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Pathwise uniqueness for an SPDE with Holder
continuous coefficient driven by a-stable noise”

Xu Yang' Xiaowen Zhou*

Abstract

In this paper we study the pathwise uniqueness of nonnegative solution to the following
stochastic partial differential equation with Holder continuous noise coefficient:

8Xt (l‘)
ot

- %AXt(x) 4 G(Xi(2) + H(Xo— () e(z), >0, 2 €R,

where for ] < e <2and0< 8 <1, L denotes an a-stable white noise on R+ xR
without negative jumps, G satisfies a condition weaker than Lipschitz and H is
nondecreasing and -Holder continuous.

For G = 0 and H(z) = =, a weak solution to the above stochastic heat equation
was constructed in Mytnik (2002) and the pathwise uniqueness of the nonnegative
solution was left as an open problem. In this paper we give an affirmative answer to
this problem for certain values of o and . In particular, for a8 = 1 the solution to the
above equation is the density of a super-Brownian motion with a-stable branching (see
Mytnik (2002)) and our result leads to its pathwise uniqueness for 1 < a < /5 — 1.

The local Holder continuity of the solution is also obtained in this paper for fixed
time ¢ > 0.
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1 Introduction

1.1 Background and motivation

It was first proved by Konno and Shiga (1988) [14] and by Reimers (1989) [28] that
for an arbitrary initial measure the one-dimensional super-Brownian motion with binary
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Pathwise uniqueness for an SPDE

branching has a jointly continuous density that is a random field {X;(z) : ¢t > 0,z € R}
satisfying the following continuous-type stochastic partial differential equation (SPDE):

%Xt(x) = %AXt(x) + VX (2)Wi(z), t>0, z€R, (1.1)
where A denotes the one-dimensional Laplacian operator and {W;(z) : t > 0,z € R}
denotes the derivative of a space-time Gaussian white noise.

The weak uniqueness of solution to the above stochastic heat equation follows from
the wellposedness of a martingale problem for the associated super-Brownian motion.
The pathwise uniqueness of nonnegative solution to SPDE (1.1) remained open even
though it had been studied by many authors. The main difficulty comes from the non-
Lipschitz diffusion coefficient. Progresses have been made in considering modifications
of the SPDE. When the random field {W;(x) : ¢ > 0,2 € R} is colored in space and white
in time, the pathwise uniqueness of nonnegative solution to the SPDE was obtained
by Mytnik et al. (2006) [23]. Further work can be found in Rippl and Sturm (2013)
[29] and in Neuman (2014) [25]. Xiong (2013) [33] proved the pathwise uniqueness
of a SPDE satisfied by “distribution function” of the super-Brownian on R. When
{Wi(x) : t > 0,2 € R} is a space-time Gaussian white noise, the solutions are allowed
to take both positive and negative values and /X;(z) is replaced by o(t, z, X:(x)) in
SPDE (1.1), the pathwise uniqueness of the solution was proved by Mytnik and Perkins
(2011) [22] for o(-,-,u) with Holder continuity in « of index §y > 3/4. Further work
can be found in Mytnik and Neuman (2015) [20]. Recently, some negative results were
obtained. When /X, () is replaced by | X;(x)|’" in the SPDE (1.1), Burdzy et al. (2010)
[3] showed a non-uniqueness result for 0 < 8; < 1/2 and Mueller et al. (2014) [18]
proved a non-uniqueness result for 1/2 < 5, < 3/4.

Mytnik (2002) [19] considered the following jump-type SPDE and constructed a weak
solution:

89X, (x)
ot

1 .
= 5 AX(2) + X,_(2)PLy(z), t>0, z€eR, (1.2)

where 0 < 8 < 1 and for 1 < o < 2, L is a one sided a-stable white noise on Ry xR
without negative jumps. Put p := a8 < 2. The solution to (1.2) with p = 1 is the density
of a super-Brownian motion with a-stable branching and the weak uniqueness of the
solution holds; see [19, Theorem 1.6]. But for the other values of p the uniqueness for
(1.2) was left as an open problem; see [19, Remark 1.7]. During the past ten years there
have been a number of very interesting results on the solution of SPDE (1.2) for p = 1.
In particular, Mytnik and Perkins (2003) [21] showed that the solution has a continuous
modification at any fixed time. Fleischmann et al. (2010) [8] showed that this continuous
modification is locally Holder continuous with index 7. := 2/« — 1, and Fleischmann et al.
(2011) [9] further showed that it is Holder continuous with index 7. := (3/a—1) A1 at any
given spatial point. A more precise analysis on the regularity of the solution was given
in Mytnik and Wachtel (2015) [24]. He et al. (2014) [11] showed that solution to another
(1.2) related jump-type and distribution-function-valued SPDE is pathwise unique. For
p # 1, the uniqueness of solution (including the weak uniqueness) to SPDE (1.2) and the
regularities of the solution X;(-) at a fixed time ¢ are also left as open problems; see [19,
Remark 5.9].

In this paper we want to establish the pathwise uniqueness of nonnegative solution
to (1.2). For this purpose we consider a SPDE more general than (1.2):

3Xt (.’L’)
ot

where G and H are non-negative functions satisfying the following conditions:

= %AXt(x) + G(Xy(x)) + H(X,_(x))Ly(zx), t>0, z€R, (1.3)
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(C1) (Linear growth condition) There is a constant C' so that
0<G(z) <C(x+1), x > 0.

(C2) Function G is continuous and there is a non-decreasing and concave function r
on [0,00) so that 7(0) = 0, [y, 70(2)""dz = oo and

sgn(z —y)(G(z) = G(y)) <rollz —yl), =,y >0,

where sgn(z) := 1(0,00) () — 1(—s0,0) ().
(C3) (B-Holder continuity) There exist constants 0 < 8 < 1 and C > 0 so that

|H(z) — H(y)| < Clz —yl®,  z,y>0.

(C4) H(z) is a nondecreasing function.

There have been many results on SPDEs driven by stable noises; see e.g. [1, 31, 17,
2, 4]. In [1], the existence and uniqueness were established for solutions of stochastic
reaction equations driven by Poisson random measures. The existence of weak solutions
and pathwise uniqueness for stochastic evolution equations driven by Lévy processes
can be found in [4]. It was also shown in [4] that the pathwise uniqueness holds if the
coefficient of the Lévy noise satisfies a condition weaker than Lipschitz continuity but
stronger than Holder continuity. The main results of [2, 31, 1] are the strong existence
and uniqueness of solution to (1.3) with general Lévy noise L and Lipschitz continuous
coefficient H. In this paper we use a Yamada-Watanabe argument that is different from
[4], and we consider a stable noise without negative jumps. The stable noise had not
been treated in the above mentioned papers although technically it is not hard to extend
their results in that direction under the Lipschitz condition on H. One contribution of
this paper is that we are able to relax the Lipschitz condition on H since we only need it
to be Holder continuous with its Holder exponent within a certain range.

The SPDE (1.2) was studied in Mueller (1998) [17] for a-stable noise Lwith0 < o < 1.
We also refer to Peszat and Zabczyk (2007) [26] for early work on SPDEs driven by Lévy
noises.

Throughout this paper, we always assume that 1 < a < 2, 0 < 8 < 1 and the solutions
to (1.2) and (1.3) are nonnegative. Our goal is to establish the pathwise uniqueness
of solution to (1.3) under conditions (C1)-(C4) and further restrictions on « and 3. In
particular, for p = 1 we show that the pathwise uniqueness holds for 1 < o < v/5 — 1. To
prove the pathwise uniqueness we need to show a local Holder continuity of the solution
at fixed time ¢ > 0, which also extends the regularity results for super-Brownian motion
with a-stable branching obtained in Fleischmann et al. (2010) [8].

To continue with the introduction we present some notation. Let B(RR) be the set of
Borel functions on R. Let B(R) denote the Banach space of bounded Borel functions
on R furnished with the supremum norm || - ||. We use C(R) to denote the subset of
B(R) of bounded continuous functions. For any integer n > 1 let C"(R) be the subset of
C(R) of functions with bounded continuous derivatives up to the nth order. Let C”(R)
be the subset of C"(R) of functions with compact supports. We use the superscript
“+” to denote the subsets of positive elements of the function spaces, e.g., B(R)". For
f,g € B(R) write (f,g) := [ f(z)g(x)dr whenever it exists. Let M(RR) be the space of
finite Borel measures on R equipped with the weak convergence topology. For € M(R)
and f € B(R) we also write u(f) := [ fdpu.

Equation (1.3) is a formal SPDE that is understood in the following sense: For
any f € S (R), the (Schwartz) space of rapidly decreasing and infinitely differentiable
functions on R,

(Xud) = o)+ [ (Keriis+ [as [ G @)ra)s
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+/O /]RH(XS,(96))]”(36)L(ds,cl:zc)7 t>0, (1.4)

where Xy € M(R) and L(ds, dz) is the one-sided a-stable white noise on R4 x R without
negative jumps.

Definition 1.1. SPDE (1.4) has a weak solution (X, L) with initial value X, € M(R)
if there is a pair (X, L) defined on the same filtered probability space (2, F,F;, P)
satisfying the following conditions.

(i) L is an a-stable white noise on R, x R without negative jumps.

(ii) The two-parameter nonnegative process X = {X;(z) : t > 0,z € R} is pro-
gressively measurable on Ry x R x €, and {1y—0y Xo(dz) + 1403 X¢(2)dr : t > 0} is a
M (R)-valued cadldg process.

(iii) (X, L) satisfies (1.4).

The definition of this kind of a-stable white noise L(ds, dx) and Definition 1.1 can be
found in [19].

1.2 The main results and approaches

Given t > 0, we say X’t is a continuous modification of X; if Xt(:c) is continuous in
and P{X;(z) = Xt(z)} = 1 for all z € R. The following theorem shows the local Holder
continuity (in the spatial variable) for the continuous modification of the solution to (1.4).
Theorem 1.2~. (Local Holder continuity) For any fixed t > 0, X; has a continuous
modification X;. Moreover, for eachn < 1. := % — 1, with probability one the continuous

modification X, is locally Holder continuous of exponent n, i.e. for any compact set
KCR,

wp Kile) = Ki(2)

< 00, P-a.s. (1.5)
r,z€K,x#2 |'T - z|77

In addition, if f < 1/a + (o — 1)/2, then for each T > 0 and subsequence {n' : n’ > 1} of
{n:n > 1}, we have

271/

lim inf
n’— o0

wp  Fwar@ = K@)

< oo, P-as., (1.6)
z,z€K,x#z |17 - Z|77

2n’

k=1
where n'}, := 2% for1 <k<2v,
Remark 1.3. Theorem 1.2 gives an answer to [8, Conjecture 1.5] when the fractional
Laplacian operator A, is replaced by the Laplacian operator A and the function g there
is replaced by H. It also gives an answer to the open problem of [19, Remark 5.9].

Assumption 1.4. For p := af > 1, there is a constant q > 33_—"(] so that for any weak
solution (X, L) to (1.4) it holds that

t
P{/ ds/ X,(z)%dz < oo forall t > 0} =1
0 R
Theorem 1.5. (Pathwise uniqueness) Suppose that conditions (C1)-(C4) hold, and that
20 —1)/2—-a)? < B<1/a+ (a—1)/2. (1.7)

For p > 1, we further assume that Assumption 1.4 holds. Then given any two weak
solutions (X, L) and (Y, L), with Xy =Y, € M(R), to equation (1.4) defined on the same
filtered probability space (2, F,F,,P), we have with probability one, for each t > 0

Xi(z) = Yi(2), Xo-a.e. T, (1.8)

where )\ denotes the Lebesgue measure on R.
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Remark 1.6. (i) Since we assume that 8 € (0, 1), it follows from the first inequality of
(1.7) that the above theorem holds for a € (1,3 — v/3).

