈ Sr,m. To this
end, we need to bound ‖Ẑ − ρ‖∞ using matrix Bernstein inequalities exactly
as it was done in the proof of Theorems 3.1, 3.2 and 3.3 (under assumptions of
these theorems). Denote by Δ̄ such an upper bound on ‖Ẑ − ρ‖∞ that holds
with probability a least 1 − (2m)−A. Recall that Δ̄ � σξm

3/2
√

A log(2m)
n under

the conditions of Theorem 3.1 and Δ̄ � Um3/2
√

A log(2m)
n under the conditions

of Theorem 3.2 (it is the same under the conditions of Theorem 3.3 with U =
m−1/2). Setting Δ = Δ̄ ∧ 1, we get from the bound of Lemma 3.4 that

‖ρ̌δ − ρ‖p ≤ min
(

23/p+1r1/p
(
Δ + 2δ

)
, 2(1 − δ)1/p

(
Δ + 2δ

)1−1/p
)

+ 2δ

that holds with the same probability at least 1−(2m)−A. Recall that we replace
Δ̄ by Δ since the left hand side ‖ρ̌δ − ρ‖p ≤ 2; for the same reason, we can
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and do drop the “exponential parts” of matrix Bernstein bounds leaving in the
definition of Δ only the “Gaussian parts”. For δ � Δ, we get

‖ρ̌δ − ρ‖p � min(r1/pΔ,Δ1−1/p).

Exactly as in the proof of Theorems 3.1, 3.2 and 3.3, this implies that bounds
(3.5), (3.6), (3.7), (3.8), (3.9) and (3.10) hold for estimator ρ̌δ.

The bound on the Kullback-Leibler divergence K(ρ‖ρ̌δ) is an immediate con-
sequence of the bound on ‖ρ̌δ − ρ‖1 and the next lemma that follows from
Corollary 1 in [3].

Lemma 3.5. Let S1, S2 ∈ Sm be density matrices and let β := λmin(S2) be the
smallest eigenvalue of S2. Suppose that β > 0. Then

K(S1‖S2) ≤ ‖S1 − S2‖1 log
(

1 + ‖S1 − S2‖1

2β

)
.

We apply Lemma 3.5 to S1 = ρ, S2 = ρ̌δ, observing that ρ̌δ ∈ Sm,δ and
λmin(ρ̌δ) ≥ δ/m. We then use the bound on ‖ρ̌δ − ρ‖1 to complete the proof of
the bound on K(ρ‖ρ̌δ).

3.4. Least squares estimator

We conclude this section with a simple result concerning the least squares esti-
mator ρ̂ defined by (3.3). It shows that the estimators ρ̂ and ρ̌ are close in the
Hilbert-Schmidt norm. As a result, the bounds of the previous theorems could
be applied to estimator ρ̂ as well (at least, under some additional assumptions).

Theorem 3.9. Under the assumption that i.i.d. design variables X1, . . . , Xn

are sampled from the uniform distribution Π in an orthonormal basis E =
{E1, . . . , Em2}, the following bound holds with some constant C > 0 for all
A ≥ 1 with probability at least 1 − (2m2)−A :

‖ρ̌− ρ̂‖2 ≤ Cm

√
A log(2m)

n
.

Proof. Note that the gradient (and subgradient) of convex function S �→ ‖S −
Z‖2

2 is equal to 2(S − Z). By a necessary condition of minimum in convex
minimization problem (3.1), for ρ̌ = πSm(Ẑ), Ẑ− ρ̌ should belong to the normal
cone NSm(ρ̌) of the convex set Sm at point ρ̌ (see [2], Proposition 5, Chapter 4,
Section 1). Since both ρ̌, ρ̂ ∈ Sm, this implies that

〈ρ̌− Ẑ, ρ̌− ρ̂〉 ≤ 0. (3.20)

Similar analysis of convex optimization problem (3.3) shows that
〈
m2

n

n∑
j=1

(〈ρ̂, Xj〉 − Yj)Xj , ρ̌− ρ̂

〉
≥ 0,
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which could be rewritten as follows:〈
m2

n

n∑
j=1

〈ρ̂, Xj〉Xj − Ẑ, ρ̌− ρ̂

〉
≥ 0. (3.21)

