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Abstract

We consider random walks in dynamic random environments, with an environment
generated by the time-reversal of a Markov process from the oriented percolation
universality class. If the influence of the random medium on the walk is small in
space-time regions where the medium is typical, we obtain a law of large numbers
and an averaged central limit theorem for the walk via a regeneration construction
under suitable coarse-graining.

Such random walks occur naturally as spatial embeddings of ancestral lineages in
spatial population models with local regulation. We verify that our assumptions hold
for logistic branching random walks when the population density is sufficiently high.
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1 Introduction

Let ηn(x) be a random number of particles located at position x ∈ Zd at time n, where
η := (ηn)n∈Z := (ηn(x) : x ∈ Zd)n∈Z is a stationary (discrete time) Markovian particle
system whose evolution can be described by ‘local rules’. We assume that η is in its
unique non-trivial ergodic equilibrium. Prototypical examples are the super-critical
discrete-time contact process, see (2.3) below, or systems of logistic branching random
walks, see (4.4) in Section 4.1. We consider a random walk X = (Xk)k=0,1,... that moves
‘backwards’ through the medium generated by η, i.e. given η, X is a Markov chain and
given Xk = x, the law of the next increment is a function of η in a finite window around
the space-time point (x,−k).

Our main result, see Theorem 3.1 in Section 3, provides a law of large numbers (LLN)
and an averaged central limit theorem (CLT) for X. Very broadly speaking we require
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Random walks and ancestry under local population regulation

that the law of an increment of X is close to a fixed symmetric finite-range random
walk kernel whenever the walk is in a ‘good region’ and that such good regions are
sufficiently frequent in a typical realisation of η. In particular we assume that on suitably
coarse-grained space-time scales, the occurrence of good regions can be compared to
super-critical oriented percolation. The explicit assumptions are rather technical and we
refer to Sections 3.1–3.2 for details.

The reversal of the natural time directions of X and η results from and is consistent
with the interpretation of Xk as the position of the k-th ancestor of a particle picked from
position X0 at time 0. In fact, the spatial embeddings of ancestral lineages in models
with fluctuating population sizes and local regulation are fairly complicated random
walks in space-time dependent random environments given by the time reversals of
the local population size processes. In biological applications, they are often replaced
by ordinary random walks without random environments via an ad-hoc assumption of
constant local population size; see for example the discussion and references in [3] and
Section 6.4 in [15].

We verify that in a prototypical discrete spatial population model with local regu-
lation, namely logistic branching random walks with Poisson offspring distributions,
the assumptions of Theorem 3.1 are satisfied if the population density in equilibrium
is sufficiently large. This allows to formulate in Theorem 4.3 a LLN and a CLT for the
ancestral lineage of an individual sampled from such an equilibrium. Thus, we provide
at least a partial justification for the aforementioned ad-hoc assumptions from biology
in the sense that here, an ancestral lineage will indeed behave like a random walk
when viewed over large space-time scales. This partly answers the question posed in [9,
Chapter 4] in the affirmative.

As often in the study of random walks in random environments, the main technical tool
behind our results is a regeneration construction. The details are somewhat involved;
in principle, the medium η can have arbitrary dependence range and in general its
time reversal cannot be explicitly constructed using local rules. A similar problem was
faced in [5] in the study of a directed random walk on the backbone of an oriented
percolation cluster. There, the particular structure of oriented percolation allowed
to jointly construct the medium and the walk under the annealed law using suitable
space-time local operations (cf. [5, Sect. 2.1]) and therefrom deduce the regeneration
structure. This construction was extended in [24] to random walks on weighted oriented
percolation clusters with weights satisfying certain mixing conditions.

Here, we must use a different approach. Again very broadly speaking, regeneration
occurs after T steps if the medium η−T in a large window around XT is ‘good’ and
also the ‘local driving randomness’ of η in a (large) neighbourhood of the space-time
path {(Xm,−m) : 0 ≤ m ≤ T} has ‘good’ properties. This essentially enforces that the
information about η that the random walk path has explored so far is a function of that
local driving randomness. Such a time allows to decouple the past and the future of
X conditional on the position XT and η−T in a finite window around that position. A
difficulty arises from the fact that if a regeneration fails at a given time k, then we have
potentially gained a lot of undesirable information about the behaviour of ηn at times
n < −k which might render successful regeneration at a later time ` > k much less likely.
We address this problem by covering the path and the medium around it by a carefully
chosen sequence of eventually nested cones, see Figure 6. We finally express X as an
additive functional of a Markov chain which keeps track of the increments between
regeneration times and local configurations of η at the regeneration points.

Note that random walks in dynamic random environments generated by various
interacting particle systems, in particular also by the contact process in continuous time,
have received considerable attention recently; see for example [1, 2, 4, 8, 25, 27]. A
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Random walks and ancestry under local population regulation

fundamental difference to the present set-up lies in the time directions. Traditionally,
both the walker and the dynamic environment have the same ‘natural’ forwards time
direction whereas here, forwards time for the walk is backwards time for the medium.
We also refer to the more detailed discussion and references in [5, Remark 1.7].

The rest of this manuscript is organised as follows. We first introduce and study
in Section 2 a class of random walks which travel through the time-reversal of the
discrete time contact process, i.e., η is literally a super-critical contact process. We
note that unlike the set-up in [5], here the walk is also allowed to step on zeros of
η. We use this simple model to develop and explain our regeneration construction
and obtain a LLN and an annealed CLT in the ‘p close to 1’ regime, see Theorem 2.6.
In Section 3 we develop abstract conditions for spatial models and random walks in
dynamic random environments governed by the time-reversals of the spatial models.
Under these conditions on a coarse-grained space-time grid we implement a regeneration
construction similar to the one from Section 2 and then obtain a LLN and an annealed
CLT in Theorem 3.1. In Section 4 we introduce logistic branching random walks, the
class of stochastic spatial population models mentioned above. An ancestral lineage in
such a model is a particular random walk in a dynamic random environment, see (4.10).
We show that this class provides a family of examples where the abstract conditions from
Section 3 can be verified. We believe that there are several further classes of (population)
models that satisfy the abstract conditions from Section 3 in suitable parameter regions.
In Section 5 we list and discuss such models.

Finally, we note that a natural next step will be to extend our regeneration con-
struction to two random walks on the same realisation of η and to then also deduce a
quenched CLT, analogous to [5]. We defer this to future work.

Acknowledgements: We would like to thank Nina Gantert for many interesting dis-
cussions on this topic and for her constant interest and encouragement during the
preparation of this work. We also thank Stein Bethuelsen for carefully reading a preprint
version of the manuscript and his helpful comments. Finally, we are grateful to an
anonymous referee for her or his suggestions that made the presentation more complete.

2 An auxiliary model

In this section we prove a law of large numbers and an annealed (averaged) central
limit theorem for a particular type of random walks in dynamic random environments.
The model is the simplest and the most transparent among the models that we consider
in this paper. The proofs here contain already the main ideas and difficulties that we
will face in the following sections. It will also become clear later how the dynamics of
ancestral lineages in spatial stochastic population models is related to this particular
random walk.

2.1 Definition of the model and results

We define first the model that generates the dynamic random environment of the
random walk. Let ω := {ω(x, n) : (x, n) ∈ Zd ×Z} be a family of i.i.d. Bernoulli random
variables with parameter p > 0. We call a site (x, n) open if ω(x, n) = 1 and closed if
ω(x, n) = 0. Throughout the paper ‖ · ‖ denotes sup-norm. For m ≤ n, we say that there
is an open path from (x,m) to (y, n) if there is a sequence xm, . . . , xn ∈ Zd such that
xm = x, xn = y, ‖xk − xk−1‖ ≤ 1 for k = m+ 1, . . . , n and ω(xk, k) = 1 for all k = m, . . . , n.
In this case we write (x,m)→ω (y, n), and in the complementary case (x,m) 6→ω (y, n).
For sets A,B ⊆ Zd and m ≤ n we write A × {m} →ω B × {n}, if there exist x ∈ A and
y ∈ B so that (x,m)→ω (y, n). Here, slightly abusing the notation, we use the convention
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that ω(x,m) = 1A(x) while for k > m the ω(x, k) are i.i.d. Bernoulli random variables
as above. With this convention for A ⊂ Zd, m ∈ Z we define the discrete time contact
process ηA := (ηAn )n=m,m+1,... driven by ω as

ηAm = 1A and ηAn (x) := 1{A×{m}→ω(x,n)}, n > m. (2.1)

Alternatively ηA = (ηAn )n=m,m+1,... can be viewed as a Markov chain with ηAm = 1A and
the following local dynamics:

ηAn+1(x) =

{
1 if ω(x, n+ 1) = 1 and ηAn (y) = 1 for some y ∈ Zd with ‖x− y‖ ≤ 1,

0 otherwise.
(2.2)

For a distribution µ on {0, 1}Zd we write ηµ = (ηµn)n=m,m+1,... for the discrete time contact
process with initial (random) configuration ηµm distributed according to µ.

The contact process ηA = (ηAn )n=m,m+1,... is closely related to oriented percolation.
In this context A is the set of ‘wet’ sites at time m and {x ∈ Zd : ηAn (x) = 1} × {n} is the
n-th time-slice of the cluster of wet sites. Obviously for any p < 1 the Dirac measure
on the configuration 0 ∈ {0, 1}Zd is a trivial invariant distribution of the discrete time
contact process. It is well known that there is a critical percolation probability pc ∈ (0, 1)

such that for p > pc and any non-empty A ⊂ Zd the process ηA survives with positive
probability. Furthermore, in this case there is a unique non-trivial extremal invariant
measure ν, referred to as the upper invariant measure, such that, starting at any time
m ∈ Z the distribution of ηZ

d

n converges to ν as n→∞.
We assume p > pc throughout this section. Given a configuration ω ∈ {0, 1}Zd×Z, we

define the stationary discrete time contact process driven by ω as

η := (ηn)n∈Z := {ηn(x) : x ∈ Zd, n ∈ Z} with ηn(x) := 1{Zd×{−∞}→ω(x,n)}. (2.3)

The event on the right hand side should be understood as ∩m≤n
{
Zd × {m} →ω (x, n)

}
.

In the above notation we have η = ηZ
d

= (ηZ
d

n )n∈Z. Furthermore, since η is a stationary
Markov process, by abstract arguments its time reversal is also a stationary Markov
process with the same invariant distribution; cf. Remark 2.7. Unless stated otherwise,
throughout the paper η denotes the stationary discrete time contact process. Many
other versions of contact processes that will be needed in proofs will be labelled by some
superscripts similarly to the definition in (2.1).

To define a random walk in the random environment generated by η, or more precisely
by its time-reversal, let

κ :=
{
κn(x, y) : n ∈ Z, x, y ∈ Zd

}
(2.4)

be a family of random transition kernels defined on the same probability space as η, in
particular κn(x, · ) ≥ 0 and

∑
y∈Zd κn(x, y) = 1 holds for all n ∈ Z and x ∈ Zd. Given

κ, we consider a Zd-valued random walk X := (Xn)n=0,1,... with X0 = 0 and transition
probabilities given by

P
(
Xn+1 = y

∣∣Xn = x, κ
)

= κn(x, y), (2.5)

that is, the random walk at time n takes a step according to the kernel κn(x, · ) if x is its
position at time n. We make the following four assumptions on the distribution of κ; see
Remark 2.5 for an interpretation.

Assumption 2.1 (Locality). The transition kernels in the family κ depend locally on the
time-reversal of η, that is for some fixed Rloc ∈ N

κn(x, ·) depends only on
{
ω(y,−n), η−n(y) : ‖x− y‖ ≤ Rloc

}
. (2.6)
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Assumption 2.2 (Closeness to a symmetric reference measure on η−n(x) = 1). There
is a deterministic symmetric probability measure κref on Zd with finite range Rref ∈ N,
that is κref(x) = 0 if ‖x‖ > Rref , and a suitably small εref > 0 such that

‖κn(x, x+ · )− κref( · )‖TV < εref whenever η−n(x) = 1. (2.7)

Here ‖ · ‖TV denotes the total variation norm.

Assumption 2.3 (Space-time shift invariance and spatial point reflection invariance).
The kernels in the family κ are shift-invariant on Zd ×Z, that is, using notation

θz,mω( · , · ) = ω(z + · ,m+ · ),

we have

κn(x, y)(ω) = κn+m(x+ z, y + z)(θz,mω). (2.8)

Moreover, if % is the spatial point reflection operator acting on ω, i.e., %ω(x, n) = ω(−x, n)

for any n ∈ Z and x ∈ Zd, then

κn(0, y)(ω) = κn(0,−y)(%ω). (2.9)

Assumption 2.4 (Finite range). There is Rκ ∈ N such that a.s.

κn(x, y) = 0 whenever ‖y − x‖ > Rκ. (2.10)

Remark 2.5 (Interpretation of the assumptions). The Assumptions 2.1–2.4 are natural as
we want to interpret the random walk as the spatial embedding of an ancestral lineage in
a spatial population model, in which roughly speaking, children (if any present at a site)
choose their parents at random from a finite neighbourhood in the previous generation.
See also Section 4 and in particular the discussion around (4.10).

By (2.5) and (2.6), we can, and often shall think of creating the walk from η and ω in
a local window around the current position and additional auxiliary randomness.

The main result of this section is the following theorem. Its proof is given in Sec-
tion 2.4.

Theorem 2.6 (LLN and annealed CLT). One can choose 0 < εref sufficiently small and p
sufficiently close to 1, so that if κ satisfies Assumptions 2.1–2.4 then X satisfies the strong
law of large numbers with speed 0 and an annealed (i.e. when averaging over both ω

and the walk) central limit theorem with non-trivial covariance matrix. A corresponding
functional central limit theorem holds as well.

Remark 2.7 (Time-reversal of η, oriented percolation interpretation). In [5], the station-
ary process η was equivalently parametrised via its time reversal

ξ := {ξ(x, n) : x ∈ Zd, n ∈ Z} with ξ(x, n) := η−n(x).

Then ξ is the indicator of the backbone of the oriented percolation cluster and it was
notationally and conceptually convenient to use in [5], not least because then the medium
ξ and the walk X had the same positive time direction.

Here, we keep η as our basic datum because we wish to emphasise and in fact later
use in Section 3 the interplay between the medium η, interpreted as describing the
dynamics of a population, and the walk X, cf. (2.5) above, describing the embedding
of an ancestral lineage. Furthermore, in the more general population models, as the
one studied in Section 4 for instance, there will be no natural parametrization of the
time-reversal of η.
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Note that the assertions of Theorem 2.6 are in a sense conceptual rather than
practical because the proofs of preliminary results in Section 2.3 require 1 − p to be
very small. Situations with p > pc but also 1− p appreciably large require an additional
coarse-graining step so that the arguments from Section 3 can be applied.

In order to prove Theorem 2.6 we will construct suitable regeneration times and
show that the increments of these regeneration times as well as the corresponding
spatial increments of the walk have finite moments of order b for some b > 2. This
construction is rather intricate. The main source of complications stems from the fact
that in order to construct the random walk X one should know ω and η in the vicinity of
its trajectory; cf. Remark 2.5 above. While it is easy to deal with the knowledge of ω’s,
because they are i.i.d., the knowledge of η leads to problems. Due to definition (2.3) of η
and Assumption 2.1 on κ, this knowledge provides non-trivial information about the past
behaviour of η and therefore also about the future behaviour of X. Both is not desirable
at regeneration times.

More precisely, we need to deal with two types of information on η. The first type,
the negative information, that is knowing that ηn(x) = 0 for some n and x is dealt
with similarly as in [5]. The key observation is that such information is essentially
local: To discover that ηn(x) = 0 one should check that Zd × {−∞} 6→ω (x, n) which
requires observing ω’s in a layer Zd × {n− T, . . . , n} where T is a random variable with
exponentially decaying tails. The second type of information, the positive one, that
is knowing that ηn(x) = 1, is removed by making use of strong coupling properties
of the forwards-in-time dynamics of η. When at time −t we have η−t ≥ 1x+{−L,...,L}d

pointwise, then there is a substantial chance that every infection, i.e., every ‘1’ of η,
inside a growing space-forwards-time cone with base point (x,−t) can be traced back
to (x + {−L, . . . , L}d) × {−t}. Furthermore, whether this event has occurred can be
checked by observing the restriction of η−t to x + {−L, . . . , L}d and the ω’s inside a
suitably fattened shell of the cone in question, in particular without looking at any ηm(y)

for m < −t; see (2.27) and Lemma 2.13 below. We will construct suitable random times
T at which this event occurs for η at the current space-time position (XT ,−T ) of the
walker and in addition the space-time path of the walk up to T , {(Xk,−k) : 0 ≤ k ≤ T},
is completely covered by a suitable cone. Such a time T allows to regenerate.

