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Abstract: Graphical models are widely used to model stochastic depen-
dences among large collections of variables. We introduce a new method of
estimating undirected conditional independence graphs based on the score
matching loss, introduced by Hyvärinen (2005), and subsequently extended
in Hyvärinen (2007). The regularized score matching method we propose
applies to settings with continuous observations and allows for computa-
tionally efficient treatment of possibly non-Gaussian exponential family
models. In the well-explored Gaussian setting, regularized score matching
avoids issues of asymmetry that arise when applying the technique of neigh-
borhood selection, and compared to existing methods that directly yield
symmetric estimates, the score matching approach has the advantage that
the considered loss is quadratic and gives piecewise linear solution paths
under �1 regularization. Under suitable irrepresentability conditions, we
show that �1-regularized score matching is consistent for graph estimation
in sparse high-dimensional settings. Through numerical experiments and an
application to RNAseq data, we confirm that regularized score matching
achieves state-of-the-art performance in the Gaussian case and provides
a valuable tool for computationally efficient estimation in non-Gaussian
graphical models.
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1. Introduction

Undirected graphical models, also known as Markov random fields, are important
tools for summarizing dependency relationships between random variables and
have found application in many fields, including bioinformatics, language and
speech processing, and digital communications. Each such model is associated to
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an undirected graphG = (V,E), with vertex set V and edge set E ⊂ V ×V . For a
random vectorX = (Xj : j ∈ V ) indexed by the nodes of G, the graphical model
given by G requires that Xj and Xk be conditionally independent given all other
variables whenever nodes j and k are not joined by an edge in G (Lauritzen,
1996). If G is the smallest graph such that X satisfies this requirement, we
term G the conditional independence graph of X. In this case, Xj and Xk are
conditionally independent given all other variables if and only if j and k are
non-adjacent in G. We will always take the vertex set to be V = {1, . . . ,m}, so
m is the number of observed variables in X.

Specific models are obtained from additional distributional assumptions. Par-
ticularly, an assumption of multivariate normality gives Gaussian graphical mod-
els, for which estimation of conditional independence graphs is equivalent to
covariance selection (Dempster, 1972). If X is jointly multivariate normal with
mean vector μ and covariance matrix Σ—in symbols, X ∼ N(μ,Σ)—then the
conditional independences among the random variables, and hence edges be-
tween nodes in the graph, are determined by the entries of the inverse covari-
ance, or concentration matrix K = (κjk) = Σ−1. More precisely, κjk = 0 for
j �= k if and only if Xj and Xk are independent given all other variables.

There is a large literature on selection of conditional independence graphs; see
the references in Edwards (2000, Chap. 6) or Drton and Perlman (2007). In the
last decade, attention has shifted to high-dimensional settings with the number
of variables m comparable to or larger than the sample size n. This scenario
arises, for instance, in microarray experiments. Fortunately, high-dimensional
problems may remain tractable in the presence of structural constraints such
as sparsity, i.e., if each node in the graph is incident to a small number of
edges. This is of interest for microarray data as gene regulatory networks are
intrinsically sparse (Leclerc, 2008).

Gaussian models have been the primary tool for graphical modeling of data
comprising continuous variables, such as gene expression data, and a large num-
ber of methods have been proposed for statistical estimation in high-dimensional
Gaussian graphical models. A common strategy involves augmenting a loss func-
tion with a sparsity-inducing penalty such as an �1, or lasso penalty. Two widely-
used approaches are the graphical lasso or glasso (Yuan and Lin, 2007) and
neighborhood selection (Meinshausen and Bühlmann, 2006). In glasso, an �1
penalty on the entries of the inverse covariance matrix is added to the negative
Gaussian log-likelihood. Neighborhood selection, on the other hand, is an �1-
penalized pseudo-likelihood approach that leverages the fact that the node-wise
full conditional distributions from a Gaussian graphical model form m linear
regression models. Meinshausen and Bühlmann (2006) treat these separate re-
gression models as having their parameters unrelated, but as we discuss below,
methods that account for the symmetry in a concentration matrix have been
proposed in subsequent work.

Methods for high-dimensional data have also been developed for non-Gaussian
settings. Miyamura and Kano (2006), Finegold and Drton (2011), Vogel and
Fried (2011) and Sun and Li (2012) address robustness to outliers. Liu, Lafferty
and Wasserman (2009), Liu et al. (2012) and Dobra and Lenkoski (2011) treat
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Gaussian copula models. Neighborhood selection/pseudo-likelihood procedures
can also be applied to models for categorical models where the node-wise regres-
sion is logistic or multinomial (Lee, Ganapathi and Koller, 2007; Höfling and
Tibshirani, 2009; Ravikumar, Wainwright and Lafferty, 2010; Jalali et al., 2011).
Allen and Liu (2013) and Yang et al. (2012) discuss extensions using node-wise
generalized linear models, and semi-/nonparametric methods were proposed by
Fellinghauer et al. (2013) and Voorman, Shojaie and Witten (2014).

In this paper, we propose a different approach to high-dimensional graphical
model selection. Addressing the case of continuous but not necessarily Gaussian
observations, the proposed method is based on the score matching loss, first in-
troduced by Hyvärinen (2005) in the setting of image analysis. Recently, Forbes
and Lauritzen (2015) studied score matching in Gaussian graphical models with
symmetry constraints, and demonstrated that, when the number of variables m
is fixed, the estimators derived from the score matching loss are asymptotically
efficient in some special cases, but not in general. Our focus is instead on the
use of score matching in high-dimensional problems, for which we consider reg-
ularization with an �1 penalty. We will refer to this graphical model selection
technique as regularized score matching.

Regularized score matching is computationally very convenient for any expo-
nential family comprising continuous distributions. Indeed, the score matching
loss is a positive semi-definite quadratic function. It follows that the solution
path for the regularized score matching problem is piecewise linear and can be
computed in its entirety. Moreover, theoretical analysis can be based on familiar
techniques. Most importantly, as we demonstrate for Gaussian graphical mod-
els, regularized score matching exhibits state-of-the-art statistical efficiency in
high-dimensional settings. The method also performs well in our applications to
non-Gaussian models, which include models that seem rather difficult to handle
via other methods.

In the Gaussian setting, regularized score matching is structurally closest to
pseudo-likelihood methods with symmetry constraints, such as SPACE (Peng
et al., 2009), symmetric lasso (Friedman, Hastie and Tibshirani, 2010) and
SPLICE (Rocha, Zhao and Yu, 2008). A thorough discussion of these different
methods is given by Khare, Oh and Rajaratnam (2015) who also reformulate
the SPACE objective function to ensure convergence of coordinate descent al-
gorithms. They abbreviate their method as CONCORD. For brevity, we refer to
these algorithms collectively as SPACE. We note that in contrast to regularized
score matching, the SPACE methods do not have piecewise linear solution paths.
Furthermore, as remarked before, the computational convenience of regularized
score matching carries over to non-Gaussian settings.

A limitation of the original score matching introduced by Hyvärinen (2005)
is that it requires the data to be generated from a distribution whose density is
twice differentiable on R

m. Hyvärinen (2007) proposed a generalization of the
approach to the important case of non-negative data. For exponential families,
the non-negative score matching loss is again a semidefinite quadratic function.
We explore regularization of the non-negative score matching loss as a tool
for estimation of conditional independence graphs from high-dimensional non-
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negative data, and we establish consistency of the method.
The remainder of the paper is organized as follows. Section 2 provides the

needed background on score matching and its applications. In Section 3, we de-
scribe the proposed method, regularized score matching. Implementation details
are given in Appendix A. In Section 4, we present results of numerical experi-
ments to compare the performance of the procedure with existing approaches.
An application to RNAseq data is given in Section 5. Section 6 provides sparsis-
tency theory for both basic and non-negative regularized score matching. Proofs
are given in Section 7 with details deferred to Appendix B and C. We end with
a discussion in Section 8. Computer code used in our numerical work is provided
as supplementary material (Lin, Drton and Shojaie, 2016).

Notation

The following notational conventions are used throughout the paper:

(i) Random variables/vectors are denoted by upper case letters; lower case
letters are used for observed values. So, x ∈ R

m is an observed value of
the random vector X. Similarly, x = (xij) ∈ R

n×m is a matrix of observed
values, which will typically hold the realizations of n i.i.d. copies of X in
its rows. We index the columns of a matrix with subscripts, so xj refers
to the jth column of x. Superscripts in parentheses are used to refer to
the rows of a matrix, so x(i) is the ith row of x.

(ii) For a matrix U = (uij) ∈ R
m×m, we denote the vectorization obtained by

stacking columns by

vec(U) =
(
u11, u21, . . . , um1, . . . , u1m, . . . , umm

)T
.

(iii) Let a, b ∈ [1,∞]. We denote the �a norm of a vector u ∈ R
m by

‖u‖a =

( m∑
i=1

|ui|a
)1/a

and write |||U|||a,b = max‖x‖a=1 ‖Ux‖b for the �a/�b operator norm of a

matrix U ∈ R
m×m. We let |||U|||∞ = |||U|||∞,∞ and ‖U‖a = ‖vec(U)‖a.

2. Score matching

We begin with an overview of Hyvärinen’s score matching, discussing first ran-
dom vectors supported on all of Rm and then random vectors supported on the
nonnegative orthant. We also review the convenient form of the score matching
estimating equations in exponential families.

2.1. Basic score matching

Suppose X is a continuous random vector taking values in R
m, with joint dis-

tribution P . Suppose further that P belongs to the family P that comprises all
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probability distributions with support equal to R
m and a twice differentiable

density with respect to Lebesgue measure. We emphasize that in a statistical
context the differentiability requirement is with respect to data. We write p
to denote the density of P and adopt the usual notation for the gradient and
Laplacian

∇f(x) =

{
∂

∂xj
f(x)

}
∈ R

m, Δf(x) =

m∑
j=1

∂2

∂x2
j

f(x) ∈ R,

of a function f : Rm → R.
For a distribution Q ∈ P with density q, define the divergence function

J(Q) =

∫
Rm

p(x)
[
‖∇ log q(x)−∇ log p(x)‖22

]
dx (2.1)

as the expected squared distance between the gradients of the log-densities of the
two distributions Q and P . By choosing Q to minimize (2.1), we are matching
‘scores’ with respect to the data vector x. Hence, (2.1) has been referred to as
the score matching loss. It is evident from (2.1) that the score matching loss is
uniquely minimized when Q = P .

Upon initial inspection, optimization of J(Q) seems to require knowledge of
P in an important way. However, Hyvärinen (2005) showed that, under mild
regularity conditions, the score matching loss (2.1) can be rewritten as:

J(Q) =

∫
Rm

p(x)

[
Δlog q(x) +

1

2
‖∇ log q(x)‖22

]
dx + const, (2.2)

where ‘const’ refers to a term independent of Q. The key term in the integrand
in (2.2) is the so-called Hyvärinen scoring rule

S(x,Q) = Δ log q(x) +
1

2
‖∇ log q(x)‖22.

The integral in (2.2) admits an empirical version in which the integration with
respect to P is replaced by an average over an observed sample, which we arrange
into a data matrix x ∈ R

n×m. This leads to the empirical score matching loss

Ĵ(x, Q) =
1

n

n∑
i=1

S(x(i), Q), (2.3)

and the score matching estimator (SME)

Q̂ = arg min
Q

Ĵ(x, Q).

The score matching loss J(Q) was motivated by problems involving models
whose distributions have an intractable normalization constant. Indeed, evaluat-
ing (2.2) and computing the SME Q̂ requires no knowledge of the normalization
constant, which is eliminated upon taking logarithmic derivatives with respect to
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x. Besides the imaging problems considered by Hyvärinen (2005), score match-
ing has been applied to spatial statistics (Dawid and Musio, 2013) and neural
networks (Köster and Hyvärinen, 2007; Vincent, 2011; Le et al., 2011).

The statistical properties of SMEs in classical large sample settings have been
investigated by Hyvärinen (2005, 2007) and Forbes and Lauritzen (2015). In par-
ticular, it has been shown that, under the usual regularity conditions, SMEs are
asymptotically consistent and normal in large-sample theory. However, SMEs
are not necessarily asymptotically efficient.