Subtracting (3.21) from (3.20) yields〈
ρ̌− m2

n

n∑
j=1

〈ρ̂, Xj〉Xj , ρ̌− ρ̂

〉
≤ 0,

implying that

‖ρ̌− ρ̂‖2
2 = 〈ρ̌− ρ̂, ρ̌− ρ̂〉 ≤

〈
m2

n

n∑
j=1

〈ρ̂, Xj〉Xj − ρ̂, ρ̌− ρ̂

〉
. (3.22)

We will now write 5

m2

n

n∑
j=1

〈ρ̂, Xj〉Xj − ρ̂ = m2

n

n∑
j=1

(
〈ρ̂, Xj〉Xj − E〈ρ̂, X〉X

)

= m2
[

1
n

n∑
j=1

(Xj ⊗Xj − E(X ⊗X)〉
]
ρ̂.

It follows from (3.22) that

‖ρ̌− ρ̂‖2
2 ≤ m2

∥∥∥∥ 1
n

n∑
j=1

Xj ⊗Xj − E(X ⊗X)
∥∥∥∥

op
‖ρ̂‖2‖ρ̌− ρ̂‖2.

Since ‖ρ̂‖2 ≤ 1, we get

‖ρ̌− ρ̂‖2 ≤ m2
∥∥∥∥ 1
n

n∑
j=1

Xj ⊗Xj − E(X ⊗X)
∥∥∥∥

op
. (3.23)

It remains to control the operator norm in the right hand side for which we
can again use matrix Bernstein inequality of Lemma 3.2 applying it to V =
X ⊗X − E(X ⊗X). In this case,

σ2 = ‖EV 2‖op ≤ ‖E(X ⊗X)2‖op = sup
‖U‖2≤1

E〈(X ⊗X)2U,U〉

= sup
‖U‖2≤1

E〈(X ⊗X)U, (X ⊗X)U〉

= sup
‖U‖2≤1

E|〈U,X〉|2‖X‖2
2 ≤ sup

‖U‖2≤1
E|〈U,X〉|2 = sup

‖U‖2≤1

‖U‖2
2

m2 = 1
m2

5Here we view the tensor product A ⊗ B of operators A,B ∈ Mm as an operator acting
from the space Mm of m×m matrices equipped with Hilbert-Schmidt inner product 〈·, ·〉 into
itself as follows: (A⊗B)C = A〈C,B〉. Let ‖ · ‖op denote the operator norm of linear operators
from Mm into itself, which corresponds to the ‖ · ‖∞ in the case of m×m matrices.



2738 D. Xia and V. Koltchinskii

and
‖V ‖op ≤ ‖X ⊗X‖op + E‖X ⊗X‖op = ‖X‖2

2 + E‖X‖2
2 ≤ 2.

Bound (3.23) along with the bound of Lemma 3.2 with t = A log(2m2), A ≥ 1
yield the following inequality

‖ρ̌− ρ̂‖2 � m

√
A log(2m)

n

∨
m2A log(2m)

n

that holds with probability at least 1 − (2m2)−A. Since ‖ρ̌ − ρ̂‖2 ≤ 2, the
second term m2 A log(2m)

n in the right hand side could be dropped (if this term
is dominant, the bound is � 1). This completes the proof of the theorem.

Since ‖ρ̌− ρ̂‖∞ ≤ ‖ρ̌− ρ̂‖2, the bound of Theorem 3.9 also holds for ‖ρ̌− ρ̂‖∞.
Combining this with the bound of Theorem 3.2 for p = ∞, it is easy to conclude
that under conditions of this theorem

‖ρ̂− ρ‖∞ � Um3/2

√
A log(2m)

n

and that the last bound holds (with a proper choice of constant in relationship
�) with probability at least 1−(2m)−A. In view of Lemma 3.1, this immediately
implies that all the bounds of Theorem 3.2 also hold for the least squares esti-
mator ρ̂. In a special case of Pauli measurements, this means that Theorem 3.3
holds for the estimator ρ̂. Concerning Theorem 3.6, the same conclusion is true
under the additional assumption that σξ ≥ m−1/2. Moreover, if ρ̂δ is the follow-
ing modification of estimator ρ̂

ρ̂δ := argminS∈Sm,δ

[
n−1

n∑
j=1

(Yj − 〈S,Xj〉)2
]
, (3.24)

then the statements of Theorems 3.6, 3.7 and 3.8 hold for the estimator ρ̂δ (in
the case of Theorem 3.6, under the additional assumption that σξ ≥ m−1/2).