For the proof of Theorem 2.6 we first collect some results on the high density discrete
time contact process in Section 2.2. We then rigorously implement the regeneration
construction sketched above in Section 2.3. Finally we prove Theorem 2.6 in Section 2.4.

2.2 Some results about the contact process

This section contains several estimates for the discrete-time contact process η that
will be crucial for the regeneration construction. The main results of this section are the
estimates given in Lemma 2.11 and Lemma 2.13. We start by recalling two well known
results.

Lemma 2.8. For p > pc there exist C(p), c(p) ∈ (0,∞) such that

P
(
Zd × {−n} →ω (0, 0) and Zd × {−∞} 6→ω (0, 0)

)
≤ C(p)e−c(p)n, n ∈ N. (2.11)

Moreover, we have lim supp↗1 C(p) <∞ and limp↗1 c(p) =∞.

Proof. Due to self-duality of the contact process this is a reformulation of the fact that
for p > pc and η{0} = (η

{0}
n )n=0,1,... there exist C(p), c(p) ∈ (0,∞) such that

P
(
η{0}n 6≡ 0 and η{0} eventually dies out

)
≤ C(p)e−c(p)n, n ∈ N. (2.12)

For a proof of the latter assertion we refer to e.g. [10, 18] or Lemma A.1 in [5].
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Lemma 2.9. Let η{0} = (η
{0}
n )n=0,1,... and let ην = (ηνn)n=0,1,..., where ν is the upper

invariant measure. For p sufficiently close to 1 there exist scoupl > 0, C <∞, c > 0 such
that

P
(
η{0}n (x) = ηνn(x) for all ‖x‖ ≤ scoupln | η{0}n 6≡ 0

)
≥ 1− Ce−cn, n ∈ N. (2.13)

Proof. For the contact process in continuous time, this is proved in [12], see in par-
ticular (33) and (34) in Proposition 6 there. Although literally, [12, Eq. (34)] refers to
conditioning on {η{0} survives} the result follows in view of (2.12).

Remark 2.10. In [16] it is shown (literally, for the contact process in continuous time)
that for any p > pc and a > 0, there is a C <∞ such that the probability on the left hand
side of (2.13) is bounded below by 1− Cn−a.

More recently, in [17] large deviations for the continuous time contact process in a
random environment were studied. Among other results it is shown that exponential
decay as in (2.13) holds in the supercritical case; see Theorem 1, Eq. (2) there.

The first main result of this section is the following lemma on controlling the prob-
abilities of certain negative events; cf. Lemma 7 in Section 3 of [11] for a related
result.

Lemma 2.11. For p large enough there exists ε(p) ∈ (0, 1] satisfying limp↗1 ε(p) = 0

such that for any V = {(xi, ti) : 1 ≤ i ≤ k} ⊂ Zd ×Z with t1 > t2 > · · · > tk, we have

P
(
ηt(x) = 0 for all (x, t) ∈ V

)
≤ ε(p)k. (2.14)

Remark 2.12. In our proof of (2.14) it is essential that all ti’s are distinct. For a general
set V ⊂ Zd×Z space-time boundary effects can play a role so that the decay will only be
stretched exponential in |V |. For a concrete example in the case d = 1 consider the set

V = {(x, n) ∈ Z×Z : |x| ≤ h, 0 ≤ n ≤ h}

and the event

B = {ω(y, 0) = 0, |y| ≤ h+ 1} ∩ {ω(±(h+ 1), k) = 0, k = 0, 1, . . . , h}.

Then, obviously we have B ⊂ {ηn(x) = 0 for all (x, n) ∈ V } and P(B) = (1− p)4h+3.
Note however that in Corollary 4.1. in [23] it is shown that the upper invariant

measure of the continuous time contact process on Zd dominates stochastically a product
measure on {0, 1}Zd . Therefore a bound analogous to (2.14) does hold in the situation
when all ti’s are equal. Lemma 2.11 can be seen as a space-time extension of that result
in the discrete time case and in the ‘p large enough’ regime.

Proof of Lemma 2.11. An immediate consequence of Lemma 2.8 is that for every p > pc

P
(
Zd × {−n} →ω (0, 0) and Zd × {−∞} 6→ω (0, 0)

)
≤ e−c1(p)(n+1), n = 0, 1, 2, . . . ,

(2.15)

with some c1 = c1(p) > 0 satisfying limp↗1 c1(p) = ∞. To prove (2.14), we extend the
finite sequence {t1, . . . , tk} to an infinite sequence via tk+j := tk − j, j = 1, 2, . . . , and put

Di := min
{
` ∈ N : Zd × {ti+`} 6→ω (xi, ti)

}
. (2.16)

Note that the random variables Di are upper bounds on the heights of the backwards-
clusters of open sites attached to (xi, ti) given by (see Figure 1)

{(y,m) ∈ Zd ×Z : m ≤ ti, (y,m)→ω (xi, ti)}.
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t1

x1

t2

x2

t3

x3

t4

x4

Figure 1: Possibly overlapping finite clusters starting at V = {(xi, ti)} that appear in
Lemma 2.11. Here k = 4, D1 = 2, D2 = 1, D3 = 3, D4 = 1, hence M = 3, S1 = 1, S2 =

3, S3 = 6.

For each (xi, ti) ∈ V we have ηti(xi) = 0 if and only if Di <∞. Thus the left-hand side of
(2.14) satisfies

P
(
ηt(x) = 0 for all (x, t) ∈ V

)
= P

( k⋂
i=1

{Di <∞}
)
. (2.17)

On the event ∩ki=1{Di <∞} we further define

S1 = 1, S2 = S1 +DS1
, . . . , Si+1 = Si +DSi as long as Si ≤ k,

and let M be such that SM−1 ≤ k < SM ; see Figure 1. For i = 1, . . . ,M we set D̂i := DSi

and D̂i :=∞ for i > M . Finally we set

I(m, k) = {(d1, . . . , dm) ∈ Nm : d1 + · · ·+ dm−1 ≤ k < d1 + · · ·+ dm}, (2.18)

and for (d1, . . . , dm) ∈ I(m, k) we write

u(1) = 1, u(2) = u(1) + d1, . . . , u(m) = u(m− 1) + dm−1.

Then we have

k⋂
i=1

{Di <∞} ⊂
k⋃

m=1

⋃
(d1,...,dm)∈I(m,k)

{
D̂1 = d1, . . . , D̂m = dm

}
. (2.19)

Note that{
D̂1 = d1, . . . , D̂m = dm

}
=

m⋂
j=1

{
Zd × {tu(j)+dj−1} →ω (xu(j), tu(j))

}
∩
{
Zd × {tu(j)+dj} 6→

ω (xu(j), tu(j))
}
. (2.20)

The events in the intersection on the right-hand side depend on ω restricted to disjoint
sets and are thus independent. Furthermore we observe that the event{

Zd × {tu(j)+dj−1} →ω (xu(j), tu(j))
}
∩
{
Zd × {tu(j)+dj} 6→

ω (xu(j), tu(j))
}

enforces that (xu(j), tu(j)) is the starting point of a finite (backwards) cluster of height
at least tu(j)+dj−1 − tu(j) ≥ dj − 1 (when dj = 1 this means that ω(xu(j), tu(j)) is closed,
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which also gives a factor 1− p < 1). Hence, using (2.15) we obtain

P
(
D̂1 = d1, . . . , D̂m = dm

)
=

m∏
j=1

P
({
Zd × {tu(j)+dj−1} →ω (xu(j), tu(j)),Z

d × {tu(j)+dj} 6→
ω (xu(j), tu(j))

})
≤

m∏
j=1

e−c1(p)dj = e−c1(p)
∑m
j=1 dj .

(2.21)

Now (2.21) with (2.19) imply

P
(
ηt(x) = 0 for all (x, t) ∈ V

)
≤

k∑
m=1

∑
(d1,...,dm)∈I(m,k)

e−c1(p)
∑m
j=1 dj

=

k∑
m=1

∞∑
s=k+1

e−c1(p)s ·#{(d1, . . . , dm) ∈ I(m, k) : d1 + · · ·+ dm = s}. (2.22)

By definition of I(m, k) for s ≥ k + 1 we have

#{(d1, . . . , dm) ∈ I(m, k) : d1 + · · ·+ dm = s}

= #{(d1, . . . , dm) ∈ I(m, k) : d1 + · · ·+ dm = k + 1} =

(
k

m− 1

)
≤ 2k. (2.23)

Thus, the right hand side of (2.22) can be bounded by

2k
k∑

m=1

∞∑
s=k+1

e−c1(p)s = k2k
e−c1(p)(k+1)

1− e−c1(p)
, (2.24)

yielding the claim of the lemma.

The second main result of this section, Lemma 2.13 below, is the crucial tool in the
construction of a certain coupling which will be useful to forget the positive information
about η in the regeneration construction. To state this lemma we need to introduce
more notation. For A ⊂ Zd let ηA = (ηAn )n=0,1,... be the discrete time contact process
as defined in (2.1). For positive b, s, h we write (denoting by Z+ the set non-negative
integers and by ‖·‖2 the `2-norm)

cone(b, s, h) :=
{

(x, n) ∈ Zd ×Z+ : ‖x‖2 ≤ b+ sn, 0 ≤ n ≤ h
}
. (2.25)

for a (truncated upside-down) cone with base radius b, slope s, height h and base point
(0, 0). Furthermore for

binn ≤ bout and sinn < sout, (2.26)

we define the conical shell with inner base radius binn, inner slope sinn, outer base radius
bout, outer slope sout, and height h ∈ N ∪ {∞} by

cs(binn, bout, sinn, sout, h) :=
{

(x, n) ∈ Zd×Z : binn+sinnn ≤ ‖x‖2 ≤ bout+soutn, 0 < n ≤ h
}
.

(2.27)
The conical shell can be thought of as a difference of the outer cone cone(bout, sout, h)

and the inner cone cone(binn, sinn, h) with all boundaries except the bottom boundary of
that difference included; see Figure 2.
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Zd

Z+
h

s

1

b-b

Zd

Z+
h

Figure 2: The left figure shows cone(b, s, h). The grey region in the figure on the right
(without the bottom line) shows cs(binn, bout, sinn, sout, h) in Zd ×Z.

Let ηcs := (ηcsn )n=0,1,... be the contact process in cs(binn, bout, sinn, sout,∞) with initial
condition ηcs0 (x) = 1{binn≤‖x‖2≤bout} and

ηcsn+1(x) =


1 if (x, n + 1) ∈ cs(binn, bout, sinn, sout,∞), ω(x, n + 1) = 1

and ηcsn (y) = 1 for some y ∈ Zd with ‖x− y‖ ≤ 1,

0 otherwise.

We think of ηcs as a version of the contact process where all ω’s outside the conical
shell cs(binn, bout, sinn, sout,∞) have been set to 0. We say that ηcs survives (in all parts
of the conical shell) if for all n ∈ Z+ there is x ∈ Zd with ηcsn (x) = 1. In the case
d = 1 we require additionally that for all n ∈ Z+ there is x ∈ Z+ and y ∈ Z− with
ηcsn (x) = ηcsn (y) = 1. (Here Z− denotes the non-positive integers.) For a directed path

γ =
(
(xm,m), (xm+1,m+ 1), . . . , (xn, n)

)
, m ≤ n, xi ∈ Zd with ‖xi−1 − xi‖ ≤ 1

(2.28)

we say that γ crosses the conical shell cs(binn, bout, sinn, sout,∞) from the outside to the
inside if the following three conditions are fulfilled:

(i) the starting point lies outside the outer cone, i.e., ‖xm‖2 > bout +msout,

(ii) the terminal point lies inside the inner cone, i.e., ‖xn‖2 < binn + nsinn,

(iii) all remaining points lie inside the shell, i.e., (xi, i) ∈ cs(binn, bout, sinn, sout,∞) for
i = m+ 1, . . . , n− 1.

We say that γ intersects ηcs if there exists i ∈ {m+ 1, . . . , n− 1} with ηcsi (xi) = 1. Finally
we say that γ is open in cs(binn, bout, sinn, sout,∞) if ω(xi, i) = 1 for all i = m+ 1, . . . , n− 1.

Note that if in the case d = 1 the process ηcs survives in a ray of a conical shell and
γ is a path that is open in this ray then by geometric properties of directed paths and
clusters γ necessarily intersects ηcs. In the case d > 1 however, even if ηcs survives, it is
in principle possible that an open path crosses the conical shell cs(binn, bout, sinn, sout,∞)

without intersecting ηcs. The next lemma states that the probability of that can be made
arbitrarily small.

Lemma 2.13. Assume that the relations in (2.26) hold and consider the events

G1 := {ηcs survives},
G2 := {every open path γ that crosses cs(binn, bout, sinn, sout,∞) intersects ηcs}.
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For any ε > 0 and 0 ≤ sinn < sout < 1 one can choose p sufficiently close to 1 and
binn < bout sufficiently large so that

P(G1 ∩G2) ≥ 1− ε.

Remark 2.14 (Observations concerning G1 and G2). The meaning of the event G1 is
clear. Let us just note that it is essential that the relations in (2.26) hold. In particular,
in the case sinn = sout survival of ηcs is only possible in the trivial case p = 1.

To understand the importance of the event G2, observe that if a path γ as in (2.28)
crosses and is open in cs(binn, bout, sinn, sout,∞), and also intersects ηcs then necessarily
ηcsn (xn) = ω(xn, n) for the terminal point (xn, n) of the path. Thus, on G1 ∩G2 the values
of the contact process inside the inner cone, that is for (x, n) with ‖x‖2 < binn + nsinn,
are independent of what happens outside of the shell; cf. (2.59) and Lemma 2.22.

Proof of Lemma 2.13. The proof consists of two steps. In the first step we prove the
assertion for the case d = 1. The second step then uses the assertion for d = 1 to give a
proof for d ≥ 2.

Throughout the proof of this lemma for r > 0 and x ∈ Zd we denote by Br(x) the
closed `2 ball of radius r around x, i.e., Br(x) = {y ∈ Zd : ‖x− y‖2 ≤ r}.

Step 1. Consider the case d = 1. We first check that the discrete time contact process
survives with high probability in any oblique cone when p is large enough. To this end
for 0 < s1 < s2 < 1 and b ∈ N we set

Cb,s1,s2 :=
{

(x, n) : x ∈ Z, n ∈ Z+, s1n ≤ x ≤ s2n+ b
}
.

Furthermore we let η̄ := (η̄n)n=0,1,... be the discrete time contact process in Cb,s1,s2
starting from η̄0 = 1[0,b]∩Z and with all ω’s outside Cb,s1,s2 set to 0. Finally, set xn =

bb/2 + n(s1 + s2)/2c, rn = n(s2 − s1)/4.

Claim 2.15. (i) For every 0 < s1 < s2 < 1 and ε > 0 there is b large and p0 < 1 such that
for all p ≥ p0, η̄ survives with probability at least 1− ε.

(ii) Moreover, there exist c, C ∈ (0,∞) so that on the event {η̄ survives}, with prob-
ability at least 1 − Ce−cn, η̄n restricted to the ball Brn(xn) can be coupled with the
unrestricted process ην = (ηνn)n=0,1,... started from the upper invariant measure ν, that
is η̄n(x) = ηνn(x) for all x ∈ Brn(xn).

The claim (i) follows using the same arguments as in the proof of Theorems 1 and 2
of [7], where an analogous statement is proved for continuous time contact process in a
wedge. Moreover, [7] use for the proofs a coarse-graining construction and comparison
with oriented percolation. That links the problem in the wedge with a suitable shift of
the contact process η{0} used in Lemma 2.9. Combining that lemma with coarse-graining
then yields the claim (ii).

As noted in the paragraph above Lemma 2.13 we have G1 ⊂ G2 in the case d = 1.
Thus, by using the above argument for the oblique cone twice we see that the assertion
of the lemma holds in the case d = 1.

