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Abstract

We develop ergodic theory of the inviscid Burgers equation with random kick forcing
in noncompact setting. The results are parallel to those in our recent work on the
Burgers equation with Poissonian forcing. However, the analysis based on the study of
one-sided minimizers of the relevant action is different. In contrast with previous work,
finite time coalescence of the minimizers does not hold, and hyperbolicity (exponential
convergence of minimizers in reverse time) is not known. In order to establish a One
Force — One Solution principle on each ergodic component, we use an extremely
soft method to prove a weakened hyperbolicity property and to construct Busemann
functions along appropriate subsequences.
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1 Introduction

The Burgers equation was introduced by Burgers as a fluid dynamics model describing
the evolving velocity profile of a 1D continuum of particles in the absence of pressure.
Although it did not prove to be a good model for most interesting phenomena related
to turbulence, it has re-emerged in various contexts including interface growth, traffic
modeling, the large-scale structure of the Universe, etc., see [5] for a survey of the
mathematics, physics, and numerics concerning the Burgers turbulence.

The inviscid Burgers equation is

∂tu(t, x) + ∂x

(
u2(t, x)

2

)
= ∂xF (t, x). (1.1)

In fluid dynamics terms, u(t, x) is the velocity of the particle located at point x ∈ R at time
t ∈ R, and f(t, x) = ∂xF (t, x) is the external forcing term describing the acceleration of
the particle at time t at point x.
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Burgers equation with random kick forcing

Even if the forcing is absent or smooth, solutions of this equation tend to develop
discontinuities (shocks) in finite time. These shocks correspond to collisions between
particles and provide archetypal examples of shock waves.

Although the classical solutions are well-defined only locally due to the inevitable sin-
gularity formation, one can work with generalized solutions. A natural global existence-
uniqueness class of solutions is formed by so called entropy solutions, or viscosity
solutions. They are globally well-defined and unique for a broad class of initial velocity
profiles and forcing terms. Moreover, they have a natural interpretation in terms of
physics and admit a variational characterization.

We are interested in the situation where the forcing is random, specifically, in the
ergodic properties responsible for the long-term statistics of solutions. It is natural
to expect the existence of invariant distributions balancing the influx of the energy
pumped in by the external forcing and the dissipation of the energy at the shocks.
This problem was considered first in compact settings, and a complete description of
invariant distributions on a circle or, in the multi-dimensional version of the problem, on
a torus, was obtained in [10], [20], [14]. The existence and uniqueness of an invariant
distribution for the Burgers dynamics with random boundary conditions were proved
in [2].

In these cases, the existence and uniqueness of an invariant distribution on the set
of velocity profiles with a given average followed from the One Force — One Solution
Principle (1F1S) that asserts that for any v ∈ R and for almost every realization of the
forcing in the past, there is a unique velocity profile at the present that averages to v and
is compatible with the history of the forcing. For any v, the collection of those velocity
profiles indexed by all times t ∈ R forms a global solution that can be understood as a
random one-point pullback attractor. Moreover, the distribution of this global solution
at any fixed time is then a unique invariant distribution for the Markov semigroup
generated by the Burgers equation on velocity profiles averaging to v.

In turn, to establish 1F1S, it is natural to employ a variational characterization of
solutions called the Lax–Oleinik variational principle. To introduce it, we first represent
the velocity profile as u(t, x) = ∂xU(t, x), where the potential U(t, x) is a solution of the
Hamilton–Jacobi–Bellman (HJB) equation

∂tU(t, x) +
(∂xU(t, x))2

2
= F (t, x). (1.2)

The viscosity solution of the Cauchy problem for this equation with initial data U(t0, ·) =

U0(·) can be written as

U(t, x) = inf
γ:[t0,t]→R

{
U0(γ(t0)) +

1

2

∫ t

t0

γ̇2(s)ds+

∫ t

t0

F (s, γ(s))ds

}
, (1.3)

where the infimum is taken over all absolutely continuous curves γ satisfying γ(t) = x.
Then the solution u of the Burgers equation can be found either by u(t, x) = ∂xU(t, x) or
by using the slope of γ∗, the path on which the minimum in (1.3) is attained: u(t, x) =

γ̇∗(t). The latter is related to the fact that in the HJB equation (1.2) the Hamiltonian
is quadratic in ∂xU . The sum of the last two terms on the right-hand side of (1.3) is
often called the (Lagrangian) action of γ. The minimizing path γ∗ can be identified with
the trajectory of the particle that arrives to point x at time t. For most points (t, x) the
minimizer is unique. However, there are exceptional locations corresponding to shocks
where uniqueness does not hold.

This variational approach allows for an efficient analysis of the long term properties
of the system via studying the behavior of minimizers over long time intervals. The
Burgers equation preserves mean velocity and is invariant with respect to Galilean shear
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Burgers equation with random kick forcing

space-time transformations, so without loss of generality let us confine ourselves to zero
average velocity.

To establish 1F1S, one has to prove that minimizers over increasing time intervals
in the past converge to limiting trajectories, so called one-sided infinite minimizers.
These are paths with infinite history such that every finite restriction of such a path
minimizes Lagrangian action over paths with the same endpoints. The entire space-time
is foliated by these trajectories, and one can use their slopes to construct a global
solution and prove that any global solution has to agree with this field of one-sided
minimizers.

For this program to go through one needs an additional property of one-sided mini-
mizers called hyperbolicity. It means that those paths approach each other in the past
sufficiently fast. The reason to consider this property is that in order to use (1.3) in
the proof that the velocity profile obtained from slopes of the minimizers is, in fact, a
global solution, one has to keep track not only of the velocity, but also of the velocity
potential. To find the increment of the velocity potential, we can consider two minimizers
approaching each other in reverse time. Although the action corresponding to each of
them is infinite, one still can make sense of the difference in action between these paths
since there will be a diminishingly small contribution from times in a distant past. This
analysis leads to an analogy between the global solution of the HJB equation (1.2) and
Busemann functions in last passage percolation theory.

For 1D periodic (or circle) setting hyperbolicity was first established in [10] and
recently a simpler proof exploiting the rigidity of 1D geometry was constructed in [6].

The first attempts of extending this program to noncompact settings, i.e., evolution
of velocity profiles on the entire real line with no periodicity or other compactness
assumption were [15], [27], and [3]. In [3], the program was carried out including the
characterization of the global solution as a one-point random attractor and a description
of the domain of attraction. However, the random forcing still was mostly concentrated
in a compact set, so one can describe this kind of setting as quasi-compact.

In [4], the entire program was carried out for a fully noncompact space-time stationary
setting on the real line. The forcing in [4] was assumed to be concentrated in Poissonian
points in space-time. The similarity of this problem to last passage or first passage
percolation and to Hammersley’s process was exploited to adapt the methods of [21],
[17], [18], [19], [29], [8], [7] to this setting, although several technical difficulties had to
be overcome.

For every value v ∈ R, the paper [4] constructs a unique family one-sided infinite
minimizers with asymptotic slope v. The following strengthening of the hyperbolicity
property was instrumental in constructing a global solution, proving its uniqueness and
attraction property: with probability 1, any two of these one-sided minimizers coalesce,
i.e., they meet at one of the Poissonian points and coincide from that point on. This
strengthening of the hyperbolicity property is certainly an artefact of the model where
the forcing is concentrated in a discrete set of space-time points.

The goal of this paper is to go through the same program in a noncompact setting
where the forcing is still space-time stationary, but it is applied at discrete times, so
that it is smooth in space and delta-type in time. From the fluid dynamics perspective it
means that in our model, at every time n ∈ Z the velocity profile experiences a kick, i.e.,
the velocity of the particle at site x ∈ R is altered by a random amount Fω(n, x), where
Fω(n, x) is a space-time stationary process. Between these kicks the velocity profile
undergoes unforced Burgers evolution, i.e., each particle travels with a constant velocity
at least before it collides with other particles. For simplicity of the analysis we will
adopt a concrete “shot-noise” model for spatially smooth process Fω(n, ·) such that these
kicks at different times are i.i.d. We note that kick forcing models have been studied for
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Burgers turbulence in compact setting in [20], [6] and for 2D Navier–Stokes system in
[22], [23], [24].

Although some steps in the program for the kicked forcing model are mere adapta-
tions of the methods of the previous paper [4], we have to tackle some new obstacles
here. For example, some arguments that explicitly used the discrete nature of the
Poisson point ensemble have to be enhanced or replaced with new ones.

One crucial difference between the old and new settings is that we can no longer
rely on coalescence of one-sided minimizers. It is clear that distinct minimizers do not
coalesce (all minimizers are solutions to the second-order Euler–Lagrange difference
equation, so if two minimizers coincide with each other at two consecutive times, they
are identical), but it is still not known if they are asymptotic to each other, i.e., if
hyperbolicity holds true. This poses a serious difficulty. However, in this paper, we are
able to replace hyperbolicity by a much weaker property. We prove that for any two
one-sided minimizers γ1, γ2 with the same asymptotic slope,

lim inf
m→−∞

|γ1
m − γ2

m|
|m|−1

= 0. (1.4)

In other words, we prove that one-sided minimizers approach each other rather closely
along a sequence (m′) of pairing times. It turns out that this weak hyperbolicity is
sufficient to prove existence and uniqueness of a global solution of the Burgers equation
in our model, and to study its domain of attraction. Of course, some limit transitions
m→ −∞ are replaced by limits along the pairing sequence of times m′. In particular,
our definition of Busemann function is based on partial limits.

The new argument we use to prove (1.4) (we actually prove and use a slightly stronger
statement) is quite soft and can be applied to other last passage percolation type models
and random Lagrangian systems. However, we work only with the Burgers equation,
since for this model system we can also complete all other steps of the program.

Let us also mention important recent work on geodesics and Busemann functions for
discrete lattice models in [9], [12], [26], [13].

In the next two sections we explain the setting, main results, and the layout of the
rest of the paper.

Acknowledgements. I am grateful to Konstantin Khanin and Yakov Sinai who
introduced me to the ergodic theory of the stochastic Burgers equation around the year
of 2000. I am thankful to Eric Cator for educating me in last passage percolation. I
thank Kostya and Eric for discussions at very early stages of this work. I would also
like to thank the Banff International Research Station for Mathematical Innovation and
Discovery where these discussions took place in July of 2012. I gratefully acknowledge
partial support from NSF, grant DMS-1460595.

2 The setting

We will consider the dynamics under which at time n ∈ Z the velocity profile receives
an instantaneous random kick and then for time 1 solves the unforced Burgers equation
before it receives the next kick, and so on. The forcing potential we want to consider
can be informally written as ∑

n∈Z
Fω(n, x)δ(t− n)

where δ(·) is Dirac’s delta function and Fω(n, ·), n ∈ Z is an i.i.d. sequence of stationary
processes indexed by x ∈ R with finite range of dependence defined on a probability
space (Ω,F ,P).
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Burgers equation with random kick forcing

For simplicity, we work with a more concrete model where the random potential
(Fω(n, x))(n,x)∈Z×R is given by a shot-noise random field

Fω(n, x) =
∑
i

ξn,iφ

(
x− ηn,i
κn,i

)
, n ∈ Z, x ∈ R,

where for each n ∈ Z, {ηn,i}i∈N is a Poisson point field on {n} × R driven by the
Lebesgue measure, φ : R→ R is a measurable function with bounded support, and the
amplitudes (ξn,i)i∈N and scaling factors (κn,i)i∈N are two bounded i.i.d. sequences, jointly
independent of each other and the point configuration {ηn,i}. There is no canonical
enumeration of Poissonian points, so let us now give a more precise and enumeration-
independent definition of this model of point influences using the approach of marked
Poisson processes.

Let φ : R→ R be a differentiable even function such that the set {x ∈ R : φ(x) 6= 0}
is non-empty and contained in (−Rx, Rx) for some constant Rx > 0. Let {(τ, η, ξ, κ)} be a
Poisson process on Z×R×R×R with driving measure

µ(dn× dx× dv × du) = Pτ (dn)× Pη(dx)× Pξ(dv)× Pκ(du), (2.1)

where Pτ is the counting measure on Z, Pη is the Lebesgue measure on R, Pξ and Pκ
are Borel probability measures on R concentrated, respectively, on [−Rξ, Rξ] and on
(0, Rκ] for some positive constants Rξ, Rκ. To simplify the reasoning, we will assume that
Rx = Rξ = Rκ = 1, although extending all our results to the arbitrary values of these
constants is straightforward. Some arguments will be easier if we assume that

Pξ((0, Rξ]) > 0, and Pξ([−Rξ, 0)) > 0, (2.2)

although it is not necessary to make this assumption.
Let us recall the definition of a Poisson point field. It is convenient to assume

that the probability space Ω0 is the space of locally finite point configurations ω on
Z×R×R×R = Z×R3. This space is equipped with σ-algebra F0 generated by maps
ω 7→ ω(B), for bounded Borel sets B ⊂ Z × R3, where ω(B) denotes the number of
configuration points of ω in B. Then the probability measure P0 on F0 is defined via
the following two properties: (i) for any mutually disjoint bounded Borel sets B1, . . . , Bk,
ω(B1), . . . , ω(Bk) are independent random variables; (ii) for a bounded Borel set B, ω(B)

has Poisson distribution with parameter µ(B), where µ is defined in (2.1).
The space-time projections {(τ, η)} of Poissonian {(τ, η, ξ, κ)} points form a Poisson

point field in Z × R driven by Pτ (dn) × Pη(dx). We will often refer to these points as
space-time footprints of the original configuration points.

Now we can define the random kick forcing potential via

Fω(n, x) =
∑

η,ξ,κ:(n,η,ξ,κ)∈ω

ξφ

(
x− η
κ

)
, (n, x) ∈ Z×R. (2.3)

This sum is well-defined and differentiable for all (n, x) because nonzero contributions
come only from finitely many Poissonian points with spatial component η satisfying
|η − x| ≤ 1. We will often omit the argument ω of F (·) = Fω(·) for brevity.

It is immediate to see that F (·) is a space-time stationary process, i.e., the finite-
dimensional distributions of (F (n, x))(n,x)∈Z×R are the same as those of (F (n + k, x +

y))(n,x)∈Z×R for any choice of (k, y) ∈ Z×R. Moreover, (Fω(n, ·))n∈Z, is an i.i.d. sequence
of stationary processes. Each of these stationary processes has radius of dependence
bounded by 2, i.e., σ-algebras generated by (F (n, x))x≤r and (F (n, x))x≥r+2 are inde-
pendent for any choice of r ∈ R, since the former depends on Poissonian points with
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Burgers equation with random kick forcing

spatial component η satisfying η ≤ r + 1, the latter depends on Poissonian points with η
satisfying η ≥ r+ 1, and the probability to have η = r+ 1 is zero. Let us also note that all
moments of

F ∗ω(n, x) = max{|F ∗ω(n, y)| : y ∈ [x, x+ 1]}, (2.4)

are finite and can be easily estimated by the corresponding moments of the Poisson
distribution. Moreover,

ϕ(λ) = lnEeλ|F
∗
ω(n,x)| ∈ (0,∞), λ ∈ R. (2.5)

It will be convenient in this paper to work on a modified probability space

Ω =

{
ω ∈ Ω0 : lim

|x|→∞

Fω(n, x)

|x|
= 0, n ∈ Z

}
∈ F0

instead of Ω0. The reason is that P0(Ω) = 1 due to the stationarity and moment assump-
tions on Fω, and, as we will see later, on this set the Burgers dynamical system possesses
some nice properties. Moreover, Ω is invariant under (i) Galilean space-time shear trans-
formations La,v moving each Poissonian point (τ, η, ξ, κ) to (τ, η+a+vτ, ξ, κ), and (ii) space-
time translations θn,x moving each Poissonian point (τ, η, ξ, κ) to (τ − n, η − x, ξ, κ). Here
n ∈ Z, x ∈ R, v ∈ R.

We denote the restrictions of F0 and P0 onto Ω by F and P. From now on for
convenience we remove from Ω0 the zero measure complement to Ω and work with the
probability space (Ω,F ,P). Under this transition, all the distributional properties are
preserved.

Let us now define the Burgers dynamics associated with this random forcing potential
and the corresponding dynamics for HJB equation. The latter may be called Hamilton –
Jacobi – Bellman – Hopf – Lax – Oleinik (HJBHLO) dynamics.

The space of velocity potentials that we will consider will be H, the space of all locally
Lipschitz functions W : R→ R satisfying

lim inf
x→±∞

W (x)

|x|
> −∞.

For a function W ∈ H, a forcing realization Fω determined by ω ∈ Ω, times n0, n1 ∈ Z
satisfying n0 < n1, any a sequence of points γ = (γn0 , . . . , γn1), we define the following
action:

An0n1
ω (W,γ) = W (γn0) + Sn0,n1(γ) + Fn0,n1

ω (γ), (2.6)

where

Sn0,n1(γ) =
1

2

n1−1∑
k=n0

(γk+1 − γk)2

is the kinetic action associated to γ, and the potential action

Fn0,n1
ω (γ) =

n1−1∑
k=n0

Fω(k, γk) (2.7)

is responsible for the interaction with the external forcing potential Fω. Sometimes, we
will identify the sequence of points γ with the planar broken line consisting of segments
connecting (n0, γn0

) to (n1, γn1
), (n1, γn1

) to (n2, γn2
), etc. Very often we will omit the

argument ω of An0n1
ω (W,γ), Fn0,n1

ω (γ) and other random variables.
Let us now consider the following minimization problem:

An0,n1
ω (W,γ)→ inf, (2.8)

γn1
= x,
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Burgers equation with random kick forcing

where the infimum is taken over all sequences γ : {n0, . . . , n1} → R. Let us denote the
infimum value in (2.8) by Φn0,n1

ω W (x).
If n1 = n0 + 1, then one can use the optimization problem (2.8) to find the viscosity

solution of the unforced Burgers equation or the associated HJB equation with initial
condition W (·) + Fω(n0, ·), see, e.g., [11, Section 3.4]. Namely, Φn0,n0+1

ω W (x) is well-
defined and equal to the solution of the HJB at point (n0 + 1, x); and ∂xΦn0,n0+1

ω W (x) is
the solution of the Burgers equation at point x. The latter can be also represented as
x− γn0 , where (γn0 , γn0+1) = (γn0 , x) is the optimal two-point path solving (2.8).

Note that in [11], the assumption of global Lipschitzness of the initial data is used.
Although that assumption does not hold for W (·) + Fω(n0, ·), it can be easily replaced
by local Lipschitzness and at most linear growth to −∞. These properties hold for all
ω ∈ Ω.