2.2. Extension to non-negative data

The partial integration arguments underlying (2.2) may fail to apply when con-
sidering distributions Q that are not supported on all of Rm. In particular, when
Q is taken to be from P+, i.e. the family of distributions that are supported on
R

m
+ = [0,∞)m with Lebesgue densities that are twice differentiable on (0,∞)m,

then partial integration may not be possible due to discontinuities at points
with zero coordinates. We thus consider the non-negative score matching loss,

J+(Q) =

∫
R

m
+

p(x)

[∥∥∥∥∇ log q(x) ◦ x−∇ log p(x) ◦ x
∥∥∥∥2
2

]
dx, (2.4)

as proposed in Hyvärinen (2007). Here, ‘◦’ stands for the Hadamard product,
that is, element-wise multiplication.

The score matching loss (2.1) can be thought of as a function of the Euclidean
distance between the gradients of the model density q and true density p with
respect to a hypothetical location parameter μ, evaluated at 0. That is, we may
write (2.1) as

J(Q) =

∫
Rm

p(x)
[∥∥∇μ=0 log q(x+ μ)−∇μ=0 log p(x+ μ)

∥∥2
2

]
dx.

Likewise, the non-negative score matching loss compares the gradient of the
model density q and true density p with respect to a hypothetical scale parameter
σ evaluated at 1,

J+(Q) =

∫
R

m
+

p(x)
[∥∥∇σ=1 log q(x ◦ σ)−∇σ=1 log p(x ◦ σ)

∥∥2
2

]
dx.

Under suitably adjusted regularity conditions, Hyvärinen (2007) showed that
the non-negative score matching loss from (2.4) can be simplified into

J+(Q) =

∫
R

m
+

p(x)S+(x,Q) dx + const (2.5)

with scoring rule

S+(x,Q) =

m∑
j=1

[
2xj

∂ log q(x)

∂xj
+ x2

j

∂2 log q(x)

∂x2
j

+
1

2
x2
j

(
∂ log q(x)

∂xj

)2
]
. (2.6)
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For a data matrix x ∈ R
n×m, one obtains the empirical non-negative score

matching loss

Ĵ+(x, Q) =
1

n

n∑
i=1

S+(x
(i), Q), (2.7)

and the non-negative score matching estimator (SME+)

Q̂+ = arg min
Q

Ĵ+(x, Q).

Again, under the usual regularity conditions, the estimator Q̂+ is asymptotically
consistent and normal in traditional large-sample theory.

2.3. Score matching in exponential families

Hyvärinen (2007) and Forbes and Lauritzen (2015) have shown that the SME
has a convenient closed form as a rational function of the data when P is an ex-
ponential family. Hyvärinen (2007) showed the same for SME+ for the example
of truncated normal distributions. As they provide the basis for our later work,
we revisit these results for both SME and SME+.

Let P = (Qθ : θ ∈ Θ) be an exponential family with natural parameter space
Θ. Suppose that the distributions Qθ have their common support equal to either
X = R

m or X = R
m
+ , and that P is dominated by Lebesgue measure on R

m.
Assuming that the sufficient statistics t(x) take values in R

s, the log-densities
of the distributions Qθ have the form

log q(x|θ) = θT t(x)− ψ(θ) + b(x), x ∈ X , (2.8)

and

Θ =

{
θ ∈ R

s : ψ(θ) = log

∫
X
eθ

T t(x)dx < ∞
}
. (2.9)

Lemma 1. Let x ∈ R
n×m be a data matrix, and suppose P = (Qθ : θ ∈ Θ) is an

exponential family characterized by (2.8) and (2.9). If P has support X = R
m,

then the empirical score matching loss Ĵ(x, Qθ) is a quadratic function in θ with

Ĵ(x, Qθ) =
1

2
θTΓ(x)θ + g(x)T θ + c(x), (2.10)

where Γ(x) is a positive semidefinite s× s matrix, and g(x) is an s-vector. The
same is true for Ĵ+(x, Qθ) when P has support X = R

m
+ .

Proof. For j = 1, . . . ,m and x ∈ R
m, define the s-vectors

hj(x) =
∂

∂xj
t(x), hjj(x) =

∂2

∂x2
j

t(x).
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It then follows from (2.8) that Ĵ(x, Qθ) can be expressed in the claimed form
with

Γ(x) =
1

n

n∑
i=1

m∑
j=1

hj(x
(i))hj(x

(i))T , (2.11)

g(x) =
1

n

n∑
i=1

m∑
j=1

(
∂

∂xj
b(x(i))

)
hj(x

(i))T +Δt(x(i)), (2.12)

c(x) =
1

n

n∑
i=1

1

2

∥∥∥∇b(x(i))
∥∥∥2
2
+Δb(x(i)). (2.13)

For non-negative score matching, Ĵ+(x, Qθ) admits the claimed form with

Γ(x) =
1

n

n∑
i=1

m∑
j=1

x2
ijhj(x

(i))hj(x
(i))T , (2.14)

g(x) =
1

n

n∑
i=1

m∑
j=1

(
∂

∂xj
b(x(i))

)
hj(x

(i))T + x2
ijhjj(x

(i))T + 2x
(i)
j hj(x

(i))T ,

(2.15)

c(x) =
1

n

n∑
i=1

m∑
j=1

1

2
x2
ij

(
∂

∂xj
b(x(i))

)2

+ x2
ij

∂2

∂x2
j

b(x(i)) + 2xij
∂

∂xj
b(x(i)),

(2.16)

where the xij are the entries of the n×m data matrix x.

Lemma 1 implies that, when working with exponential families, both score
matching objectives are quadratic functions of the unknown parameter vector θ.
A score matching estimator θ̂ thus satisfies a set of linear estimating equations

θ̂TΓ(x) + g(x) = 0. (2.17)

2.4. Pairwise interaction models

The most basic class of exponential families that appear in graphical modeling
are pairwise interaction models with log-densities

log q(x|θ) =
∑

1≤j≤k≤m

θjktjk(xj , xk)− ψ(θ) + b(x), x ∈ X ⊆ R
m. (2.18)

Here, the tjk are sufficient statistics that depend only on the jth and kth coordi-
nate of x, and the θjk are interaction parameters. If Qθ denotes the distribution
with density given by (2.18), then the Hammersley-Clifford Theorem implies
that an edge between nodes j and k exists in the conditional independence
graph of Qθ if and only if θjk is nonzero. The specific models we consider later



814 L. Lin et al.

either exactly have the form in (2.18) or are closely related extensions with
log-densities

log q(x|θ) =

A∑
a=1

∑
j≤k

θ
(a)
jk t

(a)
jk (xj , xk) +

L∑
l=1

m∑
j=1

θ
(l)
j t

(l)
j (xj)− ψ(θ) + b(x), (2.19)

where pairwise interactions may be of A different types and we also include

L sets of sufficient statistics t
(l)
j depending on the individual coordinates. The

latter appear, for instance, when allowing distributions to vary in location. The
distribution Qθ defined by (2.19) has no edge between j and k in its conditional

independence graph if and only if θ
(1)
jk = · · · = θ

(A)
jk = 0.

In our study of score matching methods for models of the type (2.18) or (2.19),
it will be convenient to introduce the symmetric m × m interaction matrix Θ
with entries

Θjk =

{
θjk if j ≤ k,

θkj if j > k.

Lemma 2. Let P to be the pairwise interaction model given by (2.18) with
symmetric m × m interaction matrix Θ. If P has support X = R

m, then the
empirical score matching loss Ĵ(x, Qθ) equals

1

2
vec(Θ)TΓ(x)vec(Θ) + g(x)T vec(Θ) + c(x) (2.20)

for a symmetric m2 ×m2 matrix Γ(x) that is block-diagonal, with all blocks of
size m×m. The same is true for Ĵ+(x, Qθ) when P has support X = R

m
+ .

Proof. By (2.11) and (2.14), it suffices to show that there exists a block-diagonal
matrix Γj(x) such that

θThj(x)hj(x)
T θ = vec(Θ)TΓj(x)vec(Θ), (2.21)

where θ = (θjk : j ≤ k). Now,

hj(x)
T θ =

∑
k≥j

∂

∂xj
tjk(xj , xk)θjk +

∑
k<j

∂

∂xj
tkj(xk, xj)θkj

=
∑
k≥j

∂

∂xj
tjk(xj , xk)Θkj +

∑
k<j

∂

∂xj
tkj(xk, xj)Θkj .

Define a vector h̄j(x) ∈ R
m2

, indexed by pairs (k, l) with 1 ≤ k, l ≤ m, by
setting the entries to

h̄j(x)kl =

⎧⎪⎨
⎪⎩

∂
∂xk

tkl(xk, xl) if j = k ≤ l,
∂

∂xk
tlk(xk, xj) if j = k > l,

0 if j �= k.

(2.22)

Then hj(x)
T θ = h̄j(x)vec(Θ) and (2.21) holds with Γj(x) = h̄j(x)h̄j(x)

T , which
is block-diagonal as it is zero with the exception of the m×m block indexed by
pairs (k, l) with k = j.
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Remark 1. When P is a model as specified in (2.19), then the empirical (non-
negative) score matching loss may still be represented as an explicit quadratic
form with a block-diagonal symmetric matrix Γ(x) as in (2.20). However, Γ(x)
is then of size (Am2+Lm)× (Am2+Lm), and its m diagonal blocks are of size
(Am + L)× (Am + L). The jth block has its rows and columns corresponding

to the jth columns of each of Θ(1), . . . ,Θ(A) as well (θ
(1)
j , . . . , θ

(L)
j ).

Example 1. If the exponential family is taken to be the family of centered
multivariate normal distributions with precision matrix K = (κjk), then the
support is X = R

m and

q(x|K) ∝ exp

{
−1

2
xTKx

}
, x ∈ R

m. (2.23)

With

∇ log q(x|K) = −Kx, Δlog q(x|K) = −
m∑
j=1

κjj ,

and dropping a term that is constant in K, the empirical score matching loss
from (2.2) takes the form

− tr(K) +
1

2
tr(KKW), (2.24)

where

W =
1

n

n∑
i=1

x(i)x(i)T

is the empirical covariance matrix (under knowledge of zero mean). Lemma 2
applies with tjk(xj , xk) = xjxk, in which case the matrix Γj(x) constructed in
the proof of the lemma does not depend on j, other than through the location
of the nonzero block. Indeed, (2.20) holds with Γ(x) = Im×m ⊗W and g(x) =
vec(Im×m), where Im×m is the m×m identity matrix. Clearly, Γ(x) is positive

definite if and only ifW is as well. IfW is invertible then SME ofK is K̂ = W−1

and coincides with the maximum likelihood estimator.

Example 2. Consider truncated normal densities of the form

q(x|K) ∝ exp

{
−1

2
xTKx

}
, x ∈ R

m
+ . (2.25)

Using κj to denote the jth column of K, it can be shown that the empirical
non-negative score matching objective is

1

n

n∑
i=1

m∑
j=1

2xijx
(i)Tκj − x2

ijκjj +
1

2
κT
j

(
x2
ijx

(i)x(i)T
)
κj . (2.26)
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The loss can be written as in (2.10) with Γ(x) a block diagonal m2×m2 matrix,
whose jth block is given by

1

n

n∑
i=1

x2
ijx

(i)x(i)T .

Moreover, g(x) = 2w + wdiag, where w = vec(W) and wdiag = vec(diag(W)).
The maximum likelihood estimator for K has no closed form due to intractable
normalizing constants.

Example 3. Finally, consider the family of distributions with densities of the
form

q(x|B(2),B,b) ∝ exp

{ ∑
1≤j �=k≤m

β
(2)
jk x2

jx
2
k +

m∑
j,k=1

βjkxjxk +

m∑
j=1

βjxj

}
, x ∈ R

m.

