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Total variation and separation cutoffs are not
equivalent and neither one implies the other*
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Abstract

The cutoff phenomenon describes the case when an abrupt transition occurs in the
convergence of a Markov chain to its equilibrium measure. There are various metrics
which can be used to measure the distance to equilibrium, each of which corresponding
to a different notion of cutoff. The most commonly used are the total-variation and
the separation distances. In this note we prove that the cutoff for these two distances
are not equivalent by constructing several counterexamples which display cutoff in
total-variation but not in separation and with the opposite behavior, including lazy
simple random walk on a sequence of uniformly bounded degree expander graphs.
These examples give a negative answer to a question of Ding, Lubetzky and Peres
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1 Introduction

Consider an irreducible discrete-time Markov chains X = (Xt)t≥0, defined on a finite
state space Ω (we call a chain finite if Ω is finite). We let P denote its transition matrix.
We further assume that X is reversible, that is that there exists a probability measure π
which satisfies the detailed balanced equation

∀x, y ∈ Ω, π(x)P (x, y) = π(y)P (y, x).

This measure is unique because of irreducibility. Let us assume furthermore that our
Markov chain is lazy, meaning that

∀x ∈ Ω, P (x, x) ≥ 1/2. (1.1)
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Total variation and separation cutoffs are not equivalent

A particular important case of such a Markov chain is lazy simple random walk (SRW)
on a simple graph G = (V,E), in which case Ω = V , P (x, y) =

1{x=y}
2 +

1{{x,y}∈E}
2 deg(x) and

π(x) = deg(x)
2|E| , where deg(x) := |{y : {x, y} ∈ E}| and | · | denotes the cardinality of a set.

It is a classic result of probability theory that for any initial condition the distribution
of X(t) converges to π when t tends to infinity. The object of the theory of Mixing
times of Markov chains is to study the characteristic of this convergence (see [16] for a
self-contained introduction to the subject).

We denote by Ptx (Px) the distribution of Xt (resp. (Xt)t≥0), given that X0 = x. For
any two distributions µ, ν on Ω, their total-variation distance is defined to be

‖µ− ν‖TV :=
1

2

∑
x∈Ω

|µ(x)− ν(x)| =
∑

{x : µ(x)>ν(x)}

µ(x)− ν(x) = 1−
∑
x∈Ω

min(µ(x), ν(x)). (1.2)

The worst-case total-variation distance at time t is defined as

d(t) := max
x∈Ω

dx(t), where dx(t) := ‖Px(Xt ∈ ·)− π‖TV. (1.3)

The (total-variation) ε-mixing-time is defined as

tmix(ε) := inf {t : d(t) 6 ε} .

Similarly, the (worst-case) separation distance from stationarity at time t is defined as

dsep(t) := 1− min
x,y∈Ω

P t(x, y)/π(y),

and the ε-separation-time (the “ε separation-mixing-time”) is defined as

tsep(ε) := inf {t : dsep(t) 6 ε} .

When ε = 1/4 we omit it from the above notation.
Next, consider a sequence of chains, ((Ωn, Pn, πn) : n ∈ N), each with its correspond-

ing worst-distances from stationarity d(n)(t), d(n)
sep(t), its mixing and separation times t(n)

mix,

t
(n)
sep, etc.. Loosely speaking, the total-variation (resp. separation) cutoff phenomenon

is said to occur when over a negligible period of time, known as the cutoff window,
the worst-case total variation distance (resp. separation distance) drops abruptly from
a value close to 1 to near 0. In other words, one should run the n-th chain until time
(1− o(1))t

(n)
mix (resp. (1− o(1))t

(n)
sep) for it to even slightly mix in total variation (resp. sepa-

ration), whereas running it any further after time (1 + o(1))t
(n)
mix (resp. (1 + o(1))t

(n)
sep) is

essentially redundant. Formally, we say that the sequence exhibits a total-variation
cutoff (resp. separation cutoff ) if the following sharp transition in its convergence to
stationarity occurs:

∀ε ∈ (0, 1/2], lim
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) = 1

(
resp. lim

n→∞
t(n)
sep(ε)/t(n)

sep(1− ε) = 1
)
. (1.4)

It is a classical result (e.g. [16, Lemmas 6.13 and 19.3] or (6.9)) that under reversibility
the separation and total-variation distances and mixing times can be compared as follows
(the second line being an easy consequence of the first)

∀t ≥ 0, d(t) ≤ dsep(t) ≤ 1− (1−min(2d(t/2), 1))2 ≤ 4d(t/2),

∀a ∈ (0, 1), tmix(a) ≤ tsep(a) ≤ 2tmix(a/4).
(1.5)

Another important family of distances is the family of `p distances (1 ≤ p ≤ ∞):

‖µ− ν‖p,π :=

{[∑
x π(x)apµ,ν,π(x)

]1/p
, 1 ≤ p <∞,

maxx∈Ω aµ,ν,π(x), p =∞,
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Total variation and separation cutoffs are not equivalent

where aµ,ν,π(x) := |µ(x)−ν(x)|/π(x) (observe that ‖µ−ν‖1,π = 2‖µ−ν‖TV). Note that the
notion of distance to equilibrium and mixing time can be transposed to these distances
by replacing ‖ · ‖TV by ‖ · ‖p,π in (1.3). For a ∈ (0,∞) we denote the a-th `p-mixing
time by t`p(a). Under reversibility, the `p distances can be compared as follows (see [6,
Proposition 5.1])

t`2(a) ≤ t`p(a) ≤ 2t`2(
√
a) for p ∈ (2,∞],

1

mp
t`2(amp) ≤ t`p(a) ≤ t`2(a) for p ∈ (1, 2),

(1.6)

where mp := dp/(2(p− 1))e. Hence in some sense, up to a multiplicative constant, the
different `p mixing times (p ∈ (1,∞]) are equivalent. It turns out that under reversibility
the notion of cutoff for these distances are also equivalent.

Theorem A (Chen and Saloff-Coste [6]). Let (Ωn, Pn, πn) be a sequence of reversible lazy

Markov chains. Let λ(n)
2 be the second largest eigenvalue of Pn. Then the following

assertions are equivalent

• The sequence exhibits `p-cutoff for some 1 < p ≤ ∞.

• The sequence exhibits `p-cutoff for all 1 < p ≤ ∞.

• limn→∞(1− λ(n)
2 )t

(n)
`2

(1/2) =∞.

Observe that under reversibility (for any fixed chain) (1.5) expresses an equivalence
between the separation and the total-variation mixing times, parallel to the one, ex-
pressed in (1.6), holding between the different `p mixing times for p ∈ (1,∞]. Hence a
natural question (in light of Theorem A) is whether (under reversibility) there is cutoff
in total-variation if and only if there is cutoff in separation. This is Question 5.1 in [10],
where an affirmative answer was given for the class of birth and death chains (which are
Markov chains for which the set of edges (x, y) with P (x, y) > 0 forms a segment). In
fact, both cutoffs were shown to be equivalent to the product condition (3.2).

Theorem B (Ding, Lubetzky and Peres [10], Diaconis and Saloff-Coste [9]). A sequence of
birth and death chains exhibits total variation cutoff iff it exhibits separation cutoff.

In this note we give a negative answer to that question in general by constructing
counter-examples.

Theorem 1.1. (i) Total-variation and separation cutoff are not equivalent for lazy
reversible Markov chains and neither one implies the other.

(ii) The above statement remains true within the class of lazy simple random walks on
graphs of maximal degree at most 7.

Remark 1.2. We can also produce non-reversible or non-lazy counter-examples by
performing artificial modifications in our chains, but this is not a very important point.
Non-lazy or non-reversible chains can have very pathological behavior and we want to
underline that we are not using “unfair tricks” to produce our counter-examples.

Of course a full proof of this statement only requires two counter-examples as (ii)
is a stronger statement than (i). However, we have chosen to include also examples
that are not simple random-walks because they are much simpler. We present a total
of five counter-examples. Apart from the first one, they are all lazy (weighted nearest-
neighbor) random walks on bounded degree graphs, with transition rates which are
bounded away from zero. The last two examples, which are a bit more technical
to analyze, are lazy SRWs on a sequence of bounded degree graphs Gn := (Vn, En)

(i.e. supn maxv∈Vn deg(v) <∞).
Note that for all our counter-examples the graph supporting the transitions contains

some cycles. An interesting open problem is to determine whether Theorem B can
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Total variation and separation cutoffs are not equivalent

extended to the case of lazy weighted nearest-neighbor random walk on trees for which
it is already known (cf. [5]) that separation cutoff implies total-variation cutoff.

A sequence of Markov chains is said to display pre-cutoff (in total-variation resp.
separation) if

sup
0<ε<1/2

lim sup
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) <∞ resp. sup

0<ε<1/2

lim sup
n→∞

t(n)
sep(ε)/t(n)

sep(1− ε) <∞.

We call the value of the sup above the pre-cutoff ratio. Equation (1.5) implies that

sup
ε∈(0,1/2]

lim sup
n→∞

t(n)
sep(ε)/t(n)

sep(1− ε) ≤ 2 sup
ε∈(0,1/2]

lim sup
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε). (1.7)

A symmetrized version of this inequality also holds provided that t(n)
mix goes to infinity

(the assumption being present just to avoid pathological behavior)

sup
ε∈(0,1/2]

lim sup
n→∞

t
(n)
mix(ε)/t

(n)
mix(1− ε) ≤ 2 sup

ε∈(0,1/2]

lim sup
n→∞

t(n)
sep(ε)/t(n)

sep(1− ε). (1.8)

The proof of (1.8) involves more computation than (1.7). We present a complete proof of
it in Appendix A.2)

These two inequalities imply that the notion of pre-cutoff is equivalent for the two
distances and the pre-cutoff ratio of one is at most twice that of the other. In particular,
cutoff in one distance implies pre-cutoff with ratio at most 2 in the other. With our
examples, we shall show that this is in fact sharp in some cases:

Remark 1.3. There exists a sequence of lazy reversible Markov chains for which we
have cutoff in total-variation and only pre-cutoff with ratio 2 in separation and vice-versa.

Our last point of comparison between total-variation mixing and separation mixing is
related to the width of the cutoff window. We say that a sequence of chains exhibits
total-variation (resp. separation) cutoff with a cutoff window wn if wn = o(t

(n)
mix) and for

all 0 < ε ≤ 1/4 there exists some constant Cε > 0 (depending only on ε) such that

∀n, t
(n)
mix(ε)− t(n)

mix(1− ε) ≤ Cεwn (resp. t(n)
sep(ε)− t(n)

sep(1− ε) ≤ Cεwn).

Note that the window defined in this manner is not unique, but informally “the” cutoff
window is given by the “smallest such wn”. Our examples demonstrate that the cutoff
windows for total-variation and separation do not have the same behavior.

The following result is due to Chen and Saloff-Coste [7, Theorem 3.4]. We present a
much simpler proof in the Appendix.

Theorem C. Let (Ωn, Pn, πn) be a sequence of lazy irreducible finite chains which ex-

hibits total-variation cutoff with a cutoff window wn. Then wn = Ω(

√
t
(n)
mix).

The bound given by Theorem C is obviously sharp for the biased random walk
on a segment. Conversely, some very standard Markov chains like the lazy SRW on

the n-dimensional hyper-cube have a cutoff window wn >>

√
t
(n)
mix (here wn = n and

t
(n)
mix = ( 1

2 ± o(1))n log n). As indicated in Remark 1.6 the laziness assumption in Theorem
C can be replaced by the assumption that infn minx∈Ωn P

2
n(x, x) > 0 (as is the case for

simple random walk on a sequence of bounded degree graphs).
In light of Theorem C one might expect that whenever separation cutoff occurs for

a sequence of discrete-time lazy chains, the width of the separation cutoff window is

Ω(

√
t
(n)
sep). We are unaware of any previously analyzed example in which this fails. We

find it remarkable that as the following remark asserts, the width of the separation
cutoff window for a sequence of discrete-time lazy SRWs on a sequence of bounded
degree graphs, can in fact be a constant! This, or more precisely, the mechanism that
allows such behavior (see § 2.4 for more on this point) demonstrates that the separation
distance can exhibit profoundly different behaviors than the total variation distance.
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Our counter-examples show that the cutoff window in one distance can be as small
as allowed even if there is no cutoff for the other distance:

Remark 1.4. We will construct sequences of bounded degree graphs such that the
corresponding sequences of lazy SRWs exhibit the following behaviors (resp.)

(i) There is no separation cutoff but there is total-variation cutoff with window
√
t
(n)
mix.

(ii) There is no total-variation cutoff but there is separation cutoff with window 1.

In § 2.4 we refine the statement of (ii) and describe further surprising properties of the
relevant example for (ii) above (listed in § 2.4 as properties (i)-(v)).

Remark 1.5. Let δn ∈ (0, 1). We call a sequence of discrete time chains (Ωn, Pn, πn),
δn-lazy if for all n, Pn(x, x) ≥ δn for all x ∈ Ωn. It is not hard to extend the proof of
Theorem C and show that if a sequence of δn-lazy chains exhibits total-variation cutoff

with a window wn, then wn = Ω(

√
δn(1− δn)t

(n)
mix).

Theorem C can also be extended to the continuous time setup, with the additional
assumption that the sum of the transition rates from any given state is bounded above
by 1 (or by some absolute constant).