The general optimization problem (2.8) with an arbitrary gap between n0 and n1

corresponds to iterative applications of this one-step procedure, so the result matches
the informal description of the dynamics given in the introduction: at time n0 we start
with a velocity profile W , alter it by F (n0, ·), then we solve the unforced Burgers–HJB
equation for time 1, and then, at time n0 + 1 we alter the solution by F (n0 + 1, ·) and
then solve unforced Burgers equation for time 1, etc.

The family of random nonlinear operators (Φn0,n1
ω )n0≤n1

is the main object in this
paper. Our main goal is to understand the asymptotics of Φn0,n1

ω as n1 − n0 →∞. Let us
now formulate the most important preliminary facts about the operators Φn0,n1

ω . We do
not give proofs since they are just minor modifications of the textbook material in [11,
Section 3.4].

Lemma 2.1. For any ω ∈ Ω, W ∈ H and n0, n1 ∈ Z with n0 < n1, the following holds
true:

1. For any x ∈ R there is a path γ(x) that realizes the minimum in (2.8). In particular,
the operator Φn0,n1

ω is well-defined on H.

2. The function x 7→ Φn0,n1
ω W (x) is locally Lipschitz.

3. The set O of points x such that the variational problem (2.8) admits a unique
solution is open and dense in R. The complement to O is at most countable.

4. If x0 ∈ O, then Φn0,n1
ω W (x) is differentiable at x0 with respect to x and

∂xΦn0,n1
ω W (x)

∣∣
x=x0

= γn1(x0)− γn1−1(x0).

If γ : [n0, n1]→ R is the continuous curve linearly interpolating between points of
the sequence γ(x0), then the right-hand side of this identity can be interpreted as
γ̇(n1), where the dot denotes (left) time derivative.

5. If x0 ∈ R \ O, then the right and left derivatives of Φn0,n1
ω W (x) w.r.t. x are well-

defined at x0. They are equal to the slope of, respectively, the leftmost and rightmost
minimizers realizing Φn0,n1

ω W (x0).

6. Let γ(x) denote a minimizer with endpoint (n1, x). Then for every pair of points
x, y ∈ R satisfying x < y, and every n ∈ {n0, . . . , n1}, γn(x) < γn(y). Moreover,
limx→±∞ γn(x) = ±∞.

Optimal sequences γ(x) and their continuous interpolations can be viewed as particle
trajectories.

The following statement is the cocycle property for the operator family (Φn0,n1
ω ). It is

a direct consequence of Bellman’s principle of dynamic programming.
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Lemma 2.2. If ω ∈ Ω1, then for any W ∈ H, any n0, n1, n2 satisfying n0 < n1 < n2,
Φn1,n2
ω Φn0,n1

ω W is well-defined and equals Φn0,n2
ω W . For any x ∈ R, if γ is an optimal path

realizing Φn0,n2
ω W (x), then the restrictions of γ onto {n0, . . . , n1} and {n1, . . . , n2} are

optimal paths realizing Φn0,n1
ω W (γn1

) and Φn1,n2
ω (Φn0,n1

ω W )(x).

Introducing Φnω = Φ0,n
ω we can rewrite the cocycle property as

Φn1+n2
ω W = Φn2

θn1ωΦn1
ω W, n1, n2 ∈ N, ω ∈ Ω,

where θn = θn,0 denotes the time-shift on point configurations by n time units.
Let us denote

H(v−, v+) =

{
W ∈ H : lim

x→±∞

W (x)

x
= v±

}
, v−, v+ ∈ R.

The following result shows that these spaces are invariant under HJBHLO dynamics.
Along with Lemma 2.2 it allows to treat the dynamics as a random dynamical system
with perfect cocycle property (see, e.g., [1, Section 1.1]). We give a proof of this lemma
in Section 12.

Lemma 2.3. For any ω ∈ Ω, for any n0, n1 with n0 < n1,

1. If W ∈ H, then Φn0,n1
ω W ∈ H.

2. If W ∈ H(v−, v+) for some v−, v+, then Φn0,n1
ω W ∈ H(v−, v+).

In nonrandom setting the family of operators (Φn0,n1) constructed via a variational
problem of type (2.8) is called a HJBHLO evolution semigroup, see [28, Definition 7.33],
but in our setting it would be more precise to call it a HJBHLO cocycle.

Potentials are naturally defined up to an additive constant. It is thus convenient
to work with Ĥ, the space of equivalence classes of potentials from H. Also, we can
introduce spaces Ĥ(v−, v+) as classes of potentials in H(v−, v+) coinciding up to an
additive constant. The cocycle Φ can be projected on Ĥ in a natural way. We denote the
resulting cocycle on Ĥ by Φ̂.

Since a velocity field determines its potential uniquely up to an additive constant, we
can also introduce dynamics on velocity fields. We can introduce the Burgers dynamics
on the space H′ of functions w (actually, classes of equivalence of functions since we do
not distinguish two functions coinciding almost everywhere) such that for some function
W ∈ H and almost every x, w(x) = W ′(x) = ∂xW (x). For all v−, v − + ∈ R, we can
also introduce H′(v−, v+), the space consisting of functions w such that the potential W
defined by W (x) =

∫ x
0
w(y)dy belongs to H(v−, v+). One can interpret this space as the

space of velocity profile with well-defined one-sided averages v− and v+.
We will write w2 = Ψn0,n1

ω w1 if w1 = W ′1, w2 = W ′2, and W2 = Φn0,n1
ω W1 for some

W1,W2 ∈ H. Of course, the maps belonging to the Burgers cocycle (Ψn0,n1) map H′ into
itself and the spaces H′(v−, v+) are also invariant. However, these maps have additional
regularity that we are about to exploit.

It follows from Lemma 2.1 that for all ω ∈ Ω and every w ∈ H′ there is a cadlag
version of Ψn0,n1

ω w (i.e., it is right-continuous and has left limits at all points) such that
the function

M(x) = x−Ψn0,n1
ω w(x), x ∈ R,

is strictly increasing and satisfies limx→±∞M(x) = ±∞. In particular, M has at most
countably many discontinuities, and so does Ψn0,n1

ω w. In the fluid dynamics interpretation,
the particle that arrives at x at time n1 with velocity Ψn0,n1

ω w(x), is located at M(x) at
time n1 − 1. Monotonicity means that the paths of those particles do not cross before n1.
Each discontinuity of M corresponds to a pair of particles arriving at the same point
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at time n1 with different velocities and creating a shock. Let us also note that one can
recover Ψn0,n1

ω w from M :

Ψn0,n1
ω w(x) = x−M(x), x ∈ R.

This description of solutions of the Burgers equation in terms of monotone maps
allows one to study the Burgers dynamics as evolution in spacesG orG(v−, v+) consisting
of cadlag functions w ∈ H′ (or, respectively, w ∈ H′(v−, v+)) such that Mw : x 7→ x− w(x)

is an increasing function satisfying limx→±∞M(x) = ±∞. Of course, Mw retains all the
information about w since w(x) = x−Mw(x).

There are some advantages of work with monotone functions. For example, we will
utilize the following mode of convergence: a sequence of G-functions (wn)n∈N converges
to w ∈ G iff limn→∞Mwn(x) = Mw(x) for all x in C(w), the set of continuity points x
of w. This is equivalent to limn→∞ wn(x) = w(x) for all x ∈ C(w). It is easy to define a
metric on G compatible with this mode of convergence. We discuss one such metric in
Section 11.

3 Main results

We say that u(n, x) = uω(n, x), (n, x) ∈ Z × R is a global solution for the cocycle
Ψ if there is a set Ω′ ∈ F with P(Ω′) = 1 such that for all ω ∈ Ω′, all m and n with
m < n, we have Ψm,n

ω uω(m, ·) = uω(n, ·). We can also introduce the global solution as a
skew-invariant function: uω(x), x ∈ R is called skew-invariant if there is a set Ω′ ∈ F with
P(Ω′) = 1 such that for any n ∈ Z, θnΩ′ = Ω′, and for any n ∈ N and ω ∈ Ω′, Ψn

ωuω = uθnω.
Here and further on θn = θn,0 is the time shift on Ω (we recall that space-time shifts θn,x

were introduced in the previous section).

If uω(x) is a skew-invariant function, then uω(n, x) = uθnω(x) is a global solution. One
can naturally view the potentials of uω(x) and uω(n, x) as a skew-invariant function and
global solution for the cocycle Φ̂.

To state our first result, a description of global solutions, we need more notation.
For a subset A of Z×R, we denote by FA the σ-sub-algebra of F generated by ω|A, the
restriction of Poisson point configuration ω to A×R×R, i.e., by random variables ω(B)

where B runs through Borel subsets of A×R×R. In other words, FA is generated by
Poissonian points with space-time footprint in A.

Theorem 3.1. For every v ∈ R there is a unique (up to zero-measure modifications)
skew-invariant function uv : Ω → H′ such that for almost every ω ∈ Ω, uv,ω ∈ H′(v, v).
The potential Uv,ω defined by Uv,ω(x) =

∫ x
uv,ω(y)dy is a unique skew-invariant potential

in Ĥ(v, v). The skew-invariant functions Uv,ω and uv,ω are measurable w.r.t. F|(−N)×R, i.e.,
they depend only on the history of the forcing. The spatial random process (uv,ω(x))x∈R
is stationary and ergodic with respect to space shifts.

Notice that this theorem can be interpreted as a 1F1S Principle: for any velocity
value v, the solution at time 0 with mean velocity v is uniquely determined by the history
of the forcing: uv,ω

a.s.
= χv(ω|(−N)×R×R×R) for some deterministic functional χv of the

point configurations in the past, i.e., in (−N)×R×R×R (we actually describe χv in the
proof, it is constructed via one-sided action minimizers). Since the forcing is stationary
in time, we obtain that uv,θnω is a stationary process in n, and the distribution of uv,ω
is an invariant distribution for the corresponding Markov semi-group, concentrated on
H′(v, v).

The next result shows that each of the global solutions constructed in Theorem 3.1
plays the role of a one-point pullback attractor. To describe the domains of attraction
we need to introduce several assumptions on initial potentials W ∈ H. Namely, we
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will assume that there is v ∈ R such that W and v satisfy one of the following sets of
conditions:

v = 0,

lim inf
x→+∞

W (x)

x
≥ 0, (3.1)

lim sup
x→−∞

W (x)

x
≤ 0,

or

v > 0,

lim
x→−∞

W (x)

x
= v, (3.2)

lim inf
x→+∞

W (x)

x
> −v,

or

v < 0,

lim
x→+∞

W (x)

x
= v, (3.3)

lim sup
x→−∞

W (x)

x
< −v.

Condition (3.1) means that there is no macroscopic flux of particles from infinity
toward the origin for the initial velocity profile W ′. In particular, any W ∈ H(0, 0) or any
W ∈ H(v−, v+) with v− ≤ 0 and v+ ≥ 0 satisfies (3.1). It is natural to call the arising
phenomenon a rarefaction fan. We will see that in this case the long-term behavior is
described by the global solution u0 with mean velocity v = 0.

Condition (3.2) means that the initial velocity profile W ′ creates the influx of particles
from −∞ with effective velocity v ≥ 0, and the influence of the particles at +∞ is not as
strong. In particular, any W ∈ H(v, v+) with v ≥ 0 and v+ > −v (e.g., v+ = v) satisfies
(3.2). We will see that in this case the long-term behavior is described by the global
solution uv.

Condition (3.3) describes a situation symmetric to (3.2), where in the long run the
system is dominated by the flux of particles from +∞.

The following precise statement supplements Theorem 3.1 and describes the basins
of attraction of the global solutions uv in terms of conditions (3.1)–(3.3).

Theorem 3.2. For every v ∈ R, there is a set Ω̃ ∈ F with P(Ω̃) = 1 such that if ω ∈ Ω̃,
W ∈ H, and one of conditions (3.1),(3.2),(3.3) holds, then w = W ′ belongs to the domain
of pullback attraction of uv in the sense of space G: for any n ∈ R and any x ∈ C(uv(n, ·)),

lim
m→−∞

Ψm,n
ω w(x) = uv,ω(n, x).

The last statement of the theorem implies that for every v ∈ R, the invariant measure
on H′(v, v) described after Theorem 3.1 is unique and for any initial condition w =

W ′ ∈ H′ satisfying one of conditions (3.1),(3.2), and (3.3), the distribution of the random
velocity profile at time n weakly converges to the unique stationary distribution on
H′(v, v) as n → ∞, in the topology of the space G. However, our approach does not
produce any convergence rate estimates.

The proofs of Theorems 3.1 and 3.2 are given in Sections 9 and 10, but most of the
preparatory work is carried out in Sections 4–8.
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The long-term behavior of the cocycles Φ and Ψ defined through the optimization
problem (2.8) depends on the asymptotic behavior of the action minimizers over long
time intervals. The natural notion that plays a crucial role in this paper is the notion of
backward one-sided infinite minimizers or geodesics. A path γ : {. . . , n− 1, n} → R with
γ(n) = x is called a backward one-sided minimizer if its restriction onto any time interval
{m, . . . , n} provides the minimum to the action Am,nω (W, ·) defined in (2.6) among paths
connecting γ(m) to x.

It can be shown (see Lemma 7.1) that any backward minimizer γ has an asymptotic
slope v = limn→−∞(γ(n)/n). On the other hand, for every space-time point (n, x) and
every v ∈ R there is a backward minimizer with slope v and endpoint (n, x). The following
theorem describes the most important properties of backward minimizers associated
with the random potential Fω.

Theorem 3.3. For every v ∈ R there is a set of full measure Ω′ such that for all ω ∈ Ω′

and all (n, x) ∈ Z×R except countably many there is a unique backward minimizer with
asymptotic slope v. For ω ∈ Ω′, any two one-sided minimizers γ1, γ2 with asymptotic
slope v, satisfy

lim inf
m→−∞

|γ1
m − γ2

m|
|m|−1

= 0. (3.4)

The proof of this core statement of this paper is spread over Sections 4 through 8.
Sections 4 through 7 are technical extensions of the corresponding results for the Poisso-
nian forcing from [4], although there are some new difficulties and some simplifications.
In Section 4, we apply the sub-additive ergodic theorem to derive the linear growth
of action. In Section 5, we prove quantitative estimates on deviations from the linear
growth. We use these results in Section 6 to analyze deviations of optimal paths from
straight lines. In Section 7, we prove the existence of infinite one-sided optimal paths
and their properties. In Section 8, we prove a weak hyperbolicity property that is actually
slightly stronger than (3.4). This is where new ideas are introduced and the exposition
differs significantly from [4], where every two minimizers are proved to coalesce in
finite time. It is this weak hyperbolicity that is used in Sections 9 and 10 to construct
global solutions and study their properties. In Section 11, we discuss the convergence in
space G. Section 12 contains some auxiliary lemmas.

4 Optimal action asymptotics and the shape function

Let us start with a note that the definition of the action has a slight time-reversal
asymmetry: in the potential action, one of the endpoints of {n0, . . . , n1} is included in
summation in (2.7), and the other is not, whereas sometimes it is useful or convenient to
work with the time-reversed version of the potential action and define it as

Fn0,n1
ω (γ) =

n1∑
k=n0+1

Fω(k, γk). (4.1)

Several estimates in this and forthcoming sections hold true for both definitions of the
action, and to avoid separate discussion of both cases we will introduce an additional
parameter p ∈ [0, 1] and use the following generalized definition of the potential action:

Fn0,n1
ω (γ) = pFω(n0, γn0) +

n1−1∑
k=n0+1

Fω(k, γk) + (1− p)Fω(n1, γn1) (4.2)

=

n1−1∑
k=n0

(
pFω(k, γk) + (1− p)Fω(k + 1, γk+1)

)
.

If p = 1 or 0, then we recover definition (2.7) or, respectively, (4.1).
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In this section we study the asymptotic behavior of the optimal action between
space-time points (n, x) and (m, y) denoted by

An,m(x, y) = An,mω (x, y) = min
γ:γn=x,γm=y

An,mω (0, γ) (4.3)

= min
γ:γn=x,γm=y

(Sn,m(γ) + Fn,mω (γ)) .

We will use the generalized action that involves generalized potential action Fn0,n1
ω (γ)

defined in (4.2) for an arbitrary value of parameter p ∈ [0, 1].
Although to construct stationary solutions for the Burgers equation, we will need the

asymptotic behavior as n→ −∞, it is more convenient and equally useful to work with
positive times and studying the limit m→ −∞.

We begin with some simple observations on Galilean shear transformations of the
point field.

Lemma 4.1. Let a, v ∈ R and let L = La,v be a transformation of space-time defined by
L(n, x) = (n, x+ a+ vn).

1. Suppose that γ is a path defined on a time interval {n0, . . . , n1} and let γ̄ be defined
by (n, γ̄n) = L(n, γn). Then

Sn0,n1(γ̄) = Sn0,n1(γ) + (γn1
− γn0

)v +
(n1 − n0)v2

2
.

2. For any ω ∈ Ω, let us define Lω by pointwise application of L to the space-time
footprint of configuration points: (τ, η, ξ, κ) ∈ ω iff (τ, η + a + vτ, ξ, κ) ∈ Lω. Then
for any ω ∈ Ω, any time interval {n0, . . . , n1}, and and any points x0, x1, x̄0, x̄1 ∈ R
satisfying L(n0, x0) = (n0, x̄0) and L(n1, x1) = (n1, x̄1),

An0,n1

Lω (x̄0, x̄1) = An0,n1
ω (x0, x1) + (x1 − x0)v +

(n1 − n0)v2

2
.

Also, minimizers realizing An0,n1
ω (x0, x1) are mapped onto minimizers realizing

An0,n1

Lω (x̄0, x̄1) under L.

3. The measure P is invariant under L.

4. For any points x0, x1, x̄0, x̄1 and any time interval {n0, . . . , n1},

An0,n1(x̄0, x̄1)
distr
= An0,n1(x0, x1) + (x1 − x0)v +

(n1 − n0)v2

2
,

where

v =
(x̄1 − x1)− (x̄0 − x0)

n1 − n0
.

Proof: The first part of the Lemma is a simple computation:

Sn0,n1(γ̄) =
1

2

n1−1∑
n=n0

(γn+1 + v(n+ 1)− γn − vn)2 =
1

2

n1−1∑
n=n0

(γn+1 − γn + v)2

=
1

2

n1−1∑
n=n0

(γn+1 − γn)2 + v

n1−1∑
n=n0

(γn+1 − γn) +
1

2

n1−1∑
n=n0

v2.