(ii) Theorem 1.5 gives an affirmative answers to the open problem of [19, Remark
1.7] for « and S satisfying (1.7).

(iii) For p = 1, inequality (1.7) is equivalentto 1 < a < V5 —1. So, for super-Brownian
motion, i.e. G =0, H(z) = 2” and p = 1, Theorem 1.5 also leads to the pathwise
uniqueness of (1.2) for 1 < a < V5 — 1, which is a key result of this paper.

(iv) We stress here that in Theorem 1.5, Assumption 1.4 is not needed if 0 < p = aff <
1.

V) IfG=0and H(z) = 2P, then SPDE (1.4) has a weak solution satisfying Assumption
1.4 by [19, Proposition 5.1] and the proof of [19, Theorem 1.5].

(vi) The non-negativity assumption on H and G is not necessary for the proof of
uniqueness. But it makes the proof a bit simpler and may be needed to show the
existence of solution to the SPDE.

To prove the uniqueness we need a local Holder continuity of the solution at fixed
time ¢ > 0 (Theorem 1.2). For super-Brownian motion, the proof for the local Holder
continuity of X;(x) is based on the following equation from Fleischmann et al. (2010)

[8]:
1 t . t e}
(Xt, f) = Xo(f) + 5/0 (Xs, f >d8+/0 /0 /]Rf(ac)zM(d&dz,dx), (1.9)

where M (ds,dz,dz) is the compensated measure of an optional random measure on
(0,00)2 x R with compensator M (ds, dz, dz) := dsmg(dz)Xs(z)dz for measure mg(dz) :=
coz ' "1y, 50ydz with ¢g := a(a — 1)/T'(2 — o) and Gamma function I'. Equation (1.9) is
established for super-Brownian motion. But for the other cases, the solution to (1.4)
may not be a density of super-Brownian motion and we can not obtain the equivalent of
equation (1.9). So, inspired by Dawson and Li (2006, 2012)[6, 7], we reformulate (1.4)
as the following SPDE in Proposition 2.1:

(X0 f) = Xo(f) + 2 / (X, [")ds + / s | GO (@) ()i

H(Xs— (u)”
/ / // zf(u )No(ds dz, du, dv), (1.10)

where f € S(R) and No(ds, dz,du, dv) is a compensated Poisson random measure on
(0,00)% x R x (0, 00) with intensity dsmg(dz)dudv. By modifying the proof of [8, Theroem
1.2(a)] and using (1.10), we can obtain Theorem 1.2. Notice that . T 1 as « | 1, which is
quite different from that of a continuous-type SPDE whose local Holder index is typically
smaller than . This observation is key to proving the pathwise uniqueness.

We now outhne our approach. By an infinite-dimensional version of the Yamada-
Watanabe argument for ordinary stochastic differential equations (see Mytnik et al.
(2006)), showing the pathwise uniqueness is reduced to showing that the analogue of
the local time term is zero; see the proofs of Theorem 1.5 and Lemma 4.3. That is to
show that

E{I""™(t A7)} — 0 (1.11)

as m,n — 0o, where

I A ) = / " ds / " mo(dz) /R (Du((Us, ™), Ve () 8™ (1)), W) dy

for 74, := v A ok, and v, and o are two stopping times to be defined later in (4.3) and
(4.4), respectively. Here U; is the difference of two weak solutions to (1.4), V; denotes the
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difference of compositions of these two solutions into function H, respectively, ¥ is a test

function, ®7" is a mollifier, Dy, (y, z) := ¢n(y+2)—dn(y) =29, (y), dn (supp(¢y) C (an, an—1)
and a, | 0) is the function satisfying ¢,(z) — |z| from Yamada-Watanabe’s proof. To
prove (1.11), we divide E{I;"" (¢t A 1)} into two terms

) tAYE 1/4
e =B{ [ ds [ motas) [ 0u(@ 0, viwer ), v}

and

. tAok
LM () = E{ /0 ds

so that B{I""(t A oy,)} < I (¢) + I (t) for all i > 1.
Using the fact ¢}, < 2(na,)~" (see its definition at the beginning of Subsection 4.1),

we can show that I3";™ vk, "(t) goes to zero as m,n,i — oo in a dependent way (see Lemma

[ee]

m0(d2) [ (Da((U @), 2V, ()87 (1), W)y .
1/4 R

4.4). So, the difficult part is to show that /55" k, () goes to zero as m,n,i — oo. To this
end we use the local Holder continuity of the solutions and the monotonicity of H to
estimate I g’g"v’“( t), which is elaborated in the following. The proof is inspired by an
argument of Mytnik and Perkins (2011) [22], for fixed s, m and z, denote by z; ., € [-1,1]

a value satisfying

¥ $s7m . ” Yy
Vi(z — —=)[ = inf |Vi(z——)],

m y€[—1,1] m

where V, and U, are the continuous modifications of V; and U, respectively. The key to
proving that I gf’é”’k’z(t) goes to zero is to split it into two terms again, where one term is
bounded from above by

) tAok K [e%s) 1
ki) = E{/ ds/ \Ils(x)dx/ zmo(dz)/ D (y)dy
e 0 -K 1/i -1

x / | Do (0, @), mehVilw = L)) Voo = L) = V(o — 22| an},

and the other term is bounded from above by

1
Iy / ds/ / zmo(dz) / D(y
22 1/i 1

xsm
/0 (<U9,<I> )mth )| s ( it {Ve(z— “m);éo}dh}

S\@

where D(y,2) = ¢1,(y +2) — ¢1,(y).
The local Holder continuity of the solutions is used to estimate I, Z” ks l( ) and the

nondecreasingness of H is used to estimate I?zgl(t). Observe that for fixed s, the
continuous modification Xs of the weak solution to (1.4) satisfies

% Y S v
sup |Xs(-r_*)—Xs(Jj——)|ﬁ
|o| <K, |y|v|v|<1 m m
Xs xr — ¥y — X r— X B
S(Z/m)"ﬁ sup | X ( 7n) ( . m)| , (1.12)
|| <K, Jy|V]v| <1570 ly/m —v/m|n

where K > 0and 0 < n < 7. = 2/a — 1. So, it is natural to apply the Holder continuity of
x +— X,() to find a collection of suitable stopping times (0} )x>1 so that lim,_, o, 0% = 00
almost surely, and using the 8-Holder continuity of H (condition (C3)), the term I ?2"1m(t)
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can be bounded by m~"%i*~1 which goes to 0 as m, n, i jointly go to infinity in a certain
way. It is hard to show that the supremum or integral with respect to s € (0,7] on the
right hand side of (1.12) is finite. To this end, the time o} is chosen so that a Riemann
type “integral” of the right hand side of (1.12) over s € [0, o] is finite. One can find the
details in the Step 1 of the proof of Lemma 4.5.

Concerning the second term Igléfgi(t), if V,(z — =) 2 0, then the function [—1,1] 3
Yy ‘N/S(:c — £) is bounded away from zero. The nondecreasing condition (C4) on
H ensures that V,(z — Z) and Us(x — ) always have the same sign, which means
D, ((Us, @), mzhVy(z — L)) = 0 for |(Us, ®™)| > a,_1 for all z,h > 0 (here we use the
fact supp(¢!!) C (an,an—1) and a, | 0), and this condition is only needed here. Thus by
the -Holder continuity of H (condition (C3)),

(7 xs,m 7 xs,m F 7 m
Vs (z — 7” < ClUs(x — 7”5 < C|(U,, 2| < Ca))_,,

which implies that 173’5 (t) also converges to zero as m, n,i — co under certain conditions

of a and ; see the details in the Step 2 of the proof of Lemma 4.5.

1.3 Comments on the main results with general G and H

The main results, Theorems 1.2 and 1.5, also hold if functions G(z) and H(x) are
replaced by G(t,z,y) and H (¢, z,y), respectively, as in [22, 23]. More specifically, we can
consider an SPDE more general than (1.3):

8X,(x)
ot

. %AXt(o:) + Gt 3, Xo(@) + Ht 2, Xo_ (@) Ea(z), >0, z€R, (1.13)

where G and H satisfy the following growth and continuity conditions:
(1) The mapping (¢, z,y) — (G(t,z,y), H(t,x,y)) is continuous and there is a constant
C' so that

|G(t, z,y)| + |H(t,z,y)| < C(1+y), t,y>0, zeR.
(2) Let rg be the concave function defined in condition (C2). Then
sgn(yr — y2)(G(t,z,91) — G(t,2,92)) <rollyr —w2l), ty1,y2 >0, 2 €R.
(3) (B-Holder continuity) There exist constants 1 < § < 1 and C > 0 so that
|H(t,x,51) — H(t,z,42)| < Clyr —12!”, 91,92 >0, 2 €R.

(4) For fixed t > 0 and = € R, H(t,z,y) is nondecreasing in y.

Under the above conditions, by the same arguments in this paper, we can show that
the results of Theorems 1.2 and 1.5 also hold for SPDE (1.13). For simplicity we only
study the simplified version (1.3) in this paper.

The paper is organized as follows. In Section 2 we first present some properties of
the weak solution to equation (1.4). The proofs of Theorems 1.2 and 1.5 are established
in Sections 3 and 4, respectively. In Section 5, the proofs of Proposition 2.2 and Lemma
2.4 are presented.

Notation: Throughout this paper, we adopt the conventions

y o
L= L= -]
x (z,y] x (z,00)

for any y > = > 0. Let C denote a positive constant whose value might change from
line to line. We write C. or C! if the constant depends on another value ¢ > 0. Write Q
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for the set of rational numbers. We sometimes write R for [0, c0). Let (P;);>¢ denote
the transition semigroup of a one-dimensional Brownian motion. For¢ > 0 and z € R
write p(z) := (2nt)~ 2 exp{—22/(2t)}. We always use Ny(ds,dz,du,dv) to denote the
Poisson random measure corresponding to the compensated Poisson random measure
No(ds, dz, du, dv).

2 Properties of the weak solution

In this section we establish some properties of the weak solution to (1.4), which
will be used in the next two sections. Recall the measure mg(dz) = oz~ '~ *1y,-0ydz for
¢o = a(a —1)/T'(2 — o)) and Gamma function I'. By the proof of Theorem 1.1(a) of Mytnik
and Perkins (2003), there is a Poisson random measure N (ds, dz,dz) on (0,00)? x R with
intensity dsmg(dz)dz so that

L(ds,dz) = / 2N (ds, dz, dx), (2.1)
0

where N (ds, dz, du) is the compensated Poisson random measure for N (ds, dz, dz). Thus,
if {X; : t > 0} is a weak solution of (1.4), then for each f € S (R) we have

(Xi, ) = Xo(f)+%/0 (Xs7f//>ds+/0 ds/RG(Xs(x))f(x)dx
+/0/0 /RH(Xs—(w))f(x)zN(ds,dz,da;), t>0, (2.2)

which will be used to obtain (1.10). For this we need Assumption 1.4 on the weak solution
of (1.4) for the case p > 1. For 0 < p < 1, by Definition 1.1 and the Holder inequality it
is easy to check that the It0 integrals in (1.4) and (2.2) are well defined. For 1 < p < 2,
under Assumption 1.4 and by a similar argument it is easy to check that the It6 integrals
in (1.4) and (2.2) are also well defined; see the details in Lemma 2.3. By [19, Proposition
5.1] and the proof of [19, Theorem 1.5], for G = 0 and H(z) = 2, the solution to (1.4)
exists and satisfies Assumption 1.4. In the following proposition we always assume that
conditions (C1) and (C3) are satisfied and Assumption 1.4 holds for the weak solution
(X,L) to (1.4).

Proposition 2.1. (i) If (X, L) is a weak solution to (1.4), then there is, on an enlarged
probability space, a compensated Poisson random measure No(ds, dz,du, dv) on (0, 00)? x
R x (0, 00) with intensity dsmg(dz)dudv so that (1.10) holds. (ii) Conversely, if X satisfies

(1.10), then there is an a-stable white noise L(ds,dx) on R4 x R without negative jumps
so that (1.4) holds.

