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Abstract

We show stability and locality of the minimal supersolution of a forward backward
stochastic differential equation with respect to the underlying forward process under
weak assumptions on the generator. The forward process appears both in the gener-
ator and the terminal condition. Painlevé-Kuratowski and Convex Epi-convergence
are used to establish the stability. For Markovian forward processes the minimal
supersolution is shown to have the Markov property. Furthermore, it is related to a
time-shifted problem and identified as the unique minimal viscosity supersolution of a
corresponding PDE.
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1 Introduction

In this work we study forward backward minimal supersolutions, particularly their sta-
bility and locality with respect to the forward process. For the special case of Markovian
forward processes, we thereby provide the Markov property of the minimal supersolu-
tion and show how the latter is related to viscosity supersolutions of a corresponding
PDE. More precisely, given a fixed time horizon, T > 0, measurable functions g and
ϕ, a filtered probability space, the filtration of which is generated by a d-dimensional
Brownian motion, and a progressive d-dimensional forward process X, we study the min-
imal supersolution of the decoupled forward backward stochastic differential equation
(FBSDE)

Ys −
∫ t

s

gu(Xu, Yu, Zu)du+

∫ t

s

ZudWu ≥ Yt and YT ≥ ϕ(XT ), (∗)

*Samuel Drapeau gratefully acknowledges the financial support from the National Science Foundation of
China, “Research Fund for International Young Scientists”, Grant number 11550110184.

†School of Mathematical Sciences & Shanghai Advanced Institute for Finance (CAFR/CMAR), Shanghai Jiao
Tong University, 211 West Huaihai Road, Shanghai, 200030 China.

E-mail: sdrapeau@saif.sjtu.edu.cn, http://www.samuel-drapeau.info
‡Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany.
E-mail: mainberg@math.tu-berlin.de

http://www.imstat.org/ejp/
http://dx.doi.org/10.1214/16-EJP4276
http://arXiv.org/abs/1503.00240
mailto:sdrapeau@saif.sjtu.edu.cn
http://www.samuel-drapeau.info
mailto:mainberg@math.tu-berlin.de


Stability and Markov property of forward backward minimal supersolutions

where 0 ≤ s ≤ t ≤ T . Throughout we work with a standard generator g, that is a positive,
lower semicontinous function which is convex in the control variable z and which in
addition is either monotone in y or jointly convex in (y, z). The expression “standard” is
justified since the former are, to the best of our knowledge, the mildest assumptions
guaranteeing existence and uniqueness of the minimal supersolution (E(X), Z) of (∗),
compare Drapeau et al. [4].

The first novel and main contribution of this paper consists in proving stability of
the minimal supersolution as a function of X by combining existing stability results of
Drapeau et al. [4] and Gerdes et al. [7] with Painlevé-Kuratowski and Convex epigraphical
convergence. This kind of stability generalizes results obtained so far in this direction in
that the forward process now affects jointly both the dynamics of the problem through
its input on g and the terminal condition. It comes at a cost in terms of assumptions
on the generator, namely at the need of g satisfying not only a point-wise but also
an epigraphical lower semi-continuity condition (rec). However, we show that this
epigraphical lower semi-continuity condition is met in a significant number of situations
using some results about horizon functions, compare Rockafellar and Wets [15], and
Paintlevé-Kuratovsky/Convex epigraphical convergence in Aubin and Frankowska [1],
Löhne and Zălinescu [9]. Furthermore, we prove that the minimal supersolution is
local in the following sense: Given a time t ∈ [0, T ] and a set A ∈ Ft it holds Es(X) =

1AEs(X1) + 1AcEs(X2) for s ∈ [t, T ] where X1 and X2 are two forward processes and X
their concatenation. Specifically, this allows to restrict our focus to supersolutions on
[t, T ] and forget about the past once we have arrived at time t.

Both the results above open the door to the study of supersolutions of Markovian
FBSDEs and of their relation to PDE theory, the second part of this work. Supposing X to
be the solution to a classical SDE we study under which conditions E is also Markovian in
the sense of it being a function of time and the underlying forward process. To this end,
we shift the original problem (∗) in time and introduce the candidate function u(t, x), the
value at time zero of the minimal supersolution corresponding to the shifted formulation
with a forward process starting in x ∈ Rd. Besides proving that x 7→ u(t, x) maintains
central features such as lower semicontinuity, we show that Et(Xt,x) = u(t, x) where Xt,x

is the forward diffusion starting in x at time t, therewith establishing the connection
between the original and the time-shifted problem. Furthermore, using X = Xt,Xt and
approximating Xt from below by step functions, we obtain that Et(X) ≥ u(t,Xt) always
holds true, with equality if x 7→ u(t, x) is monotone or continuous.

For ϕ bounded from below and g jointly convex in (x, y, z) another ansatz to obtain the
desired representation Et(X) = u(t,Xt) is to draw on both the convexity of the generator
and the relation of Lipschitz BSDEs and PDEs as for instance given in El Karoui et al. [6].
The former allows to approximate g from below by a sequence of Lipschitz generators
for which the minimal supersolution coincides with the unique solution of the BSDE,
a method first used in Drapeau et al. [5]. The latter in turn then ensures that at each
approximation step there is a a one-to-one relation between the (super-)solution and
a viscosity solution of the corresponding PDE. Stability of the problem with respect
to the generator, compare Drapeau et al. [4], finally allows us to pass to the limit and
thereby identify u as the unique minimal lower semi-continuous viscosity supersolution
of the above PDE. This extends existing results on the connection of BSDEs and PDEs to
minimal supersolutions and constitutes the third contribution of this work.