Step 2. Consider now d > 1. Since the probability of G1 is increasing in dimension, it
can be bounded from below by the same reasoning as in d = 1. It remains to show that
the probability of Gc2 can be made small by choosing binn, bout and p appropriately.

To this end for n ≥ 0 we set d(n) = (binn + bout)/2 + n(sinn + sout)/2 and define

Mn :=
{
x ∈ Zd : ‖x‖2 ∈ [d(n), d(n) + 1]

}
.

Furthermore for x ∈Mn we consider the event

Bn(x) :=
{
ηcsn (x) = 0 and (x, n) contained in an open path γ crossing the conical shell

}
.
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Finally, we define the backward cluster of (x, n) by

bC(x, n) :=
{

(y,m) ∈ Zd ×Z : m ≤ n, (y,m)→ω (x, n)
}
,

and for m ≤ n we set

bCm(x, n) := {y ∈ Zd : (y,m) ∈ bC(x, n)}.

Assume that Bn(x) occurs. Then, by trivial geometrical arguments there is a small
constant ρ depending on the parameters of the shell so that for M = b(1− ρ)nc the set
bCM (x, n) is not empty. Moreover, self-duality of the contact process and Lemma 2.9
imply that there exist scpl > 0 (here we think of scpl ≈ scouplρ for scoupl from Lemma 2.9)
and c > 0 such that Bscpln(x)× {M} ⊂ cs(binn, bout, sinn, sout,∞) and

with probability bounded below by 1− e−cn, the indicator function of
the set bCM (x, n) can be coupled inside Bscpln(x) with the set of 1’s
under the upper invariant measure ν of the (full) contact process.

(2.29)

Fix p large enough so that the density of 1’s under ν is strictly larger than 1/2; this
is not a restriction in the parameter region that we consider. On the one hand this
requirement means heuristically that the set bCM (x, n) ∩ (Bscpln(x)× {M}) is large with
high probability. Thus we must have ηcsM (z) = 0 for all (z,M) in this set. On the other
hand, using d = 1-arguments we will show that this is not possible.

To this end, depending on the previous parameters, we fix δ > 0 small, and unit
vectors vi ∈ Rd, 1 ≤ i ≤ N , with N sufficiently large so that for every x ∈Mn, there is
an i ≤ N such that

the length of the intersection of the half-line {tvi : t ≥ 0} with the (real)
ball {y ∈ Rd : ‖x− y‖2 ≤ scoupln} has length at least δn.

(2.30)

Observe that N and vi’s can be chosen independently of n. For i ≤ N , let αi = (αi(j))j∈N
be a self-avoiding nearest neighbour path in Zd approximating the half-line {tvi : t ≥ 0}
given by

(a) αi0 = 0,

(b) αi makes steps only in direction of vi, that is for every coordinate k = 1, . . . , d and
j ≥ 0 one has vik(αik(j + 1)− αik(j)) > 0,

(c) αi stays close to tvi, that is {αij : j ∈ N} ⊂ {tvi + z : t ≥ 0, z ∈ Rd, ‖z‖ ≤ 2}.

Using (2.29), (2.30) and large deviation estimates for the density of 1’s under ν(1),
see [13, Thm. 1] (literally, proved there for the continuous-time contact process) we see
that there is c > 0 such that that for i ≤ N satisfying (2.30),

P

( |αi ∩Bscpln(x) ∩ bCM (x, n)|
|αi ∩Bscpln(x)|

> 1/2

∣∣∣∣Bn(x)

)
≥ 1− ce−cn. (2.31)

We now use the result of Step 1 and the last claim to bound the probability of
Bn(x). To this end we define contact process η(i) as the contact process restricted to the
set Wi := (αi × Z+) ∩ cs(binn, bout, sinn,∞) started from 1Wi∩(Zd×{0}). Observe that Wi

contains an isomorphic image of Cb,s1,s2 , for some b, s1, s2. Thus, the contact process η(i)

dominates a corresponding image of a contact process in Cb,s1,s2 .
Let S defined be the event {η(i) survives for every i ≤ N}. Given ε > 0, choose ε′ so

that (1− ε′)N ≥ 1− ε/2. Using the result of Step 1 with ε′ replacing ε, we see that

P(S) ≥ 1− ε/2. (2.32)
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Moreover, on S, for suitable x(i)
M with probability at least 1− e−cM , η(i) can be coupled

in BrM (x
(i)
M ) × {M} to a stationary contact process. Moreover, the parameters can be

chosen so that for every x ∈Mn, there is x(i)
M for which Bscpln(x)∩αi ⊂ BrM (x

(i)
M ). Hence,

using again large deviation arguments for the density of 1’s we obtain

P

( |{y ∈ αi ∩Bscoupln(x) : η
(i)
M (y) = 1}|

|αi ∩Bscoupln(x)|
> 1/2

∣∣∣∣S) ≥ 1− ce−cn. (2.33)

Comparing (2.31) with the last display, we see that for every x ∈Mn,

P
(
Bn(x)|S

)
≤ e−cn. (2.34)

Assume that Gc2 occurs. Since there are at most polynomially many x ∈Mn, there must
be (x, n) ∈ ∪`≥1(M` × {`}) so that Bn(x) occurs. It follows that for p sufficiently large
we have

P(G2|S) ≥ 1− ε/2 (2.35)

and therefore P(G1 ∩G2) ≥ 1− ε, as required.

2.3 Regeneration construction

In Theorem 2.6 we claim that the speed of the random walk X is 0. As an intermediate
result we will show that the speed is bounded by a small constant. This will be needed
for the regeneration construction.

Lemma 2.16 (A priori bound on the speed of the random walk). If the the family of
kernels κ satisfies Assumptions 2.1–2.4 then there are positive finite constants smax, c
and C so that

P
(
‖Xn‖ > smaxn

)
≤ Ce−cn, n ∈ N, (2.36)

in particular lim supn→∞‖Xn‖/n ≤ smax almost surely. The bound smax can be chosen
arbitrarily small by taking εref � 1 (where εref is from Assumption 2.2) and 1− p� 1.

Proof. With the percolation interpretation in mind, we say that a space-time site (x, k)

is wet if ηk(x) = 1, and dry if ηk(x) = 0. Let Γn be the set of all n-step paths γ on Zd

starting from γ0 = 0 with the restriction ‖γi − γi−1‖ ≤ Rκ, i = 1, . . . , n, where Rκ is the
range of the kernels κn from Assumption 2.4. For γ ∈ Γn and 0 ≤ i1 < i2 · · · < ik ≤ n we
define

Dγ
i1,...,ik

:= {η−`(γ`) = 0 for all ` ∈ {i1, . . . , ik}},
W γ
i1,...,ik

:= {η−`(γ`) = 1 for all ` ∈ {1, . . . , n} \ {i1, . . . , ik}}.

Let Hn := #{0 ≤ i ≤ n : η−i(Xi) = 0} be the number of dry sites the walker visits up to
time n and set K := maxx∈Zd{κref(x)}+ εref . For k ∈ {1, . . . , n} by Lemma 2.11 we have

P(Hn = k) =
∑

0≤i1<···<ik≤n

∑
γ∈Γn

P
(
(X0, . . . , Xn) = γ,W γ

i1,...,ik
, Dγ

i1,...,ik

)
≤

∑
0≤i1<···<ik≤n

∑
γ∈Γn

Kn−kP
(
Dγ
i1,...,ik

)
≤

∑
i1<i2<···<ik≤n

Rdnκ Kn−kε(p)k =

(
n

k

)
Rdnκ Kn−kε(p)k.

(2.37)
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It follows

P(Hn ≥ δn) ≤
n∑

k=bnδc

(
n

k

)
Rdnκ Kn−kε(p)k

≤
(
2RdκK

)n ∞∑
k=bnδc

(ε(p)/K)
k

=
(
2RdκK

)n (ε(p)/K)
δn

1− ε(p)/K
≤ c1e−c2n

(2.38)

with c1, c2 ∈ (0,∞), when δ > 0 is sufficiently small and p ≥ p0 = p0(δ, εref).

Writing Xn = (Xn,1, . . . , Xn,d) we can couple the first coordinate (Xn,1)n=0,1,... of the

random walk X with a one-dimensional random walk X̃ = (X̃n)n=0,1,... with transition
probabilities given by

P
(
X̃n − X̃n−1 = x

)
= (1− εref)

∑
(x2,...,xd)∈Zd−1

κref

(
0, (x, x2, . . . , xd)

)
+ εrefδRκ(x), x ∈ Z

(i.e., X̃ takes with probability 1 − εref a step according to the projection of κref on the
first coordinate and with probability εref simply a step of size Rκ to the right) such that
for all n ∈ N

Xn,1 ≤ X̃n−Hn +RκHn.

Then, we have

P (Xn,1 > s̄n) ≤ P (Hn ≥ δn) +

bnδc∑
k=0

P (Xn,1 > s̄n,Hn = k)

≤ P (Hn ≥ δn) +

bnδc∑
k=0

P
(
X̃n−k > s̄n− kRκ

)
≤ P (Hn ≥ δn) + δnP

(
X̃n > (s̄− δRκ)n

)
.

(2.39)

The estimates (2.38), (2.39) and standard large deviations bounds for X̃ show that

P (Xn,1 > s̄n) ≤ c3e−c4n holds for all n ∈ N (2.40)

with c3, c4 ∈ (0,∞) when s̄− δRκ > E[X̃1] = εrefRκ. By symmetry, we have an analogous
bound for P (Xn,1 < −s̄n). The same reasoning applies to the coordinates Xn,2, . . . , Xn,d.
Thus, we have

P (‖Xn‖ > s̄n) ≤
d∑
i=1

P (|Xn,i| > s̄n) ≤ 2dc3e
−c4n. (2.41)

In particular we have lim supn→∞‖Xn‖/n ≤ s̄ a.s. by the Borel-Cantelli lemma.

Denote the Rloc-tube around the first n steps of the path by

tuben := {(y,−k) : 0 ≤ k ≤ n, ‖y −Xk‖ ≤ Rloc}. (2.42)

For (x, n) ∈ Zd ×Z let `(x, n) be the length of the longest (backwards in time) directed
open path starting in (x, n) with the convention `(x, n) = −1 if ω(x, n) = 0 and `(x, n) =∞
if ηn(x) = 1. For each (x, n) we define its determining triangle by

D(x, n) :=

{
∅, if ηn(x) = 1,

{(y,m) : ‖y − x‖ ≤ (n−m), n− `(x, n)− 1 ≤ m ≤ n}, if ηn(x) = 0.
(2.43)
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(x, n)

Figure 3: A caricature of the determining triangle D(x, n) with a closed contour. The
height of the triangle is `(x, n) + 1.

The idea is that if ηn(x) = 0, i.e. (x, n) is not connected to Zd × {−∞}, then this
information can be deduced by inspecting the ω’s in D(x, n). By definition of `(x, n), in
this case there must be a closed contour contained in D(x, n) which separates (x, n)

from Zd × {−∞}; see Figure 3. Note in particular that D(x, n) = {(x, n)} if ω(x, n) = 0.

When constructing the walk X for n steps we must inspect ω and η in tuben (cf.
Remark 2.5). By the nature of η, this in principle yields information on the configurations
η−k, k > n that the walk will find in its future. Positive information of the form ηm(y) = 1

for certain m and y is at this stage harmless because η has positive correlations and in
view of Assumption 2.2 this suggests a well-behaved path in the future. On the other
hand, negative information of the form ηm(y) = 0 for certain m and y is problematic
because this increases the chances to find more 0’s of η in the walk’s future. In this case
Assumption 2.2 is useless. In order to ‘localise’ this negative information we ‘decorate’
the tube around the path with the determining triangles for all sites in tuben (obviously,
only zeros of η matter)

dtuben =
⋃

(y,k)∈tuben

D(y, k). (2.44)

Define

Dn := n+ max
{
`(y,−n) + 2 : ‖Xn − y‖ ≤ Rloc, `(y,−n) <∞

}
. (2.45)

Note that Dn is precisely the time (for the walk) at which the reasons for η−n(y) = 0 for
all y from the Rloc-neighbourhood of Xn are explored by inspecting all the determining
triangles with base points in BRloc

(Xn) × {−n}. The information η−n(y) = 0 does not
affect the law of the random walk after time Dn. Note that the ‘height’ of a non-empty
triangle D(y,−n) is `(y,−n) + 1. This is why `(y,−n) + 2 appears in definition (2.45).

Now, between time n and Dn the random walk might have explored more negative
information which in general will be decided after time Dn and will affect the law of the
random walk thereafter. To deal with this cumulative negative future information we
define recursively a sequence

σ0 := 0, σi := min
{
m > σi−1 : max

σi−1≤n≤m
Dn ≤ m

}
, i ≥ 1. (2.46)

In words, σi is the first timem after σi−1 when the reasons for all the negative information
that the random walk explores in the time interval σi−1, . . . ,m are decided ‘locally’
and thus the law of the random walk after time σi does not depend on that negative
information. The σi are stopping times with respect to the filtration F = (Fn)n=0,1,2,...,
where

Fn := σ
(
Xj : 0 ≤ j ≤ n

)
∨ σ
(
ηj(y), ω(y, j) : (y, j) ∈ tuben

)
∨ σ
(
ω(y, j) : (y, j) ∈ dtuben

)
.

(2.47)
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Note that by construction we have η−σi(y) = 1 for all y ∈ BRloc
(Xσi).

Lemma 2.17. When p is sufficiently close to 1 there exist finite positive constants c and
C so that

P
(
σi+1 − σi > n

∣∣Fσi) ≤ Ce−cn for all n = 1, 2, . . . , i = 0, 1, . . . a.s., (2.48)

in particular, all σi are a.s. finite. Furthermore, we have

L
(
(ω(·,−j − σi)j=0,1,...

∣∣Fσi) < L
(
(ω(·,−j)j=0,1,...

)
for all i = 0, 1, . . . a.s., (2.49)

where ‘<’ denotes stochastic domination.

Proof. Throughout the proof we write R̂κ := (2Rκ + 1)d and R̂loc := (2Rloc + 1)d for the
number of elements in BRκ(0) respectively in BRloc

(0).
Consider first the case i = 0 in (2.48). The event {σ1 > n} enforces that in the Rloc-

vicinity of the path there are space-time points (yj ,−j) with η−j(yj) = 0 for j = 0, 1, . . . , n.
For a fixed choice of the yj ’s by Lemma 2.11 the probability of that event is bounded
by ε(p)n. We use a relatively crude estimate to bound the number of relevant vectors
(y0, y1, . . . , yn) ∈ (Zd)n+1, as follows. There are R̂nκ possible n-step paths for the walk.
Assume there are exactly k time points along the path, say 0 ≤ m1 < · · · < mk ≤ n, when
a point (ymi ,−mi) ∈ BRloc

(Xmi) × {−mi} with η−i(ymi) = 0 is encountered and hence
the corresponding ‘determining’ triangle D(ymi ,−mi) is not empty (when n > 1, we
necessarily have m1 = 0 or m1 = 1).

For consistency of notation we write mk+1 = n. Then the height of D(ymi ,−mi) is
bounded below by mi+1−mi. For a fixed n-step path of X and fixed m1 < · · · < mk, there
are at most R̂kloc many choices for the ymi , i = 1, . . . , k, and inside D(ymi ,−mi) we have

at most R̂
mi+1−mi−1
κ choices to pick ymi+1, ymi+2, . . . , ymi+1−1 (start with ymi , then follow

a longest open path which is not connected to Zd × {−∞}, these sites are necessarily
zeros of η). Thus, there are at most

R̂nκ

n∑
k=1

∑
m1<···<mk≤mk+1=n

R̂kloc

k∏
i=1

R̂mi+1−mi−1
κ = R̂nκ

n∑
k=1

(
n

k

)
R̂klocR̂

n−k
κ ≤ R̂nκ

(
R̂loc + R̂κ

)n
possible choices of (y0, y1, . . . , yn) and hence we have

P(σ1 > n) ≤
(
R̂κ(R̂loc + R̂κ)ε(p)

)n
.

The right hand side decays exponentially when p is close to 1 so that ε(p) is small enough.
For general i > 0 (2.48) follows by induction, employing (2.49) and the argument for
i = 0.