Proof. (i) Suppose that (X, L) is a weak solution of (1.4). Then by the argument at the
beginning of this section, (2.2) holds. Define a predictable (0,00) x (R U {oc0})-valued
process (s, z,u,v) by 0(s, z,u,v) = (01(s, z,u), 02(s, u,v)) with

z
O1(s,2,u) := ml{mx%(u)#m + 2l (x, (u)=0}

and
02(s,u,v) = 0(3,u,v)L{m(x. (u))20p + 0w V)L {m(x. (u))=0}s
where
= ou, v< H(X—(u)” - _f u, ve(0,1)
0(s,u,v) '_{ o, v H(X, () YW= a we 0,1)
EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
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and we use the convention that 0-co = 0. Then for all B € B(0,00) and a < b € R,

]-Bx(a,b](9(57 25 Uy ’l)))
= 1B><(a,b] (91(8, Z,U), 92(8a U, U))

z
= 1{H<Xsf<u>>¢o,ue<a,b],vs11<xsf(u))&}lB(m)

FL{H (X, (u)=0,2€B,ue(a,blve(0,1)}-

Moreover, recalling mg(dz) = coz_l_o‘l{z>0}dz, by a change of variable it is easy to see

that
/ / / 1o (at) (005, 210, v))mo(dz)dudv
0 R JO

0o b H(Xo—(u)” 2
= mo(dz du/ 1 (u 1 ———— )dv
/0 O(b )/a o {H(Xs—(u))#0} B(H(XS,(U)))

o0
+/ / Lia(x._ (u)=0}1B(2)mo(dz)du
0 a

:/ /1Bx(a,b](z7u)m0(dz)du'
0 R

Then by [12, p.93], on an extension of the probability space, there exists a Poisson
random measure Ny(ds,dz,du,dv) on (0,00)? x R x (0, 00) with intensity dsmg(dz)dudv
so that

N((0,6] x B x (a, 1)) :/Ot /OOO/R/OOO 1 (a1 (0(5, 2, 1, v)) No(ds, dz, du, dv).

Let Ny (ds, dz, du, dv) = Noy(ds,dz, du, dv) — dsmo(dz)dudv. Then by (2.1) it is easy to see
that for each f € S(R),

/Ot/]RH(Xs(U))f(U)L(ds,du):/Ot /ooo/R/oH(XS(u))a ) Rl . )

(ii) The proof is essentially the same as that of [15, Theorem 9.32]. Suppose that
{X; :t> 0,7 € R} satisfies (1.10). Define the random measure N (ds, dz,du) on (0, )3
by

N((0,t] x B x (

// // 1{H(X (u))¢0}13<ﬁ) No(ds, dz, du, dv)
// //1{H X._ (u)=0}18(2) No(ds, dz, du, dv).

It is easy to see that N(ds, dz, du) has a predictable compensator

Ot x B x (

B // // é(u 1{H<X <u>>¢0}1B( H(X, ())>d8mo(dz)dudv
+/0/0 /a /0 L (x. - w)=0y 1B (2)dsmo(dz)dudv
/Ot /OOO /ablB(Z)dsmo(dz)du.

Then N(ds,dz,du) is a Poisson random measure with intensity dsmg(dz)du; see [13,
Theorems I1.1.8 and I1.4.8]. Define the a-stable white noise L by

t poo b
Li(a,b) = / / / zN(ds, dz, du).
0 Jo a

EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
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We then have

/ t [ HO @) L. )
_ /0 z /0 : /}R Hs(cx(z)) {(u)zN(ds,dz,du)
_ /0/0 /}R/O T L H ) No(ds, dz, du, dv)

for each f € S (R). (X, L) is thus a weak solution to (1.4). O

In the rest of this section, we always assume that conditions (C1) and (C3) are satisfied
and (X, L) is a weak solution to (1.4) with deterministic initial value X, € M(R) and with
Assumption 1.4 satisfied. Then it follows from Proposition 2.1, {X;(z) : t > 0,z € R}
satisfies (1.10). Recall that (P;):>¢ is the transition semigroup of a one-dimensional
Brownian motion and p,(z) = (2rt)~ = exp{—22/(2t)} fort > 0 and = € R.

Proposition 2.2. For any ¢t > 0 and f € B(R) satisfying \o(|f|) < co we have

t

(X f) = Xo(Pif) + / / G(Xo(2)) Py f(2)da

—(u)* .
// // 2P, f(u)No(ds, dz,du,dv), P-a.s. (2.3)

Moreover, for eacht > 0, we have P-a.s., \y-a.e. z,

Xy(z) = / Pl — %) Xoldz) + / ds /R pros(z — 2)G(X,(2))dz

/ / // e 2pi—s(x — u)No(ds, dz, du, dv), (2.4)

The proof is given in the Appendix.
We refer to [26, Theorem 8.23(i)(p. 129)] and [12, p. 62] for the stochastic integration
with respect to a Poisson random measure. For k& > 0 let 7, be a stopping time defined by

T = inf{t : F(t) > k} (2.5)

with the convention inf ) = co, where F(t fo ds [ Xs(x)9dx) Vv (X, 1) for the case
p > 1 and F(t) := (X, 1) for the case p g 1 Then it follows from Definition 1.1 and
Assumption 2.1 that

lim 7 = oo, P-a.s. (2.6)
k—o0

The following lemma says that Assumption 1.4 also assures that the It integrals in (2.3)
and (2.4) are well defined.

Lemma 2.3. If Assumption 1.4 holds, the It6 integrals in (2.3) and (2.4) are well defined.

Proof. Since the reasoning for (2.3) is similar, we only show that (2.4) is well defined. We
first consider the case 0 < p < 1. Since u? < u + 1 for u > 0, then foreach 1 < & < 2 and

any z € R,
tATE
/ ds/X VPpi—s(z —u)® du}
{/ [27T(t—s)}_ 3 ds/[ s(u) + 1ps— S(:c—u)l{s<n}du}
0 R
t a—1
< / 27 (t — s)}_QTE{l +[om(t — 8)] V2 (X, 1>1{s§;k}}ds
0
EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
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< /Ot[27r(t - s)}—%”{1 +[2m(t — s)]_l/Qk}ds < . (2.7)

Therefore, by condition (C3), for any k£ > 1,

E{ /Ot/\%k ds /100~zm0(dz)/]Rdu /OH(XS(H))Q pr—s(x — u)dv}
< OB /OM ds/loo 2o (d=) /Ru X ]pra(e — u)du} < o

and

{AFR 1 H(Xo_ (u))® i
E{/ ds/ zo‘mo(dz)/ du/ pt,s(x—u)adv}
L P
Tk
SCE{/ ds/ zamo(dz)/[1+Xs(u)p]pt,s(x—u)“du} < oo
0 0 R

for a < & < 2, which ensures that the stochastic integral

tAFL L H(X o (u)® R
/ / / / 2pi—s(x — u)No(ds, dz, du, dv)
0 0o JrJo

tATy [e'e] H(Xsf(u))a ~
/ / / / z2pi—s(x — u)No(ds, dz, du, dv)
0 1 JrJo
tATE e’} H(Xs— (u)®
- / / / / 2pi—s(x — u) Ny (ds, dz, du, dv)
0 1 JrJo
tATE e3¢} H(Xs—(u)”
—/ ds/ mo(dz)/ du/ 2pi—s(x — u)dv
0 1 R Jo

are well defined by [26, Theorem 8.23(1)(p. 129)] and [12, p. 62], respectively. Then one
can see that the stochastic integral (2.4) is well defined.

In the following we consider the case p > 1. Observe that q > = > 5, which implies
3(7%4 —1) < 1. Thus by the Hélder inequality,

tATE
/ dS/X Ppi_s(x —u)d }
tATE
/ ds/X qdu / /pt slz—u
P -7
< E{/[?ﬂ'(tfs -3(3%5 1)ds/ (r—u du} !
0

t
:k%{/ 2n(t — 5)] 2@ P_l)ds} < co. (2.8)
0

and

—
Q

| @
s
QU
S

—

—

|

Qs

Observe that ¢ > 3p/(3 — «) implies qa/(¢ — p) < 3. Then similar to (2.8), there is a
constant o < @ < 2 so that ¢&@' /(¢ — p) < 3 and

tATE ., » t 1, qa’ 1—-2
E{/ ds/ Xy (u)Ppe_s (@ — 1) du} < k*{/ [QW(tfs)]_f(ﬁ_l)ds} " < 00.(2.9)
0 R 0

Therefore, by condition (C3) again, for any £ > 1,

tATE 0o H(Xs—(u)”
E{/ ds/ zmo(dz)/ du/ pt,s(x—u)dv}
0 1 R Jo

EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
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< (JE{ /OM ds/loo 2mo(dz) /]R[l + X, (u)P]pe_s(z — u)du} < o0

AT T H(X o (u)® y
E{/ ds/ 2% mo(dz)/ du/ Di—s(x —u)® dv}
o T Rk
Tk ’ —~/
< CE{/ ds/ 2% mo(dz) / 14+ Xs(u)?]pt—s(z —u)® du} < 0o
0 0 R

So, the stochastic integral in (2.4) is also well defined by [26, Theorem 8.23(i)(p. 129)]
and [12, p. 62] again. |

and

Lemma 2.4. Let 0 < p < « be fixed. Then for anyT' > 0 and any 0 < t < T, there is a
set Ky C R of Lebesgue measure zero so that

E{X,(z)’} <Crt %, aze€R\K, (2.10)

The proof is also given in the Appendix.

Lemma 2.5. Suppose thatT > 0, § € (1,a), 61 € («,2) and 0 < r < min{1, 351‘51 }. Then
foreach 0 <t <T and the set K; C R from Lemma 2.4 we have

(T+1)5

E{| X, (z1) — X, (22)|°} < Cpt~ |71 — 22|, @170 € R\K;. (2.11)

Proof. Fort > 0 and z € R let

¢ el H(X o (u)® )
Z1(t,x) ::/ / // zpi—s(x — u)No(ds, dz, du, dv)
o Jo JrJo
t oo H(Xo_ (u))® )
Zs(t, x) ::/ / // z2pi—s(x — u)No(ds, dz, du, dv).
oJi1 JrJo

By (2.4e) in [30], for all ¢ > 0, 6 € [0,1] and u € R we have

and

Ipe(1 — u) — pe(wa — u)| < Cloy — 22|t 2[py (w1 — w) + pe(aa — )], (2.12)

which implies

rd1+871—1

|pe(x1 — u) — pi(ze — u)|51du < Clzy — m2|”§1t_ T [pe(xy —u) + pe(z2 —u)]. (2.13)

Then by (1.6) in [31], condition (C3) and Lemma 2.4,

E{\Zl(t 1) )"}
gc/zmm4/ /MH )Y pr—a (1 — 1) — pics (2 — )P
< C’/ 2%1myg(dz) / ds/ E{l + X, (u)?}pi_s(x1 —u) — pr_s(22 — u)|* du

. p/2 R
< Crlzy — x4 [1+ s P/7](t —s) ds [ [pt—s(x1 —u) + pi—s(v2 — u)]du
0 R
ré 48, —1

t
< C’T|x1—x2|“§1/ [1—!—57”/2](15—3)7 z  ds. (2.14)
0

It follows from the Holder inequality that
5 5715
E{\Zl(t,xl)—Zl(t,xgﬂ } S {E[|Zl(t,a:1)—Zl(t,x2)| }} . (215)

EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
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Similar to (2.14) we have

r§+6

t
E{|Zs(t,21) — Zo(t, x2)|°} < Cplay — zQ\“?/ (14 s7P/2(t—s)” “ds.  (2.16)
0

Combining (2.14)-(2.16) one has

(r+1)38 ‘n;