(2.27)

Here, b = (β1, . . . , βm)T is an m-vector, and B = (βjk) and B(2) = (β
(2)
jk ) are

symmetric m×m interaction matrices, the latter having a zero diagonal. This
family is a class of distributions with normal conditionals, with densities that
need not be unimodal (Arnold, Castillo and Sarabia, 1999; Gelman and Meng,
1991). This family is intriguing from the perspective of graphical modeling as,
in contrast to the Gaussian case, conditional dependence may also express itself

in the variances. For conditional independence of Xj and Xk both βjk and β
(2)
jk

need to vanish.
By Remark 1, the empirical score matching loss for the family from (2.27)

can be written as a quadratic function with the quadratic term given by block-
diagonal matrix Γ(x) of size (2m2 + m) × (2m2 + m). The blocks are of size
(2m+1)× (2m+1), and the jth block has its rows and columns corresponding
to the jth columns of B and B(2) and the jth entry in b.

3. Regularized score matching

In this section, we propose the use of regularized score matching for graphi-
cal model selection in the setting of high-dimensional sparse graphical models.
We begin by discussing the proposed method and its implementation. Later
sections show that, despite the fact that SMEs need not be asymptotically effi-
cient in the sense of traditional large-sample theory, regularized score matching
achieves state-of-the-art statistical performance in high-dimensional problems,
all the while allowing seemingly complicated non-Gaussian graphical models to
be treated in a computationally efficient manner.

3.1. Methodology

Building on the ideas underlying methods such as glasso, neighborhood selec-
tion and SPACE, we augment the score matching loss with a sparsity-promoting
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penalty. Our focus is on the most basic case of an �1 penalty but other regular-
ization schemes could be considered instead; see also Example 3 below.

Using the generic representation given in Lemma 1, for an exponential family,
the proposed method is based on minimizing the objective

Ĵλ(θ) =
1

2
θTΓ(x)θ − g(x)T θ + c(x) + λ‖θ‖1, θ ∈ R

s, (3.1)

where Γ(x) is positive semidefinite and λ ≥ 0 is a tuning parameter that controls
the sparsity level. Larger values of λ yield sparser solutions, and λ = 0 gives
the unregularized SME. Since Γ(x) is positive semidefinite, the function Ĵλ(θ)
is convex but in the settings of interest here Γ(x) will be singular and Ĵλ(θ)
will not be strictly convex.

The regularized score matching objective from (3.1) is similar to the lasso
objective in linear regression (Tibshirani, 1996), where the function to be min-
imized takes the special form

1

2
‖y −Xθ‖22 + ‖θ‖1, (3.2)

for a ‘response vector’ y and a ‘design matrix’ X. In the applications we have
in mind (3.1) cannot be written exactly as in (3.2) because the vector g(x)
is generally not in the column span of Γ(x). However, we may adapt existing
optimization methods for lasso to solve the regularized score matching problem.
Implementation details are given in Appendix A.

If the considered exponential family is supported on X = R
m and we use the

loss from (2.3), then we call the minimizer of (3.1) the regularized score matching
estimator (rSME). If X = R

m
+ and we use the loss from (2.7), then we abbreviate

to rSME+. In specific instances of graphical models, we may apply the �1 penalty
only to those coordinates of θ whose vanishing corresponds to absence of edges
in a conditional independence graph. If the subset E ⊆ {1, . . . , s} holds the
relevant coordinates then we use the penalty

‖θ‖1,E ≡
∑
j∈E

|θj |.

Example 1 (cont.). For the (centered) Gaussian case considered in Example 1,
the target of estimation is the symmetric precision matrixK. The conditional in-
dependence graph corresponds to the pattern of zeros in the off-diagonal entries
of K and the rSME is

K̂ = arg min
K∈Symm

{
− tr(K) +

1

2
tr(KKW) + λ‖K‖1,off

}
, (3.3)

where W is the empirical covariance matrix and ‖K‖1,off = ‖K‖1,E penalizes
only the off-diagonal entries indexed by E = {(j, k) : j �= k}. We emphasize
that while in this example the natural parameter space is the positive definite
cone, we propose minimizing simply over the entire space of symmetric m×m
matrices, denoted by Symm. As our interest is primarily in graph selection, we
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do not enforce positive definiteness of K̂, which is in line with methods such as
SPACE or neighborhood selection; compare Khare, Oh and Rajaratnam (2015).

We remark that evaluating the function from (3.3) at a nonsymmetric matrix
K as well as its transpose KT gives the same value. By convexity, minimizing
over all m×m matrices gives a solution in Symm, which then must equal K̂.

Example 2 (cont.). In the truncated normal family from Example 2, the con-
ditional independence graph corresponds again to the zero pattern in the off-
diagonal entries of the positive definite interaction matrix K. Proceeding in
analogy to the Gaussian case, we define the rSME+ as the minimizer K̂+ of the
objective given by (2.26) with the penalty λ‖K‖1,off added on. Again, we ignore
the positive definiteness requirement and minimize the penalized non-negative
score matching loss with respect to K ∈ Symm.

Example 3 (cont.). For the family of distributions with normal conditionals
from Example 3, we would like a penalty to induce joint sparsity in the two
symmetric interaction matrices B and B(2), because an edge between nodes j
and k is absent from the conditional independence graph if and only both B
and B(2) have their (j, k) entries zero. For this purpose, it is natural to adopt
the group lasso penalty (Yuan and Lin, 2006). The rSME is then obtained by
minimizing the empirical score matching loss augmented by the penalty

λ
∑
j �=k

√
(βjk)2 + (β

(2)
jk )2.

Ignoring again any refined constraints from the natural parameter space of the
family, we propose minimizing the penalized loss with respect to b ∈ R

m and
B,B(2) ∈ Symm. Since the group lasso is applied with small groups (of size 2),
the problem would be suitable for application of exact block-coordinate descent
as discussed in Foygel and Drton (2010a).

3.2. Uniqueness of rSME

In the setup from Lemma 1, we may write

Γ(x) = H(x)TH(x) (3.4)

for an nm × s matrix H(x); recall (2.11) and (2.14). Based on the argu-
ments leading to Lemmas 3 and 5 in Tibshirani (2013), the function Ĵλ(θ)

from (3.1) has a unique minimizer θ̂ as long as λ > 0 and the columns of
H(x) are in general position. To clarify, suppose that U ⊂ R

nm is a collection
of |U| = s vectors. Then U is in general position if for all k < min{nm, s},
all choices of vectors u1, . . . , uk+1 ∈ U and signs σ1, . . . , σk+1 ∈ {−1, 1}, the
affine span of σ1u1, . . . , σk+1uk+1 does not contain any vector u or −u for
u∈U \ {u1, . . . , uk+1}.

The graphical models we are interested in are pairwise interaction models
that have additional special structure in that the matrix Γ(x) is block-diagonal
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with m blocks of equal size; recall Lemma 2 and Remark 1. Denote the diagonal
blocks by Γ1(x), . . . ,Γm(x), which in the setup from (2.19) are of size (Am2 +
Lm) × (Am2 + Lm). Each block is the sum of n symmetric rank one matrices
and we have the decomposition

Γj(x) = Hj(x)
THj(x), j = 1, . . . ,m. (3.5)

The n columns of each of the matrices Hj(x) were specified in (2.22). It now
holds that the regularized score matching problem from (3.1) has a unique
minimizer provided each one of the n × (Am + L) blocks H1(x), . . . ,Hm(x)
defined in (3.5) has its columns in general position.

Example 1 (cont.). In the Gaussian case, H1(x) = · · · = Hm(x) = x. By the
Lemma in Okamoto (1973), the set of matrices x that fail to be in general

position has measure zero. The rSME K̂ is unique almost surely when data are
generated from a continuous joint distribution.

Example 2 (cont.). In the truncated normal case, Hj(x) is equal to the matrix
obtained from x by multiplying each column element-wise with xj , the jth
column of x. The Lemma in Okamoto (1973) implies that the rSME+ is unique
almost surely.

For the normal conditionals model from Example 3, almost sure uniqueness
would have to be derived by appealing to results on uniqueness of group lasso
(Roth and Fischer, 2008).

3.3. Piecewise linear paths

The rSME depends on the regularization parameter λ. In this section we make
this explicit and denote it by θ̂λ. Adopting standard language, we refer to the
set of θ̂λ obtained by varying λ as the solution path and call this path piecewise
linear if there exists 0 = λ0 < λ1 < . . . < λR = ∞ and ξ0, . . . , ξR−1 ∈ R

m such
that θ̂λ = θ̂λr + (λ − λr)ξr for λ ∈ [λr, λr+1]. Piecewise linear solution paths
have the appeal that the entire solution path can be found by calculating the
change points λr and associated slopes ξr.

The next lemma is a consequence of the quadratic nature of the score match-
ing objective for exponential families, and holds for the lasso problem as well.

Lemma 3. The solution path θ̂λ for the regularized score matching problem
from (3.1) is piecewise linear.

Proof. An s-vector z belongs to ∂‖θ‖1, the subdifferential of the �1 norm, if

zj =

{
sign(θj) if θj �= 0,

∈ [−1, 1] if θj = 0.
(3.6)

The Karush-Kuhn-Tucker (KKT) conditions characterizing optimality in (3.1)
are

Γ(x)θ̂ − g(x) + λẑ = 0, ẑ ∈ ∂‖θ̂‖1. (3.7)

The linear relationship between θ̂ and λ (for “fixed” ẑ) implies the claim.
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Fig 1. (a) A conditional independence graph with m = 4 nodes. (b) rSME solution path for
Gaussian graphical modeling (m = 4, n = 12).

While straightforward to show, the property of piecewise linear paths is spe-
cial to the score matching method we propose. Other methods that give sym-
metric estimates of precision matrices in Gaussian graphical models, such as
glasso or the SPACE-type methods discussed in Khare, Oh and Rajaratnam
(2015) do not have piecewise linear solution paths. This said, piecewise linear
paths also arise in neighborhood selection (Meinshausen and Bühlmann, 2006),
which, however, is a formulation without symmetry. Note also that when using
a group lasso penalty as suggested for Example 3, rSME solution paths are no
longer piecewise linear.

Example 1 (cont.). In the Gaussian model, the KKT conditions state that K̂ is
a solution to (3.1) if and only if

(Im×m ⊗W) vec(K̂)− vec (Im×m) + λẑ = 0 (3.8)

for ẑ ∈ ∂‖K̂‖1,off, which in slight abuse of notation, we take to mean that

ẑjk =

⎧⎪⎨
⎪⎩
0 if j = k,

sign(κ̂jk) if κ̂jk �= 0 and j �= k,

∈ [−1, 1] if κ̂jk = 0 and j �= k.

(3.9)

The first case accounts for the fact that the objective is smooth in the diagonal
entries of the precision matrix, which are not penalized. Combining (3.8) and
(3.9), we have that

−1 +

m∑
k=1

wjkκ̂jk = 0, j = 1, . . . ,m, (3.10)

m∑
�=1

wj�κ̂�k +

m∑
�=1

wk�κ̂�j + λẑjk = 0, 1 ≤ j �= k ≤ m. (3.11)
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A Gaussian solution path is shown in Figure 1b, with the horizontal axis trans-
formed to t(λ) =

∑
j �=k |κ̂λ

jk|. The data were drawn from a multivariate normal
distribution with the conditional independence graph from Figure 1a, with sam-
ple size n = 12. We note that, as one would hope, the coefficient that last enters
the solution corresponds to the absent edge (1, 4).

3.4. Tuning

A number of methods have been proposed for selecting the regularization pa-
rameter λ in �1 penalization methods and can be applied in our context. On
the one hand, a predictive assessment as in cross-validation can be considered,
but the selected graphs are typically too dense. Other possibilities include gen-
eralized cross validation (GCV) (Tibshirani, 1996), Akaike’s Information Crite-
rion (AIC), approaches based on stability under resampling (Meinshausen and
Bühlmann, 2010; Shah and Samworth, 2013; Liu, Roeder andWasserman, 2010),
the Bayesian Information Criterion (BIC) (Schwarz, 1978) as well as extensions
of BIC proposed to cope with large model spaces (Chen and Chen, 2008; Gao
et al., 2012; Foygel and Drton, 2010b; Barber and Drton, 2015). The latter come
with some consistency guarantees.