In order to verify (2.49) note that the stopping times σi are special in the sense that
on the one hand, at a time σi the ‘negative information’ in Fσi , that is the knowledge of
some zeros of η in the Rloc-neighbourhood of the path, has been ‘erased’ because the
reasons for that are decided by local information contained in Fσi . On the other hand,
the ‘positive information’, that is the knowledge of ones of η, enforces the existence of
certain open paths for the ω’s. And this information is possibly retained. Thus, (2.49)
follows from the FKG inequality for the ω’s.

Corollary 2.18 (Reformulation of Lemma 2.11). For any V =
{

(x1, t1), . . . , (xk, tk)
}
⊂

Zd ×N with t1 < t2 < · · · < tk and ε(p) as in Lemma 2.11 we have

P
(
η−t−σi(x+Xσi) = 0 for all (x, t) ∈ V

∣∣Fσi) ≤ ε(p)k. (2.50)

Proof. The assertion is an easy consequence of (2.49) and Lemma 2.11.
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For t ∈ N we define Rt := inf{i ∈ Z+ : σi ≥ t} and for m = 1, 2, . . . we put

τ̃ (t)
m :=

{
σRt−m+1 − σRt−m, m ≤ Rt,
0, else.

(2.51)

In words, τ̃ (t)
1 is the length of the time interval (σi−1, σi] which contains t and τ̃ (t)

m is the
length of the (m− 1)-th interval before it.

Lemma 2.19. When p is sufficiently close to 1 there exist finite positive constants c and
C so that for all i, n = 0, 1, . . .

P
(
τ̃

(t)
1 ≥ n

∣∣Fσi) ≤ Ce−cn a.s. on {σi < t}, (2.52)

and generally

P
(
Rt ≥ i+m, τ̃ (t)

m ≥ n
∣∣Fσi) ≤ Cm2e−cn for m = 1, 2, . . . a.s. on {σi < t}. (2.53)

Proof. For (2.52), we have

P
(
τ̃

(t)
1 ≥ n

∣∣Fσi)
= P

(
σi+1 ≥ t ∨ (n+ σi)

∣∣Fσi)+
∑
j>i

t−1∑
`=σi+1

P
(
σj = `, σj+1 ≥ t ∨ (`+ n)

∣∣Fσi)
≤ Ce−cn +

t−1∑
`=σi+1

Ce−c((t−`)∨n)P
(
∃ j > i : σj = `

∣∣Fσi)
≤ Ce−cn + 1{σi≤t−n−2}

t−n−1∑
`=σi+1

Ce−c(t−`) + 1{n+1≤t}

t−1∑
`=t−n

Ce−cn ≤ C
(
1 + e−c

1−e−c + n
)
e−cn

where we used Lemma 2.17 and

P
(
σj = `, σj+1 ≥ t ∨ (`+ n)

∣∣Fσi) = E
[
1{σj=`}P(σj+1 − σj ≥ (t− `) ∨ n | Fσj )

∣∣Fσi]
in the first inequality.

Similarly, for m ≥ 2 (we assume implicitly that σi ≤ t− n−m− 1 for otherwise the
conditional probability appearing on the right-hand side of (2.53) equals 0)

P
(
τ̃ (t)
m ≥ n

∣∣Fσi) =
∑
j>i

t−m−n∑
k=σi+1

t−m+1∑
`=k+n

P
(
σj = k, σj+1 = `, σj+m−1 < t, σj+m ≥ t

∣∣Fσi)
≤
∑
j>i

t−m−n∑
k=σi+1

t−m+1∑
`=k+n

P
(
σj = k, σj+1 = `

∣∣Fσi)× (m− 1)Ce−c(t−`)/(m−1)

≤ C(m− 1)

t−m−n∑
k=σi+1

t−m+1∑
`=k+n

e−c(t−`)/(m−1)
∑
j>i

P
(
σj = k

∣∣Fσi)× Ce−c(`−k)

≤ C2(m− 1)

t−m−n∑
k=σi+1

eck−ct/(m−1)
t−m+1∑
`=k+n

exp
(
− cm−2

m−1`
)

where we used in the first inequality that

{
σj+1 = `, σj+m−1 < t, σj+m ≥ t

}
⊂

j+m⋃
r=j+2

{
σr − σr−1 ≥ t−`

m−1

}
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together with Lemma 2.17 and then argued analogously to the proof of (2.52) for the
second inequality. For m = 2, the chain of inequalities above yields the bound

P
(
τ̃ (t)
m ≥ n

∣∣Fσi) ≤ C2
t−n∑

k=σi+1

(t− k − n)e−c(t−k) ≤ C2e−cn
∞∑
`=0

`e−c`

whereas for m > 2 we obtain

P
(
τ̃ (t)
m ≥ n

∣∣Fσi) ≤ C2(m− 1)

t−m−n∑
k=σi+1

eck−ct/(m−1)
exp

(
− cm−2

m−1 (k + n)
)

1− ec
m−2
m−1

=
C2(m− 1)

1− ec
m−2
m−1

exp
(
− cm−2

m−1n− c
t

m−1

) t−m−n∑
k=σi+1

eck/(m−1)

≤ C2(m− 1)

1− ec
m−2
m−1

exp
(
− cm−2

m−1n− c
t

m−1

)ec(t−n)/(m−1)

ec/(m−1) − 1

=
C2(m− 1)

1− ec
m−2
m−1

e−cn

ec/(m−1) − 1
≤ C ′(m− 1)2e−cn.

Thus, (2.53) holds (with suitable adaptation of the value of the prefactor).

As a result of (2.49) and Assumption 2.2, the walk is well-behaved at least along the
sequence of stopping times σi, we formalise this in the following result.

Lemma 2.20. When p is sufficiently close to 1 there exist finite positive constants c and
C so that for all finite F -stopping times T with T ∈ {σi : i ∈ N} a.s. and all k ∈ N

P
(
‖Xk −XT ‖ > smax(k − T )

∣∣FT ) ≤ Ce−c(k−T ) a.s. on {T < k} (2.54)

and for j < k

P
(
‖Xk −Xj‖ > (1 + ε)smax(k − j)

∣∣FT ) ≤ Ce−c(k−j) a.s. on {T ≤ j} (2.55)

with smax as in Lemma 2.16.

Proof. Note that by Lemma A.1, we may assume that T = σ` for some ` ∈ Z+, the
general case follows by writing 1 =

∑∞
`=0 1{T=σ`} (a.s.).

For (2.54), we combine (2.49) and in particular Corollary 2.18 with the proof of
Lemma 2.16. For (2.55), let T ′ := inf

(
{σi : i ∈ N} ∩ [j,∞)

)
be the time of the next σi

after time j. Inequality (2.52) from Lemma 2.19 shows that P
(
T ′ − j > ε(k − j)

∣∣FT ) is
exponentially small in k − j. On {T ′ − j ≤ ε(k − j)} we use (2.54) starting from time T ′

and simply use the fact that increments are bounded for the initial piece between time j
and time T ′.

For m < n we say that n is a (b, s)-cone time point for the decorated path beyond m if(
tuben ∪ dtuben

)
∩
(
Zd × {−n,−n+ 1, . . . ,−m}

)
⊂
{

(x,−j) : m ≤ j ≤ n, ‖x−Xn‖ ≤ b+ s(n− j)
}
. (2.56)

In words (see also Figure 4), n is a cone time point for the decorated path beyond m

if the space-time path (Xj ,−j)j=m,...,n together with its Rloc-tube and decorations by
determining triangles is contained in cone(b, s, n−m) shifted to the base point (Xn,−n);
recall the definition of cone(b, s, h) in (2.25). Note that (2.56) in particular implies

‖Xn −Xj‖ ≤ b+ s(n− j) for j = m, . . . , n− 1. (2.57)
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Xn

−m

−n

Figure 4: Cone time point n for the decorated path beyond m. Dashed lines indicate the
Rloc tube around the path and the triangles are the determining triangles. The cone is
given by cone(b, s, n−m) shifted to the base point (Xn,−n).

Lemma 2.21. For ε > 0, when p is sufficiently close to 1, there exist b > 0 and s > smax

such that for all finite F -stopping times T with T ∈ {σi : i ∈ N} a.s. (i.e., T = σJ for a
suitable random index J) and all k ∈ N, with T ′ := inf{σi : σi ≥ k}

P
(
T ′ is a (b, s)-cone time point for the decorated path beyond T

∣∣FT ) ≥ 1− ε (2.58)

a.s. on {T < k}. Furthermore 0 < s− smax � 1 can be chosen small.

Proof. Denote the event in (2.57) (with m = T , n = k and b replaced by b −M , where
M > 0 will be tuned later) by BT,k. We have

1− P
(
BT,k

∣∣FT ) ≤ k−1∑
j=T

P
(
‖Xk −Xj‖ > b−M + s(k − j)

∣∣FT )
≤

k−1∑
j=k−m

P
(
‖Xk −Xj‖ > b−M

∣∣FT )+

k−m−1∑
j=T

P
(
‖Xk −Xj‖ > s(k − j)

∣∣FT ).
Using (2.55) from Lemma 2.20 we can make the second sum small by choosing m

sufficiently large and s > smax. Then we can make the first sum small (or even vanish)
by picking b−M sufficiently large.

Recall that Rκ is the range of the random walk X. Inequality (2.52) from Lemma 2.19
implies that P

(
T ′ − k ≥ (M −Rloc)/Rκ

∣∣FT ) can be made arbitrarily small by choosing
M sufficiently large. On BT,k ∩ {T ′ − k < (M − Rloc)/Rκ}, which has high probability
under P(· | FT ), we have by construction that

tubeT ′ ∩
(
Zd × {−T ′,−T ′ + 1, . . . ,−T}

)
⊂
{

(x,−j) : T ≤ j ≤ T ′, ‖x−XT ′‖ ≤ b+ s(T ′ − j)
}
,

i.e., the path together with its Rloc-tube is covered by a suitably shifted cone with base
point (XT ′ ,−T ′).

It remains to verify that under P(· | FT ) with high probability also the decorations
(recall (2.43), (2.44)) are covered by the same cone. To show this we may assume T = σi
for notational simplicity; this is justified by Lemma A.1. Let Rk, τ̃

(k)
1 , τ̃

(k)
2 , . . . be as

defined in and around (2.51) with t = k.
Note that dtubeT ′ is contained in a union of space-time rectangles with heights τ̃ (k)

m ,
side lengths 2τ̃

(k)
m (Rloc ∨Rκ) and base points

(
X
T ′−τ̃(k)

1 −···−τ̃(k)
m
,−(T ′ − τ̃ (k)

1 − · · · − τ̃ (k)
m )

)
.
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A geometric argument shows that on the event

BT,k ∩
∞⋂
m=1

({
Rk ≥ i+m, τ̃ (t)

m < M1 + ε1m
}
∪
{
Rk < i+m

})
,

for ε1, M1 chosen suitably in relation to b and s, we also have

dtubeT ′ ∩
(
Zd × {−T ′,−T ′ + 1, . . . ,−T}

)
⊂
{

(x,−j) : T ≤ j ≤ T ′, ‖x−XT ′‖ ≤ b+ s(T ′ − j)
}
.

Using inequality (2.53) from Lemma 2.19, we see that

∞∑
m=1

P
(
Rk ≥ i+m, τ̃ (k)

m ≥M1 + ε1m
∣∣FT ) ≤ ∞∑

m=1

Cm2e−c(M1+ε1m) a.s. on {T < k}

which can be made arbitrarily small when M1 and ε1 are suitably tuned. This completes
the proof of (2.58).

Note that the σi defined in (2.46) are themselves not regeneration times since (2.49)
is in general not an equality of laws. We use another layer in the construction with
suitably nested cones to forget remaining positive information.

Recall the definition of cones and cone shells from (2.25), (2.27) and Figure 2. The
following sets of ‘good’ ω-configurations in conical shells will play a key role in the
regeneration construction. Let G(binn, bout, sinn, sout, h) ⊂ {0, 1}cs(binn,bout,sinn,sout,h) be the
set of all ω-configurations with the property

∀ η0, η
′
0 ∈ {0, 1}Z

d

with η0|Bbout
(0) = η′0|Bbout(0) ≡ 1 and

ω ∈ {0, 1}Z
d×{1,...,h} with ω|cs(binn,bout,sinn,sout,h) ∈ G(binn, bout, sinn, sout, h) :

ηn(x) = η′n(x) for all (x, n) ∈ cone(binn, sinn, h),

(2.59)

where η and η′ are both constructed from (2.2) with the same ω’s. In words, when there
are 1’s at the bottom of the outer cone, a configuration from G(binn, bout, sinn, sout, h)

guarantees successful coupling inside the inner cone irrespective of what happens
outside the outer cone.

Lemma 2.22. For parameters p, binn, bout, sinn and sout as in Lemma 2.13,

P
(
ω|cs(binn,bout,sinn,sout,h) ∈ G(binn, bout, sinn, sout, h)

)
≥ 1− ε (2.60)

uniformly in h ∈ N.

Proof. The assertion follows from Lemma 2.13 because if the event G1∩G2 defined there
occurs, then ω|cs(binn,bout,sinn,sout,h) ∈ G(binn, bout, sinn, sout, h) holds (recall Remark 2.14).

Let us denote the space-time shifts on Zd ×Z by Θ(x,n), i.e.,

Θ(x,n)(A) = {(x+ y,m+ n) : (y,m) ∈ A} for A ⊂ Zd ×Z. (2.61)

An elementary geometric consideration reveals that one can choose a deterministic
sequence t` ↗∞ with the property that for ` ∈ N and ‖x‖ ≤ smaxt`+1

Θ(0,−t`)
(
cone(t`smax + bout, sout, t`)

)
⊂ Θ(x,−t`+1)

(
cone(binn, sinn, t`+1)

)
. (2.62)
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0

−t`

−t`+1

0 a2−a2 −a1

Figure 5: Growth condition for the sequence (t`): The small inner cone is cone(t`smax +

bout, sout, t`) shifted to the base point (0,−t`). The big outer cone is cone(binn, sinn, t`+1)

shifted to the base point (−t`+1smax,−t`+1). The slope of the dashed line is smax. The
sequence (t`) must satisfy a1 < a2 for a1 = soutt` + bout + smaxt` and a2 = sinnt`+1 + binn−
smaxt`+1.

Note that this essentially enforces t` ≈ ρ` for a suitable ρ > 1. Indeed, a worst case
picture (see Figure 5) shows that we need

t`+1sinn + binn − t`+1smax > t`smax + bout + t`sout

which is equivalent to

t`+1 >
t`(sout + smax) + bout − binn

sinn − smax
.

Thus, we can use (for ` sufficiently large)

t` = dρ`e for any ρ >
sout + smax

sinn − smax
. (2.63)

Furthermore note that using Lemma 2.16 we obtain

P
(
∃n ≤ t` : ‖Xn‖ > smaxt`

)
≤

t∑̀
n=dt`smaxe

P
(
‖Xn‖ > smaxn

)
≤ C ′e−c

′t` . (2.64)

Since t` grows exponentially in `, the right hand side is summable in `. Thus, from some
random `0 on, we have supn≤t`‖Xn‖ ≤ smaxt` for all ` ≥ `0, and `0 has very short tails.

2.4 Proof of Theorem 2.6

The proof of Theorem 2.6 relies on a regeneration construction and moment estimates
for the increments between regeneration times (recall the discussion after Remark 2.7).
We now have prepared all the ingredients to carry out the argument, which we prefer to
give in a more verbal, descriptive style. While all the concepts and properties discussed
below can be easily expressed in mathematical formulas we believe that the resulting
increase in length and in notational heaviness would burden the text unnecessarily
without improving neither readability nor understandability.

That said, the regeneration construction goes as follows (see also Figure 6):
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1. Go to the first σi after t1, check if η in the bout-neighbourhood of (Xσi ,−σi) is ≡ 1,
the path (together with its tube and decorations) has stayed inside the interior of
the corresponding conical shell based at the current space-time position and the
ω’s in that conical shell are in the good set as defined in (2.59). This has positive
(in fact, very high) probability (cf. Lemma 2.21) and if it occurs, we have found the
first regeneration time T1.