E{|Zl(t,$1) — Zl(t,x2)|5 + |Z2(t,£€1) — Zg(t,l‘g)| } <Crt™ 772 |x1— 22 (2.17)

By the Holder inequality and condition (C1),

E{‘/Otds/pts (1 — 2)G(Xs(2) dz—/otds/Rpts(xZ_Z)G(Xs(Z))dZ‘é}

<2E /ds/\pts )~ pialer — DIG(X(2)) 2}
< CE / s | |pt_s<x1fz>fpt_s<x2fz>|[1+Xs<z>5sz}

21 — 2|0 t — ) /2 s7%/2ds i—s(T1 — U i—s(22 — u)|du
<c| |/(<t> 1+ 579/2]d /R[p (21 — ) + prs(wz — w)d

< CT|J,‘1 —$2|t7 s (218)

where Lemma 2.4 and (2.12) was used in the third inequality. By (2.12) again we have

| [ putor =) Xo(dy) = [ pilas =) Xo(a)|
R R
Ipe(x1 — ) = pr(w2 — 9)| Xo(dy) < Clay — wf "t~ F Xo (1),
R
which together with (2.4) and (2.17)-(2.18) implies (2.11). O

Lemma 2.6. For eacht > 0 and t,, > 0 satisfying t,, — t asn — oo, there is a set K; C R
of Lebesgue measure zero so that

lim E{|X;, (z) — X¢(x)|} =0, x € R\K;.

n— 00

Proof. For ty,t > 0, by (2.4),
| Xto1t(2) — Xty ()]

to+t
/ \pwx— ey — )| Xo(dy) / ds / Prost—a(z — 2)G(Xa(2))dz

+ / s [ [pysimao = 2) = pialo = 2| GIXL(2))d:

to+t e H(X5-(u)® -
—l—‘/ / // ZPto+t—s (€ — u)No(ds, dz, du, dv)
to

to H(Xs (u)) ~
—|—‘/ / // 2[Dto4t—s(® — u) — pro—s(x — u)|No(ds, dz, du, dv)
=: I1(to,t) + I2(to, t) + I3(to, t) + [Ls(to, t)| + [15(to, 1)|.

By the dominated convergence, I;(to, t) tends to zero as t — 0.
By condition (C1), Lemma 2.4 and the dominated convergence, for 0 < t;5 < T we
have that both

E{I,(to,t)} < CE{ /tt0+t ds/]RptDH_s(x—z)[1+XS(Z)]dZ} Sc/tto+t(1+8—§)ds

EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
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and

IN

CE /tods/ |Dto+t—s( —z)—pto,s(x—z)|[1+XS(z)]dz}
CT/o (1+s~ 2 ds/ |Ptg+t—s(x — 2) — pro—s(xz — 2)|dz

E{I;3(to,?)}

IN

gotoOast— 0.
Let

to+t H(Xs—(u))
Iy (to, 1) / / / / ZDto+t— s(xfu)NO(ds dz, du, dv)

and

I51(to,t) / / / / Z[Prott—s(T — u) — Dro—s(x — u)]No(ds,dz,du,dv).
o Jo

Let I4’2(t0,t) = I4(t0,t) — I4)1(t0,t) and I5’2(t07t) = I5(t0,t) — .[571(150,15). Then by the
Holder continuity of H, Lemma 2.4 and the dominated convergence again, for 0 < tg < 7,
both

to+t
E{I,(to,t)*} = / 22myg(dz) / ds/E{H ) prort—s(x — u)’du
t0+t

< C’/ 22myg(dz) / /E{lJrX( VP Ypigst—s (@ — u)’du
O ot )

< CT/ L+ s 5](to + ¢ — 5)"}ds
to

and
E{I5 1(to,t)
= / 22mg(dz) / ds/E{H N Hprort—s(@ — 1) — pro—s(x — u)>du

< o / 1+ 5~ %]ds /R [Pros1-a(z — 1) — Pro—a(z — u)]2du

gotoOast— 0.
Similarly, both

E{|14,2(to, 1)

to-‘rt H(X,_(u)®
<E / / / / 2Dto+t—s(x — u)No(ds, dz, du, dv)‘}
" t0+t
+E{/ zmo(dz) / /H ) Pto+t— g(x—u)du}
to

<2 [ amuta /+ ds [ B0 by ma (o~ )

and
oo t()
E{llsa(to. 0} <2 [ smods) [ ds [ BUHX@) Hptyti-ale = 1) = pyala = w)ldu
1 0 R
go to 0 as t — 0. The proof is thus completed. O

3 Proof of Theorem 1.2

In this section we establish the proof of Theorem 1.2. Throughout this section we
always assume that conditions (C1) and (C3) hold and that (X, L) is a weak solution to
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(1.4) satisfying Assumption 1.4 with deterministic initial value X, € M(R). Forn > 1
and 0 < k < 2", put ny := k/2". Define n';, similarly for n’ > 1.
Forany z € R and s > 0 let

s poo H(Xsq—(u)” _
Zs(x) :/0 /0 /]R/O 2Ps—s, (x — u)No(ds1, dz, du, dv). (3.1)

Before presenting the proof of Theorem 1.2, we first establish a weaker version of
the result which will be used to conclude the proof of Theorem 1.2.

Lemma 3.1. The results of Theorem 1.2 hold with 7. replaced by 1., = Nel(a>3y +
S acsy

Proof. Since the proof of (1.5) is essentially the same as that of [8, Remark 2.10], we
only present the proof of (1.6). Let r,§ and §; satisfy the conditions in Lemma 2.5 and

rd > 1. By (2.17) and the proof of [32, Corollary 1.2(ii)], for each 0 < ¢ < r —1/6 and
T > 0, there is a constant Cr independent of ¢ € (0,77 so that

E{ sup ‘Zt(l’) — Zt(y)l} < CTt_%
z,yeK,x#y |1‘ - y|s o ’

where Z;(z) denotes a continuous modification of Z;(z) for each ¢ > 0. Then by Fatou’s
lemma, for each subsequence {n’ : n’ > 1} of {n:n > 1},

on ~ ~

.. 1 3 |anT(x) - Z‘nkT(y)|
E{ lim inf on Z sup }

n— oo — z,y€K,z#y ‘(E _ y‘s
2m ~ ~
1 7 7z
< liminfE{— S swp |Znyr(2) nkT(y)I}
oo 2n =1 z,ycK,x#y |l‘ — y|5
2n ~ ~
1 7 _z
= llmlnffZE{ sup ‘ nkT(fL') nAT(y)| }
n—oo 20 k=1 z,y€K,x#y |JI — y|€
2 " v
<Cr hnnlgéf on Z(nkT)_T = CT/O s7 2 ds < o0,
k=1
which implies
2 - _
1 Z ’ —_— Z 7
lim inf — Z sup |Zn (@) = Zpy(2)] <o, Pas.
n’—oo 2N T K arts |$ _ Z‘s

Let

Xi(x) = /]Rpt(:c — u)Xo(du) —i—/o ds /]Rpt,s(:c —2)G(Xs(2))dz + Zt(x)

Then it follows from (2.4) that Xt(x) is a continuous modification of X;(z) for each fixed
t > 0. We first show that (1.6) holds for n = ¢ € (0,7 — 1/§) in the following. By (2.12)
and condition (C1) for each ¢’ € (0,1),

e'+1

/ Ipe( = u) = pely — w)|Xo(du) < Cla —y|*t~ 7 Xo(1)
R
and
t
/ ds/ [pi—s(z — 2) — pr—s(y — 2)|G(Xs(2))dz
0 R
EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
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<c/ ds/|pt (7= 2) — Pr—aly — 2)|[Xa(2) + 1dz

< Colo—yff / (t — 5)~ S [(X0,1) + 1]ds
0
for each ¢t > 0. Then
o’
1 Z sup Jg [P 7 (2 — ) — pn/,;T(y — u)| Xo(du)
n’—o0 b1 z,y€K,z#£y |.Z‘ - y|
c on’ T
< limsup — o Z(n’kT)_ o(1) = C’Xo(l)/ = ds < 00 (3.2)
n’—oo k=1 0

and

/

on

1 1 n', T
limsup — Z sup @ ———— / ds/ |prrr—s (T — 2)
0 R

n—oo 2 1 ©YEK zAy |93 - y|51
=P 7-s(y — 2)|G(Xs(2))dz
2"74

< hmsup Z/ (n'xT — 8)~
0

n’—oo

T (X, 1) + 1)ds

_CT/ dt/ (t—s)" 2 [(X,,1) + 1]ds
t -
=Cr[ sup (X,,1)+1] / dt/(t—s)_%d5<oo, P-as., (3.3)
$€(0,T] 0

where the fact sup,¢ o 7)(Xs. 1) < oo P-a.s. was used in the last inequality. Therefore,
(1.6) holds forn < r—1/4. Let § = @ — 0 and §; = a + o for small enough o > 0. This
means that (1.6) holds for

. 3 1 . 1 3 1
77<m1n{1,7—1}— :mln{l— , — —1}.
a+t+o a—o a—o0 a+o oa—0

Letting 0 — 0 one can finish the proof. g

Lemma 3.2. For any fixed t > 0, let X, be a continuous modification of X,. Then for any
compact subset K of R and ¢ € (1, «),

sup t3 E{ sup Xt(x)‘s} < 00. (3.4)
te(0,T) rzeK

Proof. By Lemma 2.4, for each ¢ € (0,77, there is a sequence {y:(n) :n > 1} C KU[-1,1]
so that y:(n) — 0 as n — oo and

E{X,(0)°} = B{ lim Xi(y(n)’} <timinf B{ % (y(n)) }

n—oo
- hminfE{Xt(yt(n)P} < Cpt 8,
n—oo
which implies
sup t3 E{f(t(())‘s} < 00. (3.5)
te (0,7
Then the desired result follows from (3.5), Lemma 2.5 and [32, Corollary 1.2(iii)]. d

By Proposition 2.1, {X;(z) : t > 0,z € R} satisfies (1.10) with X, € M(R). Similar to
[8, Lemma 2.12] we can prove the following lemma.

EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
Page 16/48


http://dx.doi.org/10.1214/16-EJP23
http://www.imstat.org/ejp/

Pathwise uniqueness for an SPDE

Lemma 3.3. Fix §,6' € [1,3), r,7/ € [0,1] with r < 5% and % <1, and a
nonempty compact set IK C R. Define

on

[) Z l(nk 1,Mk] Z(n - 5)7%1}%1(5)615

i=k
and
_ i ol 48’1 —
U, == sup / (ni—s)" 2 Vp(s)ds
1<i<2n Jo
with
17”71' = sup / H(X V¥ P, —s(T1 — ©) + Dny—s (2 — u)|du.
z1,x9€K

Then for any € > 0, there exits C. > 0 so that

supP[V, > C.] <e, supP[U, >C.]<e, e>0. (3.6)

n>1 n>1

Moreover, for each 1,22 € K and n > 1 we have

1 1 2" 2"
/0 ds/RH(XS 2—2 (nie—1mx] (8) D [Ps—s (w1 = 1)
=1 i=

—pn,-_s( 22 — w)[*du < CV,[ay — ] (3.7)
and
/ ds/ H(Xs(w)pn,—s(x1 —u)
P, —s(za — )| du < CU|zy — 25|, 1<i <2, (3.8)

Proof. We assume that K C [0, 1] for simplicity. Observe that P-a.s.,

f/n,i(s)
< C sup / [1+ Xs(y)"] [pnﬁs(m —Y) + Pn;—s(T2 — y)}dy
z1,22€[0,1] JR
< C+C sup Xs(y)P {pnfs(wl —Y) + P, —s(T2 — y)}dy +C sup X,(y)”
z1,22€[0,1] J |y|>2 ly|<2
< C+O/ Xs(y)”{ ni—s (Y + 1) + Pn,—s(y — 1)}dy+0 sup X,(y)?, s € (0,1]. (3.9)
R

ly|<2

Then by Lemmas 2.4 and 3.2,

p

E{V,.i(s)} <C[1+s" 2], s € (0,1].
It is elementary to check that
2 2 5+6 1
supE{V,} < supC Zl(nk L] Z(n —8)" 7 14 s 2]ds
n>1 n>1 0 i—k

IN

SHP*ZZ/ T L4 s ds

n
n>1 2" (i
o

= 5up—2/ _MM 1[ 1+ 5 %]ds < 0.

n>1 2n

Then the first assertion of (3.6) follows from the Markov inequality. Using (2.13) one
gets (3.7) and (3.8).
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We now prove the second assertion of (3.6). Observe that for each constant 6 > 0 and
ni—1 < s < n,

(ni - 8)79 X (y) pm—s - 1)d
y>2
(y—1)2

<C(n;—s)7? SRR / X (y)Pp2(y — 1)dy

éC/RXs(y Ppa(y — 1)dy

and
(n; — 5)~° / X+ Dy <O /}R X, (y)Ppaly + 1)dy.