Let us briefly discuss the existing literature on related problems. Nonlinear BSDEs
were first introduced in Pardoux and Peng [10], whereas their relation to PDEs was
extensively studied among other in Pardoux and Peng [11] and Peng [13]. As BSDEs
may be ill-posed beyond the quadratic case, compare Delbaen et al. [3], minimal super-
solutions extend the concept of solutions and were first rigorously studied in Drapeau
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et al. [4] and then subsequently in Heyne et al. [8], while Drapeau et al. [5] derived
their dual representation. In order to keep the presentation neat, we refer the reader to
aforementioned works and El Karoui et al. [6] for a broader discussion on the subject.

The remainder of this paper is organized as follows. Setting and notations are
specified in Section 2, while the central results on stability and locality are given in
Section 3. Subsequently, Section 4 covers the study of the Markovian case, whereas the
relation between forward backward minimal supersolutions and viscosity supersolutions
of PDEs is provided in Section 5. Technical results on epi-convergenge and Painlevé-
Kuratowski limits are presented in the appendix.

2 Setting and notation

We consider the canonical probability space (Ω,F) = (C0([0, T ],Rd),B(C0([0, T ],Rd))).
By W we denote the canonical process, P the Wiener measure and (Ft) the filtration
generated by W augmented by the P -null sets of W . For some fixed time horizon T > 0

the set of FT -measurable random variables is denoted by L0, where random variables
are identified in the P -almost sure sense. Let furthermore denote Lp the set of random
variables in L0 with finite p-norm, for p ∈ [1,+∞]. Inequalities and strict inequalities
between any two random variables or processes X1, X2 are understood in the P -almost
sure or in the P ⊗ dt-almost everywhere sense, respectively. We denote by S the set of
càdlàg progressively measurable processes Y with values in R. We further denote by
L the set of Rd-valued, progressively measurable processes Z such that

∫ T
0
Z2
sds < ∞

P -almost surely. For Z ∈ L, the stochastic integral
∫
ZdW is well defined and is a

continuous local martingale.
We define the concatenation of ω̄, ω ∈ Ω at time t ∈ [0, T ] by

(ω̄ ⊗t ω)u := ω̄u1[0,t)(u) +
(
ω̄t + ωu − ωt

)
1[t,T ](u), u ∈ [0, T ]. (2.1)

Given an extended real valued function (x, y, z) 7→ g(x, y, z) defined on a finite di-
mensional space, we denote domg = {(x, y, z) : g(x, y, z) < ∞} and, by a slight abuse
of notation, we say that x ∈ domg if g(x, y, z) < ∞ for some y, z. Further, for a se-
quence (xn) ⊆ Rd we denote by cl{g(xn, ·, ·) : n} the greatest lower semi-continuous
function (y, z) 7→ h(y, z) such that h ≤ g(xn, ·, ·) for every n, while clco{g(xn, ·, ·) : n} or
clcoz{g(xn, ·, ·) : n} is defined likewise with the addition of being jointly convex or convex
in z, respectively. This given, we define the Painlevé-Kuratowski and Closed-Convex limit
inferior as follows, see Appendix A,

e- lim inf g(xn, ·, ·) := sup
n

cl{g(xk, ·, ·) : k ≥ n}

c- lim inf g(xn, ·, ·) := sup
n

clco{g(xk, ·, ·) : k ≥ n}

cz- lim inf g(xn, ·, ·) := sup
n

clcoz{g(xk, ·, ·) : k ≥ n}.

(2.2)

Finally, for a lower semi-continuous proper convex function h, we denote by h∞ the
horizon function of h, that is,

h∞(y) = lim
α→∞

h(x+ αy)− h(x)

α
,

where x ∈ domf , [See 15, Definition 3.17 and Theorem 3.21].

3 Forward backward minimal supersolutions

Throughout we call a jointly measurable function g : [0, T ]×Rd ×R×Rd → [−∞,∞]

a generator. Given a generator g, a progressive d-dimensional measurable process X
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and a measurable function ϕ : Rd → R we call a pair (Y, Z) ∈ S × L a supersolution of
the decoupled forward backward stochastic differential equation1 if

Ys −
∫ t

s

gu(Xu, Yu, Zu)du+

∫ t

s

ZudWu ≥ Yt and YT ≥ ϕ(XT ) (3.1)

for every 0 ≤ s ≤ t ≤ T . We call X the forward process, Y the value process and Z

its corresponding control process. A control process Z ∈ L is said to be admissible
if the continuous local martingale

∫
ZdW is a supermartingale and we denote the set

collecting all supersolutions by

A(X) := {(Y,Z) ∈ S × L : Z is admissible and (3.1) holds} .

In general supersolutions are not unique, therefore we define a supersolution (Y,Z) ∈
A(X) to be minimal if Y ≤ Ŷ for every (Ŷ , Ẑ) ∈ A(X). If a minimal supersolution
exists, we denote its value process by E(X). If further, A(X) ≡ ∅, we set E(X) =∞ by
convention.

Throughout this paper a generator may satisfy

(std) g is positive, lower semicontinuous and z 7→ g(x, y, z) is convex.

(mon) y 7→ g(x, y, z) is monotone.2

(con) (y, z) 7→ g(x, y, z) is jointly convex.

Definition 3.1. We say that g is a standard generator if g satisfies (std) and either (mon)
or (con).

Remark 3.2. Following [4, Section 4.3], the positivity assumption in (std) may be relaxed
to g being bounded from below by an affine function of z without violating the validity of
our results.

The following is a straightforward application of results in [4, 5].

Theorem 3.3. Let g be a standard generator. Suppose that ϕ(XT )− ∈ L1 and A(X)

is non-empty. Then there exists a unique minimal supersolution (E(X), Z) ∈ A(X) for
which holds

Et(X) = ess inf {Yt : (Y,Z) ∈ A(X)}

almost surely for every 0 ≤ t ≤ T .