4. Proof of Theorem 3.4

Recall that
πSm(Z) := argminS∈Sm

‖Z − S‖2
2, Z ∈ Hm

defines the projection of Z onto Sm. The mapping Hm 
 Z �→ πSm(Z) ∈ Sm

possesses a couple of simple properties stated in the next proposition. Denote
by Sd

m the set of all diagonal density matrices.

Proposition 1. 1. For all m×m unitary matrices U,

πSm(U−1ZU) = U−1πSm(Z)U,Z ∈ Hm.

2. If D ∈ Hm is a diagonal matrix, then πSm(D) ∈ Sd
m.
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Proof. To prove the first claim, note that, by the unitary invariance of the
Hilbert–Schmidt norm,

‖U−1ZU − S‖2
2 = ‖U−1(Z − USU−1)U‖2

2 = ‖Z − USU−1‖2
2.

In addition, the mapping S �→ USU−1 is a bijection from the set Sm onto itself.
This immediately implies that

πSm(U−1ZU) = argminS∈Sm
‖Z − USU−1‖2

2 = U−1πSm(Z)U.

For an m × m matrix A = (aij)mi,j=1 ∈ Hm, let Ad be the diagonal matrix
with diagonal entries aii, i = 1, . . . ,m. It is easy to see that if A is a density
matrix, then Ad is also a density matrix. Moreover, it is also obvious that, for
a diagonal matrix D,

‖D −Ad‖2
2 ≤ ‖D −A‖2

2, A ∈ Sm,

with a strict inequality if A is not diagonal. These observations immediately
imply the second claim.

We will now state and prove a vector version of Theorem 3.4 in which the
role of the set of density matrices Sm is played by the simplex

Δm :=
{
u = (u1, . . . , um) ∈ R

m : uj ≥ 0,
m∑
j=1

uj = 1
}

in R
m (this is equivalent to considering the set of diagonal density matrices).

We will then show that the matrix version of the problem reduces to the vector
case.

Define
πΔm

(z) := argminu∈Δm
‖z − u‖2


m2
, z ∈ R

m.

Since the function u �→ ‖z − u‖2

m2

is strictly convex and Δm is a compact
convex set, such a minimizer exists and is unique. In other words, πΔm

(z) is the
projection of the point z ∈ R

m onto simplex Δm (the closest point to z in the
set Δm with respect to the Euclidean �m2 -distance). The next lemma shows that
the same point also minimizes the �m∞-distance from z to the simplex Δm.

Lemma 4.1. For all z ∈ R
m,

‖z − πΔm
(z)‖
m∞ = min

v∈Δm

‖z − v‖
m∞ .

Proof. Without loss of generality, assume that z = (z1, . . . , zm) ∈ R
m is a point

with z1 ≥ · · · ≥ zm. Denote

z̄j := z1 + · · · + zj
j

, j = 1, . . . ,m.
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Clearly, z̄1 = z1 and z̄j ≥ zj , j = 1, . . . ,m. Let

k := max
{
j ≤ m : z̄j ≤ zj + 1

j

}
.

Note that if k > 1, then, for all j < k, z̄j ≤ zj + 1
j . Indeed,

z̄j =
kz̄k −

∑k
i=j+1 zi

j
≤ kzk + 1 − (k − j)zk

j
= jzk + 1

j
= zk + 1

j
≤ zj + 1

j
.