Then it is easy to check that

r'sl s’ —1 —

(n; — s)_f]/n i(8)

5 +5’71
< C(ni —s)” {1 + Xs(y)Ppn,—s(y — 1)dy + / Xs(y)Ppn,—s(y + 1)dy
y>2 y<—2
+ sup Xe( ) [pm'—s*(-rl + y) +pn7—9 T2 + y) dy}
z1,22€[0,1] J|y|<2

< Cln= o) 7 40 [ X a1+ aly — D)y

—l—(ni - 8)_T = -;6 - sup / Xs(y)p [pm—s(‘xl + y) +pm'—s(-r2 + y)] dy} (3.10)

z1,22€[0,1] Jy|<2

for each 1 <i < 2" and n;_; < s < n;. Observe that for each z € [0,1] and n;_; < s < n,,

Xo W po—sla+dy < | [ Xo(@lpa—slo+9)dy| < 2(ns = 5) 72X, 1P

ly|<2 ly|<2

for0 <p<1land
Xo(y)Ppn,—s( +y)dy < [2m(n; — 5)]72 (X, 1) sup X, (y)P~!, P-as.
ly|<2 ly|<2
for 1 < p < 2. Combining with (3.10) we have
- i _rlslps 1 +5’—1
U, < C sup / (n; —s) ds+C/ ds/X Plp2(y+ 1) + pa(y — 1)]dy
1<i<2n Jo

+C sup (X, 1)P sup / (n; —s)_MH R
0

s€(0,1] 1<i<an

< C’+C/ ds/X Wipe(y+ 1) + p2(y — 1)]dy + C sup (X, 1) (3.11)
s€(0,1]

for0 <p<1and

U, < C sup /(m )*'JH/ 1derC/ ds/X Plpa(y 4+ 1) + p2(y — 1)]dy
0

1<i<an

+C sup (X,1) sup / (n; —8)7M2+6 sup X, (y)P"tds
s€(0,1] 1<i<2n Jo ly|<2

IN

C+C/ds/X Plpa(y + 1) + p2(y — 1)]dy

+C sup (X,1) sup / (ni—s)_m;g sup X,(y)P~'ds, P-a.s.
s€(0,1] 1<i<2n Jo ly|<2

for 1 < p < 2. Taking a_ € (1, ) w1thﬁ < 1, we have
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/ (n; —s)~ " = sup Xs(y)pflds
0

ly|<2

n; e ('8 +5)
< ‘/ (n; —s) 2e-F1=» ds

<C’/ supX ds
0

ly|<2

p—

sup X a-ds| °
ly|<2

for the case 1 < p < 2. It then follows that

U, < C+C/ dS/X Plpa(y + 1) + p2(y — 1)]dy

+C sup (X, 1) ‘/ sup X,(y a-gs| *
s€(0,1] 0 |yl<2

for the case 1 < p < 2. By Lemmas 2.4 and 3.2,

/ds/X Plpa(y + 1) + pa(y — 1)]dy <c/ s %ds < o0

and

ly|<2

1 1 1
E{/ sup Xs(y)a*ds} < / E{ sup Xs(y)a*}ds < C/ 57/2ds < oo,
0 |yl<2 0 0

which imply

1
/ ds/ Xs()Pp2(y + 1) + p2(y — 1)]dy+/ sup X,(y)% ds < oo, P-a.s.
0

ly|<2
Combining with (3.11)—(3.12) and the fact

sup (Xs, 1) < 0o, P-a.s.,
s€(0,1]

we have

suplU,, < oo, P-a.s.,
n>1

which implies the second assertion of (3.6).

For ¢t > 0 and ¢ € B(R) define discontinuous martingales

Xs—(u))
t— M / / / / )1{|u‘<]K1}N0(dS dZ du dv)

b poo H(X.— (u)®
t Mi() ::/ / / / ZT(U)l{ubKl}No(ds dz,du, dv),
0 JO R JO

and

(3.12)

where K; := K, + 1 with K := sup,cx |z|]. For i = 1,2 let AM!(y) denote the jumps of

M*(ds,dy). Similar to [8, Lemma 2.14] one can show the following result

Lemma 3.4. Let v € (0,a™!) and A := a~! — ~. Then for each ¢ > 0 there exists a

constant C. > 0 independent of n so that

on

P( U {AMSl(y) > 2\"C.(ny, — s) for some s € [ny_1,n;) and |y| < ]Kl}) <e
k=1

EJP 22 (2017), paper 4.
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and
2’71,
P( U {AM?(y) > 22 (C_(ny, — s)* for some s € [n_1,ny) and |y| > ]Kl) <e.
k=1

Proof. Since the proofs are similar, we only present the first one. Let ¢ > 0. Forn > 1
and 1 < k£ < 2™ put

1
Y,

L= Ng((s,z,u,v) L5 € [npe1,me), 2 > 22 (g — s)M Ju| < Ky, v < H(XS_(u))O‘).

Then by the Markov inequality,

AM}
{¢ > ¢ for some s € [n_1,nx) and |y| < ]Kl} =P{Yy!, > 1} <E{Y!,}
QA"(nk. - S)A ) )
By Lemma 2.4,
ng [eS) Ky H(Xs(u))™
{ k:} = E / dS/ mo(dz)/ du/ 1{2262>m(nk,s)>\}dv}
Nk—1 Ky 0

ng

oo / ds / B{H(X,(1))*}2- M (ny, — 5)“ du
NEk—1

o / ds / B{1+ X, (u)?}2~ " (ng — 5)~ N
Nk—1

< Ccfa27°"\”/ (ng — s) M1+ s 2])ds < Ce™@ _p/22 "
Nk —1

IN

for 2 < k < 2". Similarly
ni
E{Y,} } < CC—QQ—M”/ (ny— s) M1 + s~ 5]ds < Ce*ny?/%277,
0

Thus

.
S E{Y,,} < Ce.
k=1

The desired result then follows. O

Let L be the space of measurable functions ¢ on R4 x R so that

t
/ s—%ds/ [W)(s,wﬂ 4 (s, )] dr < 00, > 0.
0 R

Similar to [8, Lemma 2.15], we have the next result.

Lemma 3.5. Given ¢y € L with ¢ > 0, there exist a spectrally positive a-stable process
{L; : t > 0} so that fort > 0,

t [e’e] [oe] B
):// // Liv<m(x, (u)y2%(s,u)No(ds, dz, du, dv) = Ly,
oJo JrJo
/ ds/ (s,u)]*du.

The proof is similar to that of [8, Lemma 2.15].
Proof of Theorem 1.2. By Lemma 3.1 we only consider the case o < 3/2. Since the proof
of (1.5) is essentially the same as that of [8, Theroem 1.2(a)] but based on equation
(1.10), we only present the proof of (1.6), which is a modification of that of [8, Theroem
1.2(a)] and proceeds as follows. Let Xg € M(R) be fixed. We assume that 7' = 1 in this
proof. Recall (3.1) and A = 1/a — v with v € (0,a™!). Also recall that n, = k/2" forn > 1

where

EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
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and 0 < k < 2". Let f(x)™ and f(z)~ be, respectively, the positive part and the negative
part of f(z). For x1,z2 € R and s € [0, 1] define

s poo o pH(Xe () i
Us(z1,22) := / / / / 2[Ps—s; (11 — u) — Ps_g, (w2 — u)] T No(ds1, dz, du, dv).
o Jo JrJo

Let Vs (1, 72) be defined as Us(x1,z2) with [ps_s, (z1 — 1) — ps_s, (x2 — u)]T replaced by
[Ps—s; (1 — w) — ps—s, (2 — u)]”. Then

Zs(w1) — Zs(x2) = Us (1, 22) — Vs(21, 22). (3.13)

Observe that

ZUnk r1,%2)
_ Z / / / / [y —s(21 — 1) — Py —s(w2 — w)]* No(ds, dz, du, dv)

on

H(Xo—(u)™ 4
[T LL " 55 oo
0 0 R JO

—Dnp—s(T2 — U)]+N0(d8 dz, du, dv)
on

1 poo H(Xo_ (u)®
~/O ~/O /]R~/0 Z Liny_, nk] Zz[pni*S(xl —u)

—Pn,;—s(T2 — u)]+1\70(ds, dz, du, dv)

// // Lw<r(x,_(u))2¥n(s, ) No(ds, dz, du, dv),

where
1 2m 2m
wn(svu) = 27 Z 1(nk,1,nk](s) Z[pnifs(xl - u) _pni*S(xQ - U)PL
k=1 i=k

One can see that v, (s, u) satisfies the assumptions of Lemma 3.5, and there is a stable
process {L; : t > 0} so that

on

Zunk x1,x2) = L, (3.14)

where

T, .7/ ds/ ) (s, u)|*du.

Let ¢ € (0,1) be fixed. Let V,, and U, be defined in Lemma 3.3. Then

sup {P(ffn >C.)+PU, > CE)} < 2e. (3.15)
Set :
F] ({m < C. forall s € [ng_1,n;) and |y| < ]Kl}
m {m < C. forall s € [ng_1,nx) and |y| > E{l})
EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
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ﬂ {VTL S CE)an S OE}
By Lemmas 3.3 and 3.4,

sup P(A5°) < 4e,
n>1

where A;¢ denotes the complement of A5,. Define U (x1, x2) := Us(z1,22)1 4¢ .
In order to complete our proof we need to establish the following two lemmas.

Lemma 3.6. Foreachn > 1 andr > 0,

{Qn Z (z1,22) = 7|z — I2|n} (Cor™Hay — as|)Cerlmmmal ™%,

Proof. By (3.14), we have

on

{2n Z (@, 22) > rlwy — x2|”} P{LTn > rlry — @\",AZ}. (3.16)

Note that on event A¢ the jumps of M} () do not exceed
C.2M (ng, — 8)*, S € [ng—1,Mk)-

Then, on A:, the jumps of

l oo oo
(0, 1) S / / / / l{ng(Xs,(u))",\u|§]K1}Z¢n(Sa U)No(ds, dz, du, dU)
0 JO R JO

are bounded by

I, = C2* sup sup (nk — 8) Pn(s,y)
1<E<2" (s,y)E[ng—1,nk) XR
An 1 : A
< C27" sup sup — > (k= 8)"|pn;—s(v1 — y)
1<k<2m (s,y)€[nk— 17”k)><]R2 i—k
_pnifs(xQ - y)| (317)
Applying (2.12) with § = 7. — 2y gives
1 2’”
sup -~ Z(nk - 3))\|pni—s($1 - y) - pni—s(x2 - y)|
ver 2" =
1 2’7’1
< Clay — 22"~ = 3 (i = 5) /2 (ng. — ) sup P, (9)
s yeR
o
1 nE — S\
< Clay = 20|27 ( )
|71 — 22 on Zk S
1 & 1\
< C _ Ne—27v (7) < C _ 77(3—2’)/2—)\71
|71 — 22 2niz: k11 = |71 — 2
for s € [nk—1,nk). This implies
I, < C.|wy — xo|7™27. (3.18)

Similarly, on A:,, one can see that the jumps of
l oo o] ~
(0,1) 31+ / / / / 1{U§H(XS_(u))a,\u|>]K1}Z'(/Jn(3a u)No(ds,dz, du, dv)
o Jo JrJo
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are bounded by
Cg|l‘1 — l‘2|n"_2’y.