As a demonstration, for the Gaussian case from Example 1, we may consider
an extended BIC criterion based on the basic score matching loss (2.2), defined
as

BIC(λ) = −2tr(K̂λ) + tr(K̂λK̂λW) + |Êλ| logn+ 4|Êλ|γ logm, (3.12)

where Êλ = {(j, k) : κ̂λ
jk �= 0, j < k} and γ is typically taken to be 1/2 or

1. Alternatively, we could refit, that is, replace Kλ by an unregularized SME
computed in the submodel given by constraining all κjk with (j, k) �∈ Êλ to be
zero. In either case, we choose the λ which minimizes (3.12).

4. Numerical experiments

We perform numerical experiments comparing regularized score matching to
existing methods when data is simulated from (i) a multivariate normal distri-
bution, (ii) a multivariate truncated normal distribution, and (iii) a distribution
with normal conditionals. The comparison is made against three methods for
estimation of Gaussian graphical models, namely, glasso, neighborhood selection
(both implemented in the R packages huge) and SPACE (in its CONCORD for-
mulation, with R package gconcord). In addition, we consider the nonparanor-
mal SKEPTIC, which applies glasso to a matrix of rank correlations (Kendall’s
τ or Spearman’s ρ) and can be motivated by a Gaussian copula model (Liu
et al., 2012). We utilize the version based on Kendall’s τ . Finally, we compare
to SPACEJAM (Voorman, Shojaie and Witten, 2014), which is based on addi-
tive modeling of conditional means and implemented in the R package spacejam.
We conclude this section with brief investigations on the robustness of regular-
ized score matching when data is not generated under the assumed model. All
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Fig 2. ROC curves for the Gaussian case. The dashed grey line represents random selection of
edges. The color to method correspondence is as follows: regularized score matching ( ),
neighborhood selection ( ), glasso ( ), and SPACE ( ). The curves are almost
perfectly aligned.

results in this section are based on averaging over 100 independently generated
datasets.

4.1. Gaussian data

We consider a graph with m = 1000 nodes, composed of 10 connected compo-
nents, each 100 nodes in size and structured as a 10× 10 2-D lattice (4 nearest
neighbors). Each connected component also features three hubs with node de-
gree 20, randomly selected from the subset of nodes in the component.

We follow a procedure similar to the one from Peng et al. (2009) to convert
the adjacency matrix of the graph into a sparse diagonally dominant partial cor-
relation matrix. For each non-zero element of the adjacency matrix, we sample
a draw from a uniform distribution on [0.5, 1]. Each row of this new matrix is
then rescaled by 1.5 times the sum of the absolute values of the off-diagonal en-
tries in the row. We average this matrix with its transpose to ensure symmetry,
and set its diagonal elements to 1. This matrix is inverted and converted into a
correlation matrix to form Σ∗.

Data is then generated from a multivariate normal distribution with mean
zero and a covariance matrix Σ∗. We choose sample size n = 600 and 1000. The
setup agrees with that in Peng et al. (2009), except that the number of nodes
has been scaled up.

Figure 2 shows the ROC curves obtained under both sample sizes. Since the
truth is Gaussian, we do not report results for SKEPTIC or SPACEJAM. For
both sample sizes, the curve for regularized score matching almost perfectly
aligns with those for neighborhood selection, SPACE, and glasso. The results
indicate that regularized score matching estimators achieves state-of-the-art sta-
tistical efficiency in Gaussian models.
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Fig 3. ROC curves for the non-negative Gaussian case. The dashed line represents random
selection of edges. The color to method correspondence is as follows: regularized score match-
ing ( ), glasso ( ), SPACE ( ), SKEPTIC ( ), and SPACEJAM ( ).

4.2. Non-negative Gaussian data

Glasso, SPACE, neighborhood selection and SKEPTIC all presume some form
of underlying Gaussianity. In this and the next subsection, we demonstrate the
application of regularized score matching in scenarios where these assumptions
do not hold to highlight the versatility of the proposed appraoch.

Similar to the Gaussian setting, we consider a graph with m = 100 nodes,
composed of 10 disconnected subgraphs with equal number of nodes. Using
the lower triangular elements adjacency matrix of each 10 node subgraph, we
construct ten matrices, where in each matrix, the element is drawn indepen-
dently to be 0 with probability 0.2, and from a uniform distribution on [0.5, 1]
with probability 0.8. The matrices, after symmetrization, are combined into a
100 × 100 block matrix. The diagonal elements are set to a common positive
number such that the minimum eigenvalue is 0.1 to form the precision matrix
of the pre-truncated normal, K∗.

Data was then generated from a truncated centered multivariate normal, left-
truncated at 0 and with Σ∗ = (K∗)−1 as normal covariance. We used the Gibbs
sampler from the tmvtnorm package in R with a burnin period of 100 samples.
We thinned out the remaining samples, keeping one in ten. The sample size n is
taken to be either 2500 or 5000. The need for a larger sample size is explained
by our theoretical findings in Section 6, specifically Corollary 2.

The ROC curves are shown in Figure 3, where regularized score matching
outperforms all competitors considered. The closest competitor to regularized
score matching are SKEPTIC and SPACEJAM, both of which, objectively, per-
form well, being capable of capturing some of the non-Gaussianity in the data.

We emphasize that here score matching was applied in its non-negative ver-
sion from Section 2.2. The basic score matching procedure from Section 2.1 is
far less efficient based on experiments not reported here.
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Fig 4. ROC curves for the normal conditionals case. The dashed line represents random
selection of edges. The color to method correspondence is as follows: regularized score match-
ing ( ), glasso ( ), SPACE ( ), SKEPTIC ( ), and SPACEJAM ( ). The
curve for glasso overlaps with the curve for SPACE.

4.3. Normal conditionals

Next, we take the data-generating distribution to have a density from the class

q(x|B,b,b(2)) ∝ exp

⎧⎨
⎩∑

j �=k

βjkx
2
jx

2
k +

m∑
j=1

β
(2)
j x2

j +

m∑
j=1

βjxj

⎫⎬
⎭ , x ∈ R

m,

(4.1)

where B = {βjk} is a symmetric matrix with diagonal entries 0. This family is
a special case of the distributions with normal conditionals from Example 3.

We consider the case m = 625, with the graph being a 25× 25 2-D lattice (4
nearest neighbors). The true interaction matrixB∗ is constructed by multiplying
the adjacency matrix by −1/25. The coefficients for the terms x2

j are all set
equal to −1 and those for the xj all equal to 8/50, which makes the marginal
distributions deviate noticeably from Gaussianity. Data can be generated by
Gibbs sampling using the Gaussian full conditionals. We discard the first 100
samples and thin out the remaining samples, keeping one in ten, as in Section 4.2.

We plot the ROC curves for conditional normal data in Figure 4. Regular-
ized score matching outperforms its competitors by a clear margin. This is not
surprising, as both glasso and SPACE are derived under normality. A Gaussian
copula model as underlying SKEPTIC is of little help. SPACEJAM does best
among the competitors but cannot fully extract the available signal about the
edge structure as the conditional means are non-additive and the conditional
variances are not constant.
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4.4. A robustness check

It is of interest to see how score matching performs when the data-generating
mechanism is misspecified. We consider two scenarios. First, we apply the Gaus-
sian score matching to a contaminated Gaussian setting similar to that explored
in Finegold and Drton (2011). That is, a random subset of Gaussian observa-
tions is replaced with Gaussian noise. In the second example, we investigate the
performance of the regularized Gaussian score matching when the observations
are not Gaussian but rather drawn from a multivariate t-distribution.

4.4.1. Contaminated Gaussians

We mimic the setup used in the numerical experiments in Finegold and Drton
(2011), who consider these settings to test the robustness of their tlasso. Fixing
m = 200, we construct a sparse precision matrix K∗ according to the following
steps: (1) choose each (strictly) lower triangular element of K∗ to be indepen-
dently −1, 0, 1 with probability 0.01, 0.98 and 0.01 respectively, (2) symmetrize
the matrix (3) for each row, i.e. for j = 1, . . . ,m, set κ∗

jj = 1 + ‖κ∗
j,−j‖0 where

κ∗
j,−j refers to the jth row of K∗ with the diagonal element in that row removed.

To strengthen partial correlations, the diagonal elements are scaled down by a
common positive factor such that the minimum eigenvalue of the resulting ma-
trix is approximately 0.6 (close to 0.62 in our setup). The covariance matrix Σ∗

is obtained by inverting K∗.
We generate either n = 150 or n = 200 observations from a multivariate nor-

mal distribution with mean zero and a covariance matrix Σ∗. We then corrupt
2% of the observations, substituting them with i.i.d. N(0, 0.2) draws. The cor-
rupted observations cannot easily be differentiated from normal observations,
and this elevates the difficulty of the estimation problem.

We present the ROC curves in Figure 5. Interestingly, score matching per-
forms reasonably well, on par with SKEPTIC and neighborhood selection. For
both sample sizes, the differences, which are subtle, are most apparent in the
regime where the number of false positives detected is small: score matching
falls slightly short of neighborhood selection, but it also appears to slightly out-
perform SKEPTIC. Surprisingly, there is a clear margin of difference between
the performances of regularized score matching and SPACE, the former out-
performing the latter, despite their noted structural similarities. Glasso, which
utilizes the full Gaussian likelihood, performs the worst. Overall, we conclude
that regularized score matching is competitively robust when compared to its
alternatives in the contaminated Gaussian setting.

4.4.2. Multivariate t-distributed observations

In this section, we apply regularized Gaussian score matching to observations
arising from a multivariate t-distribution with mean 0 and covariance matrix
Σ∗. This corresponds to testing the robustness of regularized score matching
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Fig 5. ROC curves for the contaminated Gaussian case. The dashed line represents random
selection of edges. The color to method correspondence is as follows: regularized score match-
ing ( ), neighborhood selection ( ), glasso ( ), SPACE ( ), SKEPTIC ( ),
and SPACEJAM ( ).

under model misspecification. Like in the previous section, we consider the case
when m = 200. To set up Σ∗, we construct a m×m adjacency matrix based on
an Erdős-Rényi graph with the probability of drawing an edge between any two
arbitrary nodes set to 0.01. We then convert the adjacency matrix into Σ∗ using
the same procedure as in Section 4.1. Samples were drawn from a multivariate
t-distribution with covariance matrix Σ∗ and three degrees of freedom.

The ROC curves are plotted in Figure 6 for n = 100 and n = 150. As
expected, SKEPTIC outperforms all others, owing to its flexibility to accom-
modate outliers, as previously demonstrated in Liu et al. (2012). In fact, for el-
liptical distributions, such as the multivariate t-distribution, Kendall’s τ allows
for consistent estimation of Σ∗, so SKEPTIC should perform optimally (Liu,
Han and Zhang, 2012). Nonetheless, regularized score matching is reasonably
robust under this setting: its performance is comparable to that of SPACEJAM
– only falling slightly short – SPACE, and neighborhood selection. Again, glasso
yields the poorest results.

5. Application to RNAseq data

The American Cancer Society estimates that in 2015 there will be 220,800 new
cases of prostate cancer and 27,540 deaths. To understand how the cancer de-
velops, as well as how it may be treated, it is necessary to decipher the genetic
machinery which drives it. Since cancer is such a complex disease, it is insuffi-
cient to study a single gene at a time, as genes may interact with one another
in many ways. Graphical modeling of gene expression data has the potential to
aid in discovery of such interactions.
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Fig 6. ROC curves for the t-distributed case. The dashed line represents random selec-
tion of edges. The color to method correspondence is as follows: regularized score matching
( ), neighborhood selection ( ), glasso ( ), SPACE ( ), SKEPTIC ( ), and
SPACEJAM ( ).

RNAseq data from next-generation sequencing technology can be used to
identify genes that are activated/transcribed or suppressed at the time of mea-
surement. However, RNAseq data are non-negative and have skewed marginals,
which presents a challenge for existing methodologies. Graphical models based
on truncated Gaussian models are interesting alternatives to existing approaches
that primarily consist of applying Gaussian methods after transformations.
Whether truncation models are truly useful scientifically deserves a fuller explo-
ration; here we simply illustrate how different estimates can be obtained from
the proposed methodology.