Proof. For a givenX ∈ S, setting gX(y, z) := g(X, y, z) and ξ = ϕ(XT ) defines a generator
and a terminal condition satisfying the existence and uniqueness assumptions in [4, 5],
hence the assertion.

Denoting by A(ξ, h) and E(ξ, h) the set of supersolutions and the minimal supersolu-
tion, respectively, with terminal condition ξ and generator h(y, z) in the sense of [4, 5], it
holds E(X) = E(ϕ(XT ), h) where h = g(X, ·, ·).

The subsequent results of Sections 4 and 5 depend on the stability of the minimal
supersolution as a function of X, provided in Theorem 3.4 below. Together with the
subsequent Proposition 3.5, it constitutes the first main contribution of this work,
generalizes the stability results given in [4] and is partially inspired by driver stability
shown in [7]. However, by dependence of the generator on the forward component
we obtain a joint stability in the driver and terminal condition. This requires a novel
approach and one further assumption on the generator.

1To keep the presentation lean we sometimes use the abbreviated expression forward backward supersolu-
tions.

2That is either increasing or decreasing.
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(rec) for every bounded sequence (xn) such that xn → x, it holds

• if g satisfies (con), then g(x, ·, ·) ≤ c- lim inf g(xn, ·, ·);
• if g satisfies (mon), then g(x, ·, ·) ≤ cz- lim inf g(xn, ·, ·).

Theorem 3.4. Let g be a standard generator satisfying (rec) and suppose that ϕ is lower
semicontinuous. Let (Xn) be a sequence of progressive measurable processes such that
Xn
t → Xt almost surely for every t and ϕ(Xn

T ) ≥ −η where η ∈ L1
+. Then it holds

E0(X) ≤ lim inf E0(Xn). (3.2)

If furthermore x 7→ g(x, ·, ·), ϕ and (Xn) are increasing, then

E0(X) = lim E0(Xn). (3.3)

Finally, if lim inf E0(Xn) <∞, then Et(X) ≤ lim inf Et(Xn) for every t.

Proof. We define3

• if g satisfies (mon): hn := clcoz{g(Xk, ·, ·); k ≥ n} for which holds that hn is positive,
lower semicontinuous, monotone in y and convex in z. Furthermore, it holds
hn ≤ hn+1 and hn → h = cz- lim inf g(Xn, ·, ·) by definition of cz- lim inf in (2.2).

• if g satisfies (con): hn := clco{g(Xk, ·, ·); k ≥ n} for which holds that hn is positive,
lower semicontinuous, and jointly convex in (y, z). Furthermore, it holds hn ≤ hn+1

and hn → h = c- lim inf g(Xn, ·, ·) by definition of c- lim inf in (2.2).

Define in addition the increasing sequence of terminal conditions ξn = infk≥n ϕ(Xk
T ) for

which holds ξn ≥ −η for every n and ξ := sup ξn.
Given the sequences of terminal conditions (ξn) and generators (hn), both increas-

ing, we adapt the stability proofs in [4] as follows. The monotonicity of the minimal
supersolution operator implies E0(ξ1, h1) ≤ . . . ≤ E0(ξn, hn) ≤ . . . ≤ E0(ξ, h). Let us show
that lim E0(ξn, hn) = E0(ξ, h). If lim E0(ξn, hn) =∞, there is nothing to prove. Assuming
therefore that lim E0(ξn, hn) <∞ yields the existence of a non-trivial minimal superso-
lution for every n. Denote by ((Y n, Zn)) this sequence of minimal supersolutions and
define Y = limY n since (Y n) is increasing. The same argumentation as in [4] implies Y
being a càdlàg supermartingale and the existence of Z ∈ L together with a sequence
(Z̃n) in the asymptotic convex hull of (Zn) such that Z̃n → Z P ⊗ dt-almost surely, while∫
Z̃ndW →

∫
ZdW locally in L1. Further,

∫
ZdW is a admissible. We are left to show that

(Y,Z) is a minimal supersolution for ξ. Since hk(Y,Z) → h(Y,Z) P ⊗ dt-almost surely,
Fatou’s Lemma yields

Ys−
∫ t

s

hu(Yu, Zu)du+

∫ t

s

ZudWu ≥ lim sup
k

(
Ys −

∫ t

s

hku(Yu, Zu)du+

∫ t

s

ZudWu

)
. (3.4)

For k fixed, the following holds:

• If y 7→ g(x, y, z) is decreasing: Lower semicontinuity, convexity in z, and hk being
decreasing in y yield

Ys −
∫ t

s

hku(Yu, Zu)du+

∫ t

s

ZudWu

≥ lim sup
n

mn∑
i=n

αni

(
Y is −

∫ t

s

hku
(
Yu, Z

i
u

)
du+

∫ t

s

ZiudWu

)

≥ lim sup
n

mn∑
i=n

αni

(
Y is −

∫ t

s

hku
(
Y iu, Z

i
u

)
du+

∫ t

s

ZiudWu

)
.

3The following operations are to be understood (t, ω)-wise.
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• If y 7→ g(x, y, z) is increasing: Lower semicontinuity, convexity in z, the fact that
Y n → Y P ⊗ dt-almost everywhere, the function hk being increasing in y, and
Y n ≤ Y i for every i = n, . . . ,mn, yield

Ys −
∫ t

s

hku(Yu, Zu)du+

∫ t

s

ZudWu

≥ lim sup
n

mn∑
i=n

αni

(
Y is −

∫ t

s

hku
(
Y nu , Z

i
u

)
du+

∫ t

s

ZiudWu

)

≥ lim sup
n

mn∑
i=n

αni

(
Y is −

∫ t

s

hku
(
Y iu, Z

i
u

)
du+

∫ t

s

ZiudWu

)
.