The second part follows from the first one. To prove the third part, it is sufficient to
notice that the measure µ driving the Poisson process is invariant under L. The last
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part is a consequence of the previous two parts, once one finds an appropriate Galilean
transformation sending (n0, x0) to (n0, x̄0) and (n1, x1) to (n1, x̄1). 2

The next useful property is the sub-additivity of action along any direction: for any
velocity v ∈ R, and any n,m ≥ 0, we have

A0,n+m(0, v(n+m)) ≤ A0,n(0, vn) +An,n+m(vn, v(n+m)).

This means that we can apply Kingman’s sub-additive ergodic theorem to the function
n 7→ A0,n(0, vn) if we can show that −EA0,n(0, vn) grows at most linearly in n. We claim
this linear bound in the following result:

Lemma 4.2. Let v ∈ R. There exist constants C = C(v) > 0 and n0 > 0 such that for all
n ≥ n0

E|A0,n(0, vn)| ≤ Cn.

Proof: This statement and its proof are adapted from [4]. Lemma 4.1 implies that it is
enough to prove this for v = 0. So in this proof we work with An = An(0, 0).

Let (γ0, . . . γn) be a path realizing An. Let us denote

Σ(γ) =

n−1∑
j=0

kj , (4.4)

where kj = |[γj+1]− [γj ]|+ 1, and set

En,m = {Σ(γ) = m for some γ realizing An}.

Lemma 4.3. There are constants C1 > 0 and R ∈ N such that if m ≥ Rn, then

P(En,m) ≤ exp(−C1m
2/n).

Proof: If a path γ realizes En,m, then

An ≥ 1

2

n−1∑
j=0

(kj − 2)
2
+ − F

∗
ω([γ0], . . . , [γn]), (4.5)

where a+ = 0 ∨ a, and

F ∗ω(i0, . . . , in) =

n∑
j=0

F ∗ω(j, ij), i0, . . . , in ∈ Z.

We recall that F ∗ω(j, k) was introduced in (2.4). Since An is optimal,

An ≤ A0,n
ω (0, 0, . . . , 0) = pFω(0, 0) +

n−1∑
j=1

Fω(j, 0) + (1− p)Fω(n, 0). (4.6)

Since a 7→ (a− 2)2
+ is convex, we can use Jensen’s inequality to see that

1

2

n−1∑
j=0

(kj − 2)
2
+ ≥

1

2
n
(m
n
− 2
)2

+
.

Combining this with (4.5) and (4.6), we obtain

pFω(0, 0) +

n−1∑
j=1

Fω(j, 0) + (1− p)Fω(n, 0) ≥ 1

2
n
(m
n
− 2
)2

+
− F ∗ω([γ0], . . . , [γn]).
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We conclude that on En,m,

2F ∗ω,n,m ≥
1

2
n
(m
n
− 2
)2

+
, (4.7)

where

F ∗ω,n,m = max

{
F ∗ω(i0, . . . , in) :

n−1∑
j=0

(|ij+1 − ij |+ 1) ≤ m

}
.

So we need a tail estimate for F ∗ω,n,m. Since the distribution of F ∗ω(i0, . . . , in) does not
depend on the choice of (i0, . . . , in), we obtain that for any r > 0,

P{F ∗ω,n,m > r} ≤ Nn,mP


n∑
j=0

F ∗ω(0, j) > r

 , (4.8)

where Nn,m is the size of the set {(i0, . . . , in) :
∑n−1
j=0 (|ij+1 − ij | + 1) ≤ m}, n ≤ m. Let

us estimate Nn,m first. The number of ways to represent m as a sum of n ordered
nonnegative terms is

(
m+n−1
n−1

)
≤ 2m+n−1. Since we also may choose the sign of ij+1 − ij ,

we obtain an additional factor of 2n, so we obtain a crude estimate

Nn,m ≤ eρm, m ≥ n, (4.9)

for some ρ > 0. We also have,

P


n∑
j=0

F ∗ω(0, j) > r

 ≤ e−λrEeλ∑n
j=0 F

∗
ω(0,j) = e−λr+ϕ(λ)(n+1), r, λ > 0.

and, combining this with (4.8) and (4.9), we obtain

P{F ∗ω,n,m > my} ≤ eρm−λmy+ϕ(λ)(n+1) ≤ em(ρ−λy+2ϕ(λ)), m ≥ n.

So choosing first any λ > 0, then any y0 > 0 such that

ρ− λy0 + 2ϕ(λ) < −λy0/2,

we obtain

P{F ∗ω,n,m > my} ≤ e−Kmy, y ≥ y0, m ≥ n, (4.10)

where K = λ/2. If R > 2 and m ≥ Rn, then using (4.7), denoting

y =
1

4

n

m

(m
n
− 2
)2

=
1

4

(m− 2n)2

nm
≥ m(1− 2R−1)2

4n
,

noticing that the right-hand side is bounded below by R(1− 2R−1)2/4 which exceeds y0

for sufficiently large R, we obtain from (4.10):

P(Em,n) ≤ e−Kmy ≤ e−Km
m(1−2R−1)2

4n ,

and the lemma follows with C1 = K(1− 2R−1)2/4. 2

Lemma 4.4. For any k ≥ 1, there is ck > 0 such that for all n,m ∈ N with m ≥ n,

EF ∗kω,n,m ≤ ckmk.
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Proof: Clearly,

EF ∗kω,n,m = EF ∗kω,n,m1{F∗ω,n,m≤y0m} + EF ∗kω,n,m1{F∗ω,n,m>y0m}.

We can bound the first term simply by (y0m)k. For the second term we can use (4.10):

EF ∗kω,n,m1{F∗ω,n,m>y0m} ≤
∞∑
i=0

((y0 + i+ 1)m)kP{F ∗ω,n,m ∈ ((y0 + i)m, (y0 + i+ 1)m]}

≤
∞∑
i=0

(y0 + i+ 1)kmkP{F ∗ω,n,m > (y0 + i)m}

≤ mk
∞∑
i=0

(y0 + i+ 1)ke−Km(y0+i).

This series is uniformly convergent in m, so the proof is completed. 2

We can now prove Lemma 4.2. From (4.5) and (4.6) we know that |An| ≤ F ∗ω,n,m
on En,m. So, using Lemmas 4.3 and 4.4, and the fact that F ∗ω,n,m is nondecreasing in m,
we obtain

E|An| = E
∑

n≤m≤Rn

|An|1En,m +
∑
m>Rn

E|An|1En,m

≤ E
∑

n≤m≤Rn

F ∗ω,n,m1En,m +
∑
m>Rn

EF ∗ω,n,m1En,m

≤ EF ∗ω,n,Rn +
∑
m>Rn

√
EF ∗2ω,n,m

√
P(En,m)

≤ c1Rn+
√
c2
∑
m>Rn

m exp(−C1m
2/(2n))

≤ Cn,

for C big enough. 2

In fact, we can use the last calculation to obtain the following generalization of
Lemma 4.2 for higher moments of An:

Lemma 4.5. Let k ∈ N. Then there is a constant C(k) > 0 such that

E|An|k ≤ C(k)nk, n ∈ N.

Remark 4.6. In fact, the analysis of all the proofs in this section shows that all the
results above are valid if An is replaced by

Ãn = min
γ∈Γn

(
S0,n(γ) + F 0,n

ω (γ)
)
,

where Γn is any set satisfying two conditions: (i) all elements of Γn are paths γ :

{0, . . . , n} → R such that γ0 = 0, γn = 0; (ii) Γn contains the path (0, 0, . . . , 0). We will
need this in the proof of Lemma 5.6.

Now we arrive to the main result of this section describing the shape function α for
our model.

Lemma 4.7. For each v ∈ R, the number α(v) ∈ R defined by

α(v) = inf
n

EA0,n(0, vn)

n
, (4.11)
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satisfies
A0,n(0, vn)

n
→ α(v), a.s. and in L1, n→∞, (4.12)

and does not depend on the choice of constant p in definition (4.2). Moreover,

α(v) = α(0) +
v2

2
, v ∈ R. (4.13)

Proof: The number α(v) is finite due to Lemma 4.2. The sub-additive ergodic theorem
now implies (4.12). The independence on p follows from

lim
n→∞

Fω(n, vn)

n
= lim
n→∞

Fω(0, 0)

n
= 0, a.s. and in L1.

To prove (4.13) we notice that the Galilean shear map (n, x) 7→ (n, x+ vn) transforms
the paths connecting (0, 0) to (n, 0) into paths connecting (0, 0) to (n, vn). Lemma 4.1
implies that under this map the optimal action over these paths is altered by a determin-
istic correction v2n/2, but the measure P is invariant under the lift of this transformation
onto Ω, so the lemma follows. 2

We know now from (4.12) that A0,n(0, vn) ∼ α(v)n as n → ∞ with probability 1.
However, this is not enough for our purposes since we need quantitative estimates on
deviations of A0,n(0, vn) from α(v)n. This is the material of the next section.

5 Concentration inequality for optimal action

The goal of this section is to prove a concentration inequality forAn(vn) = An(0, vn) =

Anω(0, vn) = A0,n
ω (0, vn). The methods are similar to those of [4], except for some technical

moments. In particular, we use the Azuma–Hoeffding inequality instead of the Kesten
inequality. Throughout this section we work with the version of action defined in (4.2).

Theorem 5.1. There are positive constants c0, c1, c2, c3, c4 such that for any v ∈ R, all
n > c0, and all u ∈ (c3n

1/2 ln2 n, c4n
3/2 lnn],

P{|An(0, vn)− α(v)n| > u} ≤ c1 exp
{
−c2

u

n1/2 lnn

}
.

Remark 5.2. In our setting one can also prove a similar bound for small values of n, but
we will mostly need the theorem as it is stated.

Due to the invariance under shear transformations (Lemmas 4.1 and 4.7), it is
sufficient to prove this theorem for v = 0. We will first derive a similar inequality
with α(0)n replaced by EAn, and then we will have to estimate the corresponding
approximation error.

Lemma 5.3. There are positive constants b0, b1, b2, b3, b4 such that for all n > b0 and all
u ∈ (b3n

1/2 lnn, b4n
3/2 lnn],

P{|An − EAn| > u} ≤ b1 exp
{
−b2

u

n1/2 lnn

}
.

We will need an estimate on probabilities of the following events:

Bn(u) =

{
max

0≤k≤n
|γk| > u for some γ realizing An

}
.

Lemma 5.4. There is a constant C2 > 0 such that if n ∈ N and u ≥ Rn, then

P(Bn(u)) ≤ C2 exp(−C1u
2/n),

where constants C1 and R were introduced in Lemma 4.3.
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Burgers equation with random kick forcing

Proof: If max0≤k≤n |γk| > u, then Σ(γ) ≥ u. Lemma 4.3 implies

P(Bn(u)) ≤
∑
m≥u

exp(−C1m
2/n)

≤ exp(−C1u
2/n)

∑
m≥u

exp(−C1(m2 − u2)/n)

≤ exp(−C1u
2/n)

∑
m≥u

exp(−C1R(m− u))

≤ C2 exp(−C1u
2/n),

where C2 =
∑∞
m=0 e

−C1Rm. 2

Having Lemma 5.4 in mind, we define Ãn to be the optimal action over all paths
connecting (0, 0) to (0, n) and staying within [−Rn,Rn].

Lemma 5.5. Let constants R,C1, C2 be defined in Lemmas 4.3 and 5.4. For any n ∈ N,

P{An 6= Ãn} ≤ C2 exp(−R2C1n).

Proof: It is sufficient to notice that

P{An 6= Ãn} ≤ P(Bn(Rn))

and apply Lemma 5.4. 2

Lemma 5.6. There is a constant D1 such that for all n ∈ N,

0 ≤ EÃn − EAn ≤ E(|An|+ |Ãn|)1Bn(Rn) ≤ D1.

Proof: The first inequality is obvious, since An ≤ Ãn. We also have

EÃn − EAn ≤ E(Ãn −An)1Bn(Rn)

≤ E|An|1Bn(Rn) + E|Ãn|1Bn(Rn). (5.1)

Lemmas 4.5 and 5.4 give:

E|An|1Bn(Rn) ≤
√

E|An|2
√

P(Bn(Rn))

≤
√
C(2)n

√
C2 exp(−C1R2n).

Remark 4.6 shows that the same estimate applies to Ãn:

E|Ãn|1Bn(Rn) ≤
√
C(2)n

√
C2 exp(−C1R2n),

so the the right-hand side of (5.1) is uniformly bounded in n. 2

As in [4], we could use Kesten’s concentration inequality to estimate the deviations
of Ãn from its mean. However, in our discrete time setting, we also can use a more basic
tool, the following Azuma–Hoeffding inequality [16]:

Lemma 5.7. Let (Fk)0≤k≤N be a filtration. Suppose (Mk)0≤k≤N is a martingale with
respect to (Fk)0≤k≤N such that for some constant c > 0 the increments ∆k = Mk −Mk−1

satisfy
|∆k| < c, k = 1, . . . , N.

Then

P{MN −M0 ≥ x} ≤ exp

(
− x2

2Nc2

)
.
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Burgers equation with random kick forcing

To use this lemma in our framework, we must introduce an appropriate martingale.
For a given natural n ≥ 2, we will use N = n− 1. To define a filtration (Fk)0≤k≤n−1, we
introduce Qj = {j} × [−Rn,Rn) and Q+

j = {j} × [−Rn− 1, Rn+ 1), j = 1, . . . , n− 1.
Using the notation introduced before the statement of Theorem 3.1, we set F0 =

{∅,Ω} and

Fk = σ
(
ω
∣∣⋃k

j=1Q
+
j

)
, k = 1, . . . , n− 1.

We introduce a martingale (Mk,Fk)0≤k≤n−1 by

Mk = E(Ãn|Fk), 0 ≤ k ≤ n− 1.

Note that M0 = EÃn and Mn−1 = Ãn.
Let us denote by Pk the distribution of ω

∣∣
Q+
k

on the sample space Ωk of finite point

configurations in Q+
k ×R×R. For ω, σ ∈

∏n−1
k=1 Ωk we write

[ω, σ]k = (ω1, . . . , ωk, σk+1, . . . , σN ) ∈
n−1∏
k=1

Ωk.

Then, for k = 1, . . . , n− 1,

∆k(ω1, . . . , ωk) := Mk −Mk−1

=

∫
Ãn[ω,σ]k

n−1∏
j=k+1

dPj(σj)−
∫
Ãn[ω,σ]k−1

n−1∏
j=k

dPj(σj)

=

∫ (
Ãn[ω,σ]k

− Ãn[ω,σ]k−1

) n−1∏
j=k

dPj(σj).

For any set B ∈ Z×R, we will denote

F ∗ω(B) = sup{|Fω(n, x)| : (n, x) ∈ B}. (5.2)

Lemma 5.8. Let k ∈ {1, . . . , n− 1}. Then

|Ãn[ω,σ]k
− Ãn[ω,σ]k−1

| ≤ F ∗[ω,σ]k
(Qk) + F ∗[ω,σ]k−1

(Qk).

Proof: Changing ωk to σk we change the action of any path passing through Qk by at
most F ∗[ω,σ]k

(Qk) + F ∗[ω,σ]k−1
(Qk), and the statement follows. 2

The next step is to introduce a truncation of configuration ω. For j ∈ {1, . . . , n− 1}
and i ∈ {−Rn− 1, . . . , Rn}, we denote Qji = {j} × [i, i+ 1). We define ω̄ by erasing all
configuration points of ω in each block Qji × R × R with ω(Qji × R × R) > b lnn. The
value b > 0 will be chosen later. The restrictions of ω̄ to blocks Qji ×R×R are mutually
independent. Lemma 5.8 applies to truncated configurations as well. Since for any
segment {k} × [a, b] and any point configuration ω,

F ∗ω({k} × [a, b]) ≤ ω({k} × [a− 1, b+ 1]×R×R),

Lemma 5.8 gives:

|Ãn[ω̄,σ̄]k
− Ãn[ω̄,σ̄]k−1

| ≤ 6b lnn, k = 1, . . . , n− 1,

where σ̄ is the truncation of σ. Therefore,

|∆k(ω̄1, . . . , ω̄k)| ≤
∫

6b lnn

N∏
j=k

dPj(σj) ≤ 6b lnn.

Now Lemma 5.7 directly implies the following estimate:

EJP 21 (2016), paper 37.
Page 18/50

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4413
http://www.imstat.org/ejp/
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Lemma 5.9. For all x > 0,

P
{
|Ãn(ω̄)− EÃn(ω̄)| > x

}
≤ 2 exp

(
− x2

72(n− 1)b2 ln2 n

)
.

Let us now estimate the discrepancy between Ãn(ω̄) and Ãn(ω):

Lemma 5.10. If b > 2, then there is n0 such that for any x > 0 and any n > n0,

P{|Ãn(ω̄)− Ãn(ω)| > x} ≤ 2e−x.

Proof: Let us define ξji = ω(Qji ×R×R). Then

|Ãn(ω̄)− Ãn(ω)| ≤
∑
j,i

ξji1{ξji>b lnn}.

By Markov’s inequality and mutual independence of ξji,

P

∑
j,i

ξji1{ξji>b lnn} > x

 ≤ e−x [Eeξ1{ξ>b lnn}
]2R(n+1)(n−1)

,

where ξ is a r.v. with the same distribution as any of ξji. The lemma will follow from

lim
n→∞

[
Eeξ1{ξ>b ln t}

]2R(n+1)(n−1)
= 1,

which is implied by

Eeξ1{ξ>b lnn} ≤ 1 +
Ee2ξ

eb lnn
≤ 1 +

Ee2ξ

nb
,

and b > 2. 2

We also need an estimate on the discrepancy between EÃn(ω̄) and EÃn(ω). It is a
direct consequence of Lemma 5.10:

Lemma 5.11. There is a constant D2 such that for all n ∈ N,

|EÃn(ω̄)− EÃn(ω)| < D2.

Proof of Lemma 5.3: Lemmas 5.6 and 5.11 imply that for u > D1 +D2

P{|An(ω)− EAn(ω)| > u} ≤P{|An(ω)− Ãn(ω)| > (u−D1 −D2)/3}
+ P{|Ãn(ω)− Ãn(ω̄)| > (u−D1 −D2)/3}
+ P{|Ãn(ω̄)− EÃn(ω̄)| > (u−D1 −D2)/3}.