Combining with (3.18) we conclude that the jumps of

l oo oo
0,1)31+— / / / / Liv<m(X,_ ()~} 2%n(s,u)No(ds, dz, du, dv)
o Jo JrJo
on A¢ are bounded by
CE|{)31 — :L‘2|776_2’Y.
Observe that
P{LTn Z r|x1 — Z‘Q‘U,Ai}
= P{LTn > rlxy — x|, sup AL, < Celzy — :c2|7’6727,AfL}

u<Tp,
< P{ sup Lvl{supu<,u AL, <Cclzy—za|1c—27} > r|x1 — $2|W,AZ}. (319)
v<Tp
Moreover,
L o ) on .
7, < [ ds [ HOGW)" Y L6 5 D el =) = ooz = )]
0 R k=1 o
L on L2
< / ds [ H(Xs(u))" Z 1(nk_1,nk](5)7 Z [Pn;—s (21— ) = P, —s (22 — u)|“du.
0 R 2n 4
k=1 i=k
Applying Lemma 3.3 with § = o and r = 1 one gets
Tn S CE|$1 — .’E2|a on {T}n S Cs}’
which combined with (3.19) implies that
P{LT" 2 7“|.%‘1 — 1‘2|n,AfL}
= P{ Sup Lvl{supu<u AL <Cclzi—w2|7e—27} Z ’I“|l'1 N x2|"}.
v<Ce|z1—22|*
By (3.14) in [8], and [8, Lemma 2.3] with k = «, t = Cc|z1 — x2|%, & = r|x; — 22]", and
y = C.|z1 — m2|" 727, one obtains
C;T|r1_r2|nfnc+2w
P{LTn >rlx; — x2|”,AfL} < (Cer_1|x1 - x2|2“_2) (3.20)
Taking v := <1, we have
P{LTn > ’I".’L‘l _ 1‘2\"7142} < (CET_l‘LL'l . x2|)Cér\x1—x2|(7ﬁnc)/2’
which together with (3.16) proves the lemma. O

Lemma 3.7. Foreachn > 1 and 1 <i < 2", let{L,,(t) : t > 0} be a spectrally positive
a-stable process. Let L,,(t)~ be the negative part of L,,(t), and T(t) be defined as in
Lemma 3.5 with v(s, u) replaced by [p;—s(r1 — u) — pi—s(wa — u)]*. Then for each x,& > 0
andn > 1,

Ol e/ (a=1) }

27L
1 - _
P{Qin ;an(T(n7)) > xauﬂ, S CE} S OE exp{ - ‘le _ xQ‘r/(;//(a_l)

where r’ and ¢’ are defined in Lemma 3.3.
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Proof. 1t is easy to see for all b > 0,
1 & )
P{ﬁ Zan (T(n:))~ > z,U, < Cs}

_ P{ exp [2% iLm(T(ni))—] > et 1, < CE}
=1
-

< e‘h’”E{ exp [2% > L, (T(”z‘))_} 1{Ctn§05}}
i=1
on 1

<] ‘E[exp (hLm (T(ni))_)l{angcs}} (3.21)
=1

Observe that
E[exp (hLm (T(m))‘)l{anscs}]
P [Lm (T(n;))™ =0,Uy, < OE] + E{exp (thi (T(nz‘))f)I{HHSCE,LM(T(m))*w}

<1 +/ e"P[L,,(T(n;))” > y,Uy, < C.ldy. (3.22)
0

By Lemma 3.3,
T(n;) < Clln|zy — 2| < Celay — 22|
on {U, < C.}. Then using [8, Lemma 2.4], for each y > 0,
P{Ln,(T(n:))” > y,Un < C:}
= P{L..(T(n)) < .0 < C.}
<P{ mf L)<y}

u<Ce |z —z2|™"%’

< exp { = Coy/ @D |ay =yl T/ L (3.23)

Since for all a,b > 0,
ab < (1 —a Ya®/@) 4 o~ 1p,

then

11—«

a

H2(1—C€a—1) Tl 7"”‘4/5,/&} X [’2(1 —Csa—l)

C . C l—a 5
< eyl gy g7 (e 4 gt : hfay — xa["7.

2 ’m‘

Thus combining (3.22) and (3.23) we have
E {exp (hLm (T(ni))_> l{lflnSCE}}

<1 +/ e QXP{ — Coy® Dy — $2|7rlél/(a71)}dy
0

<1+ exp {Cé|$1 i x2|r'5'ha}/ exp{ B 271C€ya/(a71)|m1 _ x2|77'/5//(0t71)}dy
0
<1+0C, exp{C'é\zl — xo|" 0 ho‘} < C. exp{Cé\xl — xo|" 0 ho‘}.

Then it follows from (3.21) that

h\xl o x2‘r'§'/a]

gn
1 — S
P{2—n ZLR(T(m))_ > a,U, < C’a} < C.exp {Cé|1:1 — 5|" O pe — h:r:}.
i=1
Minimizing the function h — C’|z1 — z2|”% h® — hz, the desired result follows. O
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We now return to the proof of Theorem 1.2. By Lemma 3.5, for each 0 < s < 1, there
exists a spectrally positive a-stable processes {L,(t) : t > 0} so that

Us(z1,72) = Ls(T(3)),

where

/ dsl/ )Ps—s, (21 U)—psfsl(xz—U)]J“rdu.

Since p < 14+ a(a — 1)/2, applying Lemma 3.7 with 7/ = 2 — « and ¢’ = 1, we get

on

C’ a/(a—1)
{2n leln x1,%2) >r\x1—x2\",A2}§CEexp{— e’

}, (3.24)

‘le — 332‘(2—0‘—77“)/(0—1)

where U, (x1,z2)” denotes the negative part of U,,, (z1,x2). Observe that

on on on

E U, (21, 72)] =g g U, (T1,72) g U, (T1,72)",

which together with Lemma 3.6 and (3.24) implies

on

1
P{27 Z Un, (21, 22)| > 2r|z) — 332‘77,142}

1
1/2'”/ 2'”
< {2n Zun x1,x2) > 1T — 2|7, A€}+P{2n ZM,L x1,%3) >r|x17x2|’7,Ai}
e Cl a/(a—1)
< (Cor™Hay — th2|)057’|9“7962|(7 Wy C. exp{ - }

|$1 —$2|(2 a—na)/(a—1)

By the same argument we can also obtain the same estimation for V(z1, z3). It then
follows from (3.13) that

{2" Z |Zs(x1) — Zs(x2)| > 8|z — xa|", AE}

IA

Clpa/(a1) }

1 _ Car|w17w2|(n_"6)/2 { .
(Cor oy — x|) + C. exp |21 — 25| @—a—na)/(a=1)

Define Z;"° := Z;14- . By the proof of Lemma 3.1, Z; has a continuous modification
Z, for fixed t > 0. Then Z]"° := ZtlAi is a continuous modification of Z;"° for fixed ¢ > 0.
By [10, Lemma III.5.1], it is easy to see that

on

P{Y s 17— (o)) = e ([lome 0] )} < @([toms 52] ) 325)

=1 T2€K |z—2|<

foralln > 1 and § > 0, where

> 8K{
Em) =) 8(27'Kg)" 0o~
(m) = 380 Ko = 75
and
o) ! o/ (a—1)

._ I+1 —1o—Ime \COLr(27 Ko) (1= 1e)/2 (_ Cer )}
Q(m,r) = ; 2 [(Cgr 27'Ky) + C. exp 0T, E—a—m/@1 ) |
EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
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It is easy to check that for

=Y Q(m,r) <00, Q(r)—>0 as r—oc. (3.26)
m=0

Observe that foreachm,n > 1and 1 < k <27

Zn,s _ Zn,e B B 5 -
2O IOl w1z - 20l ()
‘I - Z|n at,zE]K,|x—z|§2% " "

sup
z,zGIK,zm%<|r—z\§2im

This implies
2” ~ ~
Zm.e — gne
s . Zii@) LG

, , — 2n
k=1 $7ZE]K7W%<‘$_Z‘SQ¢YL |x Z|

1 7n 7n 6 n
Y me- e
k=1, 2€K,|z—z|< 5w
1 < 2 K
5 > 0
C {27 Z sup |Zc () — 275 (2)] > rclé’([logg WD}’

k=1 %,2€K,|z— zg%

1 n
where ¢ = infu20 (| logy 75%5] ) (357) > 0. It follows from (3.25) that for each
m >0,

1 e () — ZME(
P{TL sup |23 (=) i (2)] Zr}
k=1 2,2€K, g5y <|l2—2|< 3hn |z — 2
1 < .
7 7n 0
: P{2n 2 E]KS‘U.p <. |2y (@) = 235 (2)] 2 T015<[1032 2*7”15])}
k=1%,% x <szm
< Q([logg = mé] rcl)
which implies
gn } )
1 e () — ZE (4
Py i 270 — ) >} <Qere).
on 1 T2€K,0<|z—2]<8 |z — 2|

Then by Fatou’s lemma and (3.15) for each subsequence {n’ : n’ > 1} of {n:n > 1},

’

on

1 Ly — Zy
{hmlnf p Z sup |Zn () :k(z)| > r}
n'=oc 2 =1 £,#€KNQ,0<|z—2|<4d \35 - Z|
2’”/,
1 Dt — Zp
< hmlan{ sup %, () e (2)] ZT‘}
ni—reo 1 ©2€KNQ,0<|z—2|<6 |z — 2|7
2 >n' e >n' e
]- Z R Z /7 z
nimeo ] 2,2€K,0<|z—2|<6 |z — 2|
< Q(recy) + 4e.
By first letting » — oo and then letting € — 0, we immediately have
211./
1 Dt — Zy
liminf 3 sup Zwi@) = Zun@] _ o pa
n’'—oo 2 kle,ZGKﬂQ,O<‘:E*Z|§5 |x—z‘77
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by (3.26). Letting § — oo we have

on’
1 - — 7
liminf — g sup |2 (2) wi(?)] < 00, P-a.s. (3.27)
n'—oo 20 i ©2€KNQ |x — z|77
Thus (1.6) follows from (2.4) and (3.2)-(3.3). This completes the proof. O

4 Proof of Theorem 1.5
4.1 The proof

In this subsection we prove the pathwise uniqueness of solution for (1.4). Throughout
this subsection we always assume that the assumptions of Theorem 1.5 hold. For the
proof of Theorem 1.5 we adopt the arguments from [23, 22]. By conditioning we may
assume that the initial states X and Y are both deterministic. For n > 1 define

ap :=exp{—n(n+1)/2}.