Our case study is based on the RNAseq data from 487 prostate adenocarci-
noma samples available in The Cancer Genome Atlas dataset. We focus on 350
genes that belong to “known” cancer pathways in the Kyoto Encyclopedia of
Genes and Genomes. Removing genes with more than 10% missing values, we
obtained a dataset with m = 333 genes. Remaining missing values were simply
set to zero, adding to the challenge. (We will comment on the issue of missing
data in the discussion.) In illustration of the regularized score matching method-
ology, we consider an exponential family of truncated normal distributions with
density

q(x|μ,K) ∝ exp

{
1

2
(x− μ)TK(x− μ)

}
, x ∈ R

m
+ .

This generalizes the family of distributions considered in Example 2 by allowing
the truncated normal distribution to have nonzero mean.

We compare regularized non-negative score matching, SPACE (using CON-
CORD formulation), glasso, SKEPTIC and SPACEJAM. We apply SPACE and
glasso directly to the standardized data. We do not consider any marginal trans-
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Fig 7. Topology of inferred networks of |E| = 333 or 334 edges for all considered methods.
The layout has been optimized for each graph. Isolated nodes are not shown. Red colored nodes
have degree greater or equal to 10.

formations as they are naturally accounted for when comparing to the rank
correlation-based SKEPTIC. For each method, we tune the regularization pa-
rameter λ in order to obtain |E| = 333 (or 334) edges. Figure 7 depicts the
estimated networks, with isolated nodes removed, in layouts optimized for each
graph. To allow for easier comparison, we also show the estimated networks in
fixed layouts in Figure 8. Node degree distributions are plotted in Figure 9.

By visual inspection, glasso and SKEPTIC give similar topologies, which can
be explained by the fact that both are derived from the full Gaussian likelihood.
Interestingly, we observe that SPACEJAM and SPACE likewise yield similar
graphs, which reinforces findings from Shojaie and Sedaghat (2016). Regularized
non-negative score matching yields a graph that is fairly different from the rest.

While the usefulness of these models remains to be further explored, our
case study demonstrates that regularized score matching can provide estimates
that differ in interesting ways to the estimates generated by other methods. We
compile a list of most highly connected genes in each of the estimated graphs
in Table 1 (some lists have more than ten genes due to ties), as there is strong
evidence that highly connected nodes play important roles in biological networks
(Carter et al., 2004; Jeong et al., 2001; Han et al., 2004). There are slight overlaps
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Fig 8. Topology of inferred networks of |E| = 333 or 334 edges for all considered methods.
Layout of nodes is fixed across graph estimates and was optimized for the SPACE estimate.
Isolated nodes have now been included. Red colored nodes have degree greater or equal to 10.

between the lists. Upon further inspection, we observe that six of the ten genes
listed under regularized score matching have been previously linked to prostate
cancer, five of which have not been identified by the competing methods:

• CCNE2 (cyclin E2): a protein which is required for transition of the G1

to S phase of the cell cycle, which determines cell division. Regulated
by PTEN, a tumor suppressor, it is over-expressed in metastatic prostate
tumor cells (Wu et al., 2009).

• BRCA2 (breast cancer 2): mutations in the BRCA2 gene have been as-
sociated with early-onset prostate cancer in men; men carrying mutations
have a predisposition to more aggressive phenotypes (Gayther et al., 2000;
Mitra et al., 2008; Tryggvadóttir et al., 2007; Fan et al., 2006).

• BIRC5 (survivin): a protein which prevents cell death, or apoptosis, and
regulates cell division. Heightened expression has been found to be asso-
ciated with higher final Gleason score, i.e., more aggressive cancer and
worse prognosis (Kishi et al., 2004; Shariat et al., 2004).

• SKP2 (S-phase kinase-associated protein 2, E3 ubiquitin protein ligase):
a positive regulator of the G1 to S phase of the cell cycle, which de-
termines cell division. SKP2 labelling frequency in cancer was positively
correlated with the Gleason score, and shown to be a significant predic-
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Fig 9. Node degree distributions for inferred networks of |E| = 333 or 334 edges for all
considered methods.

tor of reduced recurrence-free survival time after radical prostatectomy
(Yang et al., 2002; Wang et al., 2008). It has been proposed elsewhere as
a promising therapeutic target for prostate cancer (Wang et al., 2012).

• STAT5B (signal transducer and activator of transcription 5B): a tran-
scription factor that encourages metastatic behavior of human prostate
cancer cells. Its inhibition has been shown to induce apoptosis in human
prostate cancer cells (Gu et al., 2010; Ahonen et al., 2003; Moser et al.,
2012).

Furthermore, via the Kolmogorov-Smirnov test, we fail to reject the hypoth-
esis that the degrees of the nodes for the regularized score matching graph
estimate follow a power law distribution, with significance level of 0.05. On the
other hand, we reject this hypothesis for all other generated estimates at the
same significance level. There is evidence that genetic networks are ‘scale-free’,
which implies that their degree distribution can be approximated by a power
law distribution (Albert, 2005; Barabási and Albert, 1999; Jeong et al., 2001). In
this aspect, the topology of regularized score matching estimate is most similar
to the hypothesized structure of gene networks.
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Table 1

The most densely connected genes according to the estimated graphs generated via
nonnegative regularized score matching, glasso, SKEPTIC, SPACE and SPACEJAM. The

number in parenthesis corresponds to the estimated degree of the gene.

Reg. score matching Glasso SKEPTIC SPACE SPACEJAM
CCNE2 (19) EP300 (20) PIK3CA (23) TRAF6 (9) BHX (10)
PIK3CG (16) SOS1 (17) FZD7 (18) TPR (9) SOS2 (9)
BRCA2 (13) BAD (16) PDGFRB (17) SOS1 (9) TRAF6 (8)
BIRC5 (12) TPR (13) TGFBR2 (16) JAK1 (9) TGFBR2 (8)
SKP2 (10) RBX1 (13) TCEB2 (16) EP300 (9) SOS1 (8)
PIK3CD(10) PIK3CD (12) MMP2 (16) SOS2 (8) RRM2 (8)
LAMB3 (10) LAMA4 (12) LAMA4 (16) EGFR (8) PDGFRB (8)
STAT5B (9) HRAS (12) GLI2 (15) CBL (8) EP300 (8)
HRAS (9) GLI2 (12) SOS1 (14) BAX (8) PIK3CA (7)
PDGFRB (8) TRAF6 (11) PDGFRA (14) APPL1 (8) ARNT (7)
GSTP1 (8) TGFBR2 (11) MITF (14)

TCEB2 (11) EP300 (14)
SPI1 (11)
SOS2 (11)
PDGFRB (11)
MAP2K2 (11)
APPL1 (11)

Finally, we would like to emphasize that we do not intend to claim that regu-
larized score matching provides the best estimate of the underlying gene network,
as the truth is unknown to us. What we can posit is that truncated Gaussian
may be a useful model that provides potentially valid targets for therapy which
may be missed by other methods.

6. Theory

This section establishes high-dimensional model selection consistency (sparsis-
tency) of regularized score matching. We focus on pairwise interaction models as
in (2.18), although our results could be extended to more general models. The-
orem 1 below identifies general deterministic conditions on data that yield spar-
sistency of regularized (non-negative) score matching. Two subsequent corollar-
ies make probabilistic statements about sparsistency in the Gaussian and the
non-negative Gaussian case. Proofs are given in Section 7. Experiments that
corroborate the theoretical findings are shown in Appendix C.

Before stating the main results, we describe a key assumption for model
selection consistency of �1-penalized estimators, the irrepresentability assump-
tion, and highlight differences between various estimators of Gaussian graphical
models with respect to this assumption.

6.1. Setup and notation

We consider a continuous pairwise interaction model as given by (2.18) with
symmetric m ×m interaction matrix Θ = (θjk). We let θ = vec(Θ). Then the
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regularized score matching estimator, in its basic or non-negative version, is

θ̂ = argmin
θ

1

2
θTΓ(x)θ + g(x)T θ + c(x) + λ‖θ‖1. (6.1)

By Lemma 2, Γ(x) is a symmetric m2 ×m2 matrix that is block-diagonal, with
blocks of size m×m. For notational convenience, we drop the explicit reference
to the data matrix x and denote Γ(x) and g(x) as Γ and g.

The true data-generating distribution is assumed to belong to the considered
model. We denote the true interaction matrix by Θ∗ = (θ∗jk) and its vector-
ization by θ∗. We define Γ∗ and g∗ to be the expected values of Γ and g. The
support of θ∗, that is,

S ≡ S(θ∗) = {(j, k) : j �= k, θ∗jk �= 0}

is the edge set of the true conditional independence graph. Similarly,

Ŝ ≡ S(θ̂) = {(j, k) : j �= k, θ̂jk �= 0}

determines the graph inferred by regularized score matching. Finally, we write d
for the maximum degree of the m nodes of the conditional independence graph.
In other words, d is the maximum number of nonzero off-diagonal entries in any
row (or column) of Θ∗.

6.2. Irrepresentability

We say that the irrepresentability (or mutual incoherence) condition holds with
incoherence parameter α if the following assumption holds.

Assumption 1. There exists an α ∈ (0, 1] such that∣∣∣∣∣∣Γ∗
ScS(Γ

∗
SS)

−1
∣∣∣∣∣∣

∞ ≤ (1− α). (6.2)

Irrepresentability conditions play a key role in the analysis of �1 regularization
techniques (Bühlmann and van de Geer, 2011). For neighborhood selection in
Gaussian graphical models, it has been formulated in terms of the covariance
matrix Σ∗ (Meinshausen and Bühlmann, 2006). In the theoretical analysis of
the glasso, the constraint is placed on the Hessian of the log-determinant of the
precision matrix K∗, i.e., (K∗)−1 ⊗ (K∗)−1 (Ravikumar et al., 2011).

In order to highlight the differences in conditions required for sparsistency
of glasso, neighborhood selection, SPACE and regularized score matching, we
revisit the Gaussian graphical model example in Meinshausen (2008). Let ρ ∈
(0, 1/

√
2), and let Σ =

(
σij

)
be the 4× 4 covariance matrix with ones along the

diagonal, σ23 = σ32 = 0, σ14 = σ41 = 2ρ2 and all other off-diagonal entries equal
to ρ. The precision matrix K = (Σ)−1 then has κ14 = κ41 = 0. The conditional
independence graph G is as in Figure 1a.

Meinshausen showed that for samples drawn from N(0,Σ), glasso can con-
sistently recover G only if ρ ≤

√
3/2−1 ≈ 0.23. For neighborhood selection, the
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corresponding necessary condition is ρ ≤ 0.5. If these conditions fail, then for
large sample size, the probability of erroneously including the edge (1, 4), i.e.,
P (κ̂14 �= 0) can be shown to be at least 0.5. It turns out that for regularized
score matching, the analogous necessary condition gives a bound that falls in
between 0.23 and 0.5, specifically, ρ ≤

√
2− 1 ≈ 0.41.

We observe that glasso, which yields positive definite estimates, requires the
most stringent condition. When working with symmetric matrices as in regular-
ized score matching, the condition is markedly relaxed. Allowing non-symmetric
matrices in neighborhood selection leads to further relaxation of the condition.
Interestingly, the pseudo-likelihood methods classified under SPACE have the
same necessary condition as score matching.

Assumption 1 should be seen as sufficient for consistency of regularized score
matching. For Meinshausen’s example, it can be shown to amount to ρ < 1

2 (
√
3−

1) ≈ 0.37. The analogous sufficient condition for glasso from Ravikumar et al.
(2011) requires that ρ < 1

2 (
√
2 − 1) ≈ 0.21. For neighborhood selection, the

condition is ρ < 0.5.