Remark 1.6. Let Gn = (Vn, En) be a sequence of connected non-bipartite simple graphs
of maximal degree dn. Consider the sequence of (non-lazy) SRWs on Gn. Then P 2

n(v, v) ≥
1/dn, for every v ∈ Vn. By considering P 2 rather than P it follows from the previous
remark that if the sequence exhibits total-variation cutoff with a window wn, then

wn = Ω(

√
t
(n)
mix/dn). This is in fact sharp by considering a sequence of random dn-regular

graphs of size n for some dn such that limn→∞ dn =∞ and dn = o( logn
log logn ) [17, Theorem

3].

1.1 Organization of the note

In § 2 we describe the construction of our examples and our general strategy. We
also describe relevant examples due to Aldous and Pak.

In § 3 we introduce a general framework, which under a certain condition, allows to
reduce the study of the mixing-time to the study of the hitting time of a special point.

In § 4 we describe two examples of sequences of Markov chains which exhibit total-
variation cutoff but do not exhibit separation cutoff. The first example, Example 4.1,
demonstrates that (1.7) may be sharp (even when the r.h.s. of (1.7) equals 1). The second
example, Example 4.2, is a weighted nearest neighbor random walk on a bounded degree
graph with transition probabilities which are bounded away from 0 and 1.

In § 5 we construct an example of a sequence of Markov chains that exhibits separa-
tion cutoff but no total-variation cutoff (Example 5.1).

Finally, in § 6 we transform Examples 4.2 and 5.1 into examples of sequences of lazy
SRWs on bounded degree Expander graphs. The reason we first describe Examples
4.2 and 5.1 is that the key ideas of our constructions are more transparent in theses
examples.

2 An overview of the main ideas of our constructions

2.1 A very basic chain with different cutoff times for separation and total vari-
ation

In this section we settle with a high-level description of some key ideas. Let us first
present a very simple Markov chain which exhibits cutoff in both distances (see Figure
1) but for which the mixing-time in separation is twice as large as that in total variation.
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Consider a random walk on a segment a, b of length 2n which presents a constant
bias towards the middle point which we call z (see Figure 1). Most of the equilibrium
measure is concentrated on a small neighborhood of z and for this reason (cf. Proposition
3.3) the total-variation mixing-time corresponds to the time which is needed to hit z
(starting from either of the end-points). The system displays cutoff because this hitting
time is concentrated around its mean.

b

1/2

a

1/6 1/3 1/41/4

z

1/3 1/6 1/2

Figure 1: A very simple chain for which the separation mixing-time is twice as large as
the total-variation mixing-time (6n and 12n, respectively). The transition rates (apart
from at the special states a, b and z) are 1/3 in the z direction and 1/6 in the opposite
one (the holding probability is 1/2), making the chain travel at speed 1/6 towards z.

The separation mixing-time on the other hand is twice as large. Roughly speaking,
this is because for P t(a, b) to come close to its equilibrium value, “information” has to
pass from one end to the other. The time required for this to occur corresponds more or
less to the sum of the times needed to reach z from a and b, respectively (see Proposition
3.8).

This scheme with two extremal opposite initial conditions, though not ubiquitous
among Markov chains, appears in many natural examples for which cutoff has been
proved: e.g. the lazy SRW on the hyper-cube (see [16, Theorem 18.3]), the Ising model
at high temperature [19] or the adjacent-transposition shuffle on the segment [15].

2.2 An idea to avoid cutoff in separation while keeping that in total-variation

Our idea to produce counter-examples with total-variation cutoff but only pre-cutoff
in separation is to modify the structure (state space and transition rates) of the simple
chain above (Figure 1), only on one side (say, the side of b), to break the symmetry. To
be precise, in Example 4.2 we first set the holding probabilities on both sides to be 3/4

(and consider the obtained chain as the “original chain”, as opposed to Example 4.1, for
which the chain in Figure 1 serves as the “original chain”) before modifying the b-side.
We want to perform our modifications in the following manner:

• We want to keep the property that every path from a to b goes through z, which
shall still bear a positive proportion of the equilibrium mass.

• We want a to remain the initial condition from which it takes the longest time to
reach equilibrium (equivalently, to hit z). More precisely, we want that also after
the modification, the distribution of the hitting time of z, Tz := inf{t : Xt = z},
starting from a would still stochastically dominate the distribution of Tz, starting
from any other initial state. Moreover, we want the hitting time distribution of z,
starting from any state between a and z (including a), to remain un-changed.

• We want the hitting time of z from initial state b, to become non-concentrated,
and to remain of the same order of magnitude as the mixing-time of the whole
chain. Moreover, we want this hitting time to remain (stochastically) larger than
the hitting time of z, starting from any other state which lies between b and z, and
to become stochastically dominated by the hitting time distribution of z (from b) in
the original chain (which equals the hitting time distribution from a in the modified
chain).

EJP 21 (2016), paper 44.
Page 6/36

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4687
http://www.imstat.org/ejp/


Total variation and separation cutoffs are not equivalent

In this manner, the hitting time distribution of z under Pa remains un-changed (and
in particular, remains concentrated). Moreover, after the modification it is still the
case that d(t) ≈ Pa[Tz > t], and thus by the aforementioned concentration there is still
cutoff in total-variation (see Proposition 3.3). Using Proposition 3.8, we deduce that
dsep(tmix + t) ≈ Pb[Tz > t] and so there is no cutoff in separation as the hitting time
distribution of z under Pb in the modified chain is no longer concentrated.

To perform such a modification, we borrow ideas from previous constructions of Pak
(for Example 4.1) and Aldous (for Example 4.2), which we present now.

2.3 Related constructions

When the product condition (Definition 3.1) was shown to be a necessary condition
for cutoff, it was conjectured that it should also be a sufficient one for “nice” chains.
However, two counter-examples constructed, respectively by Aldous and Pak (see [5,
Example 8.1], [6] and [16, Chapter 18] for a more detailed description and analysis),
show that in general the product condition does not imply cutoff. The mechanisms used
to prevent cutoff in those two constructions are of different nature.

• Aldous’ example (Figure 2) locally looks like a biased random walk on a segment,
so that most of the equilibrium measure is concentred on a small neighborhood of
the end-point towards which the walk is biased (we call this end of the segment
z and the opposite one b). To avoid cutoff, the half of the segment closer to z is
split into two distinct parallel branches. The transition rates on these branches are
tuned so that there is still a bias towards z but such that one path is slower than the
other. Starting furthest away from equilibrium (i.e. at state b) we have two possible
scenarios to reach z given by the two distinct branches and the probability of each
is bounded away from 0 and 1. As the speed along the two branches is different,
the CDF of the hitting time distribution of z starting from b has two abrupt jumps.
Consequently, d(n)(t) exhibits two distinct abrupt drops and there is no cutoff.

• Pak’s idea is to start with a sequence of chains which exhibits cutoff and to modify
it by adding transitions which are such that with a constant rate (which is chosen
to be somewhere between the spectral gap and the inverse of the mixing-time of
the original chain, say their geometric mean) the system is brought to equilibrium
at once. For the modified Markov chain, the total-variation distance decays (up to
a negligible error) exponentially with the rate of the newly added transitions and
hence cutoff does not occur, neither pre-cutoff.

In our Example 4.1 (see Figure 3), we adapt Pak’s idea: on the b-side (of the chain
from Figure 1) we add transitions from states on the b-side to the center of mass z, and
we choose the inverse of the rate to be of the same order as the mixing-time (which is of
order of the length of the segment: n). This makes the hitting time of z started from b

non-concentrated and (stochastically) smaller than started from a. Moreover, after this
modification, all of the properties described in the beginning of § 2.2 are satisfied.

In our Example 4.2, (see Figure 4), we simply replace the b-side by Aldous’ con-
struction, and set the holding probability on the a-side to be 3/4 (which is the holding
probability of the slow branch of the b-side). After this modification, all of the properties
described in the beginning of § 2.2 are satisfied.

2.4 An idea to keep cutoff in separation while avoiding that in total-variation

For this part we must rely on a different idea. What we want to alter in our chain
is the way the separation distance shrinks to zero. Loosely speaking, in the original
chain on the segment, the separation mixing-time is determined by the sum of the hitting
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bz

1/8

1/8

1/6 1/12

1/3 1/6 1/12

1/12

1/12 1/6 1/12 1/4

Figure 2: A version of Aldous’ example. The walk is always biased towards z but the
speed of the walk depends on the branch. On the top branch, as well as on the rest of
the segment, the transition rates are 1/6 in the z direction and 1/12 in the opposite one
(the holding probability is 3/4) whereas on the bottom branch the (exit) rates are twice
as large (and the holding probability is 1/2), resulting in a larger speed. As a result,
two transitions occur for the total-variation distance at times 9n and 12n respectively,
where n denotes the total distance from z to b and the length of each of the two parallel
branches is dn/2e (above n = 14). The rates at b, z and at the branching point are not
very relevant but we display them for the sake of concreteness.

times of z from a and b since z is the only channel of communication between the two
extremities.

Our construction (Example 5.1) relies on the following idea (see Figure 5). We take
the length of the line segment to be 2(M + 1)n for some large (fixed) integer M .

• We connect the two sides of the segment at a second point z′ which is far from the
center of mass z. We do so by merging the two states which are of distance n from
z (one on the a-side and one on the b-side) into a single state z′. This connection
maintains the cutoff in separation. However, it has the effect of shortening the
separation cutoff time by some constant factor, while, as we now describe, drasti-
cally altering the nature of the abrupt transition of d(n)

sep(t) around the (separation)
cutoff time. It follows from our analysis of Example 5.1 and the refined analysis of
Example 6.12 in § 6.5, that provided that M is taken to be sufficiently large:

(i) Also after creating the connection at z′ we have that

lim
n→∞

sup
t
|d(n)

sep(t)−max(0, 1− P tn(a, b)/πn(b))| = 0.

(ii) Due to the connection of A and B at point z′, up to negligible terms, around
the separation cutoff time, P tn(a, b) is supported by trajectories which never
get much closer to z than z′ is, and so are contained in a set whose stationary
probability is exponentially small in n.

(iii) Let T a,bz′ (Definition 3.4) be a random variable distributed as a convolution of
the hitting time distribution of z′ started from a with that started from b (in
this case the two distributions are identical). Around the (separation) cutoff
time, P tn(a, b)/πn(b) can be understood in terms of the behavior of T a,bz′ in the
large deviation regime (namely, the cutoff occurs around the time t for which
P[T a,bz′ ≥ t] ≈ πn(z′) = Θ(2−n)).

(iv) Around t
(n)
sep, P tn(a, b)/πn(b) grows exponentially in t − t(n)

sep, for t ≥ t
(n)
sep (and

decays exponentially for t < t
(n)
sep) and continues to do so for Θ(n) steps around

t
(n)
sep (in particular, shortly after t(n)

sep, (a, b) no longer minimizes P tn(x, y)/πn(y)).
By (i), it follows that wn = 1 is a (separation) cutoff window (and we can take
Cε = C| log ε|, for some absolute constant C, for all ε ∈ (0, 1/4]).

(v) supt P
t
n(a, b)/πn(b) = Θ(maxtP[T a,bz′ = t]/πn(z′)) = Θ(2n/n)→∞ as n→∞.
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This behavior (namely, on the one hand having property (i) and on the other having
properties (ii), (iv) and (v)) is atypical and quite surprising at first sight.

We are not done yet, as after creating the connection at z′, there are two symmetric
parallel distinct branches from z′ to the center of mass z, resulting in the hitting
time of z from either a or b being concentrated. Consequently, there is still cutoff
in total-variation (as by Proposition 3.3, d(t) ≈ Pa[Tz > t] = Pb[Tz > t]).

• We break the symmetry (between the two branches, but not between a and b) in
order to “destroy” the cutoff in total-variation by making the speed along the two
paths which link z′ to z different as in Aldous’ example (Figure 2). Observe that as
opposed to Examples 4.1-4.2, here a and b play symmetric roles (the chain looks
the same starting from either one of them).

As one should expect from property (ii) above (provided that M is sufficiently large),
breaking the symmetry as described above does not influence the asymptotic pattern
of convergence in separation, and (i)-(v) above remain valid. However the quantitative
analysis of this example turns out to be more intricate than that of the first two.

2.5 Constructing counter-examples which are lazy SRW on bounded degree
graphs

It was observed by Peres and Wilson that the sequence of chains in Aldous’ example
could be modified into a sequence of lazy SRWs on bounded degree expander graphs
(see Definition 3.6). In [18] Lubetzky and Sly constructed explicit 3-regular expanders
with total-variation cutoff.

We use similar ideas to transform our Examples 4.2-5.1 into SRWs on bounded degree
graphs (Examples 6.9-6.12). Our constructions includes one new idea: by introducing a
sufficient amount of symmetry, (roughly speaking) we are able to reduce the analysis
of Examples 6.9-6.12 to that of Examples 4.2-5.1. Consequently, the analysis of the
asymptotic convergence profile of dn(t) is simpler than in [18] (at the cost of having
maximal degree ≤ 7 rather than 3).

3 Preliminaries

The aim of this section is to introduce some general theory which shall reduce
the analysis of our Examples 4.1-5.1 to the analysis of hitting time distributions of a
specific state. The results appearing in this section are later generalized in § 6.1 (these
generalizations reduce the analysis of Examples 6.9-6.12 to the analysis of hitting time
distributions of a specific set). All proofs are deferred to the appendix. As we shall only
prove the more general versions, we now describe the correspondence between the
results of this section to the ones from § 6.1: Proposition 6.4 corresponds to Proposition
3.3, Lemma 6.3 to Lemma 3.5 and Proposition 6.5 to Proposition 3.8.