2. If the event fails, we must try again. We successively check at times t2, t3, etc.: If
not previously successful, at the `-th step let σ̃` be the first σi after t`, check if σ̃` is
a cone point for the decorated path beyond t`−1 with ‖Xσ̃`‖ ≤ smaxσ̃`, the η’s in the
bout-neighbourhood of (Xσ̃` ,−σ̃`) are ≡ 1, ω’s in the corresponding conical shell
are in the good set as defined in (2.59) and the path (with tube and decorations)
up to time t`−1 is contained in the box of diameter soutt`−1 + bout and height t`−1.
If this all holds, we have found the first regeneration time T1.

(We may assume that σ̃`−1 is suitably close to t`−1, this has very high probability by
Lemma 2.19.)

3. The path containment property holds from some finite `0 on. Given the construction
and all the information obtained from it up to the (` − 1)-th step, the probability
that the other requirements occur is uniformly high (for the cone time property
use Lemma 2.21 with k = t`; use (2.49) to verify that the probability to see η ≡ 1 in
a box around (Xσ̃` ,−σ̃`) is high; use Lemma 2.22 to check that conditional on the
construction so far the probability that the ω’s in the corresponding conical shell
are in the good set is high, note that these ω’s have not yet been looked at by the
construction so far).

4. We will thus at most require a geometric number of t`’s to construct the regener-
ation time T1. Then we shift the space-time origin to (XT1 ,−T1) and start afresh,
noting that by construction, the law of (η−k−T1(x + XT1))x∈Zd,k∈Z given all the
information obtained in the construction so far equals the law of (η−k(x))x∈Zd,k∈Z
conditioned on seeing the configuration η0 ≡ 1 in the bout-box around 0.

The sequence t` grows exponentially in ` with rate ρ (see (2.63)) and we need to go
to at most a random ` with geometric distribution with a success parameter 1− δ
very close to 1. We thus can enforce a finite very high moment of the regeneration
time:

P(regeneration after time n) ≤ P(more than log n/ log ρ steps needed)

≤ δlogn/ log ρ = n−a,
(2.65)

where a = log(1/δ)/ log ρ can be made large by choosing δ small and ρ close to 1.
Both is achieved by choosing p close to 1.

We obtain a sequence of random times T1 < T2 < · · · such that (XTi − XTi−1
, Ti −

Ti−1)i=2,3,... are i.i.d. and E[T b1 ],E[(T2 − T1)b] < ∞ and hence also E[‖XT1
‖b],E[‖XT2

−
XT1
‖b] < ∞ for some b > 2. The existence of such regeneration times implies The-

orem 2.6 by standard arguments, see e.g. the proof of Corollary 1 in [20] (it is easy to
see from the construction that XTi −XTi−1

is not a deterministic multiple of Ti − Ti−1)
and the proof of Theorem 4.1. in [28] for the functional CLT. Note that the speed must
be 0 by the assumed symmetry; see Assumption 2.3.

Remark 2.23. In the general case without the Assumption 2.3 the above argument
yields that there must be a limit speed, its value is given only implicitly as E[XT2

−
XT1

]/E[T2 − T1].
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Figure 6: A schematic example: The walk passing through a sequence of cones in an
attempt to regenerate. Here, τ1 = τ0 + t3.

If in Assumption 2.3 we would additionally require symmetries with respect to
coordinate permutations and with respect to reflections along coordinate hyperplanes
then the limiting law Φ would be a (non-trivial) centred isotropic d-dimensional normal
law, cf. the proof of Theorem 1.1 in [5].

3 A more abstract set-up

The goal of this section is to present an abstract set-up where a renewal construction
similar to the one of the previous section can be implemented. Our main motivation of
this set-up is to study the dynamics of ancestral lineages in spatial populations, but it
can be likely applied for other types of directed random walks in random environment.

In Sections 3.1 and 3.2, we present certain abstract assumptions on the random
environment and the associated random walk. These assumptions allow to control the
behaviour of the random walk using a regeneration construction that is very similar
to the one from Section 2. In particular, they allow to link the model with oriented
percolation, using a coarse-graining technique.

We would like to stress that coarse-graining does not convert the presented model
to the one of the previous section. In particular, the nature of regenerations is some-
what different. We will see that the sequence of regeneration times and associated
displacements, (Ti+1 − Ti, XTi+1 −XTi)i≥2 is not i.i.d. but can be generated as a certain
function of an irreducible, finite-state Markov chain and additional randomness. By
ergodic properties of such chains, this will lead to the same results as previously.

Theorem 3.1. Let the random environment η and the random walk X satisfy the as-
sumptions of Sections 3.1 and 3.2 below with sufficiently small parameter εU . Then the
random walk X satisfies the strong law of large numbers with speed 0 and the annealed
central limit theorem with non-trivial covariance matrix. A corresponding functional
central limit theorem holds as well.

A concrete example satisfying the abstract assumptions of Sections 3.1 and 3.2 will
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be given in Section 4. They can also be verified for the oriented random walk on the
backbone of the oriented percolation cluster which was treated in [5] using simpler, but
related, methods.

3.1 Assumptions for the environment

We now formulate two assumptions on the random environment. The first assumption
requires that the environment is Markovian (in the positive time direction), and that there
is a ‘flow construction’ for this Markov process, coupling the processes with different
starting conditions. The second assumption then allows to use the coarse-graining
techniques and the links with oriented percolation.

Formally, let

U := {U(x, n) : x ∈ Zd, n ∈ Z}

be an i.i.d. random field, U(0, 0) taking values in some Polish space EU (EU could be
{−1,+1}, [0, 1], a path space, etc.). Furthermore for Rη ∈ N let BRη = BRη (0) ⊂ Zd be
the ball of radius Rη around 0 with respect to sup-norm. Let

ϕ : Z
BRη
+ × EBRηU → Z+

be a measurable function.

Assumption 3.2 (Markovian, local dynamics, flow construction). We assume that η :=

(ηn)n∈Z is a Markov chain with values in ZZ
d

+ whose evolution is local in the sense that
ηn+1(x) depends only on ηn(y) for y in a finite ball around x. In particular we assume
that η can be realised using the ‘driving noise’ U as

ηn+1(x) = ϕ
(
θxηn|BRη , θ

xU( · , n+ 1)|BRη
)
, x ∈ Zd, n ∈ Z. (3.1)

Here θx denotes the spatial shift by x, i.e., θxηn( · ) = ηn( · + x) and θxU( · , n + 1) =

U( · + x, n + 1). Furthermore θxηn|BRη and θxU( · , n+ 1)|BRη are the corresponding

restrictions to the ball BRη .

Note that (3.1) defines a flow, in the sense that given a realisation of U we can
construct η simultaneously for all starting configurations. In most situations we have in
mind the constant zero configuration 0 ∈ ZZd+ is an equilibrium for η, that is,

ϕ
(

0|BRη , ·
)
≡ 0,

and there is another non-trivial equilibrium. It will be a consequence of our assumptions
that the latter is in fact the unique non-trivial ergodic equilibrium.

The second assumption, inspired by [6], allows for comparison of η with a supercritical
oriented percolation on a suitable space-time grid. Loosely speaking, this assumption
states that if we have a good configuration on the bottom of a (suitably big) block and
the driving noise inside the blocks is good, too, then the configuration on the top of the
block is also good and the good region grows with high probability. Furthermore if we
input two good configurations at the bottom of the block then good noise inside the block
produces a coupled region at the top of the block.

Formally, let Lt, Ls ∈ N. We use space-time boxes whose ‘bottom parts’ are centred at
points in the coarse-grained grid LsZ

d×LtZ. They will be partly overlapping in the spatial
direction but not in the temporal direction, and we typically think of Lt > Ls � Rη.

For (x̃, ñ) ∈ Zd ×Z we set

blockm(x̃, ñ) :=
{

(y, k) ∈ Zd ×Z : ‖y − Lsx̃‖ ≤ mLs, ñLt < k ≤ (ñ+ 1)Lt

}
, (3.2)
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Zd
x̃Ls (x̃+Kη)Ls(x̃−Kη)Ls

Z

ñLt

(ñ+ 1)Lt

Figure 7: Locality of the construction of (ηn) on the block level for d = 1. If U is known
in the grey region and ηñLt

is known on the bottom of the dashed trapezium then the
configurations ηk are completely determined inside block(x̃, ñ) drawn in solid lines.

and block(x̃, ñ) := block1(x̃, ñ); see Figure 7. For a set A ⊂ Zd × Z, slightly abusing
the notation, we denote by U |A the restriction of the random field U to A. In particu-
lar, U |block4(x̃,ñ) is the restriction of U to block4(x̃, ñ) and can be viewed as element of

E
B4Ls (0)×{1,2,...,Lt}
U .

Assumption 3.3 (‘Good’ noise configurations and propagation of coupling). There exist a
finite set of ‘good’ local configurations Gη ⊂ Z

B2Ls (0)
+ and a set of ‘good’ local realisations

of the driving noise GU ⊂ E
B4Ls (0)×{1,2,...,Lt}
U with the following properties:

• For a suitably small εU ,

P
(
U |block4(0,0) ∈ GU

)
≥ 1− εU (3.3)

• For any (x̃, ñ) ∈ Zd ×Z and any configurations ηñLt
, η′ñLt

∈ ZZd+ at time ñLt,

ηñLt
|B2Ls (Lsx̃) , η

′
ñLt

∣∣
B2Ls (Lsx̃)

∈ Gη and U |block4(x̃,ñ) ∈ GU

⇒ η(ñ+1)Lt
(y) = η′(ñ+1)Lt

(y) for all y with ‖y − Lsx̃‖ ≤ 3Ls

and η(ñ+1)Lt

∣∣
B2Ls (Ls(x̃+ẽ))

∈ Gη for all ẽ with ‖ẽ‖ ≤ 1,

(3.4)

and

ηñLt
|B2Ls (Lsx̃) = η′ñLt

∣∣
B2Ls (Lsx̃)

⇒ ηk(y) = η′k(y) for all (y, k) ∈ block(x̃, ñ),

(3.5)

where η = (ηn) and η′ = (η′n) are given by (3.1) with the same U but possibly
different initial conditions.

• There is a fixed (e.g., Ls-periodic or even constant in space) reference configuration
ηref ∈ ZZd+ such that ηref

∣∣
B2Ls (Lsx̃)

∈ Gη for all x̃ ∈ Zd.

Note that if the event in (3.4)–(3.5) occurs then a coupling of η and η′ on B2Ls(Lsx̃)×
{ñLt} has propagated to B2Ls

(Ls(x̃+ ẽ))× {(ñ+ 1)Lt} for ‖ẽ‖ ≤ 1 and also the fact that
the local configuration is ‘good’ has propagated. The event in (3.4) enforces propagation
of goodness and can also be viewed as a contractivity property of the local dynamics. In
other words the flow tends to merge local configurations once they are in the ‘good set’.
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Remark 3.4 (Locality on the block level). Put

Kη := Rη
(
dLt

Ls
e+ 1

)
. (3.6)

From the local construction of η given in (3.1) it follows easily (see Figure 7) that for
fixed (x̃, ñ) ∈ Zd ×Z the values ηn(x) for (x, n) ∈ block(x̃, ñ) are completely determined
by ηñLt

restricted to BKηLs
(x̃Ls) and U restricted to ∪‖ỹ‖≤Kηblock(x̃+ ỹ, ñ).

Using the above assumptions, it is fairly standard to couple η to an oriented percol-
ation cluster. Recall the notation in Section 2.1 and in particular the definition of the
stationary discrete time contact process in (2.3).

Lemma 3.5 (Coupling with oriented percolation). Put

Ũ(x̃, ñ) := 1{U |
block4(x̃, ñ)

∈GU}, (x̃, ñ) ∈ Zd ×Z. (3.7)

If εU is sufficiently small, we can couple Ũ(x̃, ñ) to an i.i.d. Bernoulli random field ω̃(x̃, ñ)

with P(ω̃(x̃, ñ) = 1) ≥ 1 − εω̃ such that Ũ ≥ ω̃, and εω̃ can be chosen small (how small
depends on εU , of course).

Moreover, the process η then has a unique non-trivial ergodic equilibrium and one can
couple a stationary process η = (ηn)n∈Z with η0 distributed according to that equilibrium
with ω̃ so that

G̃(x̃, ñ) := Ũ(x̃, ñ)1{ηñLt |B2Ls
(Lsx̃)

∈Gη} ≥ ξ̃(x̃, ñ), (x̃, ñ) ∈ Zd ×Z (3.8)

where ξ̃ := {ξ̃(x̃, ñ) : x̃ ∈ Zd, ñ ∈ Z} is the discrete time contact process defined by

ξ̃(x̃, ñ) := 1{Zd×{−∞}→ω̃(x,n)}. (3.9)

Proof. The first part is standard: Note that the Ũ(x̃, ñ)’s are i.i.d. in the ñ-coordinate,
with finite range dependence in the x̃-coordinate. Using (3.3), (3.4) and (3.5), we can
employ e.g. the Liggett-Schonman-Stacey device ([22] or [21, Thm. B26]).

For the second part consider for each k ∈ N the process η(k) = (η
(k)
n )n≥−kLt

which

starts from η
(k)
−kLt

= ηref and evolves according to (3.1) for n ≥ −kLt, using given Ũ ’s

which are coupled to ω̃’s as above so that Ũ ≥ ω̃ holds. We see from the coupling
properties guaranteed by Assumption 3.3 and Lemma 3.12 below that the law of η(k)

restricted to any finite space-time window converges. By a diagonal argument we
can take a subsequence km ↗ ∞ such that ηn(x) := limm→∞ η

(km)
n (x) exists a.s. for all

(x, n) ∈ Zd ×Z, then (3.8) and (3.9) hold by construction.
The fact that the law of limit is the unique non-trivial ergodic equilibrium can be

proved analogously to [6, Cor. 4].

Remark 3.6 (Clarification about the relation between ξ̃ and η). The contact process ξ̃ is
defined here with respect to ω̃ analogously to the definition of the discrete time contact
process η with respect to ω in (2.3). The rationale behind this change of notation is that
throughout the paper η is a stationary population process (contact process in Section 2
and logistic BRW in Section 4) and the random walk X is interpreted as an ancestral
lineage of an individual from that population. The coarse-grained contact process ξ̃ plays
a different role. In particular, the knowledge of ξ̃ alone does not determine the dynamics
of X; cf. definition of X in (3.11).

Finally, we need the following technical assumption which is sufficiently strong for
our purposes but can be relaxed presumably.
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Assumption 3.7 (Irreducibility on Gη). On G̃(x̃, ñ), conditioned on seeing a particular

local configuration χ ∈ Z
B2Ls (Lsx̃)
+ ∩ Gη at the bottom of the space-time box [time

coordinate ñLt], every configuration χ′ ∈ Gη has a uniformly positive chance of appearing
at the top of the space-time box [time coordinate (ñ+ 1)Lt].

Remark 3.8. For the discrete time contact process the above assumptions can be
checked easily in the case d = 1 when p is sufficiently close to 1. For Gη we could for

instance take configurations η ∈ {0, 1}Zd with

#{‖x‖ ≤ Ls/2, η(x) = 1} ≥ 2

3
Ls.

For GU we could take configurations of ω’s for which this property propagates to the
top of the block and its neighbours irrespective of the positions of the 1’s in the initial
configuration (cf. construction in the proof of Lemma 2.13). For d ≥ 2 one can reduce
the argument to the one-dimensional case.

3.2 Assumptions for random walk

We now state the assumptions for the random walk X = (Xk)k=0,1,... in the random

environment generated by η. To this end let Û := (Û(x, k) : x ∈ Zd, k ∈ Z+) be an
independent space-time i.i.d. field of random variables uniformly distributed on (0, 1).
Furthermore let

ϕX : Z
BRX
+ ×ZBRX+ × [0, 1]→ BRX (3.10)

a measurable function, where RX ∈ N is an upper bound on the jump size as well as on
the dependence range. Given η, let X0 = 0 and put

Xk+1 := Xk + ϕX
(
θXkη−k

∣∣
BRX

, θXkη−k−1

∣∣
BRX

, Û(Xk, k)
)
, k = 0, 1, . . . . (3.11)

Note that, as usual, forwards time direction for X is backwards time direction for η.

Assumption 3.9 (Closeness to SRW while on G̃ = 1). A walker with dynamics (3.11)
starting from the middle half of the top of a box with G̃(x̃, ñ) = 1 stays inside the box
with high probability:

min
z : ‖z−x̃‖≤Ls/2

P
(

max
(n−1)Lt<k≤nLt

‖Xk − z‖ ≤
Ls

4

∣∣∣X(n−1)Lt
= z, G̃(x̃, ñ) = 1, η

)
≥ 1− ε.