• If (y, z) 7→ g(x, y, z) is jointly convex: thereby hk is jointly convex too. Lower
semicontinuity and joint convexity of hk yield

Ys −
∫ t

s

hku(Yu, Zu)du+

∫ t

s

ZudWu

≥ lim sup
n

mn∑
i=n

αni

(
Y is −

∫ t

s

hku
(
Y iu, Z

i
u

)
du+

∫ t

s

ZiudWu

)
.

In all cases above, for every n greater than k, it follows that hk(Y iu, Z
i
u) ≤ hi(Y iu, Ziu) for

every i = n, . . . ,mn. Hence

lim sup
n

mn∑
i=n

αni

(
Y is −

∫ t

s

hku
(
Y iu, Z

i
u

)
du+

∫ t

s

ZiudWu

)

≥ lim sup
n

mn∑
i=n

αni

(
Y is −

∫ t

s

hiu
(
Y iu, Z

i
u

)
du+

∫ t

s

ZiudWu

)
≥ lim sup

n

mn∑
i=n

αni Y
i
t = Yt

which, plugged into equation (3.4), yields

Ys −
∫ t

s

hu(Yu, Zu)du+

∫ t

s

ZudWu ≥ Yt.

As YT = limY nT ≥ lim ξn = ξ, this shows that (Y,Z) ∈ A(ξ, h). Having identified (Y, Z)

as a supersolution with terminal condition ξ and driver h, this implies E0(ξ, h) ≤ Y0.
Since Y n ≤ E(ξ, h) this completes the proof of E0(ξ, h) = lim E0(ξn, hn). Particularly, an
inspection of the arguments above yields that, whenever E0(ξ, h) < ∞, then Et(ξn, hn)

increases monotonically to Et(ξ, h) for every t. With this at hand, the monotone assertion
(3.3) follows readily by observing hn = g(Xn, ·, ·) for every n as well as ξn = ϕ(Xn).

As for the first assertion (3.2), on the one hand, by definition of hn and ξn for every n
it holds hn ≤ g(Xn, ·, ·) and ξn ≤ ϕ(Xn

T ). Hence E0(ξn, hn) ≤ E0(Xn) for every n, showing
that E0(ξ, h) ≤ lim inf E0(Xn). On the other hand, the lower semicontinuity of ϕ implies
ϕ(XT ) ≤ ξ. Furthermore, since g satisfies (rec), it holds g(X, ·, ·) ≤ h. Combining the
above we obtain E0(X) ≤ E0(ξ, h) ≤ lim inf E0(Xn), thereby finishing the proof.

As the preceding proof exhibits, the stability depends heavily on the generator g satisfying
(rec). The following proposition shows that this assumption is indeed fulfilled in many
circumstances. The main part of its proof, being of convex analytical nature, is addressed
in Appendix A.

Proposition 3.5. A standard generator g satisfies the assumption (rec) in any of the
following cases:
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(i) g(x, y, z) = g1(x) + g2(y, z) with g1 lower semi-continuous and g2 a standard genera-
tor;

(ii) g satisfies (con) and f∞ = g∞(xn, ·, ·) for every n where f = clco{g(xn, ·, ·) : n};

(iii) g satisfies (con) and for every γ the level set ∪n{(y, z) : g(xn, y, z) ≤ γ} is relatively
compact;

(iv) g satisfies (mon) and for every y and γ the level set ∪n{z : g(xn, y, z) ≤ γ} is
relatively compact.

Cases (ii)–(iv) have to hold for every (xn) ⊆ domg.

Proof. As for (i) , due to (con) we have clco{g(xk, ·, ·) : k ≥ n} = infk≥n g1(xk) +g2. Hence,
since g1 is lower semi-continuous, it holds

c- lim inf g(xn, ·, ·) = lim inf g1(xn) + g2 ≥ g1(x) + g2 = g(x, ·, ·).

The same argumentation is valid in the case where (mon) is satisfied by considering the
convex hull solely in z.

The cases (ii) and (iv) are subjects of the Proposition A.1 and A.2 in the Appendix A.
Finally, a slight modification of Proposition A.2 in the jointly convex case yields (iii) .

Remark 3.6. Note that assumption (ii) is satisfied if g(x, y, z) ≥ h(y, z) for some lower
semi-continuous and convex function such that h∞ = g∞(x, ·, ·) for every x. In particular
if h is coercive in which case (iii) also holds. Assumption (iv) is fulfilled if g(x, y, z) ≥
c(y) |z| for some c(y) > 0.

We conclude this section by a further central property of forward backward minimal
supersolutions, namely their locality with respect to the underlying forward process.

Proposition 3.7. For t ∈ [0, T ] fixed, let X1, X2 be two forward processes and A ∈
Ft. Define the forward process X = X11[0,t[ + (1AX

1 + 1AcX2)1[t,T ] and suppose that
A(X),A(X1),A(X2) 6= ∅. Then it holds

Es(X) = 1AEs(X1) + 1AcEs(X2), t ≤ s ≤ T.

Proof. Let us denote by

At(X) :=
{

(Y, Z) ∈ S|[t,T ] × L|[t,T ] : Z is admissible and (3.1) holds on [t, T ]
}

(3.5)

the set of supersolutions on [t, T ] and by A(X)|[t,T ] the restriction to [t, T ] of the elements
of A(X). Clearly, A(X)|[t,T ] ⊆ At(X), implying that

Its(X) := ess inf {Ys : (Y,Z) ∈ At(X)} ≤ ess inf {Ys : (Y, Z) ∈ A(X)} = Es(X), t ≤ s ≤ T.