On the other hand, if k < m, then z̄k > zk+1 + 1
k . Indeed, if z̄k ≤ zk+1 + 1

k , then

z̄k+1 = kz̄k + zk+1

k + 1 ≤ kzk+1 + 1 + zk+1

k + 1 = zk+1 + 1
k + 1 ,

which would contradict the definition of k.
Let λ = (λ1, . . . , λm), where λj = zj − z̄k + 1

k for j = 1, . . . , k and λj = 0
for j = k + 1, . . . ,m. Since z̄k ≤ zk + 1

k ≤ zj + 1
k for all j ≤ k, we have

λj ≥ 0, j = 1, . . . ,m and

m∑
j=1

λj =
k∑

j=1

(
zj − z̄k + 1

k

)
=

k∑
j=1

zj − kz̄k + 1 = 1.

Thus, λ ∈ Δm. It turns out that πΔm
(z) = λ. 6 To prove this it is enough to

show that z − λ ∈ NΔm
(λ), where

NΔm
(λ) := {u ∈ R

m : 〈u, v − λ〉 ≤ 0, v ∈ Δm}

is the normal cone of the convex set Δm at point λ (see, e.g., [2], Proposition 5,
Chapter 4, Section 1). Let t := z̄k − 1

k . Clearly, we have zk+1 < t ≤ zk if k < m
and t ≤ zm if k = m. For k = m, z − λ = (t, . . . , t) and

〈z − λ, v − λ〉 =
m∑
i=1

t(vi − λi) = t

( m∑
i=1

vi −
m∑
i=1

λi

)
= 0

since v, λ ∈ Δm. For k < m, note that

z − λ = (t, . . . t, zk+1, . . . , zm)

and, for v ∈ Δm,

〈z − λ, v − λ〉 =
k∑

i=1
t(vi − λi) +

m∑
i=k+1

zivi.

6The computation of the projection onto a simplex occurs in many applications and has
been studied before: see, e.g., [27] and [30]. See also [9], where an explicit expression for the
projection was derived. For completeness, we provide our version of the proof below.
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Using the facts that
∑m

i=1 vi = 1 and
∑k

i=1 λi = 1, we get

〈z − λ, v − λ〉 = t

( k∑
i=1

vi −
k∑

i=1
λi

)
+

m∑
i=k+1

zivi

= −t

m∑
i=k+1

vi +
m∑

i=k+1
zivi =

m∑
i=k+1

(zi − t)vi ≤ 0,

where we also used that, for all i = k+1, . . . ,m, zi−t ≤ zk+1−t ≤ 0 and vi ≥ 0.
Thus, z − λ ∈ NΔm

(λ) and, by the uniqueness of the minimum, λ = πΔm
(z).

Note that
‖z − λ‖
m∞ = max(|t|, |zk+1|, . . . , |zm|).

For any v ∈ Δm,

t = z̄k−
1
k

= 1
k

k∑
i=1

zi−
1
k

m∑
i=1

vi ≤
1
k

k∑
i=1

zi−
1
k

k∑
i=1

vi = 1
k

k∑
i=1

(zi−vi) ≤ ‖z−v‖
m∞ .

On the other hand,
zm ≥ zm − vm ≥ −‖z − v‖
m∞ .

Since
t = z̄k − 1

k
≥ zk+1 ≥ · · · ≥ zm,

we conclude that, for all v ∈ Δm,

‖z − λ‖
m∞ ≤ ‖z − v‖
m∞ .

We now turn to the proof of Theorem 3.4.

Proof. Any matrix Z ∈ Hm admits spectral representation Z = U−1DU, where
D is the diagonal matrix with real entries d1, . . . , dm on the diagonal and U is a
unitary m×m matrix. Let d = (d1, . . . , dm) ∈ R

m. Given v = (v1, . . . , vm) ∈ Δm,
the diagonal matrix V with entries v1, . . . , vm is a density matrix. This defines
a bijection Δm 
 v �→ V = J(v) between the simplex Δm and the set Sd

m of all
diagonal m ×m density matrices. Moreover, J is an isometry of Δm and Sd

m :
‖J(v) − J(u)‖2

2 = ‖u− v‖2

m2

, u, v ∈ Δm.

We will now prove the following lemma.