(3.12)

Remark 3.10. (a) Note that (3.12) translates into the upper bound εRX + Ls/(4Lt) for
the speed of the walk X on a block satisfying G̃(x̃, ñ) = 1. The factor 1

4 in Ls

4 inside
(3.12) is somewhat arbitrary. Depending on εU and the ratio of Ls to Lt one could
use a different factor.

(b) The simple Assumption 3.9 allows to obtain a rough a priori bound on the speed of
the walk and suffices for our purposes here, a more elaborate version would require
successful couplings of the coordinates of X with true random walks with a small
drift while on the box, similar to the proof of Lemma 2.16.

Assumption 3.11 (Symmetry of ϕX w.r.t. point reflection). Let % be the (spatial) point
reflection operator acting on η, i.e., %ηk(x) = ηk(−x) for any k ∈ Z and x ∈ Zd. We
assume

ϕX
(
%η0|BRX , %η−1|BRX , Û(0, 0)

)
= −ϕX

(
η0|BRX , η−1|BRX , Û(0, 0)

)
. (3.13)

Note that (3.13) guarantees that the averaged speed of X will be 0.

EJP 21 (2016), paper 38.
Page 27/43

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4666
http://www.imstat.org/ejp/


Random walks and ancestry under local population regulation

3.3 The determining cluster of a block

We now explain how Theorem 3.1 can be proved using similar ideas as in Section 2.
In order to avoid repetitions and to keep the length of the paper acceptable, we only
explain the major differences to the proof of Theorem 2.6.

The main change that should be dealt with is the fact that the construction of the ran-
dom walk X requires not only the knowledge of the coarse-grained oriented percolation
ξ̃, but also of the underlying random environment η. This additional dependence on η

should be controlled at regeneration times. To tackle this problem, Assumption 3.3 and
Lemma 3.5 play the key role. By this lemma, the value of η(x, n) can be reconstructed by
looking only at the driving noise U in certain finite set ‘below’ (x, n).

Formally, for (x̃, ñ) ∈ Zd×Zwe define its determining cluster DC(x̃, ñ) by the following
recursive algorithm:

1. Initially, put k̃ := ñ, DC(x̃, ñ) := {(x̃, ñ)}.

2. If ξ̃(ỹ, k̃) = 1 for all (ỹ, k̃) ∈ DC(x̃, ñ) : Stop.

3. Otherwise, for all blocks where this condition fails, add every block one time layer
below that could have influenced it (cf. Remark 3.4), that is replace DC(x̃, ñ) by

DC(x̃, ñ) ∪
{

(z̃, k̃ − 1) : ‖z̃ − ỹ‖ ≤ Kη for some ỹ with ξ̃(ỹ, k̃) = 0
}
, (3.14)

put k̃ := k̃ − 1 and go back to Step 2.

Lemma 3.12. For εU small enough, the height (and the diameter) of DC(x̃, ñ), defined
as

height(DC(x̃, ñ)) := max
{
ñ− k̃ : (ỹ, k̃) ∈ DC(x̃, ñ)}, (3.15)

is finite a.s. with exponential tail bounds.

Proof. This can be shown as in the proof of Lemma 2.11, see alternatively Lemma 7
in [11], or proof of Lemma 14 in [6].

Remark 3.13. On {ξ̃(x̃, ñ) = 1}, η|block(x̃,ñ) is a function of local randomness. In fact it is
then determined by U |block5(x̃,ñ)∪block5(x̃,ñ−1). Thus, η on block(x̃, ñ) is determined by the
‘wet boundary’ plus local randomness in a slightly ‘thickened’ version of DC(x̃, ñ) which
is the analogue of the ‘determining triangle’ D(x, n) from (2.43) in this coarse-grained
context.

To see this, consider the system η′ := (η′n : (ñ−1)Lt ≤ n ≤ (ñ+1)Lt) which starts from
η′(ñ−1)Lt

= ηref and uses the fixed boundary condition η′n(y) = ηref(y) for ‖y − Lsx̃‖ > 5Ls

and (ñ− 1)Lt < n ≤ (ñ+ 1)Lt. For (y, n) ∈ block5(x̃, ñ) ∪ block5(x̃, ñ− 1) the values η′n(y)

are computed using (3.1) with the same realisations of U as the true system η.
Note that ξ̃(x̃, ñ) = 1 implies that U |block4(x̃,ñ) ∈ GU and

max
‖ẽ‖≤1

1GU

(
U |block4(x̃+ẽ,ñ−1)

)
1Gη

(
η(ñ−1)Lt

∣∣
B2Ls (Ls(x̃+ẽ))

)
= 1

Now use (3.4) to see that η′ñLt
and ηñLt

agree on B2Ls(Lsx̃), then use that and (3.4)–(3.5)
to verify that η′ and η agree on block(x̃, ñ).

3.4 A regeneration structure

In this section we construct regeneration times similar to those constructed in
Section 2.3. First we need to introduce the analogue of the ‘tube around the path’ and
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its ‘decoration with determining triangles’; cf. equations (2.42), (2.43) and (2.44). We
set

Ṽm̃ := {x̃ : ∃k, (m̃− 1)Lt ≤ k ≤ m̃Lt, ‖Xk − x̃Lt‖ ≤ Ls +RX}, (3.16)

Tubeñ :=
⋃
m̃≤ñ

Ṽm̃ × {m̃}, (3.17)

DTubeñ :=
⋃

(x̃,̃)∈Tubeñ

DC(x̃, ̃). (3.18)

We define the coarse-graining function π̃ : Zd → Zd by

π̃(x) = π̃(x1, . . . , xd) = (x̃1, . . . , x̃d) :=
(⌈x1

Ls
− 1

2

⌉
, . . . ,

⌈xd
Ls
− 1

2

⌉)
, (3.19)

and denote by ρ̃(x) the relative position of x inside the block centred at x̃Ls, i.e. we set

ρ̃(x) := x− x̃Ls. (3.20)

We define the coarse-grained random walk X̃ = (X̃ñ)ñ=0,1,... and the relative positions

Ỹ = (Ỹñ)ñ=0,1,... by

X̃ñ := π̃(XñLt
) and Ỹñ := ρ̃(XñLt

). (3.21)

We need to keep track of the relative positions to preserve the Markovian structure.
Note that between the original random walk and the coarse-grained components just
defined we have the following relation:

XñLt
= X̃ñLs + Ỹñ.

We define the filtration F̃ := (F̃ñ)ñ=0,1,... by

F̃ñ := σ
(

(X̃̃, Ỹ̃) : 0 ≤ ̃ ≤ ñ
)
∨ σ
(
ω̃(ỹ, ̃), ξ̃(ỹ, ̃), U |block4(ỹ, ̃) : (ỹ, ̃) ∈ DTubeñ

)
. (3.22)

To mimic the proofs of Section 2 for the model considered here we need the following
ingredients:

1. As in Lemma 2.16 there exist s̃max (that is close to 1
4 under our assumptions) and

positive constants C, c such that

P
(
‖X̃ñ‖ > s̃maxñ

)
≤ Ce−cñ. (3.23)

2. For stopping times (analogous to σ’s in (2.46)) we set

D̃ñ := ñ+ max
{

height(DC(x̃, ñ)) : x̃ ∈ Ṽñ
}

(3.24)

and define

σ̃0 := 0, σ̃i := min
{
m̃ > σ̃i−1 : max

σ̃i−1≤ñ≤m̃
D̃ñ ≤ m̃

}
, i ≥ 1. (3.25)

Lemma 3.14. When 1− εω̃ is sufficiently close to 1 there exist finite positive constants c
and C so that

P
(
σ̃i+1 − σ̃i > ñ

∣∣ F̃σ̃i) ≤ Ce−cñ for all ñ = 1, 2, . . . , i = 0, 1, . . . a.s., (3.26)

in particular, all σ̃i are a.s. finite. Furthermore,

L
(
(ω̃(·,−̃− σ̃i)̃=0,1,...

∣∣ F̃σ̃i) < L
(
(ω̃(·,−̃)̃=0,1,...

)
for every i = 0, 1, . . . a.s., (3.27)

where ‘<’ denotes stochastic domination.

EJP 21 (2016), paper 38.
Page 29/43

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4666
http://www.imstat.org/ejp/


Random walks and ancestry under local population regulation

Proof. Analogous to the proof of Lemma 2.17 (see also Lemma 3.12).

Similarly to the definition in (2.56) we say that ñ is a (b, s)-cone time point for the
decorated path beyond m̃ (with m̃ < ñ) if

DTubeñ ∩
(
Zd × {−ñ,−ñ+ 1, . . . ,−m̃}

)
⊂
{

(x̃,−̃) : m̃ ≤ ̃ ≤ ñ, ‖x̃− X̃ñ‖ ≤ b+ s(ñ− ̃)
}
.

(3.28)

In words, as in Section 2.3 ñ is a cone time point for the decorated path beyond m̃ if the
space-time path (X̃̃,−̃)̃=m̃,...,ñ together with its ‘tilde’-decorations is contained in the

cone with base radius b, slope s and base point (X̃ñ,−ñ).

Lemma 3.15. There exist suitable b and s > s̃max such that for all finite F̃ -stopping
times T̃ with T̃ ∈ {σ̃i : i ∈ N} a.s. (i.e., T̃ = σ̃J for a suitable random index J) and all
k̃ ∈ N, with T̃ ′ := inf{σ̃i : σ̃i ≥ k̃}

P
(
T̃ ′ is a (b, s)-cone time point for the decorated path beyond T̃

∣∣ F̃T̃ ) ≥ 1− ε (3.29)

a.s. on {T̃ < k̃}. Furthermore 0 < s− s̃max � 1 can be chosen small.

Proof. Analogous to the proof of Lemma 2.21. Intermediate results, that is Lemma 2.19
and Lemma 2.20, can be adapted to the present situation.

We now define ‘good configurations’ of ω̃’s (analogous to (2.59)). Recall the definition
of a cone shell in (2.27). Let G̃(binn, bout, sinn, sout, h) ⊂ {0, 1}cs(binn,bout,sinn,sout,h) be the
set of possible ω̃-configurations in cs(binn, bout, sinn, sout, h) with the property

∀ ξ̃(·, 0), ξ̃′(·, 0) ∈ {0, 1}Z
d

with ξ̃(·, 0)|Bbout(0) = ξ̃′(·, 0)|Bbout(0) ≡ 1 and

ω̃ ∈ {0, 1}Z
d×{1,...,h} with ω̃|cs(binn,bout,sinn,sout,h) ∈ G̃(binn, bout, sinn, sout, h) : (3.30)

ξ̃(x̃, ñ) = ξ̃′(x̃, ñ) for all (x̃, ñ) ∈ cone(binn, sinn, h)

where ξ̃ and ξ̃′ are both constructed from time 0 using the same ω̃’s, i.e. when A and A′

are subsets of Zd with 1A = ξ̃(·, 0) and 1A′ = ξ̃′(·, 0) then (cf. (2.1))

ξ̃(·, n) = 1{x̃∈Zd:A×{0}→ω̃(x̃,ñ)} and ξ̃′(·, n) = 1{x̃∈Zd:A′×{0}→ω̃(x̃,ñ)}.

Note that if ξ̃(x̃, 0) = 1 in the ball Bbout(0) and

ω̃|cs(binn,bout,sinn,sout,h) ∈ G̃(binn, bout, sinn, sout, h)

then

{ηn(x) : (x, n) ∈ block(x̃, ñ), (x̃, ñ) ∈ cone(binn, sinn, h)}

is a function of η0(y), ‖y‖ ≤ boutLs and U |block4(x̃,ñ), (x̃, ñ) ∈ cone(binn, sinn, h). In par-
ticular, if we start with different η′0 and U ′ with η′0(y) = η0(y), ‖y‖ ≤ boutLs and
U ′|block4(x̃,ñ) = U |block4(x̃,ñ), (x̃, ñ) ∈ cone(binn, sinn, h) then

ηn(x) = η′n(x) for all (x, n) ∈ block(x̃, ñ), (x̃, ñ) ∈ cone(binn, sinn, h).

Proof sketch for Theorem 3.1. We now have all the ingredients for the regeneration
construction, to imitate the proof of Theorem 2.6. We again choose to keep the arguments
more verbal and descriptive, hoping to strike a sensible balance between notational
precision and readability.

First we choose a sequence t0, t1, . . . with t` ↑ ∞ such that (2.62) is satisfied with
s̃max replacing smax and parameters bout, sout, binn and sinn adapted from Lemma 3.15.
Recall from Remark 3.13 that on the event {ξ̃(x̃, ñ) = 1}, η|block(x̃,ñ) is determined by
U |block5(x̃,ñ)∪block5(x̃,ñ−1).
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1. Go to the first σ̃i after t1, check if in the bout-neighbourhood of (X̃σ̃i ,−σ̃i) we have
ξ̃ ≡ 1, the path (together with its tube and decorations) has stayed inside the
interior of the corresponding conical shell based at the current space-time position
and the ω̃’s in that conical shell are in the good set as defined in (3.30). This has
positive (in fact, very high) probability (cf. Lemma 3.15) and if it occurs, we have
found the ‘regeneration time’.

2. If the event fails, we must try again. We successively check at times t2, t3, etc.: If
not previously successful, at the `-th step let σ̃J(`) be the first σ̃i after t`, check if

σ̃J(`) is a cone point for the decorated path beyond t`−1 with ‖X̃σ̃J(`)
‖ ≤ s̃maxσ̃J(`),

the η’s in the bout-neighbourhood of (Xσ̃` ,−σ̃`) are ≡ 1, ω̃’s in the corresponding
conical shell are in the good set as defined in (3.30) and the path (with tube and
decorations) up to time t`−1 is contained in the box of diameter soutt`−1 + bout and
height t`−1. If this all holds, we have found the regeneration time.

(We may assume that σ̃J(`−1) is suitably close to t`−1, this has very high probability
by an adaptation of Lemma 2.19.)

3. The path containment property holds from some finite `0 on. Given the construction
and all the information obtained from it up to the (` − 1)-th step, the probability
that the other requirements occur is uniformly high: For the cone time property
use Lemma 3.15 with k̃ = t`; use (3.27) to verify that the probability to see ξ̃ ≡ 1 in
a box around (X̃σ̃J(`)

,−σ̃J(`)) is high; use (a notational adaptation of) Lemma 2.22
to check that conditional on the construction so far the probability that the ω̃’s in
the corresponding conical shell are in the good set G̃(binn, bout, sinn, sout, t`) is high.
Note that these ω̃’s have not yet been looked at.

4. We thus construct a random time R̃1 with the following properties:

(i) ξ̃(X̃R̃1
+ ỹ, R̃1) = 1 for all ‖ỹ‖ ≤ bout;

(ii) the decorated path up to time R̃1 is in cone(binn, sinn, R̃1) centred at (X̃R̃1
, R̃1);

(iii) after centring the cone at base point (X̃R̃1
, R̃1), ω̃|cs(binn,bout,sinn,sout,R̃1) lies in

the good set G̃(binn, bout, sinn, sout, R̃1).

We will thus at most require a geometric number of t`’s to construct the R̃1. As in
step 4 in the proof of Theorem 2.6 we obtain

P(R̃1 ≥ ñ) ≤ P(more than log ñ/ log c steps needed) ≤ δlog ñ/ log c = ñ−a,

where again a can be chosen large when p is close to 1.

5. Set

η̂1 := (η−LtR̃1
(x+ LsX̃R̃1

) : ‖x‖ ≤ boutLs),

Ŷ1 := ỸR̃1
, the displacement of XLtR̃1

relative to the centre

of the Ls-box in which it is contained.

Now we shift the space-time origin to (X̃R̃1
, R̃1) (on coarse-grained level). Then we

start afresh conditioned on seeing

(i) configuration ξ̃ ≡ 1 in the bout-box around 0 (on the coarse-grained level);

(ii) η̂1 on the boutLs box (on the ‘fine’ level);
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(iii) Displacement of the walker on the fine level relative to the centre of the
corresponding coarse-graining box given by Ŷ1.