Let us first introduce some notation and standard terminology. Recall that if (Ω, P, π)

is a finite irreducible reversible Markov chain, then P is self-adjoint w.r.t. the inner
product induced by π on RΩ

〈f, g〉π :=
∑
x∈Ω

π(x)g(x)f(x). (3.1)

Hence it has |Ω| real eigenvalues satisfying 1 = λ1 > λ2 ≥ . . . ≥ λ|Ω| ≥ −1 (where λ2 < 1

since the chain is irreducible and if the chain is lazy then λ|Ω| > 0). Define its relaxation-
time as trel := (1−max(λ2, |λ|Ω||))−1. Note that under laziness trel = (1− λ2)−1.
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Definition 3.1. We say that a family of reversible Markov chains satisfies the product
condition if

lim
n→∞

(1−max(λ
(n)
2 , |λ(n)

|Ω| |))t
(n)
mix =∞ (equivalently, t(n)

rel = o(t
(n)
mix)) . (3.2)

Because of the following well-known fact (e.g. [16, Proposition 18.4]), all our counter-
examples satisfy the product condition.

Fact 3.2. For a sequence of irreducible aperiodic reversible Markov chains with relaxa-
tion-times {t(n)

rel } and mixing-times {t(n)
mix}, if the sequence exhibits a pre-cutoff (either in

total-variation or separation) and limn→∞ t
(n)
mix =∞, then t(n)

rel = o(t
(n)
mix).

Given z ∈ Ω we let

Tz := inf{t : Xt = z}

denote the hitting time of z. The following result allows us to characterize the mixing-
time of the chain in terms of the hitting time of a given point which carries a positive
proportion of the mass. As hitting times are sometimes easier to control than mixing-
times, it will assist us in determining the total-variation profile of convergence to
equilibrium in Examples 4.1-5.1.

Proposition 3.3. Let (Ωn, Pn, πn) be a sequence of lazy reversible irreducible finite
Markov chains which satisfies the product condition. Let us furthermore assume that
there exists zn ∈ Ωn such that

inf
n
πn(zn) > 0. (3.3)

Then setting

τn(p) := inf

{
t : max

x∈Ωn
Px[Tzn > t] ≤ p

}
, (3.4)

we have for any ε < ε′ ∈ (0, 1)

lim sup
n→∞

t
(n)
mix(ε′)

τn(ε)
≤ 1 and lim inf

n→∞

t
(n)
mix(ε)

τn(ε′)
≥ 1. (3.5)

Note that in particular the result shows that total-variation cutoff occurs if and only
if τn(·) displays the following abrupt transition

∀ε ∈ (0, 1/2], lim
n→∞

τn(1− ε)
τn(ε)

= 1. (3.6)

To characterize the separation time, we introduce a notion of “double-hitting time”.

Definition 3.4. Given x, y and z in Ω. We let T x,yz denote a random variable obtained by
taking the sum of two independent realizations of Tz, once under Px and once under Py.
That is, P[T x,yz = t] :=

∑t
k=0 Px[Tz = k]Py[Tz = t− k].

Lemma 3.5. Let (Ω, P, π) be a finite irreducible lazy reversible Markov chain. Consider
x, y, z ∈ Ω.

(i) For all t ≥ 0 we have that

P t(x, y)/π(y) ≥
∑
k≤t

P[T x,yz = k]P t−k(z, z)/π(z) ≥ P[T x,yz ≤ t]. (3.7)

In particular,

P t(x, y)/π(y) ≥ Px[Ty ≤ t] (3.8)
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(ii) If Px[Tz ≤ Ty] = 1 (i.e. if every path from x to y goes through z) then for all t ≥ 0

P t(x, y)/π(y) =
∑
k≤t

P[T x,yz = k]P t−k(z, z)/π(z)

≤ P[T x,yz ≤ t] +
1

2
trel max

k∈N
P[T x,yz = k]

√
(1− π(z))/π(z).

(3.9)

All our examples would be of sequences of chains whose spectral gaps are uniformly
bounded away from zero, that is, ones satisfying

inf
n

(1− λ(n)
2 ) > 0. (?)

Although this is not necessary, working with such chains substantially simplifies the
analysis of our examples. To check this condition, we use the notion of the Cheeger
constant and the well-known discrete analog of Cheeger’s inequality (3.10) [3, 4, 21]
(the proof can also be found at [16, Theorem 13.14]).

Definition 3.6. For any (non-empty) set A  Ω we define

Q(A) :=
∑

x∈A,y/∈A

π(x)P (x, y) and Φ(A) := Q(A)/π(A).

We define the Cheeger constant of the chain to be

Φ := min
A:0<π(A)≤1/2

Φ(A).

We call a sequence of chains (Ωn, Pn, πn) an expander family if infn Φn > 0.

The following result implies that a sequence of reversible chains satisfies (?) if and
only if it is an expander family.

Theorem 3.7. Let λ2 be the second largest eigenvalue of a reversible transition matrix
on a finite state space. Let Φ be as in Definition 3.6. Then

Φ2/2 ≤ 1− λ2 ≤ 2Φ. (3.10)

It is rather straightforward to check in all of our examples that the Cheeger constant
is bounded away from zero.

Proposition 3.8. Let (Ωn, Pn, πn) be a sequence of lazy reversible irreducible finite
Markov chains which satisfies (?). Let us furthermore assume that there exist zn ∈ Ωn,
sets An, Bn ⊂ Ωn, with An ∪Bn = Ωn \ {zn} and an ∈ An, bn ∈ Bn, such that

(i) infn πn(zn) > 0.

(ii) For any x ∈ An and y ∈ Bn, Px[Tzn < Ty] = 1.

(iii) For all t

max
x∈An∪Bn

Px[Tzn > t] = Pan [Tzn > t] and max
y∈Bn

Py[Tzn > t] = Pbn [Tzn > t].

(iv)

lim inf
n→∞

inf
t≥0

min
x,y∈An

(
P tn(x, y)

πn(y)
− P tn(an, bn)

πn(bn)

)
≥ 0. (3.11)

(v)

lim
n→∞

max
k≥0

Pan [Tzn = k] = 0. (3.12)
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Then

lim
n→∞

sup
t≥0

∣∣∣d(n)
sep(t)− P[T an,bnzn > t]

∣∣∣ = 0. (3.13)

Proof. We want to show that P tn(x, y)/πn(y) achieves its smallest value for (x, y) = (an, bn)

up to a negligible correction. According to (iv) we do not need to worry about the case
when both x and y lie in An. For the other cases, condition (iii) combined with Lemma
3.5 guaranties that

∀t, ∀(x, y) ∈ Ω2
n \A2

n, P tn(x, y)/πn(y) ≥ P
[
T x,yzn ≤ t

]
≥ P

[
T an,bnzn ≤ t

]
. (3.14)

Finally, applying Lemma 3.5 again yields that

0 ≤ P tn(an, bn)

πn(bn)
− P[T an,bnzn ≤ t] ≤ 1

2
t
(n)
rel max

k≥0
P[T an,bnzn = k]

√
(1− πn(zn))/πn(zn). (3.15)

This allows to conclude the proof by noticing that the right-hand side of (3.15) is o(1)

(using (i) and (v)).

Remark 3.9. We note that for lazy chains condition (v) in Proposition 3.8 follows from
the condition limn→∞ dist(an, z) = ∞ (which is satisfied in Examples 4.1-5.1), where
dist(an, z) is the minimal k such that P k(an, z) > 0. To see this, consider the non-lazy
path the chain performed from an to z by time Tz, γ = (γ0 = an, γ1, . . . , γ` = z) (i.e. for
all i < `, γi+1 6= γi and possibly after spending some time at γi the chain moved to
γi+1). The conditional law of Tz, given γ, is that of a sum of ` independent geometric
random variables with parameter 1/2), and so by the local CLT its mode is at most
C/
√
` ≤ C/

√
dist(an, z). Finally, note that the mode of a mixture is at most the maximal

mode of a distribution in the mixture.

4 Total-variation cutoff without separation cutoff examples

In this section we describe two similar examples of sequences of reversible chains
which exhibit total-variation cutoff but no separation cutoff. The analysis of both exam-
ples is extremely similar. We present both examples since while the first demonstrates
that (1.7) is indeed sharp, it is much harder to transform it into an example of lazy SRWs
on bounded degree expander graphs.

Example 4.1. Given n ≥ 2, set Ωn := A∪{z}∪B where A = An := {a = an, an−1, . . . , a1}
and B = Bn := {b1, b2, . . . , bn−1, bn = b}. For notational convenience we write a0 :=

z =: b0. The matrix Pn has positive transition rates on the set of (un-oriented) edges
E = EA ∪ EB ∪ ELong, where

EA := {eAk := {ak, ak−1} : k ∈ [n]},
EB := {eBk := {bk, bk−1, } : k ∈ [n]},

ELong := {eL
k := {z, bk} : k ∈ [n]}.

(4.1)

With a small abuse of notation we define eL
1 and eB1 to be two distinct parallel edges. To

each of these edges, we associate conductances (or weights), as follows

• wn(eAk ) = 2−k = wn(eBk ), for all k ∈ [n].

• wn(eL
k ) =

wn(eBk )+wn(eBk+1)

n−1 = 3 · 2−(k+1)

(n−1) for k ∈ [n− 1], and wn(eL
n) = 2−n

(n−1) .
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We let Pn be the transition matrix of the (1/2)-lazy random walk on the graph (Ωn, E)

with conductances wn, i.e. we set

Pn(x, x) = 1/2 for all x ∈ Ωn,

Pn(x, y) =
wn(x, y)1x 6=y

2wn(x)
,

(4.2)

where wn(x) :=
∑
y∈Ωn

wn(x, y) with the convention that wn(z, b1) = wn(eL
1 ) + wn(eB1 ).

This Markov chain is reversible with respect to

πn(x) :=
wn(x)∑

y∈Ωn
wn(y)

.
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Figure 3: A schematic representation of the transition rates for Example 4.1. On the
segments A and B the transition rates away from and towards the center of mass z are
equal respectively to 1/6 and 1/3 (on the A side) and (n− 1)/6n and (n− 1)/3n (on the B
side). The rate for using a green-edge to land on z is equal to 1/2n. The rates for using
green edges in the other direction has a more complicated expression prescribed by
reversibility. These rates are described below despite the fact that they play no role in
our analysis.

A simple calculation show that

wn(z) = 1 +
3− 2−(n−2)

2(n− 1)
,

∑
y∈Ωn

wn(y) = 4(1− 2−n) +
3− 2−(n−2)

2(n− 1)
,

(4.3)

which implies limn→∞ πn(z) = 1/4. The transition matrix obtained from wn is

• Pn(x, x) = 1/2, for all x ∈ Ωn.

• Pn(an, an−1) = 1/2.

• 2Pn(ai, ai+1) = 1/3 = Pn(ai, ai−1), for all 1 ≤ i < n.

• Pn(bi, z) = 1
2n , for i ≥ 2.

• Pn(bi, bi−1) = 1
3 (1− 1

n ) = 2Pn(bi, bi+1), for all 2 ≤ i ≤ n− 1.

• Pn(bn, bn−1) = 1
2 −

1
2n .

• Pn(b1, z) = 1
2n + 1

3 (1− 1
n ) and Pn(b1, b2) = 1

6 (1− 1
n ).

• Pn(z, b1) = 2n+1
4(2n+1−2−(n−2))

= 1+o(1)
4 and Pn(z, a1) = n−1

4n+2−2−(n−1) = 1−o(1)
4 .

• Pn(z, bk) = 3

2k+1(2n+1−2−(n−2))
= 3−o(1)

n2k+2 , for 2 ≤ k ≤ n− 1,

and Pn(z, bn) = 1

2n(2n+1−2−(n−2))
.

Note that for this chain, condition (?) is easily verified using Theorem 3.7. Since
under Pan , Tz is concentrated around time 6n, to prove total-variation cutoff around time
6n for this sequence of chains (using Proposition 3.3), we only need to verify that an is
the initial state from which Tz is (stochastically) the largest. A crucial fact which shall
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assist us in this task is that for all i ∈ [n] and all t

Pbi [Tz > t] ≤ Pai [Tz > t]. (4.4)

The reason for this identity is the following: We couple XA and XB starting from
ai and bi (resp.) in the following manner: with probability 1/2 both stay put, with
probability ( 1

2 −
1

2n ) XA and XB make “the same move” (+/− 1 (towards/away from z)
with (conditional) probability 1/3 and 2/3, resp. (unless the current position of the chain
is either an or bn in which case the move has to be −1) and with probability 1/(2n), XB

is sent directly to z while XA moves towards/away from z with probability 2/3 and 1/3

(unless it is located at an). We do not need to specify how the coupling is defined after
XB has hit z.

A way to describe Xt starting from B before it hits z is the following: at each step it
is killed (hits z) with rate 1/(2n) and conditionally on not being killed, it performs “the
same” random walk as that on A (in terms of the index of its current position) but with
holding probability n/(2n− 1) ≥ 1/2.