Then a,41 = anal™. Let ¢, € C°(R) satisfy supp(tn) C (an, an_1), [y (2)de = 1,
and 0 < ¢, (z) < 2/(nz) <2/(nay,) forallz >0andn > 1. Forz € Rand n > 1 let

onle) = | ay / e

Then ||¢),]| < 1, ¢n(x) , and ¢, (z) — sgn(z) for x € Rasn — oo. Forn > 1 and

Y,z € R put

Dn(y? Z) = ¢n(y + Z) - (bn(y) - Z(b{n(y) and Hn(?/v Z) = (bn(y + Z) - (bn(y)

Let & € C(R) satisfy 0 < ® < 1, supp(®) C (—1,1) and [, ®(z)dz = 1. Let
O (y) = P (x,y) := mP(m(x — y)) for z,y € R and m > 1 Fort > 0 and Yy € IR let
Ue(y) := Xu(y) — Ye(y), Vily) == H(Xe(y)) — H(Vi(y)) and Ri(y) = G(Xe(y)) — G(Ve(y)).
By the argument in Section 2, both {X; : ¢ > 0} and {Y; : ¢t > 0} satisfy equation (2.2).
Using (2.2) and It6’s formula we have

ou W) = 3 [ (U o0 [0 (0
// /H (Us, &™), 2V ()™ ()N (ds, dz, dz)
/ds/ mo(d2) /D (U, &™), 2V ()™ (1)) dy. @.1)

F~or t>0 1~et X’t an~d }7; dgnote the co~ntinuous mgdiﬁcationsNOf X; and Y; respectivgly. Let
Ui(y) :== Xu(y) — Yi(y), Vily) == H(X:(y)) — H(Yi(y)) and R.(y) := G(Xi(y)) — G(Vi(y)).

For T, K > 0, let ¥ be a nonnegative and compactly supported infinitely differentiable
function on [0, 7] x R satisfying

U, (x) =0forall (s,z) € [0,T] x [-K, K|°.

By (4.1) and a stochastic Fubini’s theorem, it is easy to see that

E
= Z[<¢n(<Utn (I)m»a \Pti> - <¢7l(<Uti—] ) (I)Tn>)7 \I’t171>]
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I
RN
s
2
?

1)), Wi, 1) = (0 (U 1y @), Wty )]

+Z ¢n Utv . )7 _\I/t'i—1>]

= / LUy, @™ Uy, AD™), W, Vs
/ B (U 7)) (R ©7), W, )ds + / () (6 (Ur, ™)), )ds
/ / /ZI (Us—, @™ >zVs,(y)<I>_m(y)),\I!tFl)N(ds,dz,dx)

/ ds [~ mo(az) / ZI (Ue 7). V() @7 (3), W, )y,

where 0 =ty < t; < --- <t =t and [;(s) := 1, , +,)(s). Letting maxi<j<p(t; —t;—1)
converge to zero we have P-a.s.

1

@0 8™ %) = 5 [ (G0 BTV AT, W)

[ @R was [ o), s
/ | [ om), Ve e ). s, dedy
ds [ moldz) [ (D0 ®7) V. 0) 87 1), )y
=: [{’“g(t) +OI;”’”(t) + Igl’%"(t) + IV + IL"(t),  t>0. (4.2)
For k > 1 define a stopping time 4 by
i = inf {t € (0,T): (X, 1) + (Y3, 1) > k} (4.3)
with the convention inf ) = co. By Definition 1.1,
{L{t=0y Xo(1) + 101 (X, 1) : £ = 0} and {1—03Yo(1) + 103 (Y2, 1) 1 € > 0}
are cadlag processes. Thus

sup [(X:, 1) 4+ (Y1, 1)] < o0, P-as.,
t€(0.7)

which implies limy_, o, vx = oo almost surely. Let {I’ : I’ > 1} be the subsequence of
{l: 1> 1} that will be determined later in Lemma 4.6. For 0 < i < 2", let I’; = i/2"". For
any nonnegative function f define
¢ 2V
f(s)ds == liminf/ S o rw () fTiT)ds, >0
0 =1

(O,t] lI’—o00

and

/ f(s)ds :=lim f(s)ds.
0.t) P (0,0
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Then [, f(s)ds < [ o rf(s)ds. For fixed K >0and 0 <7 <1n. = 2 — 1 define o}, by

[ Xs(2) = Xs(2)| V [Ys(2) = Ys(2)]

o) = inf {t €(0,7): sup P
(Of‘]ze[f(;flz)"KJ»l]ﬁQ

ds > k:} (4.4)

By Theorem 1.2,

[ Kl = XUV - Ye)
©

T wtz, | — 2|7
z;z€[—(K+1),K+1]NnQ

ds < oo, P-a.s.,

which implies limy_.o, 0 = 0o, P-a.s.
In the rest of this subsection we always write

T := min{7yg, o }.

Before proving Theorem 1.5, we state three important lemmas. Similar to [23, Lemma
2.2(b)] we have the following result.

Lemma 4.1. For any stopping time 7 and t > 0, we have
1 tAT
limsup B{™" (A7)} < 5 B / ds / Us(@)| A (2)da}, (4.5)
m,n— 00 2 0 R

lim E{I;"»"(tm)}:E{ /0 " s /R sgn(Us(:c))Rs(x)\Ils(x)dx}

m,n—co

and

lim E{Ign’"(t/\r)}:E{ /0 s /R |Us(x)|\i/s(x)dx}.

m,n— oo

Lemma 4.2. For any stopping time 7, any t > 0 and m,n > 1, we have

E{I;""(tAT)} =0. (4.6)
The first inequality of (1.7) is equivalent to 3 > % which is also equivalent
ton, ! < % — 1. Thus there exist constants ¢, > 0 satisfying
1 (2—-a)p 0+1 B
0< ———1 and
e <0< and ;— <e<——,
which implies
o+1 0N
L L P 4.7)
2—« a—1 a—1
Lemma 4.3. If m = a;fl for the ¢ in (4.7), then for eacht >0 and k > 1,
lim E{;""(t A7)} = 0.
n—oo
Deferring the proofs of Lemmas 4.3-4.5, we flrst present the main proof.
Proof of Theorem 1.5. By the continuity of z — U;(x), for each z € R and ¢ > 0,
. - my 1 -~ B E 7
Jim (0 07) = Jim_ [ Do~ L)a)dy = Oifo). 4.8)
Note that ||¢/,|| < 1. Then for all z,, — = as m — oo, we have that
[Pn(@m) = [7]| < S (Tm) — dn(@)] + [Pn(2) — [2|] < |20 — 2] + D0 (2) — |2]],
EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
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which converges to zero as m,n — co. Now by (4.8) and Fatou’s lemma

B0 ¥ 1<y} = B{O0 901 p<r,y |
- E{<m,11}zmoo ¢"(<ﬁt’q)m>) q/t>1{t<7k}} < lim inf E{ ¢n <Uta . ) \Ilt>1{t<7'k}}

m,n—00
= ,}ég}i}nofoE{<¢n(<Utvq)m \Ijt>]-{t<‘rk}} < A}LIE—I)HOEE{ d)n <Ut/\7'k7 >) \Ijt/\'rk>}

Together with (4.2) and Lemmas 4.1-4.3 we have

B{(U.], ¥)Li<ry} < B / i ds/ U, (2 [ AU (2) + W, ()] da |

+B{ / g / S0 (U (2) R (2) 0, (2)d

Letting £ — oo in the above inequality we have

BV ¥} < [ ds [ BIO@[GAV. (@) + b (@)]de
+/O ds/]RE[sgn(Us(:c))Rs(x)]\Ils(x)dx.

This is similar to (34) in [23]. Then by the same argument as [23, Theorem 1.6],
for any fixed ¢t > 0 and nonnegative f € C2°(R), with U4(z) replaced by ¥y (s,z) =
(Pi—sf(x))gn(x) for a proper sequence of functions (gy)n>1 so that gy (z) — 1 for all
z € R and the first term on the right hand side of the above inequality goes to zero as
N — oo. Thus, we have

E[|U], / ds | B[sen@ (@) R@)] Piesf @) < [ B0V P s

where condition (C2) is needed for the last inequality. It is elementary to check that the
above inequality holds for each f € B(R)™ satisfying Ao(f) < oo. This means that for
each f € B(R)™ satisfying A\o(f) = 1,

BV, Pr_ef) < / (Elro(|U])], Pr_of)ds

Then by the concaveness of x — ro(x) and Jensen’s inequality,

®{U). Proif) < | BV @) Proifa)ds
— [ s [ m(®I0.@) s @ < [ ro(@I0) Prof)ds. @9)
0 R 0

Since [, ro(2)"'dz = oo, the above inequality implies that (E[|U;|], Pr—.f) = 0 for all
t > 0. Thus

P{X:(z) = Y;(z) for M\p-a.e. z} =1

for all ¢ > 0. It follows that (X;, f) = (V;, f) P-as. forallt > 0 and f € S(R). By
the right-continuities of ¢t — (X4, f) and t — (Y3, f) we have P{(X}, f) = (Y3, f) for all
t >0} =1forall f € S(R). Considering a suitable sequence {fi, f2,---} C S (R) we
can conclude (1.8). O

We now present the proofs of Lemmas 4.1-4.3.
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Proof of Lemma 4.1. By the same argument as [23, Lemma 2.2(b)],

limsup E{I{""(t A7)}

m,n—oo

tAT
<hmsup E / ds/qS (U, ™)) Uy, &™) AW, (o )dm} (4.10)

m,n—o0

Now using (4.8) and the fact that ¢/ (z) — sgn(x) as n — oo, we have

m,n— oo m,n— oo

lim @1, ((Us, 7)) (Us, @) = lim ¢, ((Us, D)) /_ 11 Us(z - %)@(y)dy = |Us(=)].
Observe that ||¢},|| <1 foralln > 1 and
0< 6, (O 00 87) = 01,0 82)) [ Ot — D)@)ay < swp [ Kelo) + a0
Then by (4.10), (3.4) and the dominated convergence

limsup E{I;""(t A7)} < limsup - /ds/ US7@m))<05,<I>ZL>A\I/S(9L‘)1{SST}}CZ$

m,n— 0o m,n—)oc

IN

t
1/ ds/E lim sup ¢/, ((Us,<I>m>)<(~]s7<I>m>A\IfS(m)1{SST}}dx

m,n— oo

1

_ 5/ ds/ |U AT, (a )1{S<T}}dx
1
2

{/MTds/ U, (2)| AT, ( )dm}

By the continuity of x — U, (z) and = — R,(x), one also sees that

lim ¢, ((Us, 7)) (Rq, ™)

m,n— oo

= Jlim (007 [ Rule = L)p)dy = sen(0 () Ruo)

m,n—00 1

By condition (C1) and the fact ||¢,|| < 1 we have

(6,0 B2 02 < (R0l = | [ Rl = L)buy

< c/ Xoz— L)+ Vi@ — Lyowydy+Cc <€ sup [Xuly) + Valy)| + C.
R m m ly|<K+1

By the dominated convergence again,

tAT
lim E{IJ"(t A7)} /A ds/ lim ¢;(<US,@;">)<Rs,q>;”>xps(x)}dx

m,n—oQ m,n—o0

= / ds/E{sgn(US(Q:))RS(I)\IIS(I)}dz.
0 R
By the fact ||¢/,|| < 1 again,
‘E{Igz,n(tm)}—E{/o Tds/]R|Us(x)|\ils(x)da;}’
< /OtdsAE{|¢n<<Us,¢?>>— UL(@) 1} (2)]da
< [ as [ B{1on(002)) = 6,0 @)| +16,(V.(@) = [V @)} o)l da
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</tds/ |, () |dx/E{\Us(x—%)_(]s(m”}@(y)dy
/dS/EW’n «(@) = [Us(@)|} ¥ ()| dar.
O

Now by (2.11) and the dominated convergence we finish the proof
Proof of Lemma 4.2. Fort > 0 and m,n > 1 let

t 1
g0 = [ e o). Ve o). )N s dz.dy)
0 Jo
and I)%5"(t) := I;""(t) — I}"(t). By the Burkholder-Davis-Gundy inequality (see [

p.195]3, for a € («, % A2) and T >0,

E{ suwp 77" (tA7)|"}
te[0,T]
b )|2N(ds,dz,dy)}

< OB ///\ (U= ), 2V ()27 (1), T,
\I/S>|5“N(ds,dz,dy)}7

< oB{ / //| (Use, @™, 2Vs ()™ (1)),

where for the last inequality we used the fact that
n & n
" _
DAL
i=1 i=1

forall ; € R and n > 1. Since |H,(y,2)| < |z| for all y, z € R, and ¥ is continuous and
compactly supported, combining the Holder inequality, condition (C3) and Lemma 2.4