6.3. Main results

We define

cΓ∗ =
∣∣∣∣∣∣(Γ∗

SS)
−1
∣∣∣∣∣∣

∞, and cΘ∗ = |||Θ∗|||∞. (6.3)

Moreover, let

R1 = (Γ− Γ∗), r2 = g∗ − g, r3 = Γ∗θ∗ − g∗, (6.4)

such that the KKT conditions from (3.7) can be written as

Γ∗(θ̂ − θ∗) +R1θ̂ + r2 + r3 + λẑ = 0, ẑ ∈ ∂‖θ̂‖1. (6.5)

Theorem 1. Assume that Γ∗
SS is invertible and the irrepresentability condi-

tion holds with incoherence parameter α ∈ (0, 1] (Assumption 1). Furthermore,
assume that

‖R1‖∞ < ε1, ‖r2‖∞ < ε2, (6.6)

with dε1 ≤ α/(6cΓ∗). If

λ >
3(2− α)

α
max{cΘ∗ε1, ε2}, (6.7)

then the following statements hold:

(a) The rSME θ̂ is unique, has its support included in the true support (Ŝ ⊆
S), and satisfies

‖θ̂ − θ∗‖∞ <
cΓ∗

2− α
λ.
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(b) If

min
1≤j<k≤m

|θ∗jk| >
cΓ∗

2− α
λ,

then Ŝ = S and sign(θ̂jk) = sign(θ∗jk) for all (j, k) ∈ S.

Theorem 1 imposes deterministic conditions on the data, namely, the bounds
in (6.6). In the following corollaries, we will consider specific distributional as-
sumptions and impose population conditions that imply bounds of the form
(6.6) with high probability.

First, we provide a result for regularized score matching for the Gaussian
case (Example 1), which has Γ = Im×m ⊗W with W being the sample covari-
ance matrix, and g = vec(Im×m). When the data is generated from a normal
distribution with covariance matrix Σ∗ then Γ = Im×m ⊗ Σ∗ and, of course,
g∗ = g = vec(Im×m).

Corollary 1. Suppose the data is generated from a normal distribution N(0,Σ∗)
such that Γ∗

SS is invertible and irrepresentability holds for α ∈ (0, 1]. Let K∗ =
(κ∗

jk) = (Σ∗)−1,

c∗ = 3200 max
j=1,...,m

(Σ∗
jj)

2 and c1 =
4

α
cΓ∗ .

Take any τ1 > 2. If the sample size satisfies

n > c∗c21d
2(logmτ1 + log 4), (6.8)

and the regularization parameter is

λ >
2cK∗(2− α)

α

√
c∗(logmτ1 + log 4)

n
, (6.9)

then the following statements hold with probability 1− 1/mτ1−2:

(a) The rSME K̂ from (3.3) is unique, has its support included in the true
support (Ŝ ⊆ S), and satisfies

‖K̂−K∗‖∞ <
cΓ∗

2− α
λ.

(b) If

min
1≤j<k≤m

|κ∗
jk| >

cΓ∗

2− α
λ,

then Ŝ = S and sign(K̂jk) = sign(κ∗
jk) for all (j, k) ∈ S.

The corollary is proven in Appendix 7.2. Numerical experiments reported
in Appendix C suggest that the sample size n indeed needs to scale at least
Ω(d2 logm) for sparsistency.

From Theorem 1, we can also derive an analogous result for regularized non-
negative score matching for the truncated Gaussian case (Example 2). The result
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requires the sample size to be larger than in the Gaussian case, due to the need to
control higher order moments. Recall that here, Γ(x) a block diagonal m2×m2

matrix, with the jth block given by

1

n

n∑
i=1

x2
ijx

(i)x(i)T ,

and g = 2w + wdiag, where w = vec(W) and wdiag = vec(diag(W)).

Corollary 2. Suppose the data is generated from a non-negative Gaussian dis-
tribution with parameter K∗, i.e., N(0, (K∗)−1) is truncated to R

m
+ . Suppose

further that Γ∗
SS is invertible and irrepresentability holds for α ∈ (0, 1]. Let

c∗∗ = max

{(
L

2

)4√
max

j
Var[X4

j ],

(
L

2

)2√
max

j
Var[X2

j ]

}
and c2 =

6

α
cΓ∗

where L > 0 is an absolute constant. Take any τ2 > 3. If the sample size satisfies

n > c∗∗c22d
2(logmτ2 + log 2)8, (6.10)

and the regularization parameter is

λ >
3(2− α)

α
max{cK∗ , 1}

√
c∗∗(logmτ2 + log 2)8

n
, (6.11)

then the following statements hold with probability 1− 1
mτ2−3 :

(a) The rSME K̂+ based on penalizing (2.26) with λ‖K‖1,off is unique, has its

support included in the true support (Ŝ ⊆ S), and satisfies

‖K̂+ −K∗‖∞ <
cΓ∗

2− α
λ.

(b) If

min
1≤j<k≤m

|κ∗
jk| >

cΓ∗

2− α
λ,

then Ŝ = S and sign((K̂+)jk) = sign(κ∗
jk) for all (j, k) ∈ S.

The proof of the corollary, which is given in Section 7.3, uses general tail
bounds that apply to log-concave measures. The lower bound for n given in (6.10)
could well be suboptimal and a lower power of logm may be sufficient for spar-
sistency. However, the experiments in Appendix C suggest that the exponent
for logm cannot be taken too much smaller than 8.

We also compared the lower bound we obtained for the non-negative Gaussian
case to a result implied by the work of Yang et al. (2013) who treat consistency of
neighborhood selection in a general framework that allows node-wise conditional
distributions to arise from exponential families. Interestingly, when working out
what their general theorem would say about the above non-negative Gaussian
model we found that the sample size n would also be required to be at least
Ω(d2(logm)8). Our result from Corollary 2 is thus at least comparable to existing
results in the literature.
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7. Proofs

7.1. Proof of Theorem 1

First, we note that claim (b) is an immediate consequence of claim (a). To show
(a), we apply the primal-dual witness method (PDW) from Wainwright (2009).
As explained in detail below, PDW entails construction of a pair (θ̃, z̃), with

θ̃ ∈ R
m2

and z̃ ∈ ∂‖θ̃‖1, that satisfies the KKT optimality conditions from (6.5)
and has the support of θ̃ included in S. If the construction is successful then it
ensures that the rSME problem admits a unique solution such that the rSME θ̂
is equal to θ̃ and inherits all the properties the latter has by definition. These
properties include the �∞ bound on estimation error in addition to the claim
about the support.

Replacing Γ by Γ∗ and g by g∗ in the empirical (basic or non-negative) score
matching loss recovers the population loss which, in the present exponential
family context, is quadratic and minimized when θ = θ∗. (Recall that the score
matching loss is consistent.) It follows that r3 from (6.4) is zero as it is the
gradient of the population loss. In block form, (6.5) becomes[
Γ∗
SS Γ∗

SSc

Γ∗
ScS Γ∗

ScSc

][
θ̂S − θ∗S
θ̂Sc − θ∗Sc

]
+

[
R1,SS R1,SSc

R1,ScS R1,ScSc

][
θ̂S
θ̂Sc

]
+

[
r2,S
r2,Sc

]
+λ

[
ẑS
ẑSc

]
=

[
0
0

]
.

(7.1)
We construct the PDW pair (θ̃, z̃) according to the following steps:

(i) Take θ̃ to be the unique solution to the support-restricted problem, that
is,

θ̃ = arg min
θSc=0

1

2
θTΓθ − gT θ + λ‖θ‖1. (7.2)

(ii) Choose
z̃S ∈ ∂‖θ̃S‖1.

(iii) Solving (7.1), set

z̃Sc =
1

λ

[
− Γ∗

ScS(Γ
∗
SS)

−1
(
R1,SS θ̃S + r2,S

)
+R1,ScS θ̃S + r2,Sc + λΓ∗

ScS(Γ
∗
SS)

−1z̃S

]
. (7.3)

(iv) Check the strict dual feasibility condition that

‖z̃Sc‖∞ < 1. (7.4)

By step (i), θ̃ has support contained in S. By step (iii), (θ̃, z̃) is guaranteed to
fulfill the equations from (7.1). By step (ii), the S-coordinates of z̃ satisfy ‘their
part’ of the subgradient condition. Thus, if the strict dual feasibility from step
(iv) holds, then (θ̃, z̃) satisfies the KKT conditions from (6.5). Having a strict
inequality in (7.4) ensures that every solution to the original rSME problem has
support contained in the true support S and since Γ∗

SS is assumed invertible,
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there is then only one solution (Wainwright, 2009, Lemma 1). The invertibility
of Γ∗

SS is also what guarantees the uniqueness in step (i).
If the PDW construction is successful, that is, if the strict dual feasibility

condition can be established, then we may conclude the rSME θ̂ possesses all the
desired properties. Indeed, θ̂ equals θ̃ which has these properties by construction.

Let Δ̃ = θ̃ − θ∗, where θ̃ is the solution to the support-restricted regularized
score matching problem from (7.2). By definition, ‖Δ̃‖∞ = ‖Δ̃S‖∞. Further-
more, by step (iii) in the PDW construction,

z̃Sc =
1

λ

[
Γ∗
ScS(Γ

∗
SS)

−1(R1,SS(θ
∗
S +ΔS) + r2,S)−R1,ScS(θ

∗
S +ΔS)− r2,Sc

]
+ Γ∗

ScS(Γ
∗
SS)

−1z̃S . (7.5)

By Assumption 1, and the triangle inequality for the �∞ norm,

‖z̃Sc‖∞

≤ 1

λ

[
(1− α) (‖R1,SS(θ

∗
S +ΔS)‖∞ + ‖r2,S‖∞)

+ ‖R1,ScS(θ
∗
S +ΔS)‖∞ + ‖r2,Sc‖∞

]
+ (1− α)

≤ (2− α)

λ

[
‖R1,·S(θ

∗
S +ΔS)‖∞ + ‖r2‖∞

]
+ (1− α)

=
(2− α)

λ

[
‖R1θ

∗ +R1,·SΔS‖∞ + ‖r2‖∞
]
+ (1− α)

≤ (2− α)

λ
‖R1θ

∗‖∞︸ ︷︷ ︸
=G1

+
(2− α)

λ
|||R1,·S |||∞‖ΔS‖∞︸ ︷︷ ︸

=G2

+
(2− α)

λ
‖r2‖∞︸ ︷︷ ︸

=G3

+(1− α),

where the equality in the second to last line follows from the fact that θ∗Sc = 0.
We observe that

G1 =
(2− α)

λ
× ‖Θ∗

widevec(R1,blocks)‖∞ (7.6)

where

Θ∗
wide =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ∗T1 0 . . . . . . 0

0 θ∗T1 0 . . .
...

... 0
. . .

. . . . . .
...

...
. . . θ∗Tm 0

...
...

... 0 θ∗Tm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is an m2×m3 matrix whose diagonal blocks are given by the rows of the the in-
teraction matrix Θ∗, each row being replicated m times. Moreover, vec(R1,blocks)
refers to the vectorization of the m diagonal blocks of R1 that are each of size
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m×m; recall Lemma 2. More precisely, ifR1,1, . . . ,R1,m are the diagonal blocks
of R1, then vec(R1,blocks) is obtained by concatenating vec(R1,1), . . . , vec(R1,m)
in that order. Equation (7.6) is the only argument relying on the block-diagonal-
ity of Γ and R1.

From (7.6), we obtain that

G1 ≤ (2− α)

λ
|||Θ∗

wide|||∞‖vec(R1)‖∞ <
(2− α)

λ
|||Θ∗

wide|||∞ε1.

since we have assumed that ‖vec(R1)‖∞ = ‖R1‖∞ < ε1. By construction,
|||Θ∗

wide|||∞ = |||Θ∗|||∞ = cΘ∗ . It follows, from our choice of λ that G1 < α/3.
By the assumption that ‖r2‖∞ < ε2, we have

G3 <
(2− α)

λ
ε2 <

α

3
,

and it remains to similarly bound G2. We treat |||R1,·S |||∞ and ‖Δ̃S‖∞ sepa-
rately.

We note that the rows of R1,·S have at most d non-zero elements. It follows
that |||R1,·S |||∞ ≤ d‖R1‖∞ < dε1 < α/6cΓ, where the last inequality holds by
assumption. Since ΓSS is assumed invertible, we have from the top block of
equations in (7.1) that

Δ̃S = (ΓSS)
−1(−R1,SSθ

∗
S − λz̃).