Consequently,

max
y∈Ωn

Py[Tz > t] = max
y∈An

Py[Tz > t] = Pan [Tz > t],

max
y∈Bn

Py[Tz > t] = Pbn [Tz > t].
(4.5)

Moreover, it follows from the above discussion that

Pan [Tz > t]

(
1− 1

2n

)t
≤ Pbn [Tz > t] ≤ min

(
Pan [Tz > t],

(
1− 1

2n

)t)
. (4.6)

We now turn to the task of verifying that there is no cutoff in separation. Note that
conditions (i)-(ii) of Proposition 3.8 hold by construction, condition (v) holds by Remark
3.9, while condition (iv) holds by (3.8). Lastly, condition (iii) of Proposition 3.8 follows
form (4.5), and so Proposition 3.8 applies. Consequently,

lim
n→∞

sup
t≥0
|d(n)

sep(t)− P[T an,bnz > t]| = 0. (4.7)

Set mn := dn2/3e (the exponent 2/3 can be replaced by any number in (1/2, 1)). It is
standard to check that

lim
n→∞

Pan [|Tz − 6n| > mn] = 0,

lim
n→∞

sup
t∈[0,6n−2mn]

|Pbn(Tz > t+mn)− Pbn(Tz > t)| = 0.
(4.8)

Hence it follows from (4.7) that for all c ∈ (0, 6)

lim
n→∞

|d(n)
sep(6n+ bcnc)− Pbn [Tz > cn] | = 0. (4.9)

This and (4.6) yield that for any 0 < ε ≤ 1/4

lim
n→∞

d(n)
sep(bsnc) =


1 if s ≤ 6,

e−(s−6)/2 if s ∈ [6, 12),

0 if s > 12.

(4.10)

Hence there is no separation cutoff. Moreover,

sup
0<ε<1/2

lim inf
n→∞

t
(n)
sep(ε)

t
(n)
sep(1− ε)

= 2.

We now describe a variant of the previous example which is a nearest neighbor lazy
weighted random walk on a bounded degree graph with bounded transition probabilities.

EJP 21 (2016), paper 44.
Page 14/36

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4687
http://www.imstat.org/ejp/


Total variation and separation cutoffs are not equivalent

Example 4.2. Let Ωn = A ∪B ∪ C ∪ {z}, where

A = An := {a1, a2, . . . , a2n = a},
B = Bn := {b1, b2, . . . , b2n = b},
C = Cn := {c1, c2, . . . , cn−1}.

(4.11)

For notational convenience we write a0 := z =: b0 = c0 and cn = bn. Consider the
following transition matrix

• Pn(x, x) = 3/4 for all x ∈ Ωn \ C and Pn(ci, ci) = 1/2 for all i ∈ {1, . . . , n− 1},
• Pn(a2n, a2n−1) = 1/4 = Pn(b2n, b2n−1),

• 2Pn(ai, ai+1) = 1/6 = Pn(ai, ai−1), for all 1 ≤ i < 2n,

• 2Pn(bi, bi+1) = 1/6 = Pn(bi, bi−1), for all i ∈ [2n− 1] \ {n},
• 2Pn(ci, ci+1) = 1/3 = Pn(ci, ci−1), for all 1 ≤ i ≤ n− 1,

• Pn(bn, bn+1) = Pn(bn, cn−1) = Pn(bn, bn+1) = 1/12,

• Pn(z, a1) = Pn(z, b1) = Pn(z, c1) = 1/12.

1/3

1/41/61/12

1/12

1/12

1/12

1/12

1/12
1/121/4

b

za

1/6

Figure 4: A schematic representation of the transition rates for Example 4.2 for n = 4.
When at a state of degree two or three (other than z), conditioned on making a non-
lazy step, the chain moves away from (resp. towards) z with conditional probability 1/3

(resp. 2/3). For vertices of degree 2: along the green edges, rates away from and towards
the center of mass z are equal respectively to 1/12 and 1/6 and along the red edges they
are equal to 1/6 and 1/3, respectively. The transitions away from vertices of degree 1

and 3 are given on the figure.

States a2n, b2n and z play here the same respective roles as an, bn and z in the
previous example. A simple calculation (similar to (4.3)) yields that

lim
n→∞

πn(z) = 2/7.

We argue that for all t ≥ 0 and i ∈ [2n]

max (Pci [Tz > t],Pbi [Tz > t]) ≤ Pai [Tz > t] ≤ Pa2n [Tz > t] (4.12)

In particular,
∀t ≥ 0, max

x∈Ωn
Px[Tz > t] = Pa2n [Tz > t]. (4.13)

Since the hitting time of z under Pa2n is concentrated around time t = 24n, by Proposition
3.3 the sequence exhibits total-variation cutoff around time 24n.

The last inequality in (4.12) is trivial. For the first one we consider the case where
Pn is replaced by P ′n which satisfies 2P ′n(ci, ci+1) = 1/3 = P ′n(ci, ci−1) and P ′n(ci, ci) = 1/2

for 1 ≤ i ≤ n − 1 and P ′(x, y) = P (x, y) elsewhere. As adding extra laziness increases
stochastically the hitting time Tz (as in Remark 3.9 consider the law of γ, the non-lazy
path performed by the chain by time Tz; Clearly it is invariant under this transformation,
while the conditional law of Tz, given γ, can only increase, stochastically),

Pbi [Tz > t] ≤ P′bi [Tz > t] = Pai [Tz > t], (4.14)
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(where P′ denotes the distribution of the modified chain with the increased holding
probability on Cn) and the same holds when bi is replaced by ci.

To prove that b2n is the vertex from which the hitting time of z is the largest, we need
to prove the following two inequalities valid for i ∈ {1, . . . , n}

Pci [Tz > t] ≤ Pbi [Tz > t] and Pbi [Tz > t] ≤ Pbi+n [Tz > t]. (4.15)

Both can be proved by coupling arguments. For the first one, we can couple the non-lazy
path of the chains starting from bi and ci until they reach either bn or z (the second being
at position cj when the first is at position bj), and then in the case they reach bn = cn let
them evolve together until they reach z. The larger laziness on the path starting from
ci until the merging time, implies stochastic domination. For the second inequality, the
case i = n follows from fact that starting from b2n the chain has to go through bn before
reaching z. For i < n, we can couple the chain starting from bi and bi+n until the pair of
chains reaches either (bn, b2n) or (z, bn) (the second chain being at position bj+n when
the first is at position bj), and conclude using the case i = n.

As in the previous example, we can apply Proposition 3.8. The reason why separation
cutoff does not occur is that when starting from b2n, the hitting time Tz is not concen-
trated. Indeed it is concentrated around 18n under the conditioned probability measure
Pb2n [· | XTz−1 = c1], while it is concentrated around 24n under Pb2n [· | XTz−1 = b1]. As by
symmetry

Pb2n [XTz−1 = c1] = Pb2n [XTz−1 = b1] =
1

2
,

this yields

Lemma 4.3. We have

lim
n→∞

Pb2n [Tz ≥ sn] =


1 if s < 18,

1/2 if s ∈ (18, 24),

0 if s > 24.

(4.16)

While this result is rather elementary (we use some surgery to compare Tz with a
sum of independent variables, and then the law of large number for this sequence), the
proof in full detail is long to expose (c.f. [5, Example 8.1]) and we choose to leave it as
an exercise. Applying Proposition 3.8 for an adequate choice of sets and states (here
(a2n, b2n, An, Bn ∪ Cn) plays the role of (an, bn, An, Bn) from Proposition 3.8) yields

lim
n→∞

d(n)
sep(sn) =


1 if s < 42,

1/2 if s ∈ (42, 48),

0 if s > 48.

(4.17)

In particular, there is no cutoff in separation.

5 Separation cutoff without total variation cutoff example

In the following example the analysis of the sharp transition of d(n)
sep(t) is reduced

to the analysis of the behavior of sum of i.i.d. random variables in the large deviation
regime. The analysis below is too coarse for the purpose of determining the width of
the cutoff window. We later present a refined analysis for Example 6.12 (which is the
bounded degree un-weighted version of Example 5.1) in § 6.5, which shows that in fact
t
(n)
sep(ε)− t(n)

sep(1− ε) ≤ C| log ε|, for some absolute constant C > 0. The analysis in § 6.5 is
built upon the analysis of Example 5.1 below, as it relies (in a non-quantitative manner)
on the fact that certain large deviation estimates hold uniformly over compact sets (the
identity of the large deviation rate function is not important for the analysis in § 6.5).
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Example 5.1. Let M ≥ 10 be a fixed integer whose exact value shall be determined
later. Consider the state space Ωn = A∪B∪{z}∪C ∪D∪{z′}, where A = An := {aMn =

a, aMn−1, . . . , a1}, B = Bn := {bMn = b, bMn−1, . . . , b1}, C = Cn := {c1, c2, . . . , cn−1} and
D = Dn := {d1, d2, . . . , dn−1}. We use the following notational convention: a0 = b0 :=

z′ =: cn = dn and d0 := z =: c0. Consider the following transition matrix

• Pn(i, i) =

{
3/4 i ∈ C,
1/2 otherwise.

• Pn(aMn, aMn−1) = 1/2 = Pn(bMn, bMn−1).

• Pn(z, c1) = 1/4 = Pn(z, d1).

• Pn(z′, cn) = Pn(z′, dn) = 1/6 = 2Pn(z′, a1) = 2Pn(z′, b1).

• Pn(ai, ai−1) = Pn(bi, bi−1) = Pn(dj , dj−1) = 2Pn(cj , cj−1) = 1/3.

Pn(ai, ai+1) = Pn(bi, bi+1) = Pn(dj , dj+1) = 2Pn(cj , cj+1) = 1/6,
for all i ∈ [Mn− 1] and j ∈ [n].

A

B

C

D

1/4

z

z’

1/12 1/4

1/4

a

1/6

b

1/61/12

1/6 1/3

1/12 1/6

1/12

1/6

1/12

1/6

1/4

Figure 5: A schematic representation of the transition rates for Example 5.1. When
at a state of degree two or four (other than z), conditioned on making a non-lazy step,
the chain moves away from (resp. towards) z with conditional probability 1/3 (resp. 2/3).
The transition rates away from and towards the center of mass z, from degree two states,
are equal respectively to 1/6 and 1/3, except on the segment C, due to increased holding
probability. The transition rates away from the rest of the states are specified in the
figure.

This chain is a modification of Aldous’ example (which was discussed in § 2). The
difference lies in the introduction of an additional branch B to the graph. This branch
has no effect on the total-variation profile of the convergence to equilibrium, but crucially
modifies the separation profile, as P tn(a, b)/πn(a) (recall a := anM and b := bnM ) is the
quantity that takes the longest time to reach equilibrium (i.e. up to negligible correction
(x, y) = (a, b) maximizes 1− P tn(x, y)/πn(y) for all relevant t).

A standard calculation yields that

lim
n→∞

πn(z) = 2/11 and lim
n→∞

2nπn(z′) = 6/11. (5.1)

By symmetry, the law of Tz starting, resp., from ai and bi is identical for all i and by the
Markov property, it is stochastically increasing in i (for i > j, to reach z from ai (resp. bi)
the chain must first hit aj (resp. bj)). Only minor efforts are necessary to prove rigorously
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that a and b are the points in A ∪ B ∪D for which the hitting time Tz is stochastically
the largest (the coupling arguments are similar to the one developed in the previous
section), while for any choice of M > 1,

lim sup
n→∞

sup
t

(max
c∈C

Pc[Tz > t]− Pa[Tz > t]) ≤ 0.

Due to the different holding probabilities along the two branches, C,D, the distribution
of Tz under Pa is not concentrated around its mean. Thus, by Proposition 3.3, there is no
total-variation cutoff, and the total-variation asymptotic profile is given by

lim
n→∞

d(n)(6sn) :=


0 if s < M + 1,

1/2 if s ∈ (M + 1,M + 2),

1 if s > M + 2.

(5.2)

To show that there is separation cutoff, it suffices to prove that

lim inf
n→∞

inf
t

min
x,y∈Ωn

P tn(x, y)/πn(y)−min
(
1, P tn(a, b)/πn(b)

)
= 0, (5.3)

and to show that min(1, P tn(a, b)/πn(b)) displays an abrupt transition. Let us start with
the second point. According to Lemma 3.5 (first inequality of (3.7)), we have

P[T a,bz′ = t]/πn(z′) ≤ P tn(a, b)/πn(b) ≤ P[T a,bz′ ≤ t]/πn(z′) (5.4)

By definition T a,bz′ is the sum of two independent hitting times of a biased random walk
on a segment of length Mn (from one end-point towards the one towards which there is
a bias). We make some efforts to compute the large deviation behavior of this sum.

Lemma 5.2. Consider a lazy random walk (Zt)t≥0 on Z+ with rates p(x, x + 1) = 1/3,
p(x+ 1, x) = 1/6, x ∈ Z+. Let TN be the first hitting time of N . We have

lim
N→∞

1

N
logP[TN = bsNc] = lim

N→∞

1

N
logP[TN ≤ sN ] = −Ψ(s), for s ∈ [1, 6]

lim
N→∞

1

N
logP[TN = bsNc] = lim

N→∞

1

N
logP[TN ≥ sN ] = −Ψ(s), for s ≥ 6,

(5.5)

where Ψ is the following Legendre transform

Ψ(s) := sup
λ∈(−∞,∞)

[λs− log f(λ)] , (5.6)

where

f(λ) :=

{
∞ if λ > log(6/(3 + 2

√
2)),

6e−λ−3
2 −

√
(6e−λ−3)2−8

2 if λ ≤ log(6/(3 + 2
√

2)).

Moreover, Ψ(6) = 0 = Ψ′(6) and the second derivative Ψ′′(6) is positive.