6. We iterate the above construction to obtain a sequence of random times R̃i, posi-
tions X̃R̃i

, relative displacements Ŷi and local configurations η̂i. By construction(
X̃R̃i

− X̃R̃i−1
, R̃i − R̃i−1, Ŷi, η̂i

)
i∈N

is a Markov chain. Furthermore,
(
Ŷi, η̂i

)
i∈N is itself a finite state space Markov

chain and the increments
(
X̃R̃i+1

− X̃R̃i
, R̃i+1 − R̃i

)
depend only on

(
Ŷi, η̂i

)
.

Along the random times LtR̃n,

XLtR̃n
= Ŷn +

n∑
i=1

Ls

(
X̃R̃i

− X̃R̃i−1

)
is an additive functional of a well-behaved Markov chain (with exponential mixing
properties) and

E
[
(R̃i+1 − R̃i)a

∣∣ Ŷi, η̂i] <∞, E
[
‖X̃R̃i+1

− X̃R̃i
‖a
∣∣ Ŷi, η̂i] <∞

for some a > 2 uniformly in Ŷi, η̂i (cf. Step 4). From this representation the (functional)
central limit theorem can be deduced; see e.g. Chapter 1 in [19] or Theorem 2 in [26].

Note that the speed of the random walk must be 0 by the symmetry assumption; see
(3.13).

4 Example: an ancestral lineage of logistic branching random
walks

In this section we consider a concrete stochastic model for a locally regulated,
spatially distributed population that was introduced and studied in [6] and we refer
the reader to that paper for a more detailed description, interpretation, context and
properties. We call this logistic branching random walk because the function f in (4.1),
which describes the dynamics of the local mean offspring numbers, is a ‘spatial relative’
of the classical logistic function x 7→ x(1 − x) which appears in many (deterministic)
models for population growth under limited resources. See also Remark 5 below for a
discussion of related models and possible extensions.

After defining the model we recall and slightly improve some relevant results from
[6]. Then in Proposition 4.7 we show that in a high-density regime (see Assumption 4.2)
assumptions from Section 3 are fulfilled by the logistic branching random walk and the
corresponding ancestral random walk.

4.1 Ancestral lineages in a locally regulated model

Let p = (pxy)x,y∈Zd = (py−x)x,y∈Zd be a symmetric aperiodic stochastic kernel with
finite range Rp ≥ 1. Furthermore let λ = (λxy)x,y∈Zd be a non-negative symmetric kernel
satisfying 0 ≤ λxy = λ0,y−x and having finite range Rλ. We set λ0 := λ00 and for a

configuration ζ ∈ RZd+ and x ∈ Zd we define

f(x; ζ) := ζ(x)
(
m− λ0ζ(x)−

∑
z 6=x

λxzζ(z)
)+
. (4.1)

We consider a population process η := (ηn)n∈Z with values in ZZ
d

+ , where as in the
previous sections ηn(x) is the number of individuals at time n ∈ Z at site x ∈ Zd.
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Before giving a formal definition of η let us describe the dynamics informally: Given the
configuration ηn in generation n, each individual at x (if any at all present) has a Poisson
distributed number of offspring with mean f(x; ηn)/ηn(x), independent of everything
else. Offspring then take an independent random walk step according to the kernel p
from the location of their mother. Then the offspring of all individuals together form
the next generations configuration ηn+1. For obvious reasons p and λ are referred to as
migration and competition kernels respectively. Note that in the case λ ≡ 0 the process
η is literally a branching random walk.

We now give a formal construction of η. Let

U := {U (y,x)
n : n ∈ Z, x, y ∈ Zd, ‖x− y‖ ≤ Rp} (4.2)

be a collection of independent Poisson processes on [0,∞) with intensity measures of

U
(y,x)
n given by pyx dt. The natural state space for each U (y,x)

n is

D̃ :=
{
ψ : [0,∞)→ Z+ : ψ càdlàg, piece-wise constant, only jumps of size 1

}
, (4.3)

which is a Polish space as a closed subset of the (usual) Skorokhod space D. For given
ηn ∈ ZZ

d

+ , define ηn+1 ∈ ZZ
d

+ via

ηn+1(x) :=
∑

y : ‖x−y‖≤Rp

U (y,x)
n

(
f(y; ηn)

)
, x ∈ Zd. (4.4)

Note that for each x, the right-hand side of (4.4) is a finite sum of (conditionally) Poisson
random variables with finite means bounded by ‖f‖∞. Thus, (4.4) is well defined for any
initial condition – in this discrete time scenario, no growth condition at infinity, etc. is
necessary. Furthermore we note that by well known properties of Poisson processes
ηn+1, given ηn, is a family of conditionally independent random variables with

ηn+1(x) ∼ Pois
(∑
y∈Zd

pyxf(y; ηn)
)
, x ∈ Zd. (4.5)

For −∞ < m < n set

Gm,n := σ(U
(x,y)
k : m ≤ k < n, x, y ∈ Zd). (4.6)

By iterating (4.4), we can define a random family of Gm,n-measurable mappings

Φm,n : ZZ
d

+ → ZZ
d

+ , −∞ < m < n such that ηn = Φm,n(ηm). (4.7)

To this end define Φm,m+1 as in (4.4) via

(Φm,m+1(ζ))(x) :=
∑

y : ‖x−y‖≤Rp

U (y,x)
m

(
f(y; ζ)

)
for y ∈ Zd and ζ ∈ ZZd+ (4.8)

and then put

Φm,n := Φn−1,n ◦ · · · ◦ Φm,m+1. (4.9)

Using these mappings we can define the dynamics of (ηn)n=m,m+1,... simultaneously for

all initial conditions ηm ∈ ZZ
d

+ for any m ∈ Z.
Let us for a moment consider the process η = (ηn)n=0,1,.... Obviously, the configuration

0 ∈ ZZd+ is an absorbing state for η. Thus, the Dirac measure in this configuration is a
trivial invariant distribution of η. In [6] it is shown that for certain parameter regions, in
particular m ∈ (1, 4) and suitable λ, the population survives with positive probability. For
m ∈ (1, 3) (and again suitable λ) the existence and uniqueness of non-trivial invariant
distribution is proven. We recall the relevant results for m ∈ (1, 3).
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Proposition 4.1 (Survival and complete convergence, [6]). Assume m ∈ (1, 3) and let p
and λ be as above.

(i) There are λ∗0 = λ∗0(m, p) > 0 and a∗ = a∗(m, p) > 0 such that if λ0 ≤ λ∗0 and∑
x 6=0 λ0x ≤ a∗λ0 then the process (ηn)n=0,1,... survives with positive probability (if

survival for one step has positive probability) and has a unique non-trivial invariant
extremal distribution ν̄.

(ii) Conditioned on non-extinction, ηn converges in distribution in the vague topology
to ν̄.

Since we are only interested in the regime when the corresponding deterministic
system, cf. (4.14) below, is well controlled and in particular, Proposition 4.1 guarantees
that a non-trivial invariant extremal distribution ν̄ exists, we make the following general
assumption.

Assumption 4.2. 1. With the notation from Proposition 4.1 we assume m ∈ (1, 3) and∑
x 6=0 λ0x ≤ a∗λ0.

2. γ :=
∑
x λ0x is sufficiently small.

Note that a∗ is determined by the dimension d, the parameters m, p and a renorm-
alised λ̃ by the requirement that the left-hand side of (4.19) at ζ ≡ m∗ must be strictly
smaller than 1, see Section 4.2 below.

Under this assumption we can (and do so from now on) consider the stationary
process η = (ηn)n∈Z with ηn distributed according to ν̄. From the informal description
(after (4.1)) above and the formal definition (4.4) it is clear that the model can be easily
enriched with genealogical information; see e.g. Chapter 4 in [9]. Put

pη(k;x, y) :=
pyxf(y; η−k−1)∑
z pzxf(z; η−k−1)

, x, y ∈ Zd, k ∈ Z+ (4.10)

with some arbitrary convention if the denominator is 0. For a given η, conditioned on
η0(0) > 0, let X := (Xk)k=0,1,2,... be a time-inhomogeneous Markov chain with

X0 = 0, and P(Xk+1 = y |Xk = x, η) = pη(k;x, y). (4.11)

This is the dynamics of the space-time embedding of the ancestral lineage of an in-
dividual sampled at random from the (space-time) origin at stationarity, conditioned
on the (full) space-time configuration η. Note that given η, we see from (4.4) that the
number of offspring coming from y in generation −k − 1 that moved to x is given by
U

(y,x)
−k

(
f(y; η−k−1)

)
which is Pois

(
pyxf(y; η−k−1)

)
-distributed conditional on the sum over

all y in the neighbourhood of x being equal to η−k(x). Since a vector of independent
Poisson random variables conditioned on its total sum has a multinomial distribution we
see that the dynamics of the ancestral lineage are indeed given by (4.11).

Our main result in this section is the following theorem.

Theorem 4.3 (LLN and averaged CLT). Assume d ≥ 1, let the Assumption 4.2 be satisfied
and let η = (ηn)n∈Z be the stationary process conditioned on η0(0) > 0. For the random
walk (Xk)k=0,1,... defined in (4.11) we have

Pη

(1

k
Xk → 0

)
= 1 for P

(
· | η0(0) > 0

)
-a.a. η, (4.12)

and for any g ∈ Cb(Rd)

E
[
g
(
Xk/
√
k
) ∣∣∣ η0(0) > 0

]
n→∞−−−−→ Φ(g), (4.13)

where Φ is a non-trivial d-dimensional normal law and Φ(g) :=
∫
g(x) Φ(dx).
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Proof. The assertions of the theorem follow from a combination of Proposition 4.7 and
Theorem 3.1.

4.2 Deterministic dynamics

For comparison, we consider the dynamical system (such systems are also called a
coupled map lattices) ζ := (ζn)n=0,1,... on [0,∞)Z

d

defined by

ζn(x) :=
∑
y∈Zd

pyxf(y; ζn−1), x ∈ Zd, n ∈ N (4.14)

with f from (4.1) and arbitrary initial condition ζ0 ∈ [0,∞)Z
d

(cf. [6, Eq. (5)]). It is easily
seen from (4.1) that with

m∗ = m∗(λ) =
m− 1∑
z λ0,z

, (4.15)

ζ∗(·) ≡ m∗ is an equilibrium of the dynamical system ζ. Furthermore, setting

γ :=
∑
z

λ0,z, λ̃xy := λxy/γ and ζ̃n(x) := γζn(x)

we see from (4.1) that (ζ̃n)n=0,1,... solves

ζ̃n(x) =
∑
y∈Zd

pyxζ̃n−1(y)
(
m− λ̃0ζ̃n−1(y)−

∑
z 6=x

λ̃yz ζ̃n−1(z)
)+
, (4.16)

i.e., (4.14) with λ in the function f replaced by λ̃. Thus, we can and shall assume γ = 1

for the rest of this subsection.

Lemma 4.4. There exist α0 < α < m∗ < β, ε = ε(m,λ) > 0, R0, k0, N0 and s0 such that
for all R ≥ R0 the following assertions hold:

(i) If ζ0(y) ∈ [α, β] for all y ∈ BR(x) then

ζn(y) ∈
[
(1 + ε)α, β/(1 + ε)

]
for all n ≥ N0, ‖y − x‖ ≤ R+ s0(n−N0), (4.17)

and

ζn(y) ≥ α0 for all n ≥ 1, ‖y − x‖ ≤ R− k0 + s0n. (4.18)

(ii) For (ζ(y))y∈BRλ (x) ∈ [α, β]BRλ (x) we have

∑
y∈BRλ (x)

∣∣∣∣ ∂

∂ζ(y)
f(x; ζ)

∣∣∣∣ < 1− ε

2
. (4.19)

(iii) One can choose β − α > 0 arbitrarily close to 0.

Proof. Assertions (i) and (iii) follow from Lemma 11 and 12 (and arguments in their
proofs) in [6]. For (ii) see the proof of Lemma 13 and in particular Eq. (40) in [6].

Remark 4.5 (Interpretation of Lemma 4.4). Assertion (i) in the above lemma means that
if ζ0 in the neighbourhood of x is in the interval [α, β] around m∗ then the regions around
x where ζn is bounded away from 0 and where it is close to m∗ grow at positive speed
(after a finite number of steps). Assertion (ii) means that the equilibrium ζ∗(·) ≡ m∗ is
attracting.
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4.3 Coupling reloaded

Remark 4.6 (Initial/boundary conditions on certain space-time regions). Note that for
any n ∈ N, Φ0,n as defined in (4.8) can be viewed as a function of (U

(x,y)
m : 0 ≤ m <

n, x, y ∈ Zd).
Let L ∈ N, Rp the range of p, put

cone(L,Rp) :=
{

(x, n) ∈ Zd ×Z+ : ‖x‖ ≤ L+Rpn
}

(4.20)

(recalling (2.25), we have cone(L,Rp) = ∪h>0cone(L,Rp, h)). For given values of ηk(x),
(x, k) ∈

(
(Zd × Z+) \ cone(L,Rp)

)
∪ ([−L,L]d × {0}) (we can view the latter set as a

‘space-time boundary’ of cone(L,Rp)), we can define ηn consistently inside cone(L,Rp)
through (4.4).

In fact, we can think of constructing the space-time field η in a two-step procedure:
First, generate the values outside cone(L,Rp) (in any way consistent with the model),
then, conditionally on their outcome, use (4.4) inside.

Proposition 4.7. Let Assumption 4.2 1. be fulfilled. For any ε > 0 we can find γ∗

and such that if γ :=
∑
x λ0x ≤ γ∗ there exists a spatial scale Ls and a temporal scale

Lt, a set of good configurations Gη and a set of good Poisson process realisations

GU ⊂ D̃B4Ls (0)×{1,2,...,Lt} with P
(
U |block4(0,0) ∈ GU

)
≥ 1− ε such that the contraction and

coupling conditions (3.4), (3.5) from Section 3 are fulfilled. Furthermore the random
walk defined in (4.11) satisfies (3.12) in Section 3.

Proof. The crucial idea is that using the flow version (4.4) we can augment the coupling
argument in Lemma 13 in [6] to work with a set of (good) initial conditions

{η(i)
0 : i ∈ I} =

{
η ∈ ZZ

d

+ : α/γ ≤ η(x) ≤ β/γ for x ∈ B2Ls(0)
}

(4.21)

with α, β from (4.17) and the (uncountable) index set I being defined implicitly here.

The proof consists of 6 steps. For parameters K ′t � Ks � K ′′t to be suitably tuned
below, we set

Ls = dKs log(1/γ)e
Lt = L′t + L′′t with L′t = dK ′t log(1/γ)e, L′′t = dK ′′t log(1/γ)e.

In the first step, we use the propagation properties of the deterministic system as
described in Lemma 4.4 together with the fact that for small γ, the relative fluctuations
of the driving Poisson processes are typically small to ensure that after time L′t, the
‘good region’ has increased sufficiently.

In the second step we use the flow version (4.4) and its contraction properties to
ensure that in a subregion, after L′′t steps, coupling has occurred with high probability.

Several copies of such subregions are then glued together in Steps 3 and 4. In Step 5
we use the fact that in a good region, the relative fluctuations of η are small so that
pη(k;x, y) is close to the deterministic kernel pxy; this ensures (3.12). Finally, in the last
step we collect the requirements on the various constants that occurred before and
verify that they can be fulfilled consistently.

Step 1. Let

X1 :=
{

max
‖x‖,‖y‖≤5Ls,pxy>0,0<n≤L′t

sup
u≥α0/γ

∣∣∣U (x,y)
n (u)

pxyu
− 1
∣∣∣ ≤ δ}
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with α0 from Lemma 4.4. By standard large deviation estimates for Poisson processes,
we have

P(X1) ≥ 1− (10LsRp)
dL′t exp(−cα0/γ) (4.22)

(for some fixed constant c > 0) which can be made arbitrarily close to 1 by choosing γ
small.

By iterating (4.17) in combination with (4.18) we see that

X1 ∩
{
η0(x) ∈ [α/γ, β/γ] for x ∈ B2Ls(0)

}
⊂
{
ηL′t(y) ∈ [α/γ, β/γ] for y ∈ B5Ls(0)

}
(4.23)

if the ratio L′t/Ls is chosen sufficiently large. To verify this note that we can consider η
as a perturbation of the deterministic system ζ from (4.14) and on X1 the relative size of
the perturbation is small when γ is small (cf. [6, Eq. (13) and the proof of Lemma 7]).