The lemma follows from the estimates of the three terms provided by Lemmas 5.5, 5.9,
and 5.10. 2

The following lemma gives an estimate on how EAn changes under argument doubling.
We will use this lemma estimate on EAn − α(0)n and bridge the gap between Lemma 5.3
and Theorem 5.1.

Lemma 5.12. There is a number b0 > 0 such that for any n > n0,

0 ≤ 2EAn − EA2n ≤ b0n1/2 ln2 n.

Proof: The first inequality follows from A0,2n(0, 0) ≤ A0,n(0, 0) +An,2n(0, 0). Let us prove
the second one.
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Let γ be the (rightmost, for definiteness) minimizer from (0, 0) to (2n, 0). Then

A2n ≥ min
|x|≤2Rn

A0,n(0, x) + min
|x|≤2Rn

An,2n(x, 0) +A2n1{max0≤k≤2n |γk|>2Rn}.

Therefore, by Lemma 5.6,

EA2n ≥ E min
|x|≤2Rn

An(0, x) + E min
|x|≤2Rn

An,2n(x, 0)−D1. (5.3)

We will estimate the first term of the right-hand side. To that end we define In =

{−2Rn, . . . , 2Rn − 2, 2Rn − 1} and Īn = In ∪ {2Rn}. Let now γ be the minimizer from
(0, 0) to (x, n), with x ∈ [k, k + 1] for some k ∈ In. Let us introduce γ+ and γ− satisfying
γ+
j = γ−j = γj for all j < n and γ+

n = k + 1, γ−n = k. Comparing γ to γ+ if γn−1 ≥ k + 1/2

and to γ− if γn−1 < k + 1/2, we see that

S0,n(γ±) ≤ S0,n−1(γ) +
(1/2)2

2
= S0,n−1(γ) +

1

8
,

so

An(x) ≥ min{An(k), An(k + 1)} − 2F ∗(n, k)− 1

8
.

But

Emax
k∈In

F ∗ω(n, k) ≤ 3Emax
{
ω({n} × [k, k + 1]) : k = −2Rn− 1, . . . , k = 2Rn+ 1

}
,

and so there is a constant c > 0 such that

E min
|x|≤2Rn

An(0, x) ≥ E min
k∈Īn

An(0, k)− c(lnn+ 1).

Lemma 4.1 implies minx EA
n(x) = EAn(0). Therefore, denoting

Xn = max
k∈Īn
{(EAn(k)−An(k))+},

we obtain

E min
|x|≤2Rn

An(0, x) ≥ min
k∈Īn

EAn(k)− EXn − c(lnn+ 1)

≥ EAn − EXn − c(lnn+ 1), (5.4)

Similarly, we obtain for the second term in (5.3)

E min
|x|≤2Rn

An,2n(x, 0) ≥ EAn,2n(0, 0)− EYn − c(lnn+ 1), (5.5)

where
Yn = max

k∈Īn
{(EAn,2n(k, 0)−An,2n(k, 0))+}.

For a constant r to be determined later, we introduce the event

E = {Xn + Yn ≤ r(ln2 n)
√
n}.

Then
Xn + Yn ≤ r(ln2 n)

√
n1E + (Xn + Yn)1Ec .

Therefore,
E(Xn + Yn) ≤ r(ln2 n)

√
n+

√
EX2

nP(Ec) +
√
EY 2

nP(Ec). (5.6)
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Let us estimate the second term in (5.6). According to Lemma 4.1, the random
variables An(k)− EAn(k), k ∈ In have the same distribution, so replacing the maximum
in the definition of X2

n with summation we obtain

EX2
n ≤ (4Rn+ 1)E(An − EAn)2

+ ≤ (4Rn+ 1)E(An)2 ≤ Cn3, (5.7)

for some C > 0 and all n ∈ N, where we used Lemma 4.5 in the last inequality.
Also, Lemma 5.3 shows that

P(Ec) ≤
∑
k∈Īn

P
{
An(k)− EAn(k) >

r

2
(ln2 n)

√
n
}

+
∑
k∈Īn

P
{
An,2n(k, 0)− EAn,2n(k, 0) >

r

2
(ln2 n)

√
n
}

(5.8)

≤2(4Rn+ 1)b1 exp

(
−b2

r lnn

2

)
.

The same estimates apply to the third term in (5.6), and we can now finish the proof
by choosing r to be large enough and combining estimates (5.3)–(5.8). 2

With this lemma at hand we can now use a discrete version of Lemma 4.2 from [19].
Its proof literally repeats the proof of the original lemma where the argument of a and g
was assumed to be continuous.

Lemma 5.13. Suppose the functions a : N → R and g : N → R+ satisfy the following
conditions: a(n)/n → ν ∈ R and g(n)/n → 0 as n → ∞, a(2n) ≥ 2a(n) − g(n) and
ψ ≡ lim supn→∞ g(2n)/g(n) < 2. Then, for any c > 1/(2− ψ), and for all large n,

a(n) ≤ νn+ cg(n).

Taking a(n) = EAn, ν = α(0), g(n) = b0n
1/2 ln2 n, ψ =

√
2, c = 2, we conclude that for

b′0 = 2b0 and large n,
0 ≤ EAn − α(0)n ≤ b′0n1/2 ln2 n,

and Theorem 5.1 follows from this estimate, Lemma 5.3, and the shear invariance
established in Lemma 4.1. 2

6 Straightness estimates

As in [4],[8], and [7] we keep following the ideas from [19] and [29], adapting the
program to our specific situation. The step that we make in this section is to estimate
deviations of minimizers from straight lines.

We will need a curvature estimate for the shape function constructed in Section 4.
Recalling that the shape function α : R → R was introduced in Lemma 4.7, we define
α0 = α(0) and extend α to a function on N×R:

α(n, x) = nα
(x
n

)
= n

(
α0 +

1

2

(x
n

)2
)

= α0n+
x2

2n
, (n, x) ∈ N×R.

We remark that, in contrast with the situation in [4], we do not know the sign of α0.
Lemma 4.7 implies that for all n ∈ N and x ∈ R,

lim
m→∞

A0,mn(0,mx)

m

a.s.
= α(n, x).

We need a convexity estimate of this function α. For (n, x) ∈ N×R, L > 0, we define

C(n, x, L) :=
{

(m, y) ∈ Z×R : m ∈ {n+ 1, . . . , 2n} and
∣∣∣y − m

n
x
∣∣∣ ≤ L} .
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So C(n, x, L) is a parallelogram of width 2L with one pair of sides parallel to the x-
coordinate axis and the other one parallel to [(n, x), (2n, 2x)] (for any two points p, q on
the plane R×R ⊃ Z×R, [p, q] denotes the straight line segment connecting these two
points):

∂±S C(n, x, L) :=
{

(m, y) ∈ Z×R : m ∈ {n+ 1, . . . , 2n} and y − m

n
x = ±L

}
.

The union of ∂+
S C(n, x, L) and ∂−S C(n, x, L) is

∂SC(n, x, L) :=
{

(m, y) ∈ Z×R : m ∈ {n+ 1, . . . , 2n} and
∣∣∣y − m

n
x
∣∣∣ = L

}
.

The following lemma will play the role of Lemma 2.1 in [29].

Lemma 6.1. For all (n, x), (m, y) ∈ N×R, such that m > n, we have

α(m− n, y − x) + α(n, x) = α(m, y) +
n

2m(m− n)

(
y − m

n
x
)2

. (6.1)

Proof:

α(m− n, y − x) + α(n, x) = α0(m− n) +
(y − x)2

2(m− n)
+ α0n+

x2

2n

= α0m+
(y − x)2

2(m− n)
+
x2

2n

= α(m, y)− y2

2m
+

(y − x)2

2(m− n)
+
x2

2n
.

Identity (6.1) now follows from a straightforward comparison of the algebraic expressions
involved.

One may also argue that for fixed m, α(m−n, y− x) +α(n, x)−α(m, y) is a quadratic
function in y. The minimum of this function equals 0, and is attained at ỹ such that (m, ỹ)

is a multiple of (n, x), i.e., ỹ = mx/n. The lemma follows by computing the coefficient in
front of y2. 2

This deterministic convexity lemma, together with the concentration bound of Sec-
tion 5, will help us to show that minimizers cannot deviate from a straight line too
much.

We will need one more auxiliary estimate:

Lemma 6.2. Let c1, c2 > 0, 0 < n1 < n2 < n1 + c1, |x| < c2n1. Then

α(n1, x)− α(n2, x) < |α0|c1 + c22c1.

Proof: A straightforward computation gives:

α(n1, x)− α(n2, x) = α0n1 +
x2

2n1
− α0n2 +

x2

2n2

≤ |α0||n1 − n2|+
x2

2

n2 − n1

n2
1

,

and the lemma follows. 2

For (n, x), (m, y) ∈ Z × R satisfying n < m, we denote by γ(n,x),(m,y) the rightmost
point-to-point minimizer connecting (n, x) to (m, y) and by A((n, x), (m, y)) = An,m(x, y)

the associated optimal action. For (n, x), (m, y) ∈ Z×R with n < m, we define the events

G+((n, x), (m, y)) =
{
∃0̃ ∈ [0, 1], ∃ỹ > y : γ(0,0̃),(m,ỹ)

n ∈ [x, x+ 1]
}
,

G−((n, x), (m, y)) =
{
∃0̃ ∈ [0, 1], ∃ỹ < y : γ(0,0̃),(m,ỹ)

n ∈ [x, x+ 1]
}
.
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These events say that there is a minimizer starting close to 0 at time 0, ending at time m
to the right (respectively, left) of y, and passing close to x at time n. To estimate the
probability of this event, we first have to control the action to and from points close
to (n, x).

Lemma 6.3. Suppose (n, x), (m, y) ∈ Z ×R and n < m. Let x̃ ∈ [x, x + 1], ỹ ∈ [y, y + 1].
Then

An,m(x̃, ỹ) ≥ An−1,m+1(x, y)− F ∗(n− 1, x)− F ∗(n, x)− F ∗(m, y)− F ∗(m+ 1, y)− 1.

If, additionally, n+ 3 ≤ m, then

An,m(x̃, ỹ) ≤ An+1,m−1(x, y) + F ∗(n, x) + F ∗(n+ 1, x) + F ∗(m− 1, y) + F ∗(m, y) + 1.

Proof: We recall that we work with action defined by (4.2). The first inequality is a result
of a direct comparison of the action of γ(n−1,x),(m+1,y) to that of

γk =


x, k = n− 1,

γ
(n,x),(m,y)
k , k ∈ {n, . . . ,m},
y, k = m+ 1.

The second inequality is a result of a direct comparison of the action of

γk =


x̃, k = n,

γ
(n+1,x),(m−1,y)
k , k ∈ {n+ 1, . . . ,m− 1},
ỹ, k = m,

to the action of γ(n,x̃),(m,ỹ). 2

Lemma 6.4. Fix δ ∈ (0, 1/4) and v > 0. There exist constants c1, c2,M > 0 such that for
all (n, x) with n > M and (m, y) ∈ ∂±S C(n, x, n1−δ), with m > n, we have

P(G±((n, x), (m, y))) ≤ c1 exp
(
−c2n1/2−2δ/ lnn

)
.

Proof: Let us consider only the case of ∂+
S C(n, x, n1−δ) and G+((n, x), (m, y)). The shear

invariance implies that it is sufficient to consider x = −1, so [x, x+ 1] = [−1, 0].
On G+((n, x), (m, y)), there are numbers 0̃ ∈ [0, 1], x̃ ∈ [−1, 0] and ỹ > y such that

A0,m(0̃, ỹ) = A0,n(0̃, x̃) +An,m(x̃, ỹ) (6.2)

Let i = [y]. Let us first consider the case where i ≥ 4Rn. Then

n

m
i > Rm. (6.3)

By monotonicity of dependence of point-to-point minimizers on the endpoints, we have
γ

(0,0),(m,i)
n < 0. It means that on [0,m], γ(0,0),(m,i) deviates from a straight line by ni/m.

Denoting the latter event by B(n,m, i), we can use Lemma 5.4 to write:

P(B(n,m, i)) ≤ C2 exp(−C1(ni/m)2/m) ≤ C2 exp(−C1i
2n2/m3).

For B(n,m, 4Rn+) =
⋃
i≥4RnB(n,m, i), we obtain

P (B(n,m, 4Rn+)) ≤ C2

∑
i≥4Rn

exp(−C1i
2n2/m3).
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Since the first term in this series is bounded by C2 exp(−2C1R
2n), and the ratio of two

consecutive terms is bounded by exp(−C1R), we conclude that

P (B(n,m, 4Rn+)) ≤ C3 exp(−2C1R
2n). (6.4)

Let us now consider the case where [ỹ] = i ∈ (n1−δ − 1, 4Rn). Lemma 6.3 implies that

A0,m(0̃, ỹ) ≤ A1,m−1(0, i) + F ∗(0, 0) + F ∗(0, 1) + F ∗(m− 1, i) + F ∗(m, i) + 1,

A0,n(0̃, x̃) ≥ A−1,n+1(0, 0))− F ∗(−1, 0)− F ∗(0, 0)− F ∗(n, 0)− F ∗(n+ 1, 0)− 1,

An,m(x̃, ỹ) ≥ An−1,m+1(0, i)− F ∗(n− 1, 0)− F ∗(n, 0)− F ∗(m, i)− F ∗(m+ 1, i)− 1.

Along with (6.2), this implies

A1,m−1(0, i)−A−1,n+1(0, 0)−An−1,m+1(0, i) ≥ −3−X(n,m, i), (6.5)

where

X(n,m, i) =F ∗(0, 0) + F ∗(0, 1) + F ∗(m− 1, i) + F ∗(m, i)

+ F ∗(−1, 0) + F ∗(0, 0) + F ∗(n, 0) + F ∗(n+ 1, 0)

+ F ∗(n− 1, 0) + F ∗(n, 0) + F ∗(m, i) + F ∗(m+ 1, i).

Let us now approximate the left-hand side of (6.5) using the extension of shape function α
introduced in the beginning of this section. Lemma 6.2 implies that there is a constant L
such that under the constraints we have imposed on n,m, and i,

α(m− 2, i) < α(m+ 2, i) + L (6.6)

and

α(n+ 2, 0) > α(n, 0)− L. (6.7)

Since m+ 2 ≤ 3n and m+ 2− n ≤ 2n, Lemma 6.1 implies that

α(m− n+ 2, i) + α(n, 0) ≥ α(m+ 2, i) +
i2

12n
. (6.8)

Combining (6.6),(6.7),(6.8) with (6.5), we obtain

(A1,m−1(0, i)− α(m− 2, i))− (A−1,n+1(0, 0)− α(n+ 2, 0))

− (An−1,m+1(0, i)− α(m− n+ 2, i)) +X(n,m, i)

≥− 3− 2L+
i2

12n
≥ i2

15n

if n > M for sufficiently large M .
Let us define events

E1(n,m, i) =

{
A1,m−1(0, i)− α(m− 2, i) ≥ i2

60n

}
,

E2(n,m, i) =

{
A−1,n+1(0, 0)− α(n+ 2, 0) ≤ − i2

60n

}
,

E3(n,m, i) =

{
An−1,m+1(0, i)− α(m− n+ 2, i) ≤ − i2

60n

}
,

E4(n,m, i) =

{
X(n,m, i) ≥ i2

60n

}
.
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We would like to show that for some constants c′1, c
′
2,

P(E1(n,m, i)) + P(E2(n,m, i)) + P(E3(n,m, i)) + P(E4(n,m, i))

≤ c′1 exp

(
−c′2

i2

n3/2 lnn

)
. (6.9)

Sufficient estimates for first two terms follow from Theorem 5.1, and for the last one
from (2.5). Let us estimate P(E3(n,m, i)). By the shear invariance,

P(E3(n,m, i)) = P

{
Am−n+2 − α0 · (m− n+ 2) ≤ − i2

60n

}
.

Since m− n+ 2 may be small, Theorem 5.1 does not apply directly. However, to estimate
the right-hand side, we notice that Am−n+2 ≥ Am −Am−n+2,m and, therefore,

P(E3(n,m, i)) ≤ P

{
|Am − α0m| ≥

i2

120n

}
+ P

{
|An−2 − α0(n− 2)| ≥ i2

120n

}
,

and the desired estimate follows from an application of Theorem 5.1 to both terms on
the right-hand side. So, (6.9) follows, and we obtain∑

n1−δ−1<i<4Rn

(P(E1(n,m, i)) + P(E2(n,m, i)) + P(E3(n,m, i)) + P(E4(n,m, i)))

≤c′1 exp

(
−c′2

n2−2δ

4n3/2 lnn

) ∑
i>n1−δ/2

exp

(
−c′2

i2 − n2−2δ/4

n3/2 lnn

)
,

where the series factor in the right-hand side is uniformly bounded in n. This, along
with (6.4) implies the theorem. 2

The above Lemma can be used to show that a minimal path starting close to the
origin and passing close to (n, x), with high probability will not exit the parallelogram
C(n, x, n1−δ) through the lateral sides.

Lemma 6.5. Fix δ ∈ (0, 1/4) and v > 0. There exist constants c1, c2,M, κ > 0 such that
for all (n, x) with n > M ,

P(H(n, x)) ≤ c1 exp (−c2nκ) ,

where H(n, x) = H+(n, x) ∪H−(n, x) and

H±(n, x) =
⋃

(m,y)∈∂±S C(n,x,n1−δ)

G±((n, x), (m, y)).

Proof: There are n admissible values of m, so we can apply Lemma 6.4 and choose any
κ ∈ (0, 1/2− 2δ). 2

Let us now prove δ-straightness of minimizers, as was introduced by Newman in [25].
For a path γ and n ∈ Z, we define

γout(n) = {(m, γm) : m > n}.

For v > 0 we define

Co(v) = {(n, x) ∈ N×R : |x| ≤ nv}.

For (n, x) ∈ N×R and η > 0 we define:

Co(n, x, η) = {(m, y) ∈ N×R : |y/m− x/n| ≤ η}. (6.10)
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Lemma 6.6 (δ-straightness). For δ ∈ (0, 1/4) and v > 0 we have with probability
one that there exists M = M(ω) > 0 (depending on v and δ) and nonrandom Q > 0

(depending only on δ), such that for all 0̃ ∈ [0, 1], for all (m, y) ∈ N × R+ and for all
(k, z) ∈ γ(0,0̃),(m,y) ∩ Co(v) with k > M , we have

γout(k) ⊂ Co(k, z,Qk−δ),

for γ = γ(0,0̃),(m,y).