Proof. Let X ′ be the random walk with the same rates on Z, and T ′N be the first hitting
time of N for this walk. By the Markov property T ′N is the sum of N IID copies of T ′1
and hence we can use Cramér’s Theorem (see e.g. [8, Chapter 2]) to obtain the large
deviation for T ′N below its mean. If one decomposes according to the value of X ′1 we
notice that the Laplace transform f(λ) := E[eλT

′
1 ] satisfies

f(λ) = eλ
(

1

3
+

1

6
f(λ)2 +

1

2
f(λ)

)
. (5.7)

and we deduce the right value for f(λ) from this relation (the fact that f(0) = 1 and
continuity of f indicates which root to choose in (5.7)). Note that the derivative of log f(λ)
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at zero is equal to 6 which implies that Ψ(6) = 0 (Alternatively, E[T ′1 ] = 6, hence by
Cramér’s Theorem it must be the case that Ψ(6) = 0). As Ψ is non-negative (since
log f(0) = 0), it must be the case that it attains a global minimum at 6, which implies that
Ψ′(6) = 0 and Ψ′′(6) > 0.

Now, note that Ti − Ti−1 are independent variables, which are dominated by T ′1
and who converge (when i tends to infinity) to T ′1 in law. In particular, by dominated
convergence (and Cesaro’s Theorem) we have that for any λ ∈ (−∞, log 6

3+2
√

2
],

lim
N→∞

1

N
logE[eλTN ] = f(λ). (5.8)

and thus in that case the result follows from Gärdner Ellis Theorem [8]. Finally, the local
large deviation estimate (the result on P[TN = bsNc]) can be deduced from the large
deviation principle using the fact that due to laziness

P[TN = t+ 1]

P[TN = t]
≥ 1

2
. (5.9)

We leave it as an exercise. Note moreover that the convergence in (5.5) holds uniformly
on s ∈ K for any compact K (it can be deduced e.g. from (5.9)).

A consequence of (5.4) and the previous lemma in conjunction with (5.1) and Lemma
3.5 is that if sM is given by 2Ms∗, where s∗ is the unique solution in (0, 6) of

2MΨ (s) = log 2, (5.10)

then

lim
n→∞

P
bsnc
n (a, b)

πn(b)
=

{
0, if s < sM ,

∞, if s ∈ (sM , 12M ].
(5.11)

An order 2 Taylor expansion of (5.10) around s = 6 readily shows that 6− s∗ = Θ(1/
√
M)

(i.e. 12M − sM = Θ(
√
M)) for large M . In particular, sM ≥ 11M for M sufficiently large.

What is left to do in order to prove separation cutoff is to check that for any s ∈ (sM , 12M ]

(in fact, by monotonicity it suffices to consider only s arbitrarily close to sM ) we have

lim inf
n→∞

min
x,y

P bsncn (x, y)/πn(y)) ≥ 1.

In what follows we let s ∈ (sM , 12M ] be fixed.
We first use Lemma 3.5 to reduce to the case of x = ai, y = bj , i, j ≥ Mn/2. Set

E := {ai : i ≥ Mn
2 } ∪ {bi : i ≥ Mn

2 }. By (3.7) for any x ∈ Ωn and y ∈ Ωn \ E we have

P
dsne
n (x, y)

πn(y)
≥ P [T x,yz ≤ 11Mn] , (5.12)

and it is a simple exercise to show that (when M is sufficiently large)

lim
n→∞

min
(x,y)∈Ωn×(Ωn\E)

P [T x,yz ≤ 11Mn] = 1. (5.13)

Finally, to treat the case x = ai, y = bj (the cases (ai, aj) or (bi, bj) are treated in the
same manner), i, j ≥Mn/2 , we use again Lemma 3.5 which asserts that

P
bsnc
n (ai, bj)

πn(bj)
≥ max

(
P[T

ai,bj
z′ = bsnc]
πn(z′)

,P[T
ai,bj
z′ ≤ bsnc]

)
(5.14)
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Note that T
ai,bj
z′ is (cf. the proof of Lemma 5.2) a sum of i + j independent random

variables (not identically distributed) and that

lim
n→∞

sup
i,j≥Mn/2

∣∣∣∣ 1

i+ j
logE[eλT

ai,bj

z′ ]− log f(λ)

∣∣∣∣ = 0. (5.15)

One deduces from Gärdner Ellis Theorem [8] and the following consequence of laziness

E[T
ai,bj
z′ = t+ 1]

E[T
ai,bj
z′ = t]

≥ 1/2, (5.16)

that for any u ∈ (1,∞),

lim
n→∞

sup
i,j≥Mn/2

∣∣∣∣− 1

i+ j
logP[T

ai,bj
z′ = b(i+ j)uc]−Ψ(u)

∣∣∣∣ = 0, (5.17)

and the convergence holds uniformly on compact sets. Now let us fix η which satisfies

Ψ

(
6s

s+ 6η

)
≤ log 2

4M
,

Using (5.17), there exists δ such that for all n sufficiently large , for all i, j ≥Mn/2,(
i+ j ≤ sn

6
+ ηn

)
⇒ P[T

ai,bj
z′ ≤ bsnc] ≥ 1− e−δn,(

i+ j ≥ sn

6
+ ηn

)
⇒ logP[T

ai,bj
z′ = bsnc] ≥ −(i+ j)

[
Ψ(

sn

i+ j
) + δ

]
,

(5.18)

Note that the l.h.s. in the second line satisfies

(i+ j)

[
Ψ(

sn

i+ j
) + δ

]
≤ 2Mn

(
max

[
Ψ
( s

2M

)
,Ψ

(
6s

s+ 6η

)]
+ δ

)
. (5.19)

As 2MΨ
(
s

2M

)
< log 2 (since s ∈ (sM , 12M ]) and δ can be chosen arbitrarily small,

(5.18) (second line) and (5.19) imply that for sufficiently large n, for any i, j satisfying
i+ j ≥ sn

6 + ηn, we have

P[T
ai,bj
z′ = bsnc] ≥ 2−n(1−δ). (5.20)

Combining this with (5.18) (first line) and (5.14) we can conclude that

min
i,j≥Mn/2

P
bsnc
n (ai, bj)

πn(bj)
≥ 1− e−δn. (5.21)

5.1 Concerning Remark 1.3

Note that by performing a minor modification in the above construction we can bring
the pre-cutoff ratio for total-variation to the largest possible value: 2. A way to achieve
this is to make one of the branches linking z′ to z much faster than the other (instead of
only twice faster as in Example 3, we want the ratio of speeds to tend to infinity).

What we can do is to make these branches of length d
√
n e while A and B are of length

n. Furthermore, we choose the speed on one branch to be 1/6 while that one the other
being 1/(6

√
n) by increasing the holding probability on this branch (see Figure 6). Using

similar reasoning as in the analysis of Example 5.1 one can show that for this construction
there is separation cutoff around time 12n (note that here − log πn(z′) = Θ(

√
n), which

by (5.4) implies that for tn := d(12 − ε)ne, P tnn (a, b)/πn(b) ≤ P[T a,bz′ ≤ tn]/πn(z′) = o(1),
for every ε > 0).

We can also find a similar example with transition rates bounded uniformly from zero
by considering two branches of different lengthes, but in that case the analysis turns out
to be more intricate.
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Figure 6: A modification of the graph size and of the holding probability along the
slow branch as shown above yields a counter-example with cutoff in separation and the
maximal possible pre-cutoff ratio 2 in total-variation.

6 Transforming Examples 4.2 and 5.1 into lazy simple random
walk on bounded degree expander graphs

6.1 General comments and preliminaries

In this section we transform Examples 4.2 and 5.1 into lazy SRWs on a sequence
of bounded degree expander graphs. For this kind of walk, the equilibrium measure is
π(v) = deg v∑

u deg u , and thus no particular vertex can have the role of the “center of mass”
as in the previous examples. Let us rewrite the definition of the Cheeger constant in this
context.

Definition 6.1. Let G = (V,E) be a finite connected graph. For every S ⊂ V denote
CS :=

∑
v∈S deg v. For any S ⊂ V we define its edge boundary ∂ES to be the collection

of edges having one vertex in S and the other in V \ S. The Cheeger constant of lazy
simple random walk on G is defined as

chLazy(G) := min
S:π(S)≤1/2

|∂ES|/2CS ,

which coincides with Definition 3.6 (see e.g. [16, Remark 7.2]). We say that G is a c-lazy
expander if chLazy(G) > c. We say that a sequence of finite graphs (Gn)n≥1 is a family of
c-lazy expanders if infn chLazy(Gn) > c.

In our new context, the center of mass is rather a set which contains a positive
fraction of the vertices. We shall relate the mixing-time of the chain to the hitting time
of this set. Mutatis mutandis, the results of Section 3 and in particular Lemma 3.5 can
be adapted to this new context, but only if the set and the starting point satisfy a special
relation:

Definition 6.2 (Balanced sets). For any Z ⊂ Ω we denote the hitting time of Z by
TZ := inf{t : Xt ∈ Z}.

• We say that Z is balanced seen from x ∈ Ω if for all t such that Px[TZ = t] > 0,

∀z ∈ Z, Px[Xt = z | TZ = t] = πZ(z), (6.1)

where πZ(·) = 1·∈Zπ(·)
π(Z) is π conditioned on the set Z.

• We say that Z is balanced seen from the set A if it is balanced seen from x for all
x ∈ A.
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• We define T x,yZ to be a random variable distributed like the sum of two independent
realizations of TZ , once under Px and once under Py. That is, for all t ≥ 0,

P[T x,yZ = t] :=

t∑
k=0

Px[TZ = k]Py[TZ = t− k]. (6.2)

Note that sets are not likely to be balanced by “pure luck” and we will be careful
to introduce a sufficient amount of symmetry when constructing our graphs, so that
our center of mass will be balanced seen from many starting points. However, this
property cannot be satisfied for all starting points and we will have to deal with the
remaining initial vertices separately (and show that they are irrelevant for determining
the worst-case total-variation and separation distances), by using a crude `2 estimate
(Lemma 6.8).

Lemma 6.3. Let (Ω, P, π) be a finite irreducible lazy reversible Markov chain and con-
sider x, y ∈ Ω, and Z ∈ Ω which is balanced seen from both x and y

(i) For all t ≥ 0 we have

P t(x, y)/π(y) ≥
∑
k≤t

P[T x,yZ = k]Pt−kπZ (Z)/π(Z) ≥ P[T x,yZ ≤ t]. (6.3)

(ii) If Px[TZ < Ty] = 1 (i.e. if every path from x to y goes through the set Z) then for all
t ≥ 0 we have that

P t(x, y)/π(y) =
∑
k≤t

P[T x,yZ = k]Pt−kπZ (Z)/π(Z)

≤ P[T x,yZ ≤ t] +
1

2
trel max

k∈N
P[T x,yZ = k]

√
(1− π(Z))/π(Z).

(6.4)

We use this result directly but also to prove the following key propositions whose aim
is to replace Propositions 3.3 and 3.8.

Proposition 6.4. Let (Ωn, Pn, πn) be a sequence of lazy reversible irreducible finite
chains which satisfies the product condition. Assume that for each n there exist se-
quences of sets and vertices In, Zn ⊂ Ωn, a = a(n) ∈ Ωn which satisfy

(i) infn πn(Zn) > 0.

(ii) Zn is balanced seen from In for all n.

(iii) lim supn→∞ supt≥0 maxi∈In Pi[TZn > t]− Pa[TZn > t] ≤ 0.

(iv) lim supn→∞ supt≥0 maxx∈Ωn\In ‖Ptx − π‖TV − Pa[TZn > t] ≤ 0.

Let τn(p) := inf{t : Pa[TZn > t] ≤ p}. Then

lim sup
n→∞

t
(n)
mix(ε′)

τn(ε)
≤ 1 and lim inf

n→∞

t
(n)
mix(ε)

τn(ε′)
≥ 1, for all 0 < ε < ε′ < 1. (6.5)

In particular, total-variation cutoff occurs if and only if

lim
n→∞

τn(ε)

τn(1− ε)
= 1, for every 0 < ε < 1. (6.6)

Proposition 6.5. Let (Ωn, Pn, πn) be a sequence of lazy reversible irreducible finite
Markov chains which satisfies (?). Assume that there exist sequences of sets and
vertices, An, Bn, Zn ⊂ Ωn, an ∈ An, bn ∈ Bn, which satisfy
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(i) infn πn(Zn) > 0.

(ii) limn→∞maxk Pan [TZn = k] = 0.

(iii) Zn is balanced seen from In := An ∪Bn.

(iv) Px[TZn < TBn ] = 1 for all x ∈ An.

(v)

lim sup
n→∞

sup
t≥0

max
y∈Bn

Py[TZn > t]− Pbn [TZn > t] = 0,

lim sup
n→∞

sup
t≥0

max
y∈In

Py[TZn > t]− Pan [TZn > t] = 0.
(6.7)

(vi)

lim inf
n→∞

inf
t≥0

min
(x,y)∈A2

n∪(Ω2
n\I2n)

P tn(x, y)

πn(y)
− P tn(an, bn)

πn(bn)
≥ 0.

Then
lim
n→∞

sup
t≥0
|d(n)

sep(t)− P[T an,bnZn
> t]| = 0. (6.8)

In particular, there is separation cutoff if and only if T an,bnZn
is concentrated around its

median.

Remark 6.6. Note that the results presented above are generalizations of those pre-
sented in Section 3. Hence we shall only prove the more general versions in the
Appendix.

Remark 6.7. Similarly to Remark 3.9, condition (ii) of Proposition 6.5 is satisfied in
Examples 6.9 and 6.12 due to laziness and the fact that limn→∞min{t : P tn(an, Zn) >

0} =∞.