Reversely, if A(X) 6= ∅, then equality holds. Indeed, an application of Theorem 3.3
restricted to [t, T ] yields the existence of Ẑ ∈ S|[t,T ] such that (It(X), Ẑ) ∈ At(X). For
(Y,Z) ∈ A(X), it follows that Yt ≥ Et(X) ≥ Itt (X). Hence, by stability of supersolutions
with respect to pasting, compare [4, Lemma 3.1], the pair defined by

Ỹ = 1[0,t[Y + 1[t,T ]I
t(X) and Z̃ = 1[0,t]Z + 1]t,T ]Ẑ

belongs to A(X). However, this implies Ỹs = Its ≥ Es(X) for t ≤ s ≤ T and thus

Itt (X) = Et(X). (3.6)

With this at hand, under the assumption At(X1),At(X2),At(X) 6= ∅ it is straightforward
to check that At(X) = 1AAt(X1) + 1AcAt(X2) since A ∈ Ft and therefore Its(X) =

1AI
t
s(X

1) + 1AcIts(X
2) for every t ≤ s ≤ T . In combination with (3.6) the former yields

Es(X) = 1AEs(X1) + 1AcEs(X2), t ≤ s ≤ T,

the proof is done.
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4 Markovian minimal supersolutions

For the remainder, the forward process X is given by the solution of the stochastic
differential equation

Xt = X0 +

∫ t

0

µu(Xu)du+

∫ t

0

σu(Xu)dWu,

where X0 ∈ Rn and µ : [0, T ]×Rn → Rn and σ : [0, T ]×Rn → Rn×d are jointly measurable
functions satisfying the usual assumptions of SDE theory, namely

(sde) µ·(0) and σ·(0) belong to L2; σ and µ are uniformly Lipschitz and of linear
growth in their second component.

The goal of the current section is to show that in this case Et(X) = u(t,Xt) where u is
a function defined on [0, T ]×Rn. To this end, given t ∈ [0, T ], we first define for every
ξ ∈ L2(Ft) the process Xt,ξ as the unique solution of

Xt,ξ
s = ξ +

∫ s

t

µu(Xt,ξ
u )du+

∫ s

t

σu(Xt,ξ
u )dWu, t ≤ s ≤ T

Xt,ξ
s = ξ −

∫ t

s

µu(Xt,ξ
u )du−

∫ t

s

ZudWu, 0 ≤ s ≤ t. (4.1)

Notice that Xt,ξ is well defined and uniquely determined. Indeed, it is the unique solution
of an SDE with Lipschitz coefficients between t and T and initial value ξ ∈ L2(Ft) and
the unique solution of the Lipschitz BSDE with driver µ between 0 and t and terminal
condition ξ. It is furthermore continuous and adapted. Uniqueness of these solutions in
particular yields

X = Xt,Xt

and for every ξ =
∑n
k=1 1Ak

xk, where (Ak) ⊆ Ft is a partition, it holds

Xt,ξ
s =

∑
1Ak

Xt,xk
s , t ≤ s ≤ T. (4.2)

Next, we need to consider the t-shifted problem. More precisely, let W t := Wt+· −Wt be
the Brownian motion on [0, T − t] together with the corresponding filtration F ts := σ(W t

r :

0 ≤ r ≤ s). Accordingly, for each x ∈ Rn define X̃t,x as the solution of the stochastic
differential equation

X̃t,x
s = x+

∫ s

0

µt+u(X̃t,x
u )du+

∫ s

0

σt+u(X̃t,x
u )dW t

u, 0 ≤ s ≤ T − t.

Similarly, t-shifted supersolutions are those pairs (Y,Z) ∈ S(F t)× L(F t) such that

Yr −
∫ s

r

gt+u(X̃t,x
u , Yu, Zu)du+

∫ s

r

ZudW
t
u ≥ Ys and YT−t ≥ ϕ

(
X̃t,x
T−t

)
. (4.3)

and we collect all t-shifted supersolutions on [0, T − t] in the set

Ã(X̃t,x) :=

{
(Y, Z) ∈ S(F t)× L(F t) : (4.3) holds and

∫
ZdW t is a supermartingale

}
.

Analogously, we denote by Ẽ(X̃t,x) the t-shifted minimal supersolution operator and
define our candidate function u : [0, T ]×Rn → [−∞,∞] by

u(t, x) := inf
{
Y0 : (Y,Z) ∈ Ã(X̃t,x)

}
= Ẽ0(X̃t,x).
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The reader should keep in mind that for the sequel a “tilde” appearing in the notation of
expressions always indicates a relation to the t-shifted problem on [0, T − t] above.

The ensuing theorem provides the second contribution of this work by collecting
important properties of u and drawing the connection between the original problem, the
t-shifted one and the function u.

Theorem 4.1. We suppose that g is a generator satisfying (std) and (rec), µ and σ

satisfy (sde), and ϕ is lower semicontinuous and linearly bounded from below. Then the
following assertions hold true:

(i) x 7→ u(t, x) is lower semicontinuous, either identically ∞ or proper for every
t ∈ [0, T ]. If furthermore g, ϕ, µ and σ are convex, then x 7→ u(t, x) is convex.

(ii) If A(Xt,x) 6= ∅, then it holds
Et
(
Xt,x

)
= u(t, x).

In particular, Et(Xt,x) is a real number corresponding to the infimum of the t-shifted
minimal solution problem.

(iii) It holds
Et(X) ≥ u(t,Xt)

with equality if A(X) 6= ∅ and x 7→ u(t, x) is

• either continuous;

• or monotone and X ≥ C uniformly for some constant C ∈ R.

Proof. For the remainder of the proof, we fix t ∈ [0, T ].

Point (i): For xn → x, up to a subsequence it holds lim X̃t,xn
s = X̃t,x

s for every s and
infn X̃

t,xn

T ∈ L2, both as a consequence of [16, Theorem 2.4]. Since ϕ is lower semicontin-
uous and linearly bounded from below, it follows that infn ϕ(X̃t,xn

T )− ∈ L1 and therefore
the stability Proposition 3.4 yields

lim inf u(t, xn) = lim inf Ẽ0(X̃t,xn) ≥ Ẽ0(X̃t,x) = u(t, x).