This lemma states that if a minimizer starting near (0, 0) passes through a remote
point (k, z), it has to stay in a narrow cone around the ray N · (k, z).
Proof: Using Lemma 6.5 and the Borel–Cantelli Lemma, we see that for any v′ > v, there
is a (random) M > 0 such that if j > M and (j, i) ∈ Co(v′) then Hc(j, i) holds.

We conclude that any minimizer γ passing through {0}×[0, 1] and {j}×[i, i+1] ⊂ Co(v′)

with j > M satisfies ∣∣∣∣γn − ni

j

∣∣∣∣ < j1−δ, n ∈ {j + 1, . . . , 2j}. (6.11)

So for any such minimizer and point (k, z) satisfying the conditions of the lemma and M
chosen as above, we can choose numbers i0 = [z], i1, i2, . . . such that for each l, γ2lk ∈
[il, il + 1], and ∣∣∣∣γn − nil

2lk

∣∣∣∣ < (2lk)1−δ, n ∈ {2lk + 1, 2lk + 2, . . . 2l+1k}.

In particular, for all l
|il+1 − 2il| < (2lk)1−δ + 1 ≤ 2(2lk)1−δ.

Therefore, for all l,

|il − 2li0| ≤
l−1∑
j=0

2l−j−1|ij+1 − 2ij | ≤
l−1∑
j=0

2l−j−12(2jk)1−δ ≤ 2lk1−δ
l−1∑
i=0

2−δj ,

so ∣∣∣∣ il2lk
− i0
k

∣∣∣∣ ≤ ck−δ (6.12)

for some constant c.
For n ∈ [2lk, 2l+1], l ≥ 1, (6.11) implies∣∣∣∣γn − nil

2lk

∣∣∣∣ < (2lk)1−δ ≤ n1−δk1−δ. (6.13)

Now we obtain the lemma by combining (6.12) and (6.13). 2

As a side product of the proof of Lemma 6.6 we obtain the following statement:

Lemma 6.7. For δ ∈ (0, 1/4) and v > 0 there are nonrandom numbers M,Q,C1, C2, κ > 0

such that if

Gn =
{
∃0̃ ∈ [0, 1], (m, y) ∈ Z×R, (k, z) ∈ γ(0,0̃),(m,y) ∩ Co(v) :

k > n, γout(k) 6⊂ Co(k, z,Qk−δ)
}
,

then for n ≥M ,
P(Gn) ≤ C1e

−C2n
κ

.

Proof: Arguing as in the proof of Lemma 6.6, we obtain that if Gn holds, then at least
one event H(j, i) is violated for j ≥ n, and the lemma follows now from Lemma 6.5. 2
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7 Existence and uniqueness of semi-infinite minimizers

7.1 Existence

With δ-straightness at hand, we can prove some important properties of minimizing
paths. A semi-infinite minimizer starting at (n, x) ∈ Z×R is a path γ : {n, n+ 1, . . .} → R

such that γn = x and the restriction of γ to any finite time interval is a point-to-point
minimizer. We call (n, x) the endpoint of γ.

Lemma 7.1. With probability one, all semi-infinite minimizers have an asymptotic slope
(velocity, direction): for every minimizer γ, there is v ∈ R ∪ {±∞} depending on γ such
that

lim
n→∞

γn
n

= v.

Proof: Let us fix a sequence vn → ∞. Using the translation invariance of the forcing
potential F , with probability one, for any (j, i) ∈ Z2 we can choose a corresponding
sequence of constants Mn(j, i) > 0 such that the statement in Lemma 6.6 holds for the
entire sequence, for paths starting in {j} × [i, i+ 1].

Let us take some one-sided minimizer γ. If γk/k → +∞ or −∞, then the desired
statement is automatically true. In the opposite case we have

lim inf
k→∞

|γk|
k

<∞.

This implies that there exist n ≥ 1 and a sequence km →∞ such that |γkm |/km ≤ vn. Let
us and choose (j, i) ∈ Z2 such that (k1, γk1) ∈ j × [i, i+ 1]. For m large enough, we will
have that km > Mn(j, i) and, therefore,

γout(km) ⊂ (j, i) + Co(km − j, γkm − i, Q|km − j|−δ),

for a constant Q > 0 and m large enough. Therefore, v̄ = lim supk→∞ γk/k and v =

lim infk→∞ γk/k are well-defined and satisfy

v̄ − v < Q|km − j|−δ.

Since the right-hand side converges to 0 as m→∞, we obtain v̄ = v. 2

Lemma 7.2. Let γ be a point-to-point minimizer between (n, x) and (m, y). Then for all
k ∈ {n+ 1, . . . ,m− 1},

γk+1 − γk = γk − γk−1 + f(k, γk), (7.1)

or, equivalently,
γk+1 = 2γk − γk−1 + f(k, γk), (7.2)

where f(k, x) = ∂xF (k, x) for all (k, x) ∈ Z×R.

Proof: For all ω ∈ Ω, Fω is a sum of finitely many smooth functions on every interval
{k} × (x− 1, x+ 1). Therefore, action is a smooth function of paths. The lemma follows
from equating the partial derivative of the action with respect to γk to 0. 2

Equations 7.1 and (7.2) are discrete time versions of Euler–Lagrange equations. Their
meaning is that path γ instantaneously changes its velocity by f(k, γk) = ∂xF (k, γk) at
time k.

The following is the last technical lemma we need to prove existence of one-sided
minimizers.

Lemma 7.3. Let ni ↑ ∞ and xi, zi satisfy |xi| < |zi| and |xi − zi| > 2Rni for all i ∈ N.
Then with probability 1, there is N(ω) such that if ni > N(ω), then

|γ(0,0),(ni+1,xi)
ni | < zi.
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Proof: This Lemma is a consequence of Lemma 5.4 and the Borel–Cantelli Lemma. 2

The next lemma states existence of one-sided minimizers with a given asymptotic
slope and provides a way to construct them.

Lemma 7.4. With probability one, for every v ∈ R and for every sequence (mi, yi) ∈
Z×R with mi →∞ and

lim
i→∞

yi
mi

= v,

and for every (n, x) ∈ Z×R, there exists a subsequence (ik) such that the minimizing
paths γ(n,x),(mik ,yik ) converge pointwise to a semi-infinite minimizer starting at (n, x) and
with asymptotic slope equal to v.

Proof: Without loss of generality, we can assume that (n, x) ∈ {0} × [0, 1] since Z × R
can be represented as a countable union of shifts of this set. We fix δ ∈ (0, 1/4) and a
sequence vl →∞, and then choose Q > 0 and Ml = Ml(ω)→∞ such that the statement
of Lemma 6.6 holds for every triplet (vl,Ml, Q). From these triplets we choose a triplet
(v0,M,Q) such that v0 > v + 2QM−δ + 2R.

Passing to a subsequence if needed, we can make sure that (mi) is an increasing
sequence satisfying mi ≥M for all i, and (mj , yj) ∈ Co(1, v,Qm−δi ) for all j > i.

Consider the paths γj = γ(0,x),(mj ,yj). We claim that there is t ∈ N and C > 0 such
that infinitely many paths γj satisfy

|γjt |, |γ
j
t+1| < C. (7.3)

To see that, let us analyse the restrictions on paths γj that we have.
The situation where γj visits a point (p, z) ∈ Co(v0)\Co(1, v, 2Qm−δi ) satisfying p > M

is impossible since this path would violate the δ-straightness condition: the relevant
cone through (p, z) will not overlap with Co(1, v,Qm−δi ), and therefore it cannot contain
(mj , yj).

Suppose now that γj does not visit Co(v0) \ Co(1, v, 2Qm−δi ) but visits Co(v0)c. Then

there are points (p, z1) /∈ Co(v0) and (p+1, z2) ∈ Co(1, v, 2Qm−δi ) such that γ(0,x),(p+1,z2)
p =

z1. Let us consider the case z1 > v0p (the case z1 < −v0p is treated similarly). Due to

monotonicity of dependence of minimizers on endpoints, γ
(0,1),(p+1,(v+2Qm−δi )(p+1))
p > v0p.

Now Lemma 7.3 implies that this can happen only for finitely many values of p. So there
exists N such that no path γj visits Co(v0)c after time N .

Combining the claims of last two paragraphs, we obtain that for each i ≥ 1 and j > i,
the path γj lies in the cone Co(1, v, 2Qm−δi ) for times larger than mi ∨N . In particular,
our claim about(7.3) holds true.

Using compactness of [−C,C], we can find a subsequence of minimizers γj converging
to a limit at times t and t + 1. Let us recall that minimizers solve the Euler–Lagrange
equation (7.2). The values of a solution of (7.2) at t and t + 1 determine the entire
solution uniquely. Also, due to continuous dependence of solutions on the initial data,
the convergence of the solution at times t, t + 1 implies the pointwise convergence at
all times. Due to Lemma 12.1, the resulting limiting infinite trajectory is a one-sided
minimizer. Since all the pre-limiting finite minimizers lie within the cones Co(1, v, 2Qm−δi )

for sufficiently large times, so does the limiting one-sided minimizer. Therefore, its
asymptotic slope equals v. 2

7.2 Uniqueness

Let us now prove uniqueness of one-sided minimizers with given asymptotic slope.

Lemma 7.5. Let ω ∈ Ω and (n, x) ∈ Z × R. If γ1 and γ2 are two distinct one-sided
minimizers with endpoint (n, x), then they do not intersect as curves in in R×R.
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Proof: This follows directly from Lemma 12.2. 2

Lemma 7.6. Let (n, x) ∈ R×Z and v ∈ R. With probability 1, there is a unique one-sided
minimizer with slope v and endpoint (n, x).

Proof: We fix (n, x). First, we know that with probability 1, for each v ∈ R, there is a one-
sided minimizer with asymptotic slope v. To each direction v ∈ R we assign an interval
Iv = (av, bv), where av = inf γ1 and bv = sup γ1 with infimum and supremum taken over
all one-sided minimizers γ with slope v. If there is a unique one-sided minimizer with
slope v, we set Iv = ∅. Lemma 7.5 implies that if v1 < v2, then every minimizer γ1

with slope v1 and every minimizer γ2 with slope v2 satisfy γ1
k < γ2

k, for all times k > n.
In particular Iv1 ∩ Iv2 = ∅. Since one can place at most countably many disjoint open
intervals in R, we have that there are at most countably many values of v such that Iv 6= ∅,
i.e., av 6= bv. However, P{Iv 6= ∅} = p does not depend on v due to shear invariance.
Therefore, we can take any probability density f on R and write

p =

∫
R

P{Iv 6= ∅}f(v)dv =

∫
R

E1{Iv 6=∅}f(v)dv = E

∫
R

1{Iv 6=∅}f(v)dv = 0,

since Iv 6= ∅ can be true at most for countably many v. So, for any v ∈ R, P{Iv 6= ∅} = 0,
and the lemma follows. 2

Lemma 7.7. Under the conditions of the previous lemma, let γ denote the (a.s.-unique)
minimizer with endpoint (n, x) and slope v. Then there is an event of probability 1 such
that on that event, for any sequence of points (mi, yi) ∈ Z ×R such that mi → ∞ and

yi/mi → v and all k > n, we have γ(n,x),(mi,yi)
k → γk.

Proof: Let us check that for any sequence (i′) we can choose a subsequence (i′′) such that
the corresponding minimizers γ(n,x),(mi′′ ,yi′′ ) converge to γ. In fact, Lemma 7.4 allows
to find a subsubsequence (i′′) such that the corresponding minimizers γ(n,x),(mi′′ ,yi′′ )

converge pointwise to a limiting infinite one-sided minimizer. However, there is a unique
one-sided minimizer γ, and the desired convergence follows. 2

Lemma 7.8. Let (n, x) ∈ Z×R and v ∈ R. With probability 1, the following holds true:
there is a unique minimizer γ with endpoint (n, x) ∈ Z × R and slope v ∈ R; if y 6= x,
then no minimizer γ̃ with endpoint (n, y) and slope v can intersect γ.

Proof: Without loss of generality let us assume that y > x. Minimizers γ and γ̃ have
at most one intersection point (the argument for this claim is similar to the proof of
Lemma 12.2). Suppose they have exactly one intersection point. Then there is an integer
m > n such that γ̃ and γ intersect strictly between times m− 1 and m+ 1.

Let us consider the sequence of minimizers βk = γ(n,x),(k,γ̃k). Lemma 7.7 implies that
these minimizers converge pointwise to γ. In particular, βkj → γj , j ∈ {m− 1,m,m+ 1}.
Therefore, for sufficiently large k the point-to-point minimizers βk and γ̃ coincide at time
k and intersect between times m− 1 and m+ 1. This is a contradiction with Lemma 12.2,
and the proof is completed. 2

Lemma 7.9. Let v ∈ R. With probability 1 the following holds true: for all (n, x) ∈ Z×R
there is a one-sided minimizer with endpoint (n, x) and slope v; the minimizers are
unique for all (n, x) except countably many.

Proof: Let us fix v. Lemma 7.7 implies that with probability 1, unique minimizers γ(n, q)

with slope v exist simultaneously for all points (n, q) ∈ Z×Q. Let us take a point (n, x) ∈
Z×R with x /∈ Q. Due to Lemma 7.8, none of γ(n, q) with (n, q) ∈ Z× (Q ∩ [[x], [x] + 1])

intersect each other. In particular, they all are squeezed between γ(n, [x]) and γ(n, [x]+1).
So we can take a sequence of rational points qi ↓ x and use Lemma 12.1 to conclude that
the pointwise limit of γ(n, qi) is a minimizer with endpoint (n, x). Since this minimizer
γ+(n, x) lies between γ(n, [x]) and γ(n, [x] + 1), its asymptotic slope is also equal to v.
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We can also construct another minimizer γ−(n, x) for any point (n, x) taking left limits
qi ↑ x. The set of all points (n, x) such that these two minimizers do not coincide is at
most countable set since each discrepancy defines an interval and these intervals are
disjoint. Lemma 7.8 implies that if the limits on the right and on the left coincide, then
the constructed minimizer is unique, so there is at most countable set of shock points
where the minimizer is not unique. 2

A useful point of view at the field of minimizers is via families of monotone maps
associated with them. Namely, for each n ∈ Z we can consider a monotone right-
continuous map defined by x 7→ γ+

n−1(n, x). This map has at most countably many
discontinuities and, in terms of fluid dynamics, takes the particle that arrives to point
x at time n and outputs its position at time n− 1. Of course, one can also consider the
inverses of those maps. They are also monotone maps that have intervals of constancy
corresponding to particles absorbed into shocks. Compositions of maps from both
families correspond to particle dynamics over longer time intervals.

8 Weak hyperbolicity

Here we switch back to the point of view where the action is given by (2.6) and
one-sided minimizers are “backward” ones. For an endpoint (n, x) a one-sided minimizer
γ is defined on {. . . , n− 1, n}. Let us recall that the guiding idea is to construct global
solutions of the Burgers equation using these minimizers collecting information about
the history of the forcing before time n.

In contrast with the existing work on the Burgers equation and last-passage type
percolation models, for our model, we are not able to prove hyperbolicity, i.e., the
asymptotic closeness of one-sided minimizers in reverse time. However, in this section
we prove a weakened hyperbolicity property that is still useful for our model and
hopefully will be useful for other related models. The most important new ideas of this
paper are introduced in this section and the following ones.

From the previous section we know that for a fixed v ∈ R, with probability 1, to
each point (n, x) ∈ Z×R, we can assign the rightmost minimizer γ+(n, x) and leftmost
minimizer γ−(n, x) with slope v. Throughout this section we will be working with v = 0

(although the results are valid for all v ∈ R due to the Galilean invariance of the system),
so we suppress the dependence on v in the notation. For all but countably many (n, x),
γ+(n, x) = γ−(n, x).

Let us define for n ∈ Z and x, y ∈ R satisfying x ≤ y,

Wk(n, x, y) =

2∑
i=0

(γ+
k−i(n, y)− γ−k−i(n, x)), k ≤ n.

We also define Wk(n, x) = Wk(n, x, x) for (n, x) ∈ Z×R. Let us state the main result of
this section.

Theorem 8.1. With probability 1, for all n ∈ Z and x, y ∈ R satisfying x ≤ y,

lim inf
k→−∞

Wk(n, x, y)

(n− k)−1
= 0. (8.1)

This theorem is a corollary of the following fact:

Lemma 8.2. With probability 1, for all (n, x) ∈ Z×R,

lim inf
k→−∞

Wk(n, x)

(n− k)−1
= 0. (8.2)
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Derivation of Theorem 8.1 from Lemma 8.2: Suppose that with positive probability there
are n, x, y such that (8.1) fails. Our goal is to prove that then with positive probability
there is (n′, x′) such that (8.2) fails for (n, x) replaced with (n′, x′).

Due to space-time stationarity we obtain that there is r > 0 with the following
property: with positive probability there are x, y ∈ [−r, r] such that x < y, (8.1) fails, and
the unique one-sided minimizers γx for (0, x) and γy for (0, y) satisfy −r < γx−1 < γy−1 < r.
We denote this event by A.

Let B be the following event: Fω(0, w) = 0 for all w ∈ [−r, r] and Fω(0,−r − 1) ∨
Fω(0, r + 1) < −3(r + 1)2. Then P (B) > 0 due to (2.2) and the fact that Poisson random
variables are unbounded. Also, events A and B are independent since A depends only
on the realization of ω for negative times. Therefore, P(A ∩B) > 0.

Let us prove that if A and B hold, then no minimizer with endpoint (1, z) for some
z ∈ R can pass between x and y.

Suppose that the opposite holds, namely, there is z ∈ R such that p = γ0(1, z)

satisfies x < p < y. Then γ(1, z) has to pass between γx and γy, so, denoting q =

γ−1(1, z), we obtain −r < q < r. We claim that, contrary to our assumption, the
path (γ−1(1, z), γ0(1, z), γ1(1, z)) = ((−1, q), (0, p), (1, z)) is not a minimizing path between
(−1, q) and (1, z). Namely, we claim that one of the the paths γ+ = ((−1, q), (0, r+1), (1, z))

and γ−((−1, q), (0,−r−1), (1, z)) has smaller action on time interval {−1, 0, 1} than γ(1, z).
Suppose z > 0, then, noticing that the contribution of (−1, q) is common for all paths
under consideration and using the definition of B, we obtain

A−1,1(γ(1, z))−A−1,1(γ+) =
1

2
(p− q)2 +

1

2
(z − p)2 + Fω(0, p)

− 1

2
(r + 1− q)2 − 1

2
(z − r − 1)2 − Fω(0, r + 1)

>(r + 1− p)z ≥ 0,

and, similarly, for z < 0,
A−1,1(γ(1, z))−A−1,1(γ−) > 0.