Lemma 6.8. For any reversible Markov chain, (Ω, P, π) and any x, y ∈ Ω and s, t ≥ 0,

P s+t(x, y)/π(y) ≥ (1− ‖Ptx − Psy‖TV)2. (6.9)

In particular, if dx(t) + dy(s) ≤ 1, then

P s+t(x, y)/π(y) ≥ (1− dx(t)− dy(s))2. (6.10)

Proof. Let f(z) :=
√
P t(x, z)P s(y, z)/π(z). By reversibility and Jensen’s inequality,

P s+t(x, y)

π(y)
=
∑
z

π(z)
P t(x, z)P s(z, y)

π(z)π(y)
=
∑
z

π(z)f2(z) ≥

(∑
z

π(z)f(z)

)2

≥

(∑
z

min(P t(x, z), P s(y, z))

)2

= (1− ‖Ptx − Psy‖TV)2.

(6.10) follows from (6.9) by the triangle inequality.

6.2 Building blocks of our constructions

Let us now describe the building blocks of our constructions. We assume for simplicity
that n is an even integer. To produce the analog of a biased nearest-neighbor random
walk, our constructions must include structures which look like regular trees (for which
the SRW has a bias towards the leaves). We must also care about adding some extra
connections to avoid producing dead-ends on the leaves (which could lead to a small
Cheeger constant). Finally, we must introduce extra symmetries to ensure that the center
of mass is balanced seen from all vertices which are sufficiently far from it. Finally, we
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“stretch” the edges which are far away from the center of mass (that is, replace each
such edge by a path of length L, for some fixed large constant L), to ensure that the
worst-case total-variation and separation distances are obtained by vertices which are
far away from the center of mass (which is balanced, seen from those vertices).

Step 1: Let Ta = (Va, Ea) be a binary tree of depth n rooted at a (in the rest of the
construction, we keep calling a the root, even though the graph will no longer be a tree).
Replace each edge between a pair of vertices belonging to the first n/2 generations of
Ta by a path of L edges, where L is an integer which does not depend on n. As L shall
remain fixed we omit the dependence in L from our notation. In the course of the proof
we will have to require L to be sufficiently large for the purpose of applying a certain
crude `2 estimate. We call the obtained graph H1

n. It is a tree rooted at a and we denote
its set of leaves by

Ln := (u1, . . . , u2n),

(Ln stands for the n-th generation of Ta), where the labels are chosen in an arbitrary
fashion.

On H1
n the walker starting from a will have a bias towards the set of leaves, which can

be considered as the center of mass of these graph, since it contains a positive proportion
of the vertices. The parameter L here is present only to make the walk slower (the
expected number of steps to cross an L-path is 2L2, i.e. if v ∈ H1

N is either the root a or
a vertex of degree 3 adjacent to three degree 2 vertices Ev[inf{t : D(Xt, v) = L}] = 2L2

where D denotes the graph distance). This shall assist us in verifying that the worst-case
total-variation and separation distances are obtained by vertices which are far away
from the center of mass.

The problem of this construction is that seen from a vertex which is not a the set of
leaves is not balanced. To cope with this defect, we add n extra “generations” of vertices,
which make the center of mass balanced from “many” starting points.

Step 2: For all 1 ≤ m ≤ n we label the vertices of the “n+m-th generation” (they are
at distance (L+ 1)n/2 +m from a) as follows

Ln+m := {uki1,...,im : i1, . . . , im ∈ [4], k ∈ [2n−m]}

and we connect them to generation n + m − 1 using the following scheme: for all
k ∈ [2n−m] uki1,...,im−1,1

, uki1,...,im−1,2
, uki1,...,im−1,3

, uki1,...,im−1,4
are connected to u2k−1

i1,...,im−1

and u2k
i1,...,im−1

. We call the obtained graph Hn
1 . The “center of mass” of H2

n is the set L2n

(it bears roughly half of the total mass of H2
n), which is balanced seen from any vertex in

H1
n.

Step 3.1 and 3.2: We now want to plug (attach) to the leaf set of H1
n “two paths” with

different speeds (to have something similar to the structures present in Examples 4.2
and 5.1). The construction is the following (see Figure 7):

(i) We start with a rooted binary tree T of depth n (assume n ≥ 4). And let us call 1

and 2 the two neighbors of the root and T1 and T2 the subtrees rooted at 1 and 2,
respectively.

(ii) In T1 we add edges between any pair of vertices which have a common ancestor
and are not leaves.

(iii) Finally we assign labels to the leaf sets of T1 and T2 in a way that the two labeled
trees (prior to step (ii) that is) are isomorphic (see e.g. Figure 7) and we merge
each leaf of T1 to the leaf of T2 with the same label. We let Tn denote the obtained
graph.

(iv) We let T ′n denote the graph which is obtained by the same construction, in which
we also add edges within T2 in step (ii) using the same role as for T1 (see Figure
7).
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To each vertex v ∈ L2n, we glue a copy of Tn (v is merged with the root of Tn and we
obtain H3,1

n ). If we glue a copy of T ′n (to each v ∈ L2n,) instead of Tn, we obtain H3,2
n . For

both graphs we call L3n the set of vertices at distance (L+ 5)n/2 (i.e. maximal distance)
from a.

5151 2 3 4 6 16 1615141312119871513122 3 4 5 6 8 9 10 14 1 2 3 6 101514131211107316131198765

Root Root

10 12 14 11 2 4 5 8 9 7 11 16 4

Figure 7: Representations Tn (on the left) and T ′n (on the right) for n = 4. The red edges
are those added in step (ii). On step (iv) leafs with the same label are merged.

Finally we want to link together all the vertices of L3n in order to avoid dead-ends in
the graph. We choose to link them together using an explicit expander (see e.g. [1, 20]
for examples of explicit construction of expanders) so that (total-variation) mixing occurs
rapidly once L3n is reached.

Step 4: We let Fn = (Vn, En) be a family of explicit 3-regular c-lazy expanders
with Vn = [23n−1]. We glue together Gn and H3,i

n (i = 1, 2) without adding vertices by
identifying Vn with L3n−1. More precisely, we start with a copy of H3,i

n with root a. We
label the vertices of L3n by z1, . . . , z23n−1 (the labeling is arbitrary). We then connect zi
with zj if and only if {i, j} ∈ En. We call the final result of our construction H4,i

n (i = 1, 2).
We call a the root of H4,i

n (i = 1, 2).
With some efforts and using the tools developed in the following sections, the reader

can check that the lazy SRW on H4,1
n exhibits pre-cutoff but not cutoff in total-variation.

This is a SRW version of Aldous’ counter-example.

6.3 A sequence of lazy SRW on bounded degree expanders with total-variation
cutoff and no separation cutoff

The following is a modification of Example 4.2 into a sequence of lazy SRWs on a
sequence of bounded degree graphs.

Example 6.9. Take a copy of H3,1
n with root b and a copy of H3,2

n with root a. We
glue together the two by merging the vertices of L3n (of both graphs): we give labels
z1, . . . , z23n−1 to the vertices lying in L3n of each of the two graphs, and then merge each
pair of vertices who share the same label. Finally, we build extra-connections between
z1, . . . , z23n−1 using an expander graph Fn with 23n−1 vertices, like in Step 4. We let
G1
n := (V 1

n , E
1
n) denote the obtained graph.

In order to apply Propositions 6.4 and 6.5, we need to identify which vertices and
sets will play which role.

• The center of mass Zn is given by the 23n−1 vertices which are linked by the
expander.

• a is the vertex which maximizes (stochastically) the hitting time of Zn.

• The pair of vertices (x, y) which (up to negligible terms) attains the minimum for
P tn(x, y)/πn(y) (for all t ≥ 0) is given by (a, b).
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a
Z

H3,1

b

Stretched EdgesStretched Edges Ĝn1

H1 = Bn

H2

H3,2

H1 = An

H2

Figure 8: Schematic representation of Example 6.9. In the construction of H3,1
n , the

asymmetry of Tn produces two different paths to reach the center of mass Zn, with
different speed. This produce an absence of concentration for the hitting time of Z
starting from b.

• The sets An and Bn are chosen to be the largest set of points around a and b

(resp.) such that Zn is balanced seen from In := An ∪ Bn. Namely, these are the
vertices within respective distance (L+ 1)n/2 from a and b (the vertices of H0

n in
both H3,1

n and H3,2
n ). Indeed, due to step 2 of the construction, the set L2n of H3,1

n ,
respectively, H3,2

n (i.e. the collection of vertices whose distance from a (resp. b) is
(L+ 3)n/2) is balanced seen from An, resp. Bn. This implies that the distribution
of XTZn

is uniform on Zn. Step (iv) of the construction of Tn is there to guaranty
that TZn and XTZn

are independent (and hence that Zn is balanced seen from An
and Bn).

It is then not difficult to check (cf. Figure 8) from the construction that assumptions
(i)− (iii) resp. (i)− (v) of Propositions 6.4 and 6.5, are satisfied.

Moreover, the hitting time of Zn from a is concentrated around (17 + 3L2)n, while
from b it satisfies that

lim
n→∞

Pb [TZn ≥ sn] =


1 if s < 15 + 3L2,

1/2 if s ∈ (15 + 3L2, 17 + 3L2),

0 if s > 17 + 3L2.

(6.11)

We want to prove that the system displays cutoff in total-variation around time (17+3L2)n,
and that the asymptotic behavior for the separation distance is given by

lim
n→∞

d(n)
sep(sn) = lim

n→∞
Pb
[
TZn ≥ (s− 17 + 3L2)n

]
=


1 if s < 32 + 6L2,

1/2 if (32 + 6L2, 34 + 6L2),

0 if s > 34 + 6L2.
(6.12)

The only thing we have to do to prove these statements is to verify condition (iv) in
Proposition 6.4 and condition (vi) of Proposition 6.5 (resp.). The only delicate point is to
show that for starting points outside of In the walk mixes rapidly. I.e. that there exists
an absolute constant C > 0, which does not depend on L, such that

lim
n→∞

max
v/∈In

d(n)
v (dCne) = 0. (6.13)

Before proving (6.13) let us explain how we use it to verify the remaining conditions.
Note that if L is chosen to be sufficiently large (i.e. such that (17 + 3L2) > C) then (6.13)
implies condition (iv) of Proposition 6.4.
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For condition (vi) of Proposition 6.5, for the case x ∈ Ωn y /∈ In, we use Lemma 6.8
and the total-variation cutoff result to show that for t ≥ (18 + 3L2 + C)

P tn(x, y)/πn(y) ≥ 1− 2
(
d(n)
x (18 + 3L2) + d(n)

y (Cn)
)
, (6.14)

which is uniformly close to one.
This yields the right condition provided 32 + 6L2 > 18 + 3L2 +C (which can obviously

be fulfilled by picking L to be sufficiently large). We now treat the case where both x

and y lie in An (whose analysis does not rely on (6.13)). We use Lemma 6.3 with Z = Z ′n
chosen to be the set of vertices within distance (L+ 3)/2n from a (corresponding to L2n

in the copy of H3,2
n ). Recall that by construction this set is balanced seen from An. By

(6.3) we have that

P tn(x, y)/πn(y) ≥ P
[
T x,yZ′n

≤ t
]
. (6.15)

Moreover, for any ε > 0

lim
n→∞

max
x,y∈An

P
[
T x,yZ′n

≤ (6L2 + 18 + ε)n
]

= 1 (6.16)

and this suffices to conclude that condition (vi) of Proposition 6.5 indeed holds.
Now let us prove (6.13). We want to use a simple `2 bound using the Poincaré

inequality (see Lemma A.1). The issue is that the spectral gap of our graph is rather
small (of order L−2) due to the presence of stretched edges. However starting outside of
In the walk has a very small chance to visit the part of the graph where the edges are
stretched, before the walk is already extremely mixed. Hence our idea is to apply the
`2 bound for the walk on a smaller graph which corresponds to the vertices which are
likely to be visited. This graph will have no stretched edges and a spectral gap which is
bounded away from zero and does not depend on L.

We let Ĝ1
n = (V̂n, Ên) denote the graph which is obtained from G1

n when all the
vertices within distance Ln/2 + 1 from a and b have been deleted, together with all edges
connected to them. First we observe that the Cheeger constant associated to Ĝ1

n is large
(i.e. it is bounded from below by some positive absolute constant, which is independent
also of L), see e.g. Lemma 2.1 in [18] for a proof.

Proposition 6.10. Let κ := (min(c/3, 1/18))
2
/2. Then

chLazy(Ĝ1
n) ≥

√
2κ. (6.17)

Consequently, the relaxation-time of the lazy SRW on Ĝ1
n, t̂rel

(n)
, satisfies

t̂rel
(n)
≤ κ−1 (6.18)

If we let P̂tx and π̂n refer to the distribution at time t and at equilibrium for the walk
on Ĝ1

n, this implies (by Lemma A.1) that for x ∈ V̂ 1
n , for all t ≥ nκ−1 log 9.