Finally, it holds that Ẽ0(X̃t,x) ≥ E[ϕ(X̃t,x
T )] > −∞, by which we deduce that u is either

proper or uniformly equal to∞. The proof of the convexity property goes along the lines
of the argumentation in [4, Proposition 3.3.(4)].

Point (ii): First, let Xt,x be defined as in (4.1). In analogy to the proof of Proposition 3.7
we obtain

Et(Xt,x) = It,xt (4.4)

where It,xt = ess inf{Yt : (Y,Z) ∈ At(Xt,x)} and At(Xt,x) is defined analogously to (3.5).
It remains to show the equality It,xt = u(t, x). In other terms, we need to establish the
relation between the set At(Xt,x) of supersolutions between [t, T ] with forward process
Xt,x and the set Ã(X̃t,x) of t-shifted supersolutions on [0, T − t] with forward process
X̃t,x. Clearly, for every (Y,Z) ∈ Ã(X̃t,x), the observation Xt,x

s = X̃t,x
s−t implies that

(Ȳ , Z̄) := (Y·−t, Z·−t) ∈ At(Xt,x), showing in turn that It,xt ≤ u(t, x). Together with (4.4)
this implies Et(Xt,x) ≤ u(t, x). Reciprocally, since A(Xt,x) is non-empty, so is At(Xt,x)

and thus there exists a control Zt,x corresponding to the [t, T ]-minimal supersolution It,x.
Observe that for almost all ω̄ ∈ Ω

ω 7→ (Y ω̄s , Z
ω̄
s ) :=

(
It,xs+t(ω̄ ⊗t ω), Zt,xs+t(ω̄ ⊗t ω)

)
s ∈ [0, T − t]

is a t-shifted supersolution with forward process X̃t,x, that is, an element of Ã(X̃t,x).
Indeed, it is measurable by definition and defines a pair of a càdlàg and a progressive
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process on [0, T − t]. In addition, this pair is adapted to F t. This follows from it
being a functional of ω̄ ⊗t ω and thus by means of (2.1) of (ωt+s − ωt)s∈[0,T−t]. The

fact that it satisfies (4.3) follows from X̃t,x
s = Xt,x

t+s and the generator g not depending
on ω. Hence, (Y ω̄s , Z

ω̄
s )s∈[0,T−t] ∈ Ã(X̃t,x) and therefore, for almost all ω̄ ∈ Ω, it holds

Y ω̄0 ≥ Ẽ0(X̃t,x) = u(t, x). Using the definition of Y ω̄ in combination with (4.4) we obtain

Et(Xt,x) = It,xt ≥ u(t, x) P -almost surely,

proving Point (ii).

Point (iii): The inequality Et(X) ≥ u(t,Xt) is obtained by the path-wise argumentation
of the previous point. Suppose now that x 7→ u(t, x) is continuous or increasing. Since
x 7→ u(t, x) is lower semi-continuous, if

• it is continuous, for every sequence of random variables (Xn
t ) ⊆ L2(Ft) converging

to Xt, it holds limu(t,Xn
t ) = u(t,Xt). In this case, we approximate Xt by step

functions Xn
t → Xt where for each n we have Xn

t =
∑n
k=1 1An

k
xnk .

• it is monotone, for every increasing sequence of random variables (Xn
t ) ⊆ L2(Ft)

converging toXt, it holds limu(t,Xn
t ) = u(t,Xt). In this case, sinceX ≥ C uniformly,

we approximate Xt from below by step functions, that is Xn
t ↗ Xt where for each n

we have Xn
t =

∑n
k=1 1An

k
xnk .

Using (Xn
t ) we define the family of terminal values (Xn

T ) by

Xn
T := X

t,
∑n

k=1 1An
k
xn
k

T

which, by means of (4.2), satisfy

X
t,
∑n

k=1 1An
k
xn
k

s =

n∑
k=1

1An
k
X
t,xn

k
s , t ≤ s ≤ T.

It clearly holds Xn
s → Xs for every s ≥ t and in the case of monotonicity, Xn

t ↗ Xt. The
function x 7→ u(t, x) being either increasing or continuous yields

lim inf u(t,Xn
t ) = limu(t,Xn

t ) = u(t,Xt). (4.5)

Furthermore, by locality of E , see Proposition 3.7, we have

Et(Xn) =
∑

1An
k
Et(Xt,xn

k ) =
∑

1An
k
u(t, xnk ) = u(t,Xn

t ). (4.6)

Finally, the stability result of Theorem 3.4 together with relations (4.5) and (4.6) yields

Et(X) ≤ lim inf Et(Xn) = lim inf u(t,Xn
t ) = u(t,Xt),

showing the reverse inequality and thereby completing the proof.

5 Viscosity supersolutions

The last relation of Theorem 4.1, namely Et(X) = u(t,Xt), holds in the special cases
of monotonicity or continuity. The current and final section shows that it is also valid as
soon as g is jointly convex and even more, in this case the minimal supersolution can be
interpreted as a viscosity supersolution of a corresponding PDE.

To begin with, following the notations and definitions in [2], [12] and [16], we consider
semilinear parabolic PDEs with terminal conditions of the form

− ∂tv(t, x)− F (t, x, v(t, x), Dv(t, x), D2v(t, x)) = 0, and v(T, x) = ϕ(x) (5.1)
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with v : [0, T ] × Rd → R, ϕ : Rd → R and F : [0, T ] × Rd × R × Rd × S(d) → R. Here,
S(d) denotes the set of symmetric d × d matrices, while F is supposed to be lower
semicontinuous. Further, Dv and D2v corresponds to the gradient vector and matrix of
second partial derivatives of v, respectively. In the case under consideration F is of the
form

F (t, x, v,Dv,D2v) = µt(x)Dv + tr

(
1

2
σ2
t (x)D2v

)
+ gt(x, v, σt(x)Dv).