In both cases we obtain a contradiction that proves our claim that on A∩B no one-sided
minimizer with endpoint after time 0, can pass between γx and γy.

Due to stationarity, it is impossible for all minimizers with endpoint after time 0 to
pass on the left of x at time 0, or for all of these minimizers to pass on the right of y at
time 0. Therefore, due to the monotonicity of the minimizers with respect to the endpoint,
there is z ∈ R such that for all z′ < z, γ0(1, z′) ≤ x and for all z′ > z, γ0(1, z′) ≥ y. In
particular (1, z) is a shock point, i.e., there are two one-sided minimizers with endpoint
(1, z), one passing on the right of (0, y) and another on the left of (0, x). Since (8.1) fails
and Wk(1, z) > Wk(0, x, y) for all k < 0, we conclude that on the event A ∩B of positive
probability, there is a point (1, z) such that (8.2) fails with (n, x) replaced by (1, z). This
contradicts Lemma 8.2, and the proof is completed. 2

For the proof of Lemma 8.2, we need some notation and auxiliary results.
For every shock (n, x) we define the area absorbed in this shock by

Λ(n, x) = {(m, y) : m ≤ n, γ−m(n, x) ≤ y ≤ γ+
m(n, x)}.

If (m, y) ∈ Λ(n, x), we write (n, x) ≺ (m, y) and say that (n, x) absorbs (m, y) or inherits
from (m, y). In that case (n, x) is called a successor of (m, y), and (m, y) is called a
predecessor of (n, x). We have chosen the notation to ensure that every shock counts as
its own predecessor.

Lemma 8.3. Every shock (n, x) has a unique successor at time n + 1, i.e., there is a
unique shock (n+ 1, z) such that (n+ 1, z) ≺ (n, x).
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Proof: As in the derivation of Theorem 8.1 from Lemma 8.2, it is not possible for all
minimizers corresponding to points (n+1, z′), z ∈ R to pass on one side of (n, x). So there
is a point z such that for all z′ < z, γn(n+ 1, z′) ≤ x and for all z′ > z, γn(n+ 1, z′) ≥ x.
Moreover, γn(n + 1, z′) cannot be continuous at z′ = z, since otherwise, due to the
Euler–Lagrange equation (7.2), γn−1(n + 1, z′) would also be continuous at z′ = z, in
contradiction with the presence of shock at (n, x). So, (n + 1, z) is a shock point and
(n+ 1, z) ≺ (n, x). 2

Two shocks (n, x) and (n, y) are said to merge or coalesce if they have a common
successor at time n+1, i.e., there is z ∈ R such that (n+1, z) ≺ (n, x) and (n+1, z) ≺ (n, y).

Lemma 8.4. Let N,M ∈ N, δ > 0. Then P (Bδ) = 0, where

Bδ =
{

there is r0 > 0 : for all r > r0, max
1≤i≤M

max
−N≤k≤i

γ+
k (i, r) > (1 + δ)r

}
.

Proof: The lemma follows directly from the fact that

X(r) = max
1≤i≤M

max
−N≤k≤i

γ+
k (i, r)− r, r ∈ R,

is a stationary process. 2

Proof of Lemma 8.2: Suppose that with positive probability there is a point (n, x) such
that

lim inf
k→−∞

Wk(n, x)

(n− k)−1
> 0. (8.3)

Then there is a number q > 0 such that with positive probability there is a point (n, x)

satisfying

Wk(n, x) >
q

n− k
, k < n. (8.4)

Our goal is to show that the systematic presence of such shocks all over the space-time
leads to a contradiction. The strategy is to show how to construct a family of shocks with
disjoint absorbed areas and such that the union of those areas is too large to fit into the
space-time.

For any set A ⊂ R we introduce its density

ρ(A) = lim
r→+∞

|A ∩ [0, r]|
r

∈ [0,+∞],

if the limit is well-defined. Here bars mean the number of elements in the set.
Let An, n ∈ N be the (random) set of points (n, x) satisfying (8.4). By ergodic theorem,

there is a deterministic number a > 0 such that ρ(An) = a almost surely for all n ∈ Z.
Since the shock areas (areas between leftmost and rightmost one-sided minimizers)

are disjoint for different points in An, we see that

2∑
i=0

(γ+
n−1−i(n, r)− γ

−
n−1−i(n, 0)) ≥

∑
x∈An∩[0,r]

Wn−1(n, x) ≥ q|An ∩ [0, r]|.

Since |An ∩ [0, r]|/r → a, we conclude that

lim inf
r→∞

∑2
i=0 γ

+
n−1−i(n, r)

r
≥ qa.

Due to Lemma 8.4, this is impossible unless a ≤ q−1 <∞.
For i ∈ N, let Bi consist of all shocks in Ai that are successors of some shocks in

Ai−1. Let Ci consist of those shocks in Ai that are not successors of any shocks in Ai−1.
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Let Di consist of those shocks in Ai−1 whose successors are not in Ai. Let Ei consist of
all shocks (i, x) in Ai−1 such that there is y < x satisfying (i, y) ∈ Ai−1 and both (i, x) and
(i, y) have the same successor belonging to Ai. Let Fi be the set of all shocks (i− 1, x) in
Ai−1 such that no other point (i− 1, y) ∈ Ai−1 has the same successor in Ai as (i− 1, x)

and satisfies y < x. We then have

ρ(Ai) = ρ(Bi) + ρ(Ci), (8.5)

and
ρ(Ai−1) = ρ(Di) + ρ(Ei) + ρ(Fi). (8.6)

To see this, first notice that all of the densities involved are well-defined deterministic
numbers due to ergodic theorem, since they are defined via skew-invariant (w.r.t. spatial
shifts) functionals of the ergodic environment. Then identities (8.5) and (8.6) follow from
the fact that Ai = Bi ∪ Ci and Ai−1 = Di ∪ Ei ∪ Fi.

We already know that ρ(Ai) = ρ(Ai−1). Also, ρ(Bi) = ρ(Fi), since the relation “≺”
defines a one-to-one monotone map between Bi and Fi and it preserves the density due
to Lemma 8.4. So, (8.5) and (8.6) imply ρ(Ci) = ρ(Di) + ρ(Ei). Noticing that ρ(Ei) > 0

does not depend on i and denoting the common value by ρE > 0, we obtain

ρ(Ci)− ρ(Di) = ρE > 0. (8.7)

Let us recall that we are proving Lemma 8.2. We made an assumption that there are
shocks with absorbed areas that are not too thin, i.e., that satisfy (8.3). Identity (8.7)
computes the (positive) balance of densities of such shocks emerging and disappearing
at time i. Our goal now is to exploit this identity to see that there is a systematic addition
of area due to newly emerging shocks satisfying (8.3).

Let n ∈ N. Let An =
⋃n
i=1Ai and let Bn be the set of all shocks (i, x) such that

i ∈ {1, . . . , n} and (i, x) is a successor of some shock from An. Since according to our
definition each shock is its own successor, we have An ⊂ Bn. We want to partition Bn
into sequences of successive shocks and estimate the area absorbed by each of those
sequences at times −2,−1,−0. We must be careful to avoid overlaps of these areas.

We say that (i, x) ∈ Bn is the main predecessor of (i+ 1, z) ∈ Bn if

1. (i+ 1, z) ≺ (i, x);

2. there is no y < x such that (i+ 1, z) ≺ (i, y) and (i, y) ∈ An;

3. if (i, x) ∈ Bn \An then (i) there is no y < x such that (i+1, z) ≺ (i, y) and (i, y) ∈ Bn;
(ii) there is no y such that (i+ 1, z) ≺ (i, y) and (i, y) ∈ An.

In other words: if at time i there are predecessors of (i + 1, z) among An, we choose
the leftmost of them; if not, we choose the leftmost predecessor among Bn. Clearly, if
(i + 1, z) ∈ Bn has some predecessors in Bn at time i, then exactly one of them is the
main one.

For any k,m ∈ N satisfying k ≤ m ≤ n we define Qk,m as the set of sequences
ζ : {k, . . . ,m} → R satisfying the following conditions:

(i) (i, ζi) is a shock for all i ∈ {k, . . . ,m};

(ii) (k, ζk) ∈ Ak;

(iii) for all i ∈ {1, . . . , k − 1} and all (i, x) ∈ Ai, (k, ζk) 6≺ (i, x);

(iv) for each i ∈ {k, . . . ,m− 1}, (i, ζi) is the main predecessor of (i+ 1, ζi+1);
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(v) if m < n, then (m, ζm) is not the main predecessor of its successor.

Sequences in Q =
⋃

1≤k≤m≤nQk,m viewed as sets of space-time points generate a
partition of Bn, and each shock sequence in Q is uniquely defined by its birth place, i.e.,
its first entry. Since the birth places of two distinct sequences cannot be successors of
each other, the areas absorbed by them are mutually disjoint.

For k,m ∈ N such that k ≤ m ≤ n, we define

Rk,m =
{
a : {k, . . . ,m} → {0, 1} : ak = 1

}
and a : Qk,m → Rk,m by

ai(ζ) =

{
1, (i, ζi) ∈ Ai,
0, (i, ζi) /∈ Ak.

For 1 ≤ k ≤ m ≤ n and a ∈ Rk,m, we introduce

Qak,m = {ζ ∈ Qk,m : a(ζ) = a}

and note that all sets Qak,m with all possible values of k,m, and a are mutually disjoint,
and there are finitely many of them.

If 1 ≤ k ≤ m ≤ n, a ∈ Rk,m, and i ∈ {1, . . . , n}, then we define Qak,m(i) to be the
section of Qak,m at level i, i.e., the set consisting of points x ∈ R such that (i, x) belongs
to a path from Qak,m(i).

Lemma 8.5. For all i, j ∈ {k, . . . ,m}, ρ(Qak,m(i)) = ρ(Qak,m(j)).

Proof: This is a corollary of Lemma 8.4. 2

If a ∈ Rk,m we write k(a) = k, m(a) = m. For a ∈ Sn =
⋃

1≤k≤m≤nRk,m, we introduce

ā ∈ {0, 1}{0,...,n} by

āi =

{
ai, k(a) ≤ i ≤ m(a),

0, otherwise.

and ∆(a) ∈ {−1, 0, 1}{1,...,n} by

∆k(a) = āk − āk−1, k = 1, . . . , n,

so ∆(a) is an alternating sequence of +1’s and −1’s with possibly some 0’s between and
around them. We define also

v(a) =

n∑
k=1

1

k
∆k(a), a ∈ Sn,

and

w(a) =
1

k(a)
, a ∈ Sn.

Clearly, w(a) ≥ v(a) > 0 for all a ∈ Sn, due to the alternating character of the sequence
∆(a).

Let us define ρ(Qak,m) = ρ(Qak,m(k)) and ρ(a) = ρ(Qak(a),m(a)). Then

∑
a∈Sn

w(a)ρ(a) ≥
∑
a∈Sn

v(a)ρ(a) =
∑
a∈Sn

n∑
k=1

1

k
∆k(a)ρ(a) =

n∑
k=1

ck − dk
k

, (8.8)

where for k = 1, . . . , n

ck =
∑

a∈Sn:∆k(a)=1

ρ(a),

dk =
∑

a∈Sn:∆k(a)=−1

ρ(a).
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Since

Ci =
⋃

a∈Sn:∆i(a)=1

Qak(a),m(a)(i),

Di =
⋃

a∈Sn:∆i(a)=−1

Qak(a),m(a)(i− 1),

we obtain from Lemma 8.5:

ci =
∑

a∈Sn:∆i(a)=1

ρ(Qak(a),m(a)) =
∑

a∈Sn:∆i(a)=1

ρ(Qak(a),m(a)(i)) = ρ(Ci),

di =
∑

a∈Sn:∆i(a)=−1

ρ(Qak(a),m(a)) =
∑

a∈Sn:∆i(a)=−1

ρ(Qak(a),m(a)(i− 1)) = ρ(Di).

So, (8.8) and (8.7) imply∑
a∈Sn

w(a)ρ(a) ≥
n∑
i=1

ρ(Ci)− ρ(Di)

i
≥ ρE

n∑
i=1

1

i
. (8.9)

By construction and by the definition of sets An, to each a and each sequence
ζ ∈ Qak(a),m(a) we can associate a triplet of intervals Jl(ζ) ⊂ {l} ×R, l ∈ {0,−1,−2} with
the following properties:

0∑
l=−2

|Jl(ζ)| ≥ qw(a),

0⋃
l=−2

Jl(ζ) ⊂ Λ(k(a), ζk(a)). (8.10)

In particular, intervals Jl(ζ1) and Jl(ζ
2) for any l ∈ {0,−1,−2} and any two distinct

sequences ζ1, ζ2 do not overlap. Let us denote by

Tn(r) =
∑
a∈Sn

∑
γ∈Qa

k(a),m(a)
:ζk(a)∈[0,r]

0∑
l=−2

|Jl(ζ)|,

the total trace at times −2,−1, 0 of non-overlapping shocks with birth locations in
{1, . . . , n} × [0, r]. Due to (8.9) and (8.10),

lim inf
r→∞

Tn(r)

r
≥ Ln,

where

Ln = qρE

n∑
i=1

1

i
.

Since limn→∞ Ln = ∞, we can choose n large enough to ensure Ln > 8. Then, for all
sufficiently large r, we are guaranteed to have Tn(r) > 7r. Therefore, for all sufficiently
large r we will have points in {1, . . . , n} × [0, r] with associated one-sided minimizers
containing points on the right of {−2,−1, 0} × [0, 2r] (the total length of the segments
this set consists of is only 6r). Applying Lemma 8.4, we see that this happens with
probability 0. Therefore, our assumption that with positive probability there exists a
point satisfying (8.3) was wrong, so the proof of the lemma is completed. 2

9 Constructing stationary solutions

Let us begin with the following auxiliary result:

Lemma 9.1. Let K > 0. With probability 1 there is n0 ∈ N such that for all n ≥ n0, the
Lipschitz constant of Fω(n, x) with respect to x ∈ [−Kn,Kn] is bounded by lnn.
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Proof: It is sufficient to prove that for sufficiently large n ∈ N and any r ∈ N with
|r| < Kn+ 1, the Lipschitz constant of Fω(n, x) w.r.t. x ∈ [r, r + 2] is bounded by lnn. So
let us take arbitrary n and r satisfying the conditions above. For any x, y ∈ [r, r + 2], the
definition (2.3) and our assumptions on the functions involved in it, imply

|Fω(n, x)− Fω(n, y)| ≤ Nω(n, r)L|x− y|,

where
Nω(n, r) = ω({n} × [r − 1, r + 3]×R×R)

and L is the Lipschitz constant of φ. So the Lipschitz constant of Fω(n, x) w.r.t. x ∈ [r, r+2]

is bounded by Nω(n, r)L. Since for any λ > 0 there is C(λ) > 0 such that

P{Nω(n, r)L > lnn} ≤ EeλNω(n,r)L

eλ lnn
≤ C(λ)

nλ
,

we can choose λ = 3 to see that∑
n∈N

∑
r:|r|<Kn+1

P{Nω(n, r)L > lnn} <∞,

so, the Borel–Cantelli Lemma implies that with probability 1 only finitely many events
{Nω(n, r)L > lnn} happen, and the lemma follows. 2

Let us recall that for a fixed v ∈ R, with probability 1, to each point (n, x) ∈ Z×R,
we can assign the rightmost minimizer γ+(n, x) and leftmost minimizer γ−(n, x) with
slope v. For all but countably many (n, x), γ+(n, x) = γ−(n, x). In this section, we will
denote γ(n, x) = γ+(n, x) for brevity. We also assume without loss of generality that
v = 0 and suppress the dependence on v unless specifically stated otherwise.

Lemma 9.2. Let n ∈ Z and x, y ∈ R with x < y. Let (kj)j∈N satisfy kj → −∞ and

Wkj (n, x, y) <
1

n− kj
, j ∈ N (9.1)

(the existence of such a pairing sequence follows from Theorem 8.1). Then the limit

B(n, x, y) = lim
j→∞

∆j

is well-defined and finite, where

∆j = Akj−1,n(γ(n, y))−Akj−1,n(γ(n, x)), j ∈ N.

Proof: It is sufficient to prove that ∆j is a Cauchy sequence. Let us estimate |∆j −∆m|
for m > j. To simplify the notation, we denote

γ1 = γ(n, x), γ2 = γ(n, y),

x4 = γ1
km−1, y4 = γ2

km−1,

x3 = γ1
km−2, y3 = γ2

km−2,

x2 = γ1
kj , y2 = γ2

kj ,

x1 = γ1
kj−1, y1 = γ2

kj−1.

Since γ2 is an optimal path between (kj − 1, y1) and (km − 1, y4), we have

Akj−1,km−1(γ2) ≤ Fω(kj − 1, y1) +
(x2 − y1)2

2
+Akj ,km−2(γ1)

+ Fω(km − 2, x3) +
(y4 − x3)2

2
.
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Combining this with

Fω(kj − 1, x1) +
(x2 − x1)2

2
+Akj ,km−2(γ1)

+ Fω(km − 2, x3) +
(x4 − x3)2

2
= Akj−1,km−1(γ1),

we obtain
∆j −∆m ≤ δj,m,

where

δj,m =
(x2 − y1)2

2
− (x2 − x1)2

2
+

(y4 − x3)2

2
− (x4 − x3)2

2

+ Fω(kj − 1, y1)− Fω(kj − 1, x1)

=(x1 − y1)

(
x2 −

x1 + y1

2

)
+ (x4 − y4)

(
x3 −

x4 + y4

2

)
+ Fω(kj − 1, y1)− Fω(kj − 1, x1).

Therefore, using (9.1), the fact that |γ1
k| ∨ |γ2

k| = o(n− k) as k → −∞, and Lemma 9.1, we
obtain that there is a function β1(j) ↓ 0 and a number J1 such that if j > J1 and m > j,
then ∆j −∆m < β1(j).