‖P̂tx − π̂n‖TV ≤
1

miny π̂n(y)
e−κt ≤

(
max
v∈V̂n

deg v

)
|V̂n|9−n ≤ 6(8/9)n. (6.19)

What remains to be proven is that if one considers V̂ 1
n as a subset of V 1

n , then for any
x ∈ V 1

n \ In, the distances ‖P̂tx − π̂n‖TV and ‖Ptx − πn‖TV are very close. Note that

‖Ptx − πn‖TV ≤ ‖Ptx − P̂tx‖TV + ‖P̂tx − π̂n‖TV + ‖πn − π̂n‖TV, (6.20)

The term ‖πn − π̂n‖TV is exponentially small in n because only an exponentially small
fraction of the vertices of G1

n lie outside of Ĝ1
n. Now if one lets T∂V̂ 1

n
denote the hitting

time of
∂V̂ 1

n := {x ∈ V 1
n \ V̂ 1

n : ∃y ∈ V̂ 1
n , x ∼ y },
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(recall that V 1
n is the vertex set of G1

n) we have (by a standard coupling argument) that

‖Ptx − P̂tx‖TV ≤ Px[T∂V̂ 1
n
≤ t] ≤

t∑
i=1

Pix

(
∂V̂ 1

n

)
. (6.21)

Now if x ∈ V 1
n \ In, it lies at distance of at least n/2 from ∂V̂ 1

n and has to overcome
a drift to reach it. For this reason it should take time which is exponentially large in
n. More rigorously, we let Ωx be the set of vertices y ∈ V 1

n such that there exists a
graph automorphism of G1

n preserving a and b which maps x to y (in most cases it is
just a pedantic manner to describe the set of points at a fixed distance from a, but we
have to introduce this definition due to the lack of symmetry of the b-side). Note that
|Ωx|/|∂V̂ 1

n | ≥ 2n/2 if x /∈ In. Hence we have for all i > 0 and x /∈ In that

Pix

(
∂V̂ 1

n

)
=

∑
y∈Ωx

πn(y)Piy

(
∂V̂ 1

n

)
πn(Ωx)

≤ πn(∂V̂ 1
n )

πn(Ωx)
≤ max
v∈V 1

n

deg(v)
|∂V̂ 1

n |
|Ωx|

≤ 6

2n/2
. (6.22)

where in the first inequality we have used the stationarity of πn,∑
y∈V 1

n

πn(y)Piy

(
∂V̂ 1

n

)
= πn(∂V̂ 1

n ).

Plugging this in (6.21) we obtain (6.13) or more precisely:

Corollary 6.11. Set tn := dnκ−1 log 9e. Then

lim
n→∞

max
x∈V 1

n\In
‖Ptnx − πn‖TV = 0. (6.23)

6.4 A sequence of lazy SRW on bounded degree expanders with separation
cutoff and no total-variation cutoff

The following is a modification of Example 5.1 into a sequence of lazy SRWs on a
sequence of bounded degree graphs.

Example 6.12. Take a copy of H4,1
n with root a and a copy of H1

n with root b. We glue
them together as follows: we give labels in [22n] to the vertices in L2n in the two graphs
and merge the vertices which share the same labels. We denote the set of merged
vertices by Z ′n (this is the set of vertices of distance (L + 3)n/2 from a and b). Let G2

n

denote the obtained graph.

The reader can easily check that here a and b play symmetric roles. We let An and
Bn denote the vertices within distance (L+ 1)n/2 from a and b, respectively. Moreover,

• The center of mass Zn is given by the 23n−1 vertices which are linked by the
expander (which are the vertices belonging to L3n of H4,1

n ).

• Zn is balanced seen from An ∪Bn.

• a and b maximize (stochastically) the hitting time of Zn.

It is then not difficult to check (see Fig.9) from the construction that assumptions (i)−(iii)

Proposition 6.4 are satisfied. Assumption (iv) can be showed to be satisfied as in the
previous example by using an `2 bound for the graph in which points within distance
Ln/2 of a and b have been deleted.

The asymptotic behavior of the hitting time of Zn from a (or b) is once again given by
(6.11) and hence the system does not display cutoff in total-variation.

For cutoff in separation, we cannot use Proposition 6.5. We use instead Lemma 6.3,
and the relevant set to hit is Z ′n. This set is balanced seen from In := An ∪ Bn and
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H3,1
n

a

b

Hn1 = Bb

H2
n

Z

Z′

H1
n = An

Figure 9: Schematic representation of Example 6.12. Here the asymmetry of Tn is used
to avoid cutoff in total-variation, in a similar manner to what is done in Example 5.1.
However, as in Example 5.1, the separation mixing-time is determined by the behavior
of T a,bZ′ in the large deviation regime. Note that Z ′ is a set of small equilibrium measure
(it has 4n vertices whereas the full graph has order 8n vertices).

thus is the relevant one for the purpose of computing the separation mixing time. An
analog of the analysis performed for Example 5.1, does the job. To control the quantity
P tn(x, y)/πn(y) when one of x and y (or both) does not belong to An ∪ Bn we use an `2
estimate (in conjunction with Lemma 6.8) for the subgraph Ĝ2

n obtained by deleting the
stretched edges in G2

n, similarly to what we have done in the analysis of Example 6.9.

6.5 Proof of Remark 1.4

Part (i) follows from the analysis of Example 6.9. We shall prove now that part (ii) is
satisfied by Example 6.12.

We denote by πZ′ the distribution of πn conditioned on Z ′ (suppressing the depen-
dence on n). By (6.4) we have that for all t and every x ∈ An and y ∈ Bn

P tn(x, y)/πn(y) =
∑
k≤t

P[T x,yZ′ = k]Pt−kπZ′
(Z ′)/πn(Z ′) ≥ P[T x,yZ′ = t]/πn(Z ′). (6.24)

We know from the previous analysis of Example 6.12 that for the separation distance
to equilibrium only (x, y) ∈ An ×Bn matter, or more precisely

lim
n→∞

sup
t≥0
|d(n)

sep(t)−max(0, 1− min
(x,y)∈An×Bn

P tn(x, y)/πn(y))| = 0. (6.25)

Hence setting
tnη (x, y) := min{t : P tn(x, y)/πn(y) ≥ 1− η}

we prove that cutoff window is constant by proving that, for all ε > 0, there exist some
nε ∈ N and some absolute constant C2 such that for all n ≥ nε and all (x, y) ∈ An ×Bn

tnε (x, y)− tn1−ε(x, y) ≤ C2| log ε|. (6.26)

∀t ≥ tε(x, y), P tn(x, y)/πn(y) ≥ 1− ε. (6.27)

In what follows for simplicity we drop the dependence in n in the notation tη(x, y).
Although this is not used in the analysis below (and hence not proven), we can identify
t1/4(x, y) for all (x, y) ∈ An ×Bn as follows:

max{|t1/4(x, y)− t′(x, y)|, |t1/4(x, y)− t̄(x, y)|} ≤ C3,
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where t′(x, y) := inf{t : P[T x,yZ′ ≤ t] ≥ πn(Z ′)} and t̄(x, y) := inf{t : P[T x,yZ′ = t] ≥ πn(Z ′)}.
This follows from the analysis below, together with (6.24) and the exponential decay of
PtπZ′ (Z

′))− πn(Z ′) as a function of t.
We start by presenting some general machinery which we shall utilize in the proof

of Remark 1.4. Let µ be a distribution over Z. We say that µ is Unimodal if for any
z1 ≤ z2 ≤ z∗ and for any z1 ≥ z2 ≥ z∗ we have that µ(z1) ≤ µ(z2), where z∗ is the mode of
µ (i.e. maxz µ(z) = µ(z∗)). We say that µ is Log-Concave if µ2(z) ≥ µ(z − 1)µ(z + 1) for
all z ∈ Z (equivalently, for all z1 < z2 (z1, z2 ∈ Z) we have that µ(z1+1)

µ(z1) ≥
µ(z2+1)
µ(z2) , where

0/0 is interpreted as 0).

Fact 6.13. Let µ be a log-concave distribution over Z. Then µ is unimodal.

Fact 6.14. The family of Geometric distributions is log-concave.

Fact 6.15. The family of log-concave distributions over Z is closed under convolutions.

The following representation of hitting times in birth and death chains is due to
Karlin and McGregor [13, Equation (45)]. It was later rediscovered by Keilson [14]. The
discrete time case of this result was given by Fill [11, Theorem 1.2].

Theorem 6.16. Let ([n], P, π) be a lazy birth and death chain (where [n] := {1, 2, . . . , n}).
Let P ′ be defined by P ′(i, ·) = P (i, ·) if i ∈ [n− 1] and P ′(n, n) = 1. Denote the non-zero
eigenvalues of I−P ′ by 0 < β1 ≤ · · · ≤ βn−1 ≤ 1. Let ξ1, . . . , ξn−1 be independent random
variables such that ξi ∼ Geom(βi) for all i ∈ [n− 1]. Then the distribution of Tn under P1

is the same as the distribution of
∑
i∈[n−1] ξi.

We are now ready to prove (6.26) and (6.27). For clarity of exposition, we first expose
our analysis for the special case x = a, y = b. Consider the sequence of graphs G2

n from
Example 6.12. Let G3

n the subgraph of G2
n whose set of vertices is given by

V 3
n := {v : dist(v, {a, b}) ≤ (L+ 3)n/2},

and whose edges are those of E2
n for which both ends are in G3

n (Note that this graph is
connected and includes Z ′ but not any point further away from {a, b})

Let (Yt)t∈Z+
be lazy SRW on G3

n. Consider the projection Ȳt := 1 + dist(Yt, {a, b}). Our
construction implies that the projection is Markovian and thus (Ȳt)t∈Z+

is a lazy birth and
death chain on [1 + (L+ 3)n/2]. Consequently, by Theorem 6.16 and Facts 6.14-6.15, the
law of T a,bZ′ , which is a sum of independent hitting time and thus of geometric variables,
is log-concave. For any v ∈ V 3

n the distribution of TZ′ , given that Y0 = v, is the same as
that of T1+(L+3)n/2 (for the chain (Ȳt)), given that Ȳ0 = 1 + dist(v, {a, b}). Consequently,

by Theorem 6.16 and Facts 6.14-6.15, the law of T a,bZ′ is log-concave. Let z∗ be the mode

of T a,bZ′ . A standard computation is sufficient to show that

|z∗ − E[T a,bZ′ ]| ≤ C4

√
Var(T a,bZ′ ) ≤ C5

√
n, (6.28)

(in fact, the first inequality follows from unimodality).
Fix some δ > 0 sufficiently small such that P[T a,bZ′ ≤ z∗ − δn]� 2−n (2−n is the order

of magnitude of πn(Z ′)). By a large-deviation estimate and log-concavity there is some
α > 1 such that for all sufficiently large n we have that

αδn ≤
P[T a,bZ′ = z∗]

P[T a,bZ′ = z∗ − bδnc]
≤

(
P[T a,bZ′ = z∗ − bδnc+ 1]

P[T a,bZ′ = z∗ − bδnc]

)bδnc
hence, again by log-concavity,

∀t ≤ z∗ − δn,
P[T a,bZ′ = t+ 1]

P[T a,bZ′ = t]
> α. (6.29)
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Consequently, by (6.24)

∀t ≤ z∗ − δn,
P t+1
n (a, b)

πn(b)
≥ α

∑
k≤t+1

P[T x,yZ′ = k − 1]
Pt+1−k
πZ′

(Z ′)

πn(Z ′)
= α

P tn(a, b)

πn(b)
. (6.30)

As T a,bZ′ is log-concave and hence by Fact 6.13 also unimodal, (6.24) also yields that

∀t ∈ [z∗ − δn, z∗),
P tn(a, b)

πn(b)
≤
∑
k≤t

P[T x,yZ′ = k + 1]
Pt−kπZ′

(Z ′)

πn(Z ′)
≤ P t+1

n (a, b)

πn(b)
, (6.31)

and that there exist some absolute constants c, C6 > 0, β ∈ (1, 2) such that

∀t ∈ [z∗, z∗ + n2/3),
P tn(a, b)

πn(b)
≥
P[T a,bZ′ = z∗ + dn2/3e]

πn(Z ′)
≥ cβn. (6.32)

∀t ≥ z∗ + n2/3, 1− P tn(a, b)

πn(b)
≤ P[T a,bZ′ > t] ≤ C6/n

1/3. (6.33)

This concludes the proof of the case (x, y) = (a, b) as (6.30) implies (6.26) with C2 :=

(logα)−1 and (6.27) can be deduced from the four other equations. For general (x, y) ∈
An ×Bn we decompose T x,yZ′ into a convolution of a log-concave distribution and some
other negligible term. Let (Xx

t )t and (Xy
t )t be independent realizations of the random

walk, started from respective initial vertex x and y, defined on the same probability
space. Let T xZ′ := inf{t : Xx

t ∈ Z ′} and T yZ′ := inf{t : Xy
t ∈ Z ′}. We define T ′x (and T ′y in

an analogous manner, using (Xy
t ) and T yZ′) as follows (with the convention sup ∅ = 0)

T ′x := sup{t : t < T xZ′ ,dist(Xx
t−1, Z

′) = dist(x, Z ′) + 1}

Note that T ′x, T xZ′ − T ′x, T ′y and T yZ′ − T ′y are independent. We denote T1 = T1(x, y) :=

(T xZ′ −T ′x) + (T yZ′ −T ′y) and T2 = T2(x, y) := T ′x+T ′y. By Theorem 6.16 and Facts 6.14-6.15
the laws of T xZ′ − T ′x and T yZ′ − T ′y are log-concave (by a similar argument to the one used
before using a projection to a birth and death chain), and so T1 is also log-concave (by
Fact 6.15). Observe that T1 + T2 has the same law as T x,yZ′ .