Note that as σt(x) is positive semi-definite, F is degenerate elliptic.

Definition 5.1. A viscosity supersolution of (5.1) is a lower semicontinuous function
u : [0, T ]×Rd → R such that

−a− F (t, x, u(t, x), p,M) ≥ 0 for all (t, x) ∈ [0, T ]×Rd and (a, p,M) ∈ P−(1,2)u(t, x)

where P−(1,2)u(t, x) are the semi-jets of u at (t, x), that is those (a, p,M) ∈ R×Rd ×S(d)

satisfying

u(t′, x′) ≥ u(t, x) + a(t′ − t) + 〈p, x′ − x〉+
1

2
〈M(x′ − x), x′ − x〉+ o (|t′ − t|+ |x′ − x|)

for every (t′, x′) ∈ [0, T ]×Rd.
Theorem 5.2. Assume that the assumptions of Theorem 4.1 are fulfilled and g is convex.
If in addition ϕ is bounded from below, that is ϕ ≥ C for some C ∈ R, and A(X) 6= ∅,
then it holds

Et(X) = u(t,Xt), t ∈ [0, T ]. (5.2)

Furthermore, u is the unique minimal4 lower semicontinuous viscosity supersolution of
the PDE (5.1).

Proof. Note that if A(X) 6= ∅, then g is proper. As in [5], for each n define

gn(x, y, z) := sup
|α|∨|β|∨|γ|≤n

{αx+ βy + γz − g∗(α, β, γ)} and ϕn(x) = ϕ(x) ∧ n

where g∗ is the convex conjugate of g. By Fenchel-Moreau, the sequence (gn) converges
pointwise from below to g, while each gn is of linear growth. Being in addition convex,
each gn is also Lipschitz continuous. Analogously to Section 3, we define En(X) as the
minimal supersolution of the FBSDE with generator gn, forward process X and terminal
function ϕn. As gn is Lipschitz and ϕn is bounded, it follows from [5, Remark 3.6] that
the minimal supersolution En(X) corresponds to the unique solution of the Lipschitz
BSDE with generator gn and terminal condition ϕn(XT ).

Hence, a well-established result connecting Lipschitz BSDEs and semilinear PDEs,
compare for instance [16, Proposition 10.8], yields un : [0, T ]×Rd → R such that

Ent (X) = un(t,Xt). (5.3)

where un is a continuous solution of the PDE (5.1) with Fn and ϕn instead of F and ϕ

respectively. Note that in addition, for each t ∈ [0, T ] the function un(t, ·) corresponds
exactly to the t-shifted problem with generator gn used in the proof of Theorem 4.1.
More precisely,

un(t, x) = Ent (Xt,x) = Ẽn0 (X̃t,x)

4In the sense that for any other viscosity supersolution v of the PDE (5.1), it holds v ≥ u.
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with the notation analogous to above and n indicating of course that gn is considered
instead of g. Using the stability property of minimal supersolutions with respect to in-
creasing drivers, see [4, Theorem 4.14], slightly adapted to in addition having increasing
terminal conditions, it follows from E0(X) <∞ that

Ent (X)↗ Et(X).

On the other hand, by the same argumentation for the shifted problem we deduce that

un(t, x)↗ u(t, x),

pointwise which, together with (5.3) yields the desired relation (5.2).
We are left to show that u is a lower semicontinuous viscosity supersolution of the

PDE (5.1). By means of [2, Remark 6.3] it follows that

u∗(t, x) := lim inf
(n,t′,x′)→(∞,t,x)

un(t′, x′)

is a lower semicontinuous viscosity supersolution of (5.1) with

F∗(t, x, u, p,M) = lim inf
(n,t′,x′,u′,p′,M ′)→(∞,t,x,u,p,M)

Fn(t′, x′, u′, p′,M ′)

instead of F . However, from gn ↗ g it follows that Fn ↗ F . Since in addition un ↗ u,
Lemma 5.3 below implies that u∗ = u and F∗ = F showing the existence.

Let us finish the proof by showing the minimality of u. Let then v be a lower semi-
continuous viscosity supersolution of the PDE 5.1. Since Fn ≤ F and ϕn ≤ ϕ, it follows
that v is in particular a lower semi-continuous viscosity supersolution of the PDE 5.1
with Fn and ϕn instead of F and ϕ for every n. However, in this Lipschitz case, un is
in particular the unique lower semi-continuous viscosity supersolution of the PDE 5.1
with Fn and ϕn. In particular, it follows that v ≥ un for every n. We thus deduce that
v ≥ supn u

n = u, completing the proof.

Lemma 5.3. Let (hn) be an increasing sequence of real valued continuous functions on
O where O is a metric space. Then, for h := supnh

n it holds that

h(z) = h∗(z) := lim inf
(n,z′)→(∞,z)

hn(z′), z ∈ O.

Proof. Fix some z ∈ O. By definition of the limes inferior we may pass to a subsequence,
denoted by (n, zn), satisfying limn h

n(zn) = h∗(z). For a fixed k, the sequence being
increasing implies that hn(zn) ≥ hk(zn) for all n sufficiently large. Combining the former
with the continuity of hk yields

h∗(z) ≥ lim
n
hk(zn) = hk(z), for all k,

implying in turn that h∗(t, z) ≥ h(t, z). Conversely, for every ε > 0 there exists k such
that for all n ≥ k it holds

h∗(z) ≤ inf
m≥k

inf
z′ 6=z

d(z,z′)≤1/n

hm(z′) + ε ≤ inf
z′ 6=z

d(z,z′)≤1/n

hk(z′) + ε.