Interchanging the roles of γ1 and γ2 we also obtain that there is a function β2(j) ↓ 0

and a number J2 such that if j > J2 and m > j, then −(∆j −∆m) < β2(j).
Combining these last two statements we conclude that (∆j) is a Cauchy sequence. 2

The following lemma is an immediate extension of the previous ones. We can extend
definition of W to nonsimultaneous points (n1, x1), (n2, x2) ∈ Z×R:

Wk((n1, x1), (n2, x2)) =

2∑
i=0

(
γ+
k−i(n1, x1) ∨ γ+

k−i(n2, x2)

− γ−k−i(n2, x2) ∧ γ−k−i(n1, x1)
)
, k ≤ n1 ∧ n2.

Lemma 9.3. Let (n1, x1), (n2, x2) ∈ Z×R. Then

1. There is a sequence kj ↓ −∞ such that

Wkj ((n1, x1), (n2, x2)) ≤ 1

n1 ∧ n2 − kj
, j ∈ N.

2. For every pairing sequence (kj) satisfying conditions of part 1, the following finite
limit exists:

B((n1, x1), (n2, x2)) = lim
j→∞

(Akj−1,n2(γ(n2, x2))−Akj−1,n1(γ(n1, x1))).

3. The limit in part 2 does not depend on the concrete choice of (kj).

Proof: The first part of the lemma follows since we can apply Theorem 8.1 to points
(n1 ∧ n2, γn1∧n2

(n1, x1)) and (n1 ∧ n2, γn1∧n2
(n2, x2)) that share the time coordinate. The

second part holds since

Akj−1,n1(γ(n1, x1)) = Akj−1,n1∧n2(γ(n1 ∧ n2, γn1∧n2(n1, x1)))

+An1∧n2,n1(γ(n1, x1))
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and

Akj−1,n2(γ(n2, x2)) = Akj−1,n1∧n2(γ(n1 ∧ n2, γn1∧n2
(n2, x2)))

+An1∧n2,n1(γ(n2, x2)),

so one can apply Lemma 9.2 to points (n1∧n2, γn1∧n2
(n1, x1)) and (n1∧n2, γn1∧n2

(n2, x2)).
The last part follows from the standard trick of interlacing the two sequences. 2

The function B((n1, x1), (n2, x2)) = Bω((n1, x1), (n2, x2)) may be called the Busemann
function in analogy to the Busemann functions used in [4] and previous work on last-
passage percolation, although we stress that in our setting we are currently able to
prove convergence only along appropriate subsequences kj . This function has several
standard properties. Some of them are summarized in the following lemma:

Lemma 9.4. Let B be defined as above.

1. The distribution of B is translation invariant: for any ∆ ∈ Z×R,

B(·+ ∆, ·+ ∆)
distr
= B(·, ·).

2. B is antisymmetric:

B((n1, x1), (n2, x2)) = −B((n2, x2), (n1, x1)), (n1, x1), (n2, x2) ∈ Z×R,

in particular B(n, x), (n, x)) = 0 for any (n, x) ∈ Z×R.

3. B is additive: for any (n1, x1), (n2, x2), (n3, x3) ∈ Z×R,

B((n1, x1), (n3, x3)) = B((n1, x1), (n2, x2)) +B((n2, x2), (n3, x3)).

4. For any (n1, x1), (n2, x2) ∈ Z×R satisfying n1 < n2,

B((n1, x1), (n2, x2)) ≤ An1,n2(x1, x2). (9.2)

5. For any (n1, x1), (n2, x2) ∈ Z×R, E|B(n1, x1), (n2, x2)| <∞.

Proof: The first two parts are obvious. For the third part we need to ensure that the
convergence in the definition of B for all the values of arguments involved holds along
the same sequence kj . That is true, since all one-sided minimizers are ordered and the
gap between the two minimizers on the sides dominates the smaller gaps between the
middle one and the side ones.

Let us prove part 4. We denote γ1 = γ(n1, x1) and γ2 = γ(n2, x2). Let us find a
pairing sequence (kj)j∈N for γ1, γ2. For any j let us create a path γ(j) that starts at
(kj − 1, γ2

kj−1), makes a step to (kj , γ
1
kj

), coincides with γ1 between kj and n1, and on
{n1, . . . , n2} coincides with the optimal path between (n1, x1) and (n2, x2). Then

Akj−1,n2(γ2) ≤ Akj−1,n2(γ(j))

≤F (kj − 1, γ2
kj−1) +

(γ1
kj
− γ2

kj−1)2

2
+Akj ,n1(γ1) +An1,n2(x1, x2)

≤F (kj − 1, γ2
kj−1)− F (kj − 1, γ1

kj−1) +
(γ1
kj
− γ2

kj−1)2 − (γ1
kj
− γ1

kj−1)2

2

+Akj−1,n1(γ1) +An1,n2(x1, x2).

Moving Akj−1,n1(γ1) to the left-hand side, taking limit j →∞, using the pairing property
of kj , the sublinear growth of |γ1|, |γ2|, and Lemma 9.1, we finish the proof of part 4.
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Let us prove the last part. Using additivity and translation invariance we see that it
is sufficient to consider points (0, 0) and (n, x) with n < 0. Parts 2 and 4 of this lemma
along with Lemma 4.2 imply that

EB((0, 0), (n, x)) ≥ −EAn,0(x, 0) > −∞.

So it remains to prove an upper bound. Furthermore,

B((0, 0), (n, x)) =

|n|∑
k=1

B

((
−(k − 1), x

k − 1

|n|

)
,

(
−k, x k

|n|

))
,

and all the terms on the right-hand side have the same distribution. Expectation of
each of them belongs to (−∞,∞] Therefore, EB((0, 0)(n, x)) is finite if and only if
EB((0, 0)(−1, x/|n|)) is finite. So it is sufficient to prove EB((0, 0), (−1, x)) < ∞ for
all x ∈ R. Furthermore, we have

B((0, 0), (−2, 0)) = B((0, 0), (−1, x)) +B((−1, x), (−2, 0)),

where, due to the symmetry of the Poissonian process and the action, the distributions
of two terms on the right-hand side coincide. Therefore, EB((0, 0), (−1, x)) < ∞ iff
EB((0, 0), (−2, 0)) <∞. Applying this once again, we see that it is sufficient to establish
EB((0, 0), (−1, 0)) <∞.

We denote γ0 = γ(0, 0) and γ1 = γ(0,−1) for brevity.
Let L1 > 0 (we will later impose some conditions on L1). H = {(n, x) ∈ Z×R : |x| ≤

L1(−n− 1)}. Since γ0 has asymptotic slope 0, the time τ defined by

τ = min{n ≤ 0 : γ0
k /∈ H} − 1

is finite. We define z = γ0(τ) Let (kj) be a pairing sequence for γ0 and γ1. For kj < τ ,
we have

Akj−1,−1(γ1)−Akj−1,0(γ0) ≤ Qkj (γ0, γ1) +Aτ,−1(z, 0)−Aτ,0(γ0),

where

Qn(γ0, γ1) =F (n− 1, γ1
n−1) +

(γ0
n − γ1

n−1)2

2

− F (n− 1, γ0
n−1)−

(γ0
n − γ0

n−1)2

2

=F (n− 1, γ1
n−1)− F (n− 1, γ0

n−1)

+ (γ1
n−1 − γ0

n−1)

(
γ0
n−1 + γ1

n−1

2
− γ0

n

)
Since Qkj (γ

0, γ1)→ 0 as j →∞, we obtain

B((0, 0), (−1, 0)) ≤ Aτ,−1(z, 0)−Aτ,0(γ0) = Aτ,−1(z, 0)−Aτ,0(z, 0),

and it is sufficient to prove
EAτ,−1(z, 0) <∞ (9.3)

and
EAτ,0(z, 0) > −∞. (9.4)

Let us estimate the tail of the distribution of τ . First, we choose L2 > 0 so that
L1 − L2 > 2R, where R is chosen according to Lemma 4.3. If τ = n, γ0

τ+1 > 0, and γ0
τ −
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γ0
τ+1 < −(L1−L2)|n|, then the optimal path γ′ connecting (n,L1(|n|−2)− (L1−L2)|n|) =

(n,L2|n| − 2L1) to (0, 0) satisfies γ′n+1 > L1(|n| − 2), and thus, if |n| is sufficiently large,
say, greater than some n1, it deviates from the straight line connecting (n,L2|n| − 2L1)

to (0, 0) by at least L1(|n| − 2)− (L2|n| − 2L1)(|n| − 1)/|n| > Rn. Applying Lemma 5.4, we
obtain that

P
{
τ = n, γ0

n+1 > 0, γ0
n − γ0

n+1 < −(L1 − L2)|n|
}
≤ c1 exp(−c2n), n ≥ n1,

for some c1, c2 > 0, and, similarly,

P
{
τ = n, γ0

n+1 < 0, γ0
n − γ0

n+1 > (L1 − L2)|n|
}
≤ c1 exp(−c2n), n ≥ n1.

Combining these two inequalities we obtain

P
{
τ = n, γ0

n /∈ In ∪ (−In)
}
≤ 2c1 exp(−c2n), n ≥ n1, (9.5)

where In = [L2|n| − 2L1, L1(|n| − 1)].
Let us now take any n ∈ −N, any point y ∈ In ∪ (−In) and suppose that τ = n and

|γ0
n − y| ≤ 1. Since the asymptotic slope of γ0 equals 0, for sufficiently large values of
|m| we will have |γ0

m| < L2|m|/2. Lemma 6.7 implies that probability of such an event
is bounded by C1e

−C2|n|κ for sufficiently large |n|, and since one can find 3(L1 − L2)|n|
points y such that the union of segments [y − 1, y + 1] covers the entire set In ∪ (−In),
we obtain that there is n2 > 0 such that

P
{
τ = n, γ0

n ∈ In ∪ (−In)
}
≤ 2(L1 − L2)|n|C1e

−C2|n|κ , |n| ≥ n2. (9.6)

Combining (9.5) and (9.6), we obtain that there are constants C̄1, C̄2 > 0 such that

P
{
τ = n} ≤ C̄1e

−C̄2|n|κ , n ∈ N. (9.7)

Let us now prove (9.3). Notice that on {τ = n},

Aτ,−1(z, 0) ≤ Fω(n, z) +
(L1n)2

2
+An+1,−1(0, 0), (9.8)

and

An−1,−1(0, 0) ≤ Fω(n− 1, 0) +
(L1n)2

2
+Aτ,−1(z, 0),

so

Aτ,−1(z, 0) ≥ −Fω(n− 1, 0)− (L1n)2

2
+An−1,−1(0, 0). (9.9)

Combining (9.8) and (9.9), we obtain that on {τ = n},

|Aτ,−1(z, 0)| ≤ F ∗ω({n} × [−L1|n|, L1|n|]) + |Fω(n− 1, 0)|+ (L1n)2

+ |An+1,−1(0, 0)|+ |An−1,−1(0, 0)|,

where F ∗ω was defined in (5.2). The Cauchy–Schwarz inequality implies

E|Aτ,−1(z, 0)|1{τ=n} ≤
√

P{τ = n}
(
EF ∗ω

2({n} × [−L1|n|, L1|n|])

+ E|Fω(n− 1, 0)|+ (L1n)2

+ E(An+1,−1(0, 0))2 + E(An−1,−1(0, 0))2
)
.

The first term in the parentheses grows logarithmically in |n|, the second term does not
depend on n, and the remaining terms grow quadratically due to Lemma 4.5. Combining
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this with (9.7), we finish the proof of (9.3). Inequality (9.4) can be proved in exactly the
same way. 2

Let us now define

Uω(n, x) = U(n, x) = B((0, 0), (n, x)), (n, x) ∈ Z×R.

The main claim of this section is that thus defined U is skew invariant under of the
HJBHLO cocycle, and its space derivative is a global solution of the Burgers equation.

Let us recall that the HJBHLO evolution is given by

Φm,nW (y) = inf
x∈R
{W (x) +Am,n(x, y)}, m ≤ n, y ∈ R, (9.10)

where Am,n(x, y) has been defined in (4.3).

Theorem 9.5. The random function U is a global solution of the HJBHLO, i.e., for almost
all ω ∈ Ω,

Φn1n2
ω Uω(n1, ·) = Uω(n2, ·), n1 < n2.

Proof: Let γ be a minimizer with endpoint (n2, x). Then

U(n2, x) =U(n1, γn1
) + (U(n2, x)− U(n1, γn1

))

=U(n1, γn1
) +An1,n2(γn1

, x).

We need to show that the right-hand side is the infimum of U(n1, y) +An1,n2(y, x) over
all y ∈ R. Suppose that for some y ∈ R,

U(n1, y) +An1,n2(y, x) < U(n1, γn1
) +An1,n2(γn1

, x). (9.11)

Let us take any minimizer γ̄ originating at (n1, y) and use Lemma 9.3 to find a pairing
sequence (kj) for (n1, y) and (n1, γn1

). Then (9.11) implies

lim
j→∞

(Akj−1,n1(γ̄)−Akj−1,n1(γ)) = U(n1, y)− U(n1, γn1
)

< An1,n2(γn1 , x)−An1,n2(y, x).

Denoting the right-hand side by δ, we conclude that for sufficiently large j,

Akj−1,n1(γ̄) +An1,n2(y, x) ≤ Akj−1,n1(γ) +An1,n2(γn1
, x)− δ/2

≤ Akj−1,n2(γ)− δ/2.

Let now γ′(j) be the path starting at (kj − 1, γkj−1), making an immediate step to
(kj , γ̄kj ), coinciding with γ̄ between times kj and n1, and coinciding with the optimal path
connecting y to x between n1 and n2. We have

Akj−1,n2(γ′(j)) ≤ Akj−1,n1(γ̄) +An1,n2(y, x)

+
(γkj−1 − γ̄kj )2 − (γ̄kj−1 − γ̄kj )2

2

+ Fω(kj − 1, γkj−1)− Fω(kj − 1, γ̄kj−1).

Combining the last two inequalities, we obtain

Akj−1,n2(γ′(j)) ≤ Akj−1,n2(γ) + r(j),

where

r(j) = −δ
2

+

(
γkj−1 + γ̄kj−1

2
− γ̄kj

)
(γkj−1 − γ̄kj−1)

+ Fω(kj − 1, γkj−1)− Fω(kj − 1, γ̄kj−1).
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For sufficiently large j, r(j) < 0. This is implied by sublinear growth of γkj−1, γ̄kj−1, γ̄kj
in kj , the rate of decay of |γkj−1 − γ̄kj−1| guaranteed by Lemma 9.3, and Lemma 9.1.

So, Akj−1,n2(γ′(j)) < Akj−1,n2(γ) which contradicts the fact that γ is an optimal path
between points ((kj − 1), γkj−1) and (n2, x). Therefore, our assumption on existence of y
satisfying (9.11) was wrong, and the proof is complete. 2

To prove U(n, ·) ∈ H for all n ∈ Z, we begin with the Lipschitz property.

Lemma 9.6. For all n ∈ Z, Uv(n, ·) is locally Lipschitz.

Proof: Let us fix n ∈ N and any points z1, z2 ∈ R satisfying z1 < z2. Let γ− = γ−(n, z1)

and γ+ = γ+(n, z2). Then γ−k < γ+
k for all k ≤ n and there is a pairing sequence kj ↓ −∞

such that

|γ+
kj
− γ−kj |+ |γ

+
kj−1 − γ

−
kj−1| <

1

n− kj
, j ∈ N.

Let us now take any points x, y ∈ (z1, z2) and denote γ1 = γ(n, x), γ2 = γ(n, y). These
minimizers pass between γ− and γ+, and, in particular, the same sequence (kj) is pairing
for γ1 and γ2, so

|γ2
kj − γ

1
kj |+ |γ

2
kj−1 − γ1

kj−1| <
1

n− kj
, j ∈ N.

As in the proof of Lemma 9.3, we obtain

Akj−1,n(γ2)−Akj−1,n(γ1) ≤(γ1
kj−1 − γ2

kj−1)

(
γ1
kj −

γ1
kj−1 + γ2

kj−1

2

)

+ (x− y)

(
γ1
n−1 −

x+ y

2

)
+ Fω(kj − 1, γ2

kj−1)− Fω(kj − 1, γ1
kj−1).

Taking j →∞, we obtain

Un(y)− Un(x) ≤ (x− y)

(
γ1
n−1 −

x+ y

2

)
.

Since γ1
n−1 ∈ (γ−n−1, γ

+
n−1) irrespective of the choice of x, y ∈ (z1, z2), we conclude that

there is C1(z1, z2) such that

U(n, y)− U(n, x) ≤ C1(z1, z2)|x− y|, z1 < x < y < z2.

Similarly, for some C2(z1, z2), we obtain

U(n, x)− U(n, y) ≤ C2(z1, z2)|x− y|, z1 < x < y < z2,

which completes the proof. 2

Although we have always assumed that v = 0 in this section, all the definitions,
constructions and results hold true for other values v as well, due to the Galilean shear
invariance. Let us denote the corresponding Busemann function and global HJBHLO
solution by Bv and Uv.

To prove that Uv(n, ·) ∈ H(v, v) for all n, we will compute the expectation of its spatial
increments (we already know that it is well defined due to part 5 of Lemma 9.4), and
prove that uv(n, ·) is ergodic with respect to the spatial variable.

Lemma 9.7. For any (n, x) ∈ Z×R,

E(Uv(n, x+ 1)− Uv(n, x)) = EBv((n, x), (n, x+ 1)) = v.
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Proof: First, we consider the case v = 0. Due to the distributional invariance of the
potential process F under reflections,

EB0((n, x), (n, x+ 1)) = EB0((n, x+ 1), (n, x)).

Combining this with the anti-symmetry of B0, we obtain EB0((n, x + 1), (n, x)) = 0, as
required.

In the general case, we can apply the shear transformation L of Z×R×R×R defined
by

L : (m, y, q, r) 7→ (m, y + (n−m)v, q, r).

Due to Lemma 4.1, the one-sided minimizers with slope v will be mapped onto one-sided
minimizers of slope 0 for the new potential FL(ω). We already know that

EB0((n, x+ 1), (n, x))L(ω) = 0.

A direct computation based on Lemma 4.1 gives

B0,L(ω)((n, x), (n, x+ 1)) = Bv,ω((n, x), (n, x+ 1))− v,

and our statement follows since L preserves the driving measure µ and hence the
distribution of the Poisson process and the potential F . 2

So far we have worked with solutions of the Hamilton–Jacobi equation. One can
obtain the corresponding solutions of the Burgers equation by

uv(n, x) = γv,n(n, x)− γv,n(n− 1, x).