Note that by assumption, ΓSS is invertible. We obtain that

‖Δ̃S‖∞ ≤
∣∣∣∣∣∣(ΓSS)

−1
∣∣∣∣∣∣

∞

[
‖R1,SSθ

∗
S‖∞ + ‖r2‖∞ + λ

]

<
∣∣∣∣∣∣(ΓSS)

−1
∣∣∣∣∣∣

∞

[
|||Θ∗

wide|||∞‖vec(R1)‖∞ + ‖r2‖∞ + λ

]

≤
∣∣∣∣∣∣(ΓSS)

−1
∣∣∣∣∣∣

∞ × (6− α)

3(2− α)
λ. (7.7)

Since ‖R1‖∞ < ε1, we have |||R1,SS |||∞ ≤ dε1 < 1/cΓ∗ . This implies that∣∣∣∣∣∣(Γ∗
SS)

−1R1,SS

∣∣∣∣∣∣
∞ ≤

∣∣∣∣∣∣(Γ∗
SS)

−1
∣∣∣∣∣∣

∞|||R1,SS |||∞ < 1,

which gives us the following bound in the error in the inverse in the matrix �∞
norm,

∣∣∣∣∣∣(ΓSS)
−1 − (Γ∗

SS)
−1
∣∣∣∣∣∣

∞ ≤
∣∣∣∣∣∣(Γ∗

SS)
−1R1,SS

∣∣∣∣∣∣
∞

1− |||(Γ∗
SS)

−1R1,SS |||∞
×
∣∣∣∣∣∣(Γ∗

SS)
−1
∣∣∣∣∣∣

∞

≤
∣∣∣∣∣∣(Γ∗

SS)
−1
∣∣∣∣∣∣

∞|||R1,SS |||∞
1− |||(Γ∗

SS)
−1|||∞|||R1,SS |||∞

×
∣∣∣∣∣∣(Γ∗

SS)
−1
∣∣∣∣∣∣

∞.

Application of the triangle inequality, along with our definition of

cΓ∗ =
∣∣∣∣∣∣(Γ∗

SS)
−1
∣∣∣∣∣∣

∞,
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yields ∣∣∣∣∣∣(ΓSS)
−1
∣∣∣∣∣∣

∞ ≤
∣∣∣∣∣∣(Γ∗

SS)
−1
∣∣∣∣∣∣

∞ +
∣∣∣∣∣∣(ΓSS)

−1 − (Γ∗
SS)

−1
∣∣∣∣∣∣

∞

=
∣∣∣∣∣∣(Γ∗

SS)
−1
∣∣∣∣∣∣

∞ × 1

1− |||(Γ∗
SS)

−1|||∞|||R1,SS |||∞
≤ cΓ∗

1− dcΓ∗ε1

≤ cΓ∗

1− α/6
, (7.8)

where the last inequality uses the assumption that dε1 ≤ α/6cΓ∗ . Substitut-
ing (7.8) into (7.7), it is straightforward to show that G2 < α/3. Therefore,
G1 +G2 +G3 < α, which yields that ‖z̃Sc‖ < 1.

Along the way we have also proven the second part of the claim. Indeed, from
(7.7) and (7.8), we have

‖Δ̃S‖∞ ≤ cΓ∗

1− α/6
× (6− α)

3(2− α)
λ =

2cΓ∗λ

2− α
.

7.2. Proof of Corollary 1

We need to show that the conditions in Theorem 1, specifically those in (6.6),
hold with the claimed probability. Since r2 = g−g∗ = vec(Im×m)−vec(Im×m) =
0, the second inequality in (6.6) can be trivially satisfied with any ε2 > 0. Thus,
we only need to show that we can bound ‖R1‖∞ by some suitable ε1 with
sufficiently large probability. To do so, we apply a Bernstein-type concentration
inequality for the entries of W that is also used by Ravikumar et al. (2011).
Lemma B.1 below states the inequality, as given in their paper.

The matrix R1 features only entries in W − Σ∗. By taking a union bound
over the m2 entries of W, plugging in our lower bound for n and observing that
σ = 1 in the Gaussian case, Lemma B.1 yields that

Pr

[
‖R1‖∞ ≥

√
c∗(logmτ1 + log 4)

n

]
≤ exp {− logmτ1 + 2 logm} =

1

mτ1−2
.

In addition, each row in |||R·S |||∞ features at most d entries from the matrix
W −Σ∗. Hence, it follows from another union bound, and choosing n at least

c∗c21d
2(logmτ1 + log 4)

where c∗ and c1 are defined in the corollary statement, that

Pr

[
|||R·S |||∞ >

1

c1

]
≤ 1

mτ1−2
.

Thus, applying Theorem 1 with

ε1 =

√
c∗(logmτ1 + log 4)

n
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shows that our choices for λ and n give the high probability statement in Corol-
lary 1.

When looking back at the proof of Theorem 1, we see that as a consequence
of having r2 = 0, we need only be concerned with bounding terms G1 and G2.
We may thus bound G1 and G2 each by α/2 instead of α/3 and ignore the G3

term entirely, as it is 0. This leads us to having c1 = (4/α)cΓ∗ , as opposed to
the expected (6/α)cΓ∗ .

7.3. Proof of Corollary 2

We proceed as for the proof of Corollary 1 and use concentration results to
satisfy the bounds from (6.6) in Theorem 1. However, we now bound ‖R1‖∞
and ‖r2‖∞ using concentration inequalities for general log-concave measures
(any truncated multivariate normal density is log-concave).

LetX(i) = (Xi1, . . . , Xim) be i.i.d. according toN(0, (K∗)−1) with truncation
to R

m
+ . Take

ε1 =

[(
L
2

)
(logmτ2 + log 2)

]4
√
n

√
max

j
Var[X4

j ], (7.9)

ε2 =

[(
L
2

)
(logmτ2 + log 2)

]2
√
n

√
max

j
Var[X2

j ]. (7.10)

From Lemma B.3 below, we know that for the absolute constant L specified in
Lemma B.2, we have,

Pr

[∣∣∣∣ 1n
n∑

i=1

XijXikX
2
i� − E[XjXkX

2
� ]

∣∣∣∣ > ε1

]

< exp

⎧⎨
⎩− 2

L

( √
nε1√

max
j,k,�

Var[XjXkX2
� ]

) 1
4

⎫⎬
⎭ ,

Pr

[∣∣∣∣ 1n
n∑

i=1

XijXik − E[XjXk]

∣∣∣∣ > ε2

]

< exp

⎧⎨
⎩− 2

L

( √
nε2√

max
j,k,�

Var[XjXk]

) 1
2

⎫⎬
⎭

for all j, k, � = 1, . . . ,m. By a union bound over no more than 2m3 events, we
have both ‖R1‖∞ < ε1 and ‖r2‖∞ < ε2 with probability at least 1 − 1/mτ2−3

as m → ∞. Applying Theorem 1 with the chosen ε1 and ε2 thus shows that our
choices for λ and n lead to the claim in Corollary 2.
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8. Discussion

This paper proposes the use of regularized score matching for estimation of
conditional independence graphs in high dimensions. The focus is on modifying
the score matching loss of Hyvärinen (2005) with an �1 penalty to accommodate
underlying sparsity, which is in the spirit of popular existing methods such as
glasso and neighborhood selection. This said, any other regularization scheme
can be considered instead. For instance, the method from Defazio and Caetano
(2012) can be applied to encourage hub structure in the inferred graph.

Our study of the Gaussian example of Meinshausen (2008) suggests that �1-
regularized score matching falls in between neighborhood selection and glasso
in terms of conditions for required for graph selection consistency. Here, the
glasso requires the most stringent conditions, and the score matching approach
appears to be similar to pseudo-likelihood methods that work with symmetric
estimates of precision matrices, such as SPACE (Peng et al., 2009) and subse-
quent reformulations such as CONCORD (Khare, Oh and Rajaratnam, 2015).
However, regularized score matching is particularly convenient in that the score
matching loss is a quadratic function, even for non-Gaussian exponential fam-
ilies. This brings about piecewise linear solution paths and allows for a simple
theoretical analysis. We anticipate that the simple structure of score matching
will lead to further advances in graphical modeling, such as computationally
efficient techniques to deal with corrupted or missing data, in the spirit of Loh
and Wainwright (2012), or new methods to tune regularization parameters, as
in Chichignoud, Lederer and Wainwright (2014).

Regularized score matching is an interesting method for Gaussian models, as
we showed empirically and theoretically. In particular, for consistency (under
the usual irrepresentability conditions), the sample n must be on the order
Ω(d2 logm), which matches the conditions for the existing methods mentioned
above. However, as our simulation study shows, regularized score matching really
shines in the context of non-Gaussian models, where it eliminates the need to
deal with computationally intractable normalization constants in a way that
the loss continues to be a quadratic function of parameters. This opens a lot of
new possibilities for graphical modeling such as the truncated normal model we
applied to RNAseq data.

Score matching applies to continuous data. While Hyvärinen (2007) discusses
a ratio matching method for discrete data, it is not as computationally conve-
nient as its continuous counterpart. A different approach of adding Gaussian
noise to discrete data was proposed for imaging problems by Kingma and Le-
Cun (2010). Exploring the merits of their approach for graphical modeling, and
supplying supporting theory, would be an interesting problem for future work.

Appendix A: Implementation

The piecewise linear solution path for regularized score matching can be com-
puted using Algorithm 1, which is an adaptation of the LARS-Lasso algorithm
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Algorithm 1
1: Initialize θ = 0
2: Initialize Ŝ = arg max

j

∣∣∣(Γ(x)θ + g(x))j

∣∣∣
3: Initialize ξŜ = −sign

(
(Γ(x)θ + g(x))Ŝ

)
4: Initialize ξŜc = 0
5: while ‖Γ(x)θ + g(x)‖∞ > 0 and ΓŜŜ is invertible do

6: η1 ← min{η > 0 : |(Γ(x)θ + g(x)|j = |(Γ(x)θ + g(x)|Ŝ , j /∈ Ŝ}.
7: η2 ← min{η > 0 : (θ + ηξ)j = 0, j ∈ Ŝ}.
8: η ← min{η1, η2}.
9: θ ← θ + ηξ
10: if η = η1 then
11: Add variable that attains equality to Ŝ.
12: else
13: Remove variable that attains 0 from Ŝ.
14: end if
15: ξŜ ←

(
Γ(x)ŜŜ

)−1
sign(θŜ)

16: end while

for linear regression (Efron et al., 2004). It is also a special case of the algorithm
found in Rosset and Zhu (2007). In our pseudocode, Ŝ is the current active
set, i.e., Ŝ = {j : θλj �= 0} for the currently relevant value of the regularization
parameter λ.

In the Gaussian and truncated Gaussian case, the algorithm stops when the
active set has size |Ŝ| = min{n,m}m. For larger active sets the matrix ΓŜŜ is
not invertible. Finding the step size in Algorithm 1 requires O (min{n,m}m)
operations, while the inversion step is at its worst O(|Ŝ|2) = O

(
min{n,m}2m2

)
.

Overall, the complexity of Algorithm 1 can be found to be O
(
min{n,m}3m2

)
;

the heaviest cost comes from the matrix inversion step.
For large-scale problems, LARS-type algorithms may be slow and coordinate-

descent methods are popular alternatives (see e.g. Friedman et al., 2007). Al-
gorithm 2 describes a coordinate-descent algorithm to minimize the regularized
score matching objective from (3.1). It entails updating one coordinate, or one
element in the parameter vector/matrix, such that it minimizes the objective
function while holding all others as constant, until a convergence criterion is
satisfied. Results in Tseng (2001) ensure convergence of Algorithm 2.