Lemma 4.2. Let Z = U−1DU with a unitary m ×m matrix U and diagonal
matrix D with d = (d1, . . . , dm) ∈ R

m being the vector of its diagonal entries.
Then

πSm(Z) = U−1J(πΔm
(d))U.

Proof. This is an immediate consequence of Proposition 1 and the following
simple fact:

argminA∈Sd
m
‖D −A‖2

2 = J

(
argminv∈Δm

‖J(d) − J(v)‖2
2

)

J

(
argminv∈Δm

‖d− v‖2

m2

)
= J(πΔm

(d)).
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To complete the proof of Theorem 3.4, observe that, In view of Lemmas 4.1,
4.2,

‖Z − πSm(Z)‖∞ = ‖U−1(J(d) − J(πΔm
(d)))U‖∞

= ‖J(d) − J(πΔm
(d))‖∞ = ‖d− πΔm

(d)‖
m∞ = inf
v∈Δm

‖d− v‖
m∞ .

Without loss of generality, assume that d1 ≥ · · · ≥ dm. Let S ∈ Sm be a
density matrix with eigenvalues v1 ≥ · · · ≥ vm. Clearly, v = (v1, . . . , vm) ∈ Δm.
Therefore,

‖Z − πSm(Z)‖∞ ≤ ‖d− v‖∞ ≤ ‖Z − S‖∞,

where to get the last bound we used Weyl’s perturbation inequality (see [4],
Corollary III.2.6).

5. Comments on computational aspects of the problem

An advantage of minimal distance estimator ρ̌ = πSm(Ẑ) is the simplicity
of its computational implementation. The computation of the matrix Ẑ =
m2

n

∑n
i=1 YiXi requires O(nm2) operations. It is followed by an eigen-decompo-

sition of Z that requires O(m3) operations(see [11]); there exist efficient software
packages designed for this kind of tasks, for instance, LINPACK and PROPACK,
etc.). As it is shown in the previous section, the problem of computing πSm(Ẑ)
then reduces to projecting of the vector of eigenvalues of Z arranged in a non-
increasing order onto the simplex Δm. The last problem has been studied in the
literature (see [27], [30], [9]) and it has an explicit solution of computational com-
plexity proportional to m (see the proof of Lemma 4.1). Thus, the computational
implementation of the minimal distance estimator ρ̌ requires O((n+m)m2) op-
erations.

The matrix version of LASSO estimator for density matrices is equivalent to
solving the following optimization problem

ρ̂ := arg min
S∈Sm

1
n

n∑
i=1

(
Yi −

〈
S,Xi

〉)2
(5.1)

that results in the least squares estimator. Clearly, there is no explicit solution
for this optimization problem and it is usually solved by iterative algorithms. For
example, a well know iterative singular value thresholding (SVT) algorithm was
proposed in [6], and also implemented in quantum compressed sensing in [10].
The main idea is that (5.1) is equivalent to the following optimization problem:
for any τ > 0,

ρ̂ := arg min
S∈Sm,Z∈Hm,S=Z

m2

n

n∑
i=1

(
Yi −

〈
Z,Xi

〉)2
+ τ‖S − Z‖2

2.

The proposed algorithm updates Z and S alternatively, with the only constraint
for S being that S ∈ Sm. Therefore, the main ingredient of SVT is the following
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iterative updating rule (with initial Z0 = 0): for k = 1, 2, . . .,{
Sk = πSm(Zk−1)
Zk = Sk + δk

(
Ẑ − m2

n

∑n
i=1

〈
Sk, Xi

〉
Xi

) (5.2)

with certain pre-determined step sizes δk > 0. The algorithm terminates at
some step k = N and outputs SN ∈ Sm when ‖SN − SN−1‖2 ≤ ε for some
numerical threshold ε > 0. It is clear that the minimal distance estimator ρ̌
can be produced by the above algorithm with one iteration and the initializa-
tion Z0 = Ẑ, δ1 = 0. When the number of qubits k is not small (for instance,
about 20) and the dimension m is very large, the iterative Algorithm (5.2) is
much more computationally expensive than the algorithm for the minimal dis-
tance estimator (since every iteration requires the eigen-decomposition of a high
dimensional matrix).
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