Denote the mode of T1 by z∗ = z∗(x, y). Fix some δ > 0 sufficiently small such that
min(x,y)∈An×Bn P[T1(x, y) ≤ z∗(x, y) − δn] � 2−n. Imitating the proof of (6.30), using a

large-deviation estimate on P[T1(x,y)=z∗(x,y)]
P[T1(x,y)=z∗(x,y)−bδnc] which is uniform in (x, y) (the existence

of such a uniform large-deviation estimate follows from the analysis of Example 5.1, or
alternatively, by [5, Lemma 6.2]), together with log-concavity, we get that if α > 1 is
chosen sufficiently small, then (6.29) remains valid simultaneously for all choices of x, y,
if one replaces T a,bZ′ by T1(x, y) (and z∗ with z∗(x, y)). We argue that (6.28)-(6.33) can be
extended (excluding the middle terms) to all (x, y) ∈ An ×Bn (in the role of (a, b)), with
the same choice of constants for all (x, y) ∈ An ×Bn. To extend (6.30) and (6.31), note
that after conditioning on T2 we can imitate the above proofs and so the extensions are
obtained by averaging over T2. For (6.32), note that by unimodality

P[T x,yZ′ = z∗(x, y)+dn2/3e]/πn(Z ′) ≥ c12nP[T2(x, y) ≤ dn2/3e]P[T1(x, y) = z∗(x, y)+dn2/3e].

It is not hard to show that there exists some γ < 2 and c2, C6 > 0 such that

P[T1(x, y) = z∗(x, y) + dn2/3e] ≥ c2γ−n and P[T2(x, y) ≤ dn2/3e] ≥ 1− C6n
−2/3.

for all (x, y) ∈ An×Bn (by Markov inequality and the fact that max(x,y)∈An×Bn E[T2(x, y)] =

O(1)). For (6.28) use unimodality (first inequality) to show that for all (x, y) ∈ An ×Bn

|z∗(x, y)− E[T1(x, y)]| ≤ C4

√
Var(T1(x, y)) ≤ C4

√
Var(T a,bZ′ ) ≤ C5

√
n.

Lastly, for (6.33) use (6.28) and Chebyshev’s inequality (by noting that |z∗(x, y) −
E[T x,yZ′ ]| ≤ |z∗(x, y) − E[T1(x, y)]| + E[T2(x, y)] ≤ C7

√
n). We leave the details to the

reader.
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A Proof of technical results

A.1 Basic ingredients

In our analysis we use various times raw `2 bounds in order to get estimates on
total-variation distance. We cite here a standard result (see e.g. [16, Lemma 12.16]).

Lemma A.1. Let (Ω, P, π) be a finite lazy irreducible reversible Markov chain. Let µ be
a distribution on Ω and let λ2 be the second largest eigenvalue of P . Then

2‖Ptµ − π‖TV ≤ ‖Ptµ − π‖2,π ≤ λt2‖µ− π‖2,π, for all t ≥ 0. (A.1)

Lemma A.2 (Hitting time from stationary tail estimates). Let (Ω, P, π) be a finite irre-
ducible reversible Markov chain. Let A ⊂ Ω. Then for any t ≥ 0 we have that

Pπ[TA > t] ≤ (1− π(A)) exp (−tπ(A)/trel) . (A.2)

For a proof see [5, Lemma 3.5] (or Proposition 3.21 in conjunction with Theorem 3.33
and Corollary 3.34 in [2]).

A.2 Proof of (1.8)

We can assume that the chain displays pre-cutoff in separation as if not, there is
nothing to prove. We know from (1.5) that for every ε > 0, t(n)

mix(ε) ≤ t
(n)
sep(ε). Hence, in

our case, it is sufficient to prove that

lim sup
ε→0

lim sup
n→∞

t
(n)
sep(1− ε)

t
(n)
mix(1− 2

√
ε)
≤ 2, (A.3)

as pre-cutoff implies that
t(n)
sep(1−2

√
ε)

t
(n)
sep(1−ε)

tends to 1 when n goes to infinity and ε goes to 0 in

this order.
We shall show that for all n

t(n)
sep(1− ε) ≤ 2t

(n)
mix(1− 2

√
ε) + 2t

(n)
rel log ε−1. (A.4)

This is sufficient to conclude as Fact 3.2 ascertains that the second term is small in
comparison to the first.

To prove (A.4), let us introduce the following alternative way of measuring the
distance to equilibrium,

d̄(t) := max
x,y∈Ω

‖Px(Xt ∈ ·)− Py(Xt ∈ ·)‖TV. (A.5)

From [16, Lemma 19.3] (or (6.9)) we know that for every t we have

dtsep(t) ≤ 1− (1− d̄(t/2))2. (A.6)

Hence if one defines t̄mix(ε) to be the first time at which d̄(t) ≤ ε, we have for every
ε > 0.

tsep(1− ε) ≤ 2t̄mix(1−
√
ε). (A.7)

Now to conclude the proof of (A.3) we need to show that (under reversibility)

t̄mix(1−
√
ε) ≤ tmix(1− 2

√
ε) + trel log ε−1. (A.8)

Let us set
t = tmix(1− 2

√
ε) and s = trel log ε−1. (A.9)

EJP 21 (2016), paper 44.
Page 32/36

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4687
http://www.imstat.org/ejp/


Total variation and separation cutoffs are not equivalent

For x ∈ Ω, we set µx := Px(Xt ∈ ·) and

µx1(z) :=
min(µx(z), π(z))

1− ‖µx − π‖TV
and µx2(z) :=

(µx(z)− π(z))1{µx(z)>π(z)}

‖µx − π‖TV
. (A.10)

Both are probability measures and µx can be written as a linear combination of the two

µx = (1− ‖µx − π‖TV)µx1 + ‖µx − π‖TVµ
x
2 .

For µ, a distribution on Ω, f, g ∈ RΩ and 1 ≤ p <∞, we introduce the notation

µP s(x) :=
∑
y∈Ω

µ(y)P s(y, x), P sf(x) =
∑
y∈Ω

P s(x, y)f(y), ‖g‖p = (
∑
y

π(y)|g(y)|p)1/p.

Assuming that x and y maximize the l.h.s. in (A.5) at time t+ s and that

‖µx − π‖TV ≥ ‖µy − π‖TV

then by the triangular inequality we have that

d̄(t+ s) = ‖µxP s − µyP s‖TV

≤ (1− ‖µx − π‖TV) ‖µx1P s − µ
y
1P

s‖TV + ‖µx − π‖TV‖µx2P s − µ̃
y
2P

s‖TV, (A.11)

where µ̃y2 is an adequate linear combination of µy1 and µy2. Using the definition of t we
have ‖µx − π‖TV ≤ 1−

√
ε, and hence we have

d̄(t+ s) ≤ 1− 2
√
ε+ ‖µx1P s − µ

y
1P

s‖TV, (A.12)

Now to estimate the second term we set f(z) =
µx1 (z)
π(z) −

µy1(z)
π(z) . Observe that by reversibility

µx1P
s − µy1P s = P sf . Note that by definition |f(z)| ≤ (1 − ‖µx − π‖TV)−1 ≤ 2ε−1/2. Let

1 = λ1 ≥ λ2 ≥ . . . ≥ λ|Ω| be the eigenvalues of P and set λ := max(λ2, |λ|Ω||). Using the
spectral-decomposition of f along with the fact that

∑
z π(z)f(z) = 0 (and finally, the

choice of s) it is standard to show that ‖P sf‖2 ≤ λs‖f‖2 ≤ λs(2ε−1/2) ≤ 2
√
ε. Hence

‖µx1P s − µ
y
1P

s‖TV =
1

2
‖P sf‖1 ≤

1

2
‖P sf‖2 ≤

√
ε,

as desired.

A.3 Proof of Lemma 6.3

By decomposing over the possible values of TZ , using the assumption that Z is
balanced seen from x and reversibility (which implies that PsπZ (y)/π(y) = Psy(Z)/π(Z),
for all s), we get that

P t(x, y)

π(y)
=
∑
k1≤t

Px[TZ = k1]
Pt−k1πZ (y)

π(y)
+

Px[Xt = y and TZ > t]

π(y)

≥
∑
k1≤t

Px[TZ = k1]
Pt−k1πZ (y)

π(y)
=
∑
k1≤t

Px[TZ = k1]
Pt−k1y (Z)

π(Z)

=
∑

0≤k1≤t
0≤k2≤k1

Px[TZ = k2]Py[TZ = k1 − k2]
Pt−k1πZ (Z)

π(Z)
=
∑
k≤t

P[T x,yZ = k]
Pt−kπZ (Z)

π(Z)
.

(A.13)

In particular, we have equality if Px[TZ < Ty] = 1 (i.e. in case (ii)). To conclude, for (i)

we note that for lazy irreducible reversible chains that PsπZ (Z) ≥ π(Z), which can be
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easily verified using the spectral decomposition and the non-negativity of the eigenvalues
of P . For (ii) note that by (A.1)

PsπZ (Z)− π(Z) ≤ ‖PsπZ − π‖TV ≤
1

2
‖πZ − π‖2λs2 ≤

λs2
2

√
(1− π(Z))/π(Z).

The first inequality in (6.4) is obtained by plugging the last estimate in the second term
of (6.4). For the second inequality in (6.4) it follows from the estimate∑

k≤t

P[T x,yZ = k]λt−k2 ≤
(

max
k≥0

P[T x,yZ = k]

)∑
k≥0

λk2 = max
k
P[T x,yZ = k]/(1− λ2).

A.4 Proof of Proposition 6.4

The result is mostly a consequence of the following result which relates the mixing
time starting from x to the hitting time of a set Z balanced seen from x.

Lemma A.3. Let (Ω, P, π) be a finite lazy irreducible reversible Markov chain. Let Z ⊂ Ω

(we denote its complement by Zc) and x ∈ Ω. Given 0 < ε < 1. Set

tx,Z(p) := min{t : Px[TZ > t] ≤ p},
sε := dtrel log [π(Zc)/ε] /π(Z)e and rε :=

⌈
trel log

[
π(Zc)/(π(Z)ε2)

]
/2
⌉
.

Let s′ := max(tx,Z(p)− sε, 0). Then we have

‖Ps
′

x − π‖TV > p− ε. (A.14)

Moreover if Z is balanced seen from x then we also have that

‖Ptx,Z(p)+rε
x − π‖TV ≤ p+ ε. (A.15)

Proof. The first result is proved by coupling the chain with initial distribution Pk−sεx with
the stationary chain (k > sε to be determine soon). We have

Px[TZ ≥ k] 6 ‖Pk−sεx − π‖TV + Pπ[TZ ≥ sε] 6 ‖Pk−sεx − π‖TV + ε. (A.16)

where the last inequality is a consequence of (A.2) and the choice of sε. Setting k = tx,Z(p)

we obtain the result (as if s′ = 0 there is nothing to prove).
We now prove (A.15). By the assumption that Z is balanced seen from x, for all ` ≤ t

Ptx = Px[TZ > `]Px[Xt ∈ · | TZ > `] +
∑

0≤i<`

Px[TZ = `− i]Pt−`+iπZ . (A.17)

By the triangle inequality and the fact that the distance to π decreases in time, we obtain

‖Ptx − π‖TV ≤ Px[TZ > `] +
∑

0≤i<`

Px[TZ = `− i]‖Pt−`+iπZ − π‖TV

≤ Px[TZ > `] + ‖Pt−`πZ − π‖TV

Using this inequality for ` := tx,Z(p) (and so t − ` = rε) we only have to show that
‖Pt−`πZ − π‖TV = ‖PrεπZ − π‖TV ≤ ε. Combining (A.1) with the definition of rε, we have that

‖PrεπZ − π‖TV ≤ λrε2
√
π(Zc)/π(Z) ≤ ε. (A.18)

We can now proceed to the proof of Proposition 6.4. With our assumptions on trel

and Zn, Lemma A.3 allows us to show that mixing time starting from x and tx,Zn(p)

are equivalent when Zn is balanced seen from x (i.e. for x ∈ In). Assumption (iv)

ensures that what occurs for other initial conditions does not matter and Assumption
(iii) establishes that a is the worst initial condition.
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A.5 Proof of Proposition 6.5

From Lemma 6.3 and assumptions (i), (iii) and (v) we know that P tn(x, y)/πn(y)

and P[T x,yZn
≤ t] differ only by a negligible amount, provided that x ∈ An and y ∈ Bn.

Assumption (iv) ensures then that

lim inf
n→∞

inf
t≥0

min
(x,y)∈An×Bn

P tn(x, y)

πn(y)
− P tn(an, bn)

πn(bn)
= 0. (A.19)

We are left checking the other cases. Assumption (vi) takes care of most of them, and
leaves the case where (x, y) ∈ Bn × Bn, for which Lemma 6.3 implies that P[T x,yZn

≤ t]

is a lower bound for P tn(x, y)/πn(y). Hence the conclusion follows by assumption (v)

again.

A.6 A short alternative proof of Theorem C

We are going to show that there exists an absolute constant c > 0 such that for any
lazy chain

tmix(1/4)− tmix(3/4) ≥ c
√
tmix(3/4). (A.20)

Indeed set t := tmix(1/4) and s := bc
√
tc. A sample of the distribution of the lazy chain

at time t can be generated by running the non-lazy version of the chain for ξt steps,
where ξt ∼ Bin(t, 1/2) and is independent of the non-lazy version of the chain. By the
triangle inequality we have (first inequality) and a standard coupling argument (second
inequality)

∀t, s ≥ 0, d(t)− d(t+ s) ≤ max
x∈Ω
‖Ptx − Pt+sx ‖TV ≤ ‖ξt − ξt+s‖TV.

Moreover, if c is chosen well, we have for every t ≥ 0 that ‖ξt − ξt+bc√tc‖TV ≤ 1/2.
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