By sending n to infinity and subsequently using the continuity of hk as well as the
definition of h the above yields h∗(z) ≤ hk(z) + ε ≤ h(z) + ε. As ε was arbitrary, this
finishes the proof.
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A Epi-convergence: technical results

Throughout, let X,Y, Z denote three finite dimensional euclidean real vector spaces.
We denote by cl(C) and clco(C) the closure and closure of the convex hull of a set
C, respectively. For a sequence of sets (Cn), we define the Painlevé-Kuratowski limit
superior and the Closed Convex limit superior by

e- lim supCn = ∩ncl
(
∪k≥nCk

)
and c- lim supCn = ∩nclco

(
∪k≥nCk

)
,

respectively, see [15, Chapter 4] and [9]. For a sequence (fn) of functions, we define
e- lim inf fn or c- lim inf fn as the function the epigraph of which corresponds to the
Painlevé-Kuratowsky or Closed-Convex limit superior of the epigraphs of (fn), respec-
tively, see [15, Chapter 7, Section B]. In other terms,

e- lim inf fn = sup
n

cl
{
fk : k ≥ n

}
and c- lim inf fn = sup

n
clco

{
fk : k ≥ n

}
where cl{fk : k ≥ n} and clco{fk : k ≥ n} is the greatest lower semicontinuous minorant
and greatest lower semicontinuous convex minorant of every fk for k ≥ n, respectively.
Clearly, it holds

c- lim inf fn ≤ clco {e- lim inf fn} .

We denote by C∞ := {x : λnxn → x for some (xn) ⊆ C and λn ↓ 0} the horizon cone of a
set C. Given a proper closed convex function f , we denote by f∞ its horizon function,
that is the function the epigraph of which corresponds to the horizon cone of the epigraph
of f .

Proposition A.1. Let f : X × Z →]−∞,∞] be a proper lower semicontinuous function
that is convex in z. Let (xn) ⊆ X with xn → x and denote fn := f(xn, ·) and h :=

clco{fn : n}. Suppose further that (fn)∞ = h∞. Then it holds

f(x, z) ≤ clco {e- lim inf fn} (z) = c- lim inf fn(z), z ∈ Z.

Proof. If fn ≡ ∞ except for finitely many n, then the inequality is trivially satisfied.
Without loss of generality we may thus assume fn to be proper for every n ∈ N. By lower
semicontinuity of f and [15, Proposition 7.2] it follows that

e- lim inf fn(z) = min {α ∈ R : lim inf f(xn, zn) = α for some zn → z} ≥ f(x, z),

and since f is lower semicontinuous and convex in z, we deduce

f(x, z) ≤ clco{e- lim inf fn}(z), z ∈ Z.

Let now Cn = epifn. By assumption, Cn is non-empty, closed and convex for every
n ∈ N. Furthermore, as C := epi(h) = clco(∪nCn), it holds that (Cn)∞ = C∞ for every
n. Since horizon and recession cones coincide in finite dimensions for non-empty closed
and convex sets, [See 14, Theorem 8.2], the conditions of [9, Theorem 4.4] are fulfilled
and therefore we obtain clco(e- lim supCn) = c- lim supCn. This in turn implies

clco {e- lim inf fn} (z) = c- lim inf fn(z), z ∈ Z,

finishing the proof.

In the following, we consider the convex hull only with respect to certain dimensions
which notation-wise is stressed by means of an index. For instance, the convex hull in
the second variable z of a set C ⊆ Y × Z is denoted by coz(C).
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Proposition A.2. Let f : X × Y × Z →] − ∞,∞] be a proper lower semicontinuous
function that is convex in z and monotone in y. Suppose that for every bounded sequence
(xn) ⊆ X, y ∈ Y and γ ∈ R the set ∪n{z : f(xn, y, z) ≤ γ} is contained in a compact set.
Then, denoting fn := f(xn, ·), for every (xn) ⊆ X with xn → x it holds

f (x, y, z) ≤ clcoz {e- lim inf fn} (y, z) = cz- lim inf fn(y, z), y, z ∈ Y × Z.

The argumentation is inspired by [1, Lemma 1.1.9]

Proof. An argumentation analogous to the proof of Proposition A.1 allows to assume that
fn is proper for every n and it holds

f (x, y, z) ≤ clcoz {e- lim inf fn} (y, z), y, z ∈ Y × Z.

Furthermore, the relation

cz- lim inf fn(y, z) ≤ clcoz {e- lim inf fn} (y, z) y, z ∈ Y × Z. (A.1)

is naturally satisfied. Let γ ∈ R and define Cnγ := {(y, z) : fn(y, z) ≤ γ}. To show the
reverse inequality in (A.1), it is sufficient to show that clcoz(e- lim supCnγ ) = cz- lim supCnγ
for every γ. Let (y, z) ∈ cz- lim supCnγ and with d = dimZ denote by ∆ the d + 1-
dimensional simplex. By Caratheodory’s Theorem, there exist sequences (yn), and
(zin)i=1,...,d+1, and (λn) such that (yn, z

i
n) ∈ ∪k≥nCkγ , λn ∈ ∆, yn → y and

∑
i λ

i
nz
i
n → z.

Up to a subsequence, we may assume that λn → λ ∈ ∆. Furthermore, for every i it
holds (zin) ⊆ ∪n{z : f(xn, ỹ, z) ≤ γ} is contained in some compact set, since (xn) ⊆ X

is bounded and where ỹ = sup yn or ỹ = inf yn depending on f being increasing or
decreasing in y. Hence, up to yet another subsequence, zin → zi holds for every i.
In particular, (y, zi) ∈ ∩ncl(∪k≥nCkγ ). Thus, (y, z) = lim(yn,

∑
i λ

i
nz
i
n) =

∑
λi(y, zi) ∈

cl(coz(∩ncl(∪k≥nCnγ )) = cl(coz(e- lim supCnγ )) which ends the proof.
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