Then Uv(n, x) − Uv(n, 0) =
∫ x

0
uv(n, y)dy. We recall that Ψm,nw denotes the solution at

time n of the Burgers equation with initial condition w imposed at time m.

Lemma 9.8. The function uv defined above is a global solution of the kicked Burgers
equation. If m ≤ n, then

Ψm,nuv(m, ·) = uv(n, ·), m ≤ n.

Proof: This statement is a direct consequence of Lemma 2.1, Theorem 9.5, and the
definition of the Burgers cocycle Ψ. 2

Lemma 9.9. For any v and any n, the process uv(n, ·) is stationary and ergodic with
respect to spatial translations.

Proof: Denoting uv(n, 0)(ω) = ξ(ω), we see that due to space-time invariance of the
procedure of constructing of one-sided minimizers, uv(n, x) = ξ(τxω), where τx denotes
the space shift of the Poisson process by distance x. Since the measure P is invariant
and ergodic with respect to spatial translations, we conclude that so is uv(n, ·). 2

Theorem 9.10. For any v ∈ R and any n ∈ N, we have Uv,ω(n, ·) ∈ H(v, v). The sequence
uv,ω(n, ·), n ∈ N is a stationary process with values in G(v, v).

Proof: The first claim is a direct consequence of Lemmas 9.7 and 9.9, and Birkhoff’s
ergodic theorem. The second claim follows from the first one and the space-time
invariance of the construction of minimizers. 2

10 Stationary solutions: uniqueness and basins of attraction

In this section we prove Theorem 3.2 and the uniqueness part in Theorem 3.1. The
key step is the following observation.
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Lemma 10.1. Let n ∈ Z and suppose that an initial condition W satisfies one of the
conditions (3.1),(3.2),(3.3). With probability one, the following holds true for every
y ∈ R. Let y∗(m) be a solution of the optimization problem (9.10) for each m ≤ n. Then

lim
m→−∞

y∗(m)

m
= v.

Proof of Theorem 3.2: Since uv is a solution of the Burgers equation over any finite time
interval, uv(n, ·) is continuous at y iff there is a unique one-sided minimizer γ(n, y) with
endpoint (n, y). Moreover, in this case, uv(n, y) = γn(n, y)− γn−1(n, y).

So let us take such a point y. Lemma 10.1 and Lemma 7.7 guarantee then that
solutions y∗(m) for optimization problem (9.10) and the corresponding optimal paths
γ(m,y∗(m)),(n,y) realizing Am,n(y∗(m), y) converge pointwise to the infinite one-sided mini-
mizer γ(n, x). In particular,(n, y)?

Ψm,nw(y) = γ(m,y∗(m)),(n,y)
n − γ(m,y∗(m)),(n,y)

n−1

→ γn(n, y)− γn−1(n, y) = uv(n, y), m→ −∞,

which completes the proof. 2

Proof of Lemma 10.1: We will only prove the sufficiency of condition (3.1). The proof of
sufficiency of conditions (3.2) and (3.3) follows the same lines and we omit it.

Let us also restrict ourselves to n = 0 for simplicity. The proof does not change for
other values of n.

Since y∗ is increasing in y, it is sufficient to show that the conclusion of the lemma
holds with probability 1 for fixed y. The stationarity of the forcing potential implies that
we can assume y = 0.

We must show that for any ε > 0 it is extremely unlikely for a path γ with γ0 = 0 and
|γm| > ε|m| to provide a solution to (9.10) if |m| is large. For definiteness, let us work
with paths satisfying 0∗(m) = γm > ε|m|.

For any δ > 0 and for sufficiently large |m|,

W (0) +Am,0(0, 0) < (α(0) + δ)|m|.

If additionally x = 0∗(m) > ε|m|, then for i = [x− ε|m|],

inf
z∈[ε|m|+i,ε|m|+i+1]

W (z) +Am−1,0(ε|m|+ i, 0) < (α(0) + δ)|m|+ 1

2
+ F (m− 1, ε|m|+ i).

Condition (3.1) at +∞ implies that there is r1 such that for m < −r1 and all i ∈ N,

inf
z∈[ε|m|+i,ε|m|+i+1]

W (z) > −(|m|+ i)δ,

so there is r2 > 0 such that if m < −r2 and i ∈ N, then

Am−1,0(ε|m|+ i, 0)− F (m− 1, ε|m|+ i) < (α(0) + 2δ)|m|+ δi+
1

2

< |m|
(
α(0) + 3δ + δ

i

|m|

)
.

Let us denote by Bmi the event defined by this inequality. Then Bmi ⊂ Cmi ∪Dmi,
where

Cmi =
{
−F (m− 1, ε|m|+ i) < −δ(|m|+ i)

}
Dmi =

{
Am−1,0(ε|m|+ i, 0) < |m|

(
α(0) + 4δ + 2δ

i

|m|

)}
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Due to the Borel–Cantelli lemma, to show that with probability 1, events Bmi can
happen only for finitely many values of m, it suffices to show that for some β > 0 and
c > 0, ∑

m≤−c

∑
i

P(Cmi) <∞, (10.1)

∑
m≤−c

∑
i≤β|m|

P(Dmi) <∞, (10.2)

and ∑
m≤−c

∑
i>β|m|

P(Dmi) <∞. (10.3)

Inequality (10.1) does not depend on β and holds for any c since

P(Cmi) ≤ e−δ(|m|+i)EeF (0,0).

Denoting αmi = α
(
ε|m|+i
|m|+1

)
, using shear and translation invariance, we obtain

P(Dmi) = P
{
A|m|+1 − α(0)(|m|+ 1) < |m|

(
α(0) + 4δ +

2δi

|m|
− |m|+ 1

|m|
αmi

)}
.

If δ is sufficiently small, then, using Lemma 4.7, we can find r2 such that for all m < −r2

and all i,

|m|
(
α(0) + 4δ +

2δi

|m|
− |m|+ 1

|m|
αmi

)
< −(|m|+ 1)

(
ε2

2
+

i2

2|m|2

)
,

so

P(Dmi) ≤ P

{
A|m|+1 − α(0)(|m|+ 1) < −(|m|+ 1)

(
ε2

2
+

i2

2|m|2

)}
. (10.4)

Now (10.2) follows (with any c ≥ r2 and with arbitrary choice of β) from Theorem 5.1.
To prove (10.3) we need an auxiliary lemma. In its statement and proof we use the

notation introduced in Section 4.

Lemma 10.2. There are constants c1, c2, X0, N0 > 0 such that for n > N0, x > X0,

P{An ≤ −xn} ≤ c1e−c2xn.

Now (10.3) is a consequence of this lemma and (10.4) if we choose c > N0 and β

satisfying
ε2

2
+
β2

2
− α(0) > X0.

It remains to prove Lemma 10.2.
Proof of Lemma 10.2: Let us take c3 > 0 and write

P{An ≤ −xn} ≤ P{Σ ≤ c3xn, An ≤ −xn}+ P{Σ > c3xn}, (10.5)

where Σ = Σ(γ) has been defined in (4.4) for a path γ realizing An.
To estimate the first term on the right-hand side, we choose c3 > 0 and x0 > 0 so that

for all x > x0 and all n ∈ N, dc3xne > n and xn > y0dc3xne, where y0 was introduced
before inequality (4.10). We can now apply that inequality to conclude that for some
constants c4 > 0,

P{Σ ≤ c3xn, An ≤ −xn} ≤ P{F ∗ω,n,dc3xne ≥ xn} ≤ e
−c4xn.
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The second term on the right-hand side of (10.5) can be estimated using Lemma 4.3. If
c3x ≥ R and n is sufficiently large, then

P{Σ > c3xn} ≤
∑

m≥c3xn

P(En,m)

≤
∑

m≥c3xn

C1 exp(−C2m
2/n)

≤ C ′1 exp(−C ′2x2n),

for some constants C ′1, C
′
2 > 0, which completes the proof. 2

Proof of uniqueness in Theorem 3.1: Let wω = W ′ω be a global solution of the Burgers
equation such that for each n ∈ Z, w(n, ·) ∈ H′(v, v) with probability 1. Then, for any
n ≤ N , w(0, ·) = Ψ−n,0ω w(−n, ·). The cadlag version of w belongs to G(v, v). For any
x ∈ R, the trajectory solving the Euler–Lagrange equation and terminating at x with
velocity w(x) is a minimizer on every finite interval. Therefore it is a one-sided minimizer
and must have an asymptotic slope ṽ(x). Notice that ṽ(x) is monotone in x, since on any
finite interval the minimizers cannot intersect. Due to spatial translation invariance,
ṽ(x) is a stationary process in x, so ṽ(x) = ṽ has to be a constant. Hence, wω(0, ·) almost
surely coincides with uṽ(0, ·). Since the latter belongs to G(ṽ, ṽ) almost surely, we see
that ṽ = v, so wω(0, ·) almost surely coincides with uv(0, ·), which completes the proof.2

11 Metric on G

Let us recall that G consists of all cadlag functions w : R→ R such that Mw : R→ R

defined by Mw(x) = x−w(x) is a strictly increasing function satisfying limx→±∞Mw(x) =

±∞. The goal of this section is to introduce a metric d on G such that limn→∞ d(wn, w) =

0 is equivalent to limn→∞ wn(x) = w(x) for all x ∈ C(w). First we note that for every w,
the inverse M−1

w of Mw defined by

M−1
w (y) = inf{x : Mw(x) ≥ y}, x ∈ R,

is a continuous function retaining all the information about Mw and w. Let us define d as
the metric of locally uniform convergence on continuous functions on R:

d(u,w) =

∞∑
N=1

2−NdN (u,w), u, v ∈ G,

where
dN (u,w) = sup

x∈[−N,N ]

|M−1
u (x)−M−1

w (x)| ∧ 1, u, v ∈ G.

Lemma 11.1. Let (wn)n∈N be a sequence in G and w ∈ G. Then d(wn, w)→ 0 as n→∞,
iff limn→∞ wn(x) = w(x) for all x ∈ C(w).

Proof: Suppose d(wn, w) → 0 as n → ∞. We need to prove Mwn(x) → Mw(x) for each
x ∈ C(w) = C(Mw). So let us take such an x and any ε > 0. We can find x− < x and
x+ > x such that

Mw(x)− ε < Mw(x−) < Mw(x) < Mw(x+) < Mw(x) + ε.

Let us denote y− = Mw(x−), y = Mw(x), y+ = Mw(x+). Since d(wn, w) → 0, we see
that there is n0 such that for n > n0, M−1

wn (y−) < (x− + x)/2 and M−1
wn (y+) > (x+ x+)/2.

Therefore, for n > n0, y− < Mwn(x) < y+, so Mw(x)− ε < Mwn(x) < Mw(x) + ε, and our
claim follows.
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Now let us assume that limn→∞ wn(x) = w(x) for all x ∈ C(w). We need to show
that for any N ∈ N, dN (wn, w) → 0. First, we can find points z−, z+ ∈ C(w) such that
Mw(z−) < −N and Mw(z+) > N . There is n0 such that [−N,N ] ⊂ (Mwn(z−),Mwn(z+))

for all n > n0.
For any ε > 0 let us find a finite collection of points x0, x1, . . . , xm ∈ C(w) such that

z− = x0 < x1 < . . . < xm = z+ and xk − xk−1 < ε/2 for all k = 1, . . . ,m. Let us
denote yk = Mw(xk), k = 0, 1, . . . ,m. Points yk = Mw(xk), k = 0, 1, . . . ,m form a strictly
increasing sequence. Let us denote

∆ = min
k=1,...,m

(yk − yk−1) ∧ (−N − y0) ∧ (ym −N) > 0.

Since xk ∈ C(w), we can find n1 ≥ n0 such that for all n > n1 and all k = 0, . . . ,m,
|Mwn(xk)− yk| < ∆/2. So, if y ∈ [yk−1, yk] ∩ [−N,N ], then M−1

wn (y) ∈ [x(k−2)∨0, x(k+1)∧m]

and M−1
w (y) ∈ [xk−1, xk]. Hence, |M−1

wn (y)−M−1
w (y)| ≤ ε. Since [−N,N ] ⊂

⋃m
k=1[yk−1, yk],

we obtain dN (wn, w) ≤ ε for n ≥ n1. This is the desired uniform estimate. 2

12 Auxiliary lemmas

Proof of Lemma 2.3: The local Lipschitzness of Φn0,n1
ω W is part 2 of Lemma 2.1, so let

us establish the behavior as x→∞. Let us begin with the second part of the Lemma.
Due to the cocycle property it is sufficient to consider the situation where n1 = n0 + 1.

Let us take W ∈ H(v−, v+). We have

Φn0,n0+1
ω W (x) ≤W (x) + Fω(n0, x), x ∈ R.

Since limx→∞(Fω(n0, x)/x) = 0 on Ω1, we see that

lim sup
x→+∞

Φn0,n0+1
ω W (x)

x
≤ v+.

Let us prove that

lim inf
x→+∞

Φn0,n0+1
ω W (x)

x
≥ v+.

If this inequality is violated, then there is ε > 0 and two increasing sequences (xk)k∈N,
(yk)k∈N such that xk → +∞ and

V (yk) +
1

2
(xk − yk)2 < (v+ − ε)xk, k ∈ N, (12.1)

where V (y) = W (y) + F (y), y ∈ R. Inequality (12.1) implies that yk cannot be bounded,
so we obtain yk → +∞. Moreover, it follows from (12.1) and from limy→∞ V (y)/y = v+

that for sufficiently large k,
v+yk < (v+ − ε/2)xk,

so yk/xk cannot converge to 1. Therefore, there is a subsequence (k′) and a constant
c > 0 such that |yk′ − xk′ | > c(yk′ + xk′), so

V (yk′) ≤ −
1

2
(xk′ − yk′)2 + (v+ − ε)xk′

≤ −c
2y2
k′

2
− c2x2

k′

2
+ (v+ − ε)xk′

≤ −c
2y2
k′

2
,

for sufficiently large k′ which contradicts the linear growth of V . A similar analysis
applies to the behavior at −∞, and the second part of the Lemma is proved completely.
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To prove the first part, assume that W ∈ H, but Φn0,n0+1
ω W /∈ H due to the behavior,

say, at +∞. Then there are two increasing sequences (xk)k∈N, (yk)k∈N such that xk →
+∞ and

V (yk) + 1
2 (xk − yk)2

xk
→ −∞, k →∞. (12.2)

This means that V (yk)/xk → −∞. Since V (yk)/yk is bounded below for large k, we
conclude that xk/yk → 0. Now (12.2) implies that V (yk) ≤ −y2

k/4 for large k, which
contradicts W ∈ H. Similar reasoning applies to the behavior near −∞. 2

Lemma 12.1. A pointwise limit of a sequence of point-to-point minimizers is a point-to-
point minimizer.

Proof: Suppose (γk)k∈N is a sequence of point-to-point minimizers on a time interval
{n1, . . . , n2}. Suppose that γ is a path such that γkj → γj as k →∞ for j ∈ {n1, . . . , n2}. If
γ is not a point-to-point minimizer, then there is a path β satisfying βn1 = γn1 , βn2 = γn2 ,
An1,n2(β) < An1,n2(γ). Let us introduce paths βk = (γkn1

, βn1+1, . . . , βn2−1, γ
k
n2

). Since
An1,n2(γk) → An1,n2(γ) and An1,n2(βk) → An1,n2(β), we obtain An1,n2(βk) < An1,n2(γk)

for sufficiently large k which contradicts the minimizing property of γk. 2

Lemma 12.2. Let ω ∈ Ω and (n, x) ∈ Z×R. If γ1 and γ2 are two distinct point-to-point
minimizers on {n, . . . , n′} satisfying γ1

n = γ2
n = x, then, as curves in R×R, they do not

intersect on time interval (n, n′).

Proof of Lemma 12.2: If γ1 and γ2 have two consecutive points in common, they coincide
due to the Euler–Lagrange equation.

Suppose γ1
m = γ2

m = y and γ1
m−1 < γ2

m−1 for some m ∈ {n + 1, . . . , n′ − 1}. By the
Euler–Lagrange equation, γ1

m+1 > γ2
m+1. For δ > 0, we define

γ̃1 = (x, γ1
n+1, . . . , γ

1
m−1, y − δ, γ2

m+1),

γ̃2 = (x, γ2
n+1, . . . , γ

2
m−1, y + δ, γ1

m+1).

Then

An,m+1(γ̃1) +An,m+1(γ̃2)− (An,m+1(γ1) +An,m+1(γ2))

=F (m, y + δ) + F (m, y − δ)− 2F (m, y)

+
1

2

(
(γ1
m+1 − y − δ)2 + (γ2

m+1 − y + δ)2 + (y + δ − γ2
m−1)2 + (y − δ − γ1

m−1)2

− (γ1
m+1 − y)2 − (γ2

m+1 − y)2 − (y − γ2
m−1)2 − (y − γ1

m−1)2
)

=F (m, y + δ) + F (m, y − δ)− 2F (m, y) + 2δ2 + δ(γ2
m+1 − γ1

m+1 + γ1
m−1 − γ2

m−1).

Since δ(γ2
m+1 − γ1

m+1 + γ1
m−1 − γ2

m−1) < 0 and the sum of the remaining terms is o(δ),
δ → 0, due to differentiability of F , we obtain that for sufficiently small δ,

An,m+1(γ̃1) +An,m+1(γ̃2) < An,m+1(γ1) +An,m+1(γ2),

so either An,m+1(γ̃1) < An,m+1(γ2) or An,m+1(γ̃2) < An,m+1(γ1) which contradicts the
minimizing property of γ1, γ2.

It remains to exclude the case where γ1
m < γ2

m and γ1
m+1 > γ2

m+1 for some m ∈
{n+ 1, . . . , n− 1}. In this case, we define

γ̃1 = (x, γ1
n+1, . . . , γ

1
m, γ

2
m+1),

γ̃2 = (x, γ2
n+1, . . . , γ

2
m, γ

1
m+1).
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Then

An,m+1(γ̃1) +An,m+1(γ̃2)− (An,m+1(γ1) +An,m+1(γ2))

=
1

2

(
(γ2
m+1 − γ1

m)2 + (γ1
m+1 − γ2

m)2 − (γ1
m+1 − γ1

m)2 − (γ2
m+1 − γ2

m)2
)

=(γ2
m − γ1

m)(γ2
m+1 − γ1

m+1) < 0,

so, as above, at least one of the paths γ1, γ2 is not optimal. This contradiction completes
the proof of the lemma. 2
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