Step 2. Let G0 ⊂ D̃B3Ls (0)×{1,...,L′′t } be the set of Poisson process path configurations in
the space-time box B3Ls

(0)× {1, . . . , L′′t } with the property

η0|B2Ls (0) ∈ [α/γ, β/γ]B2Ls (0), U |B3Ls (0)×{1,...,L′′t }
∈ G0

=⇒
(
Φ1,L′′t

(η0)
)
(x) =

(
Φ1,L′′t

(ηref)
)
(x) for ‖x‖ ≤ Ls (4.24)

with Φ1,L′′t
as in (4.9) and ηref ≡ dm∗e.

Observe that for x ∈ Zd, n ∈ Z+

sup
i∈I

η(i)
n (x)− inf

i∈I
η(i)
n (x) = sup

i∈I

∑
y

U
(y,x)
n−1

(
f(y; η

(i)
n−1)

)
− inf
i∈I

∑
y

U
(y,x)
n−1

(
f(y; η

(i)
n−1)

)
≤
∑
y

(
sup
i∈I

U
(y,x)
n−1

(
f(y; η

(i)
n−1)

)
− inf
i∈I

U
(y,x)
n−1

(
f(y; η

(i)
n−1)

))
=
∑
y

U
(y,x)
n−1

(
sup
i∈I

f(y; η
(i)
n−1)

)
− U (y,x)

n−1

(
inf
i∈I

f(y; η
(i)
n−1)

)
.

(4.25)

Thus,

E
[

sup
i∈I

η(i)
n (x)− inf

i∈I
η(i)
n (x)

∣∣∣Fn−1

]
≤
∑
y

pyx

(
sup
i∈I

f(y; η
(i)
n−1)− inf

i∈I
f(y; η

(i)
n−1)

)
(4.26)

and we can now use contraction properties of f near its fixed point, analogous to the
proof of (44), (45) in Lemma 13 in [6]. Note that if all η(i)

n−1(y), i ∈ I are (locally around
x) in the neighbourhood [α, β] of m∗ (as required for (4.19)), there are η̃y,z ∈ [α, β]BRλ (y)

such that

sup
i∈I

f(y; η
(i)
n−1)− inf

i∈I
f(y; η

(i)
n−1) ≤

∑
z∈BRλ (y)

∣∣ ∂
∂η(z)f(y; η̃y,z)

∣∣( sup
i∈I

η
(i)
n−1(z)− inf

i∈I
η

(i)
n−1(z)

)
.

(4.27)

Put

ψR(η) := 1{η(x)∈[α/γ,β/γ] for ‖x‖≤R}. (4.28)

We have on {infi∈I ψR+Rp+Rλ(η
(i)
n−1) = 1}

1

|BR(0)|
∑

x∈BR(0)

E
[(

sup
i∈I

ψR(η(i)
n )η(i)

n (x)− inf
i∈I

ψR(η(i)
n )η(i)

n (x)
)∣∣Fn−1

]
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≤ 1

|BR(0)|
∑

x∈BR(0)

E[sup
i∈I

η(i)
n (x)− inf

i∈I
η(i)
n (x)

∣∣Fn−1]

≤ 1

|BR(0)|
∑

x∈BR(0)

∑
y∈BRp (x)

pyx
∑

z∈BRλ (y)

|∇zf(y; η̃z)|
(

sup
i∈I

η
(i)
n−1(z)− inf

i∈I
η

(i)
n−1(z)

)
≤

∑
z∈BR+Rp+Rλ

(0)

(
sup
i∈I

η
(i)
n−1(z)− inf

i∈I
η

(i)
n−1(z)

) 1

|BR(0)|
∑

y∈BRλ (z)

|∇zf(y; η̃z)|
∑

x∈BR(0)

pxy

≤
|BR+Rp+Rλ(0)|
|BR(0)|

(
1− ε

2

) 1

|BR+Rp+Rλ(0)|
∑

z∈BR+Rp+Rλ
(0)

(
sup
i∈I

η
(i)
n−1(z)− inf

i∈I
η

(i)
n−1(z)

)
≤ c(ε) 1

|BR+Rp+Rλ(0)|
∑

z∈BR+Rp+Rλ
(0)

(
sup
i∈I

η
(i)
n−1(z)− inf

i∈I
η

(i)
n−1(z)

)
, (4.29)

where we used (4.26) and (4.27) in the second inequality and assume that R is so large
that

|BR+Rp+Rλ(0)|
|BR(0)|

(
1− ε

2

)
≤ c(ε) < 1. (4.30)

Note that the factor (1− ε
2 ) comes from (4.19).

We can iterate (4.29) for n = L′′t , L
′′
t − 1, . . . , 1 to obtain on X1 (which in particular

implies ψLs+k(Rp+Rλ)(ηn−k) = 1 for k = 1, 2, . . . , n− 1) that

1

|BLs
(0)|

∑
x∈BLs (0)

E
[(

sup
i∈I

ψLs
(η

(i)
L′′t

)η
(i)
L′′t

(x)− inf
i∈I

ψLs
(η

(i)
L′′t

)η
(i)
L′′t

(x)
)∣∣F0

]
≤ c(ε)L

′′
t

1

|BLs+L′′t (Rp+Rλ)(0)|
∑

z∈BLs+L
′′
t (Rp+Rλ)(0)

(
sup
i∈I

η
(i)
0 (z)− inf

i∈I
η

(i)
0 (z)

)
≤ c(ε)L

′′
t
β − α
γ

.

(4.31)

On the event {infi∈I ψR+L′′t (Rp+Rλ)(η
(i)
0 ) = 1} via Markov inequality (4.31) yields

P
(

max
‖x‖≤Ls

(
sup
i∈I

ψLs
(η

(i)
L′′t

)η
(i)
L′′t

(x)− inf
i∈I

ψLs
(η

(i)
L′′t

)η
(i)
L′′t

(x)
)
≥ 1

∣∣∣F0

)
≤ |BLs

(0)|c(ε)L
′′
t
β − α
γ

(4.32)

and the right hand side can be made as small as we like by choosing γ small.
Hence for X2 := {U |B3Ls (0)×{1,...,L′′t }

∈ G0} we have

P(X2) ≥ 1− |BLs
(0)|c(ε)L

′′
t
β − α
γ

. (4.33)

Step 3. Let X2(y, k) be the event that X2 occurs in the space-time box whose ‘bottom’ is
centred at (y, k), i.e. X2(y, k) = {U |B3Ls (y)×{k+1,...,k+L′′t }

∈ G0}. By construction, on

X3 := X1 ∩
⋂

j∈{−2,−1,...,2},
k=1,...,d

X2(jLsek, L
′
t) (4.34)

we have

η0(x) ∈ [α/γ, β/γ] for x ∈ B2Ls(0) =⇒ ηLt(y) =
(
Φ1,Lt(η

ref)
)
(y) for ‖y‖ ≤ 3Ls,

(4.35)
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i.e. (3.4) holds. In particular

P(X3) ≥ P(X1)− 5d(1− P(X2)) (4.36)

Step 4. On

X4 := X3 ∩
⋂

j=0,...,dL′t/L′′t e

X2(0, jL′′t ), (4.37)

(3.5) holds as well, and we have

P(X4) ≥ P(X3)− dL′t/L′′t e(1− P(X2)) (4.38)

Step 5. Note that on X4 we have

η0(x) ∈ [α/γ, β/γ] for x ∈ B2Ls
(0) =⇒ ηn(y) ∈ [α/γ, β/γ] for ‖y‖ ≤ 2Ls, n = 1, . . . , Lt.

Then (4.10) implies

α

β
pxy ≤ pη(k;x, y) ≤ β

α
pxy for x, y ∈ B2Ls(0), k = 1, . . . , Lt,

hence the total variation distance between pη(k;x, ·) and px,· is at most (1− α
β ) ∨ (βα − 1)

uniformly inside this space-time block. We use Lemma 4.4, (iii) to make this so small
that coupling arguments as in the proof of Lemma 2.16 (with a comparison random walk
that has a deterministic drift dmax � Ls/(L

′
t + L′′t ) show (3.12).

Step 6. Finally, we verify that the constants Ks,K
′
t,K

′′
t can be chosen consistently so

that all intermediate requirements are fulfilled.

1. The right-hand side of (4.22) can be chosen arbitrarily close to 1 for any choice of
Ks,K

′
t,K

′′
t by making γ small.

2. (4.23) requires that K ′t >
3
s0
Ks with s0 from (4.17), (4.18).

3. (4.31), which uses (4.30) L′′t times, requires that Ls − (Rp +Rλ)L′′t is large. This is
achieved when Ks � (Rp +Rλ)K ′′t (and γ is small).

4. The right-hand side of (4.33) can be made close to 1 if K ′′t > (− log c(ε))−1 (and γ is
small). This also implies that the right-hand side of (4.36) can be chosen arbitrarily
close to 1.

5. For (4.38) note that L′t
L′′t
≈ K′t

K′′t
is a fixed ratio when γ is small, and 1− P(X2) can be

made small by choosing γ small.

We see that for γ ≤ γ∗ for some γ∗ > 0, all requirements can be fulfilled e.g. by choosing
K ′′t := 2/(− log c(ε)), Ks := C(Rp +Rλ)K ′′t with some large C and K ′t := 6

s0
Ks.

5 Discussion of further classes of population models

While we analysed in this article only one explicit spatial population model, namely
logistic branching random walks (LBRW) defined in (4.4) with the dynamics of the space-
time embedding of an ancestral lineage given by (4.11), we do believe that the same
program can be carried out for many related population models and that LBRW is in
this sense prototypical; see also [6, Remark 5]. We list and discuss some of these in the
following five paragraphs. Note that implementing the details to verify the conditions of
Theorem 3.1 for these models will still require quite some technical work and we defer
this to future research.
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More general ‘regulation functions’ The logistic function x 7→ x(m − λx) (with λ

small enough) whose ‘spatial version’ is used in the definition (4.1) can be replaced by
some function φ : R+ → [0, a], a ∈ (0,∞) ∪ {∞} with φ′(0) > 1, limx→a φ(x) = 0 that
possesses a unique attracting fixed point x∗ = φ(x∗) > 0. This will ensure that a result
analogous to Lemma 4.4 holds, and an analogue of Proposition 4.7 can be obtained when
a suitable small parameter is introduced.

For example, in the ecology literature, in addition to the logistic model, also the
Ricker model corresponding to φ(x) = x exp(r−λx) and the Hassel model corresponding
to φ(x) = mx/(1+λx)b are used to describe population dynamics under limited resources
(r > 0, resp., m > 1 and b > 0 are parameters). Note that in all these cases, 1/λ is related
to a carrying capacity, so assuming λ small means weak competition.

More general families of offspring distributions As described in the informal
discussion above (4.2), (4.5) can be interpreted as stipulating that each individual at
y in generation n has a Poisson number of offspring (with mean f(y; ηn)/ηn(y)) which
then independently take a random walk step. One could replace the Poisson distribution
by some another family of distributions L(X(ν)) on N0 that is parametrised by the
mean E[X(ν)] = ν ∈ [0, ν̄] where ν̄ ≥ supy,η 6≡0 f(y; η)/η(y) and then define the model
accordingly. If the family of offspring laws satisfies a suitably quantitative version of
the law of large numbers (cf. Step 1 of the proof of Proposition 4.7), one can derive an
analogue of Proposition 4.7.

For example, one could take an N0-valued random variable X with mean E[X] = ν̄

and E[eaX ] < ∞ for some a > 0 and then define X(ν) via independent thinning, i.e.

X(ν)
d
=
∑X
i=1 1{Ui≤ν/ν̄} where U1, U2, . . . are i.i.d. uniform([0, 1]).

‘Moderately’ small competition parameters As it stands, Theorem 4.3 requires
sufficiently (in fact, very) small competition parameters (cf. Assumption 4.2). This is
owed to the fact that our abstract ‘work-horse’ Theorem 3.1 requires (very) small εU in
Assumption 3.3 and ε in Assumption 3.9 (we in fact did not spell out explicit bounds).
In simulations of LBRW one observes also for moderately small competition parameters
λxy apparent stabilisation to a non-trivial ‘equilibrium’ as required by Assumption 3.3.
We note that the assumptions of Theorem 3.1 are ‘effective’ in the sense that they
only require controlling the system (ηn) and the walk in certain finite space-time boxes.
Thus, a suitably quantified version of Theorem 3.1 allows at least in principle to as-
certain via simulations that for a given choice of parameters m, (pxy) and (λxy) the
system (ηn) has a unique non-trivial ergodic equilibrium and that the conclusions of
Theorem 4.3 hold.

Continuous-time and continuous-mass models An infinite system of interacting
diffusions that can be obtained as a time- and mass-rescaling of LBRW is considered in
[14], see Definition 1.3 there; one can in principle define an ‘ancestral lineage’ in such a
model which will be a certain continuous-time random walk in (the time-reversal of this)
random environment. It is conceivable that a coarse-graining construction similar to the
one discussed here can be implemented and that in fact an analogue of Theorem 4.3 can
be proved at least for suitably small interaction parameters.

Reversible Markov systems Obviously, we tailored Theorem 3.1 and its assumptions
to a random walk that moves in the time-reversal of a non-reversible Markov system η

which possesses two distinct ergodic equilibria, our prime example being the (discrete
time) contact process.
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If we instead assume that η is a reversible Markov system with local dynamics and
‘good’ mixing properties possessing a unique equilibrium (for example, the stochastic
Ising model at high temperature), the assumptions from Section 3.1 will be fulfilled
as well – this case is in fact easier since ‘good blocks’ in η(ñ+1)Lt

as required in (3.4)
of Assumption 3.3 will have uniformly high probability anyway, irrespective of ηñLt

.
Assume in addition that we can verify Assumption 3.9 for the walk. For example, this
can be done by requiring that the walk is a (sufficiently small) perturbation of a fixed
symmetric random walk or by assuming a (small) a priori bound on the drift. Then we
don’t need to require the symmetry assumption (3.13) (in fact, the resulting walk can
have non-zero speed). This re-reading of Theorem 3.1 and its proof allows to recover a
special case of [27, Thm. 3.6] where, using entirely different methods, a CLT is obtained
for random walks in dynamic environments that satisfy sufficiently strong coupling and
mixing properties.

A An auxiliary result

The following result should be standard, we give here a brief argument for complete-
ness’ sake and for lack of a precise point reference.

Lemma A.1. Let F = (Fn)n=0,1,... be a filtration, T , T ′ finite F -stopping times, and Y a
bounded random variable. We have

E [Y | FT ]1{T=T ′} = E [Y | FT ′ ]1{T=T ′} a.s. (A.1)

Proof. Note that {T = T ′} ∈ FT ∩ FT ′ because

{T = T ′} ∩ {T = n} = {T = T ′} ∩ {T ′ = n} = {T = n} ∩ {T ′ = n} ∈ Fn, n = 0, 1, . . . .

Furthermore we have

A ∈ FT ∪ FT ′ ⇒ A ∩ {T = T ′} ∈ FT ∩ FT ′ .

To see this note that for A ∈ FT

A ∩ {T = T ′} ∩ {T ′ = n} = (A ∩ {T = n}) ∩ {T ′ = n} ∈ Fn, n = 0, 1, . . . .

Thus, we obtain A ∩ {T = T ′} ∈ FT ′ and a similar argument for the other case shows the
assertion. By approximation arguments we find that

Z is FT -measurable ⇒ Z1{T=T ′} is (FT ∩ FT ′)-measurable.

Let Z be a version of E
[
Y 1{T=T ′} | FT

]
= 1{T=T ′}E [Y | FT ], i.e., Z is FT -measurable,

E [Z1A] = E
[
Y 1{T=T ′}1A

]
for all A ∈ FT . We may assume that Z = Z1{T=T ′}. Then, Z

is also a version of E
[
Y 1{T=T ′} | FT ′

]
= 1{T=T ′}E [Y | FT ′ ]. Furthermore Z = Z1{T=T ′}

is also FT ′ -measurable and for A′ ∈ FT ′ ,

E [Z1A′ ] = E
[
Z1A′∩{T=T ′}

]
E
[
Y 1{T=T ′}1A′∩{T=T ′}

]
= E

[
Y 1{T=T ′}1A′

]
.

This concludes the proof of the lemma.
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