Example 1 (cont.). For the Gaussian case, the coordinate descent procedure
alternates between updating the diagonal entries and off-diagonal entries, by
manipulating the estimating equations (3.10) and (3.11) accordingly. The up-
dates are of the form

κ
(t+1)
jj ←

1−
∑

j′ �=j wjj′κ
(t)
jj′

wjj
,

κ
(t+1)
jk , κ

(t+1)
kj ← Soft

(
−
∑

j′ �=j wjj′κ
(t)
j′k −

∑
k′ �=k wjk′κ

(t)
k′k

wjj + wkk
,

2λ

wjj + wkk

)
,

for j, k ∈ {1, . . . ,m}. The computational complexity of this scheme can be shown
to be min(O(nm2),O(m3)), which is the same as for the methods classified



Estimation of high-dimensional graphical models using regularized score matching 843

Algorithm 2

Input: Initial estimate θ̂(0)

Input: tmax, maximum number of iterations
Input: ε, the maximal tolerance level
1: Initialize t ← 1
2: Initialize C ← ε+ 1 (C stands for convergence criteria)
3: while C > ε or t < tmax do
4: θ̂(t) ← θ̂(t−1)

5: for j ← 1, 2, . . . , s do

6: θ̂
(t)
j ← Soft

(
−(Γ(x)−j,j)

T
θ̂
(t)
−j−g(x)j

Γ(x)jj
, λ
Γ(x)jj

)
.

7: end for
8: C ← ‖θ̂(t) − θ̂(t−1)‖1
9: t ← t+ 1
10: end while

under SPACE; the complexity of glasso is O(m3). We do not prove this fact, as
it follows directly from reasoning elaborated on in Khare, Oh and Rajaratnam
(2015).

Appendix B: Concentration results

Corollaries 1 and 2 make use of the following concentration results. The first
lemma is used to prove Corollary 1 while the latter two (one is derived from the
other) are used to prove Corollary 2.

Lemma B.1 (Ravikumar et al., 2011). If
(
X1, . . . , Xm

)
is a zero-mean random

vector with covariance matrix Σ∗ such that Xi/
√

Σ∗
ii is sub-Gaussian with scale

parameter σ, then the sample covariance matrix W, for n i.i.d. samples, satisfies
the bound

Pr[|Wjk −Σ∗
jk| > δ] ≤ 4 exp

⎧⎨
⎩− nδ2

128(1 + 4σ2)2 max
j=1,...,m

(Σ∗
jj)

2

⎫⎬
⎭ (B.1)

for any fixed choice of two indices 1 ≤ j, k ≤ m and for all δ ∈ (0, 40 max
j=1,...,m

Σ∗
jj).

Lemma B.2 (Carbery and Wright, 2001). Let X be a Banach space, and let
f : Rm → X be a polynomial of degree at most z. Suppose 0 < ζ1 ≤ ζ2 < ∞ and
μ is a log-concave probability measure on R

m. Then

(∫
‖f(x)‖ζ2/zdμ(x)

)1/ζ2

≤ L
max(ζ2, 1)

max(ζ1, 1)

(∫
‖f(x)‖ζ1/zdμ(x)

)1/ζ1

, (B.2)

where L > 0 is an absolute constant.

From this lemma we may derive the following concentration result. After
proving the lemma, we comment on how it is used in the proof of Corollary 2.



844 L. Lin et al.

Lemma B.3. Consider a degree z polynomial f(X) = f(X1, . . . , Xm), where
X1, . . . , Xm are possibly dependent random variables with log-concave joint dis-
tribution on R

m. Let L > 0 be the constant from Lemma B.2. Then, for all δ
such that

K :=
2

L

(
δ

e
√
Var[f(X)]

)1/z

≥ 2, (B.3)

we have,

Pr[|f(X)− E[f(X)]| > δ] ≤ exp

⎧⎨
⎩− 2

L

(
δ√

Var[f(X)]

)1/z
⎫⎬
⎭ . (B.4)

Proof. Choosing ζ1 = 2z and ζ2 = Kz in Lemma B.2, we have

E[|f(X)− E[f(X)]|K ]
1
K ≤

(
LK

2

)z√
Var[f(X)].

Hence, by Markov’s inequality, for any δ satisfying (B.3),

P [|f(X)− E[f(X)]| > δ] ≤ E[|f(X)− E[f(X)]|K ]

δK
(B.5)

≤
[(

LK

2

)z √
Var[f(X)]

δ

]K
(B.6)

= exp{−K} (B.7)

= exp

⎧⎨
⎩− 2

L

(
δ√

Var[f(X)]

) 1
z

⎫⎬
⎭ , (B.8)

and the proof is complete.

In the proof of Corollary 2, we apply Lemma B.3 with δ = ε1 from (7.9) and
with δ = ε2 from (7.10). It thus needs to be checked that condition (B.3) holds
in these two cases. Indeed, the condition holds as long as

m ≥ exp

{
2
√
e− log 2

τ2

}
. (B.9)

To see this, we substitute ε1 and ε2 for δ in (B.3), take z = 4 and 2 respectively, to
find a term that is lower bounded by (τ2 logm+log 2)/e2. Here, the 1/

√
n factor

in ε1 and ε2 cancels out with the 1/
√
n term generated by the

√
Var[f(X)] term

in the denominator. (Recall that in our scenario f(X) is an empirical average).
The more stringent condition on m comes from ε2 and is stated in (B.9). Thus,
if (B.9) holds, (B.3) is satisfied. Since τ2 > 3, the right-hand side of (B.9) never
exceeds

exp

{
1

3
(2
√
e− log 2)

}
< 3.

Hence, in our application of Lemma B.3, the condition from (B.3) holds for
m ≥ 3.
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Appendix C: Experiments

We perform experiments, similar to those found in related work, that give empir-
ical support for Corollary 1. This corollary treats Gaussian graphical models for
which the sample size n ought to be of order d2 logm. We experiment by vary-
ing the number of variables m, the degree d, and the minimum signal strength.
Following Ravikumar et al. (2011), we define the ‘model complexity’ to be

C :=
4

α
cΓ∗ ×max

j
Σ∗

jj . (C.1)

In addition, we investigate how the sample size n required for sparsistency for
non-negative Gaussian graphical models needs to depend on m. All reported
results are based on averaging over 100 trials.

C.1. Gaussian experiments

We conduct our experiments using three graph structures: (a) a chain, (b) a 2-D
lattice with 4 nearest neighbors, and (c) a star. We consider (a) and (b) when
varying the number of variables m, in which case we vary the length of the chain
and the number of nodes in the lattice. This keeps the degree d constant. The
effect that d has on the sample complexity is investigated using stars. We let
the regularization parameter λ scale with

√
logm/n, a choice corroborated by

Corollary 1.

Dependence on number of nodes

Consider first the case where the underlying conditional independence graph is a
chain of length m ∈ {64, 100, 225, 375}. The degree d is always 2, and we choose
the tridiagonal precision matrix K∗ to have entries κ∗

jk = 0.3 if (j, k) ∈ E and
κ∗
jj = 1 for j = 1, . . .m. Here, α, cK∗ and cΓ∗ are constant across all m.
Figure 10 shows the probability of correct signed support recovery plotted

against the sample size n, with different curves corresponding to different m. As
expected, we see from Figure 10(a) that successful support recovery requires n
to grow with m. However, upon rescaling n by 1/ logm, the curves overlap as
seen in Figure 10(b).

We repeat the experiment with the 2-D lattice graph with m ∈ {64, 100, 225}
nodes. Each node is connected to four nearest neighbors such that the degree
d is always 4. We choose K∗ with κ∗

jk = 0.2 for (j, k) ∈ E and κ∗
jj = 1 for

j = 1, . . .m. Again, α, cK∗ and cΓ∗ are constant across all m. The results are
presented in Figure 11, which shows curves of recovery probabilities that stack
on top of one another when n by 1/ logm.

We conclude that with C and d held constant, the sample size n needs to
scale with logm for consistent signed support recovery. This is consistent with
Corollary 1.
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Fig 10. Relative frequencies of signed support recovery for Gaussian observations with a
conditional independence graph that is a chain of varying length m. Panels (a) and (b) differ
only in the scaling of the x-axis. The colored lines correspond to m = 64 ( ), m = 100
( ), m = 225 ( ) and m = 375 ( ).

Fig 11. Relative frequencies of signed support recovery for Gaussian observations whose con-
ditional independence graph is a 4-nearest neighbor lattice with m nodes. Panels (a) and
(b) differ only in the scaling of the x-axis. The colored lines correspond to m = 64 ( ),
m = 100 ( ), and m = 225 ( ).

Dependence on node degree

We now fix the number of nodes to m = 200 and vary d. We consider a star
graphs with varying hub node degree d ∈ {15, 20, 25}. The precision matrix K∗

is chosen such that σ∗
jk = 2.5/d for (j, k) ∈ E, and σ∗

jj = 1 for j = 1, . . .m.
Now, α, cK∗ and cΓ∗ are constant across all d.
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Fig 12. Relative frequencies of signed support recovery for Gaussian observations whose con-
ditional independence graph is a star with varying degree d. Panels (a) and (b) differ only in
the scaling of the x-axis. The colored lines correspond to d = 10 ( ), d = 15 ( ), and
d = 20 ( ).

Figure 12 shows the probability of correct signed support recovery plotted
against n. The left panel demonstrates that correct recovery is more difficult
with increasing d. Larger n is needed to attain the same success rate. Upon
rescaling n by 1/d2 in the right panel, the three curves align. This validates
Corollary 1 in that for fixed m, α, cK∗ and cΓ∗ , the sample size n needs to scale
with d2 to ensure sign consistency.

Dependence on ‘model complexity’

We return to the chain-structured graphs considered earlier in this section. This
time, however, we fix m = 64 and d = 2 while changing the edge strengths κ∗

jk

for (j, k) ∈ E, which alters C from (C.1). We plot the probability of correct
signed support recovery against n for varying C. In the resulting Figure 13,
the curves shift right as C becomes larger so a larger n is needed to attain the
same probability of correct signed support recovery when C grows. This is again
consistent with the implications of Corollary 1. We do not believe that the lower
bound we found for n is sharp enough in terms of its dependence on α, cK∗ and
cΓ∗ to determine the rescaling we must perform on n to align the curves.

C.2. Non-negative Gaussian experiments

Finally, we experiment with regularized non-negative score matching for nor-
mal observations truncated to the positive orthant. According to Corollary 2, a
sample size of n = Ω(d2(logm)8) is sufficient for signed support recovery. The
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Fig 13. Relative frequencies of signed support recovery for Gaussian observations whose con-
ditional independence graph is a chain of fixed length. The different curves correspond to
different signal strength summarized in the model complexity C. The colored lines correspond
to C = 857 ( ), C = 668 ( ), C = 576 ( ) and C = 543 ( ).

aim of our experiments is to explore to what extent this scaling is necessary.
Specifically, we will consider exponents other than 8 for logm.

For our experiments, we revisit the chain-structured graphs from Section C.1
and choose a triangular matrix K∗ with κ∗

jk = 0.3 if (j, k) ∈ E and and κ∗
jj = 1

for j = 1, . . .m. The degree d is fixed at 2 and we only vary m ∈ {20, 25, 30}.
We let the regularization parameter λ to scale with

√
(logm)8/n. Figure 14

plots the probability of correct signed support recovery against n, with different
curves for the different values of m.

Panel (a) in Figure 14 illustrates that, larger n is needed account for larger
m. The other three panels have the x-axis rescaled to n/(logm)a for exponents
a ∈ {6, 7, 8}. Panel (b) suggests that n scaling with (logm)6 is not sufficient for
support recovery. Comparing panels (c) and (d), (logm)8 seems more than what
is necessary. It thus appears that the scaling of the sample size we assumed in
Corollary 2 is suboptimal but not drastically so.

Supplementary Material

Computer code
(doi: 10.1214/16-EJS1126SUPP; .zip). This supplemental material provides R
code that we used for our numerical experiments.

http://dx.doi.org/10.1214/16-EJS1126SUPP
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Fig 14. Relative frequencies of signed support recovery for truncated Gaussian observations
whose conditional independence graph is a chain of varying length m. The four panels differ
only in the scaling of the x-axis. The colored lines correspond to m = 20 ( ), m = 25
( ), and m = 30 ( ).
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