’

[N
—

we have
143{:,[%13]\[41 (tAT)E }
< B /O /O/R‘Z/RV_ )(D;”(y)\lls(x)da:‘aN(ds,dz,dy)}
< CB{ / ' / 1 /R 2| /R Voo () @2 ()W ()| de| N (ds, 2, dy) }
e / " s / m @) [ oo [ BOV.G)F 0T )%
/ ds [ w@)ds [ BUXG) =Yl Y @) dy
< / s [ de)®ie [ BLX )7+ Y070 (@) dy < .
Similarly,
E{t:[tépT]|I42 (t/\T)\}
\IIS>|N(ds,dz,dy)}

<Bf // /\ (Uam @7, 2Vee (1)@ (),

+E / ds/ mo(dz) /| (U,_, ™ >zv;,(y)c1>?"f(y)),\115>|dy}
=2 (s [ o) [ B{1 00, Ve )07 ), )

http://www.imstat.org/ejp/
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T 0
<2 ds [ amo(a) [ vt [ BIV.@ER Wy < .
0 1 R R
It follows that for 7" > 0,

E{ sup \Iin’"(t/\T)|} < 0.
t€[0,T]

Then by [27, p.38], t — I,""(t A7) is a martingale, which implies (4.6). |

To prove Lemma 4.3, we only need to show the following two lemmas.
Lemma 4.4. Form,n,k,i > 1 andt € [0,T] let

ki tAYE 1/i
gy =B [ s [T motde) [ (0,87 V)07 ). 9d ).
Then
M (1) < Crkm(na,) "2, te (0,7,

Lemma 4.5. Form,n,k,i > 1 andt € [0,7], let

. tAok
EEUES Y

Then

o0

[ mold2) [ (a1, 07), 2V o7 0), )}

IR < OpkPm~"P +a)_ )i, te0,T).

Proof of Lemma 4.3. Recall that §, ¢ satisfy (4.7). Choose i = a, °, and n < 7. satisfying
(4.7) with n replaced by 7.. Then

m,n m,n,k,i m,n,k,i
E{Is (AT} < I5,1 (t) + I5,2 (t)

which converges to zero as n — oo by Lemmas 4.4 and 4.5. O

We first present the proof for Lemma 4.4.
Proof of Lemma 4.4. Recall that ¢, (z) < 2(na,)~!. Then by (3.3) in [16] and condition
(C3),

m-lpn(<US,<I>?>,zm%(:cl— y/m)®(y))
m22V,(z — y/m)2¢>(y)2/o U ([(Us, ®7) + zhmVi(z — y/m)®(y)|) (1 — h)dh

Cm(na,) 22 |Uq(xz — y/m)[*P ®(y)
Cm(nan) 22| X (z — y/m) + Ys(z — y/m)|(2OVD-1
X|1+ X,(x — y/m) + Ys(z — y/m)|D(y).

VANRVAN

It follows that P-a.s.

K 1
/ W, (2)dz / M D (U, &), 2mVi (i — y/m)®(y))dy
—K 1

Com2K, (X !
< %/ dx/ 1+ Xs(z —y/m) + Yi(z —y/m)|@(y)dy
n —-K -1

-
14 (X5, 1) + (Y,, 1)] < Ceokmz"K, (4.11)

na, nan

< Ceomz2K,
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on {s < 7}, where

cp 1= sup U,(z), Kg:= sup |Xy(u)+ Ys(u)|@OVD-L
(s,2)€[0,T] X[~ K,K] lu|<K+1

Since 0 < < 1,28 —1< a_ foreach a_ € (1,a). Then by (3.4), foreach0 < s < T,

E{K,} < 2E{1 + ‘ |S<u11()+1 | X, (u) v f@(u)|a7} < Cps™ 7.

The above inequality together with (4.11) leads to

. 1/i
Ig?l’"’k’l(t) < Ck:m(nan)_l/ 2?mg(dz) < Ckm(na,) % 2,
0

which finishes the proof. |
For m,n,k,© > 1 and t > 0 define
Imonji(t) = / \IJt(x)dx/ zmo(dz)/ D (y)dy
R 1/i R
1
></ D, (U, @), mzhVi(x — =) Vy(x — = )dh,
0 m

Y
m

<

where D, (y,2) = ¢, (y + z) — ¢, (y) forall y, z € R and n > 1.
To show Lemma 4.5 we need to show two more lemmas.

Lemma 4.6. There is a subsequence {I' : I’ > 1} of {l : | > 1} so that for each m,n,k,i >
1, P-a.s.

¢ 2V

lim [ > 10, 7,1y () Tmmki(U5T) = Jmni(s)lds =0, t€(0,T].  (4.12)
0 =1

I’ —o00
Proof. Observe that ||¢/,|| < 1. Then by condition (C3)

(Mo (2,9, 21 D] 2= | D (U, 8, mehVi(a = L)) Vi = )] < ClUy(a = 2)°

and
K 1 y
I k,i(t) < CQCia_l/ dw/ Uy (x — =) |Pdy,
—-K -1 m

where Cy = Sup(sm)e[O’T]X[_K,K] \IIS (l’)
Now by Lemma 2.4, there is a constant § € (1, ) so that for each ¢ € (0,77, there is a
set Ky C R of Lebesgue measure zero satisfying

E{le,n,k(xay7Z7h,t)‘6} < CTt_B6/27 T,y € IR\KD (4.13)
and
E{Jimnk,i(t)°} < Cpi®@De=h0/2, (4.14)

By Lemma 2.6 for each ¢ > 0 and t; — t as j — oo, there is a set K, C R of Lebesgue
measure zero so that for each z € R\ K3, both

X, (x) = Xi(z) and Y, (z) — Yi(x)

)
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in probability as j — co. Then for each z,y € R\ K,
Mk (2,y, 2,0, t5) = My k(2,y, 2, by t)
in probability as j — oco. Together with (4.13) we have

lim E{|Mm1n7k(x, Y, 2, h,t5) — My n k(2,9 2, h,t)|} =0, z,y € R\(K; UKy,).

J—0o0

Using (4.14) and [5, Theorem 4.5.2] we then have
1tian{|Jm7n,k,i(t) - Jm,n,k,i(un} =0. (4.15)

Using (4.14) again,

T 2! 5

?311)/ ’ > 10,110, 1) (8 E{ [T ki (1 T) *Jm,n,k,i(5)|}‘ ds
0 °

= j=1

T 2

< ig}f/ > 10,1, 1) (S E{ T i (GT) + T oi(5)° bds < oo
o “

=z j=1

It then follows from (4.15) and [5, Theorem 4.5.2] again that

l—o0

T 2
lim E{/ Z L,y m () Imon ki (LT — Jm,n,k,i(5)|d5}
0 “
Jj=1

l—o0

T 2
= lim / Z Lo,y r;1) (S E{ T, ke,i (GT) — Jin ki (8)|Fds = 0,
(Nt

which implies that

T 2
/0 S0, sri 118 ki (5T) = T (5)]ds
=1

goes to 0 in probability as | — co. Then for each m,n,k,7 > 1, there is a subsequence
{U':'=V(m,n,k,i): 1" > 1} of {l : 1 > 1} so that (4.12) holds. Therefore, one can choose a
proper subsequence of {I : | > 1} which is independent of m, n, k, i so that (4.12) holds. O

Lemma 4.7. Let {I' : I’ > 1} be the subsequence of {l : | > 1} in Lemma 4.6. Then P-a.s.
¢ 2" t

lim Z l(l’j,lT,l’jT] (S)Jm,n,k,i(l/jT)l{l’JT<ak}d5 = / Jm,n,k,i(s)l{s<ak}d37 te (O,T].
0 5=

lI'—o0 0

Proof. It follows from (4.14) that

E{ /OT Jmﬁnyk’i(s)ds} < 00,

which implies that P-a.s.

T
/ Imon,k.i(s)ds < oo.
0

Then by Lemma 4.6 and the dominated convergence one obtains P-a.s.

¢ 2V
Jim ; S Lt 1) mmi T 1 <oy = T ()L is<a, ylds
j=1
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2V

< lim / Zl(l/J 1Tl T]( )|Jmnkz(l T) Jmnkl( )|1{l’ T<ok}d5

t2l

+ lim Z 1(l’j71T,l’]’T] (S)Jm,n,k,i(s)|1{l’jT<ak} — 1{5<a—k}|d8 = 0,
j=1

l'—o00 Jo

which completes the proof. |

We are now ready to show Lemma 4.5.
Proof of Lemma 4.5. In the following let ¢ > 0 and m,n,k > 1 be fixed. By Taylor’s
formula, dominated convergence and Lemma 4.7 we have

. tAo 1
Igg’""k’l(t) = / ds/ / zmo(dz)/lé(y)dy

/0 W0, 27, menVi(e — L))o — Lyan)

t
E{/ Jm,n,k,i(sn{sqk}ds} - E{/ Jm’n,kyi(s)l{s@k}ds},(4.16)
0 (0,t)

where recall that D, (y, z) = ¢/, (y + 2z) — ¢/, (y). Let

Tslt) = [ Wiyt [ 7’ smo(ds) [ ®(s)dy

></1D (T, @ )mth}(:c—E))Vt( Lydh.
0

3@

Observe that for each fixed ¢t > 0, Ut and f/t are the continuous modifications of U;
and V;, respectively. Then it is elementary to check that for each ¢t > 0, (|U; — Uy|,1) =
<|f/f —V4|,1) = 0, P-a.s. This implies jmm,,k,i(t) = Jmnk,:i(t) forall t € (0,00) NQ, P-as.
Together with (4.16) we have P-a.s.

i) < E{/ jm_,nyk,i(s)l{(ng}ds}. 4.17)
0.)

For fixed s and «z let z, ,, € [—1,1] be a value satisfying

Vile = ==2) = it {|Va(a— )]},

m ye[—1,1]
It follows from (4.17) that
Im n,k z t)
tAok 1
< / ds / / zmo(dz) / D(y)dy
0 1/i -

D (T, @), mzhVi (= ) [Vl = 2£) = Vi (o - x;g”)]\dh}

f e
/Ods _K‘Ils(x)dw/ mo dz/

1
~ ~ m :L‘Sm
></O | Do (O, @) meh V(= L)V x——)’ (Foto e 2oy dh
= I () + I35 (). (4.18)

We can finish the proof in two steps.
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Step 1. We first estimate Igfﬂ’k’i(t). Since for fixed s > 0, X, and Y, are the
continuous modifications of X, and Y, respectively, then we have P-a.s.

Xs('r):j(s(x)a Y;(JU):YS(JZ), reRNQ, s€e (0,00)QQ

Combining this with the definition of o5 and ] (0.4 We have P-a.s.

oy = O = inf{t €(0,7]: / sup
(0,t] z,z€[—(K+1),K+1]NQ,x#=

‘Xs<‘r) — Xs(z)‘ v |?s(x) — Y/s(z)‘
|z —z["

ds>k}

= inf {t €(0,7]: / sup
(0,t] w,zE[:(K«FlLK«fI],w#z ~ ~
[ Xs(2) = Xs(2)| V [Ys(2) = Ys(2))

ds > k;} (4.19)

|z — 2|7
By the Holder inequality,
/ sup |X8(x—£)—)~(s(x—£)|5ds
(0,tAGy) |z| <K lylv]v|<1 m m
| . . 8
Stlfﬁ[/ sup \Xs(x—g)—Xs(x—E)\ds}
(Oﬁt/\&k) \z|§K,|y|\/|v\§1 m m
y Xz —%) = Xy(x— 2 B
< tlfﬂ(2/m)nﬁ [/ sup | ( m) ( m>|d$}
(0,67A6%) 2| <K |yl V]| <1,y ly/m —v/m"

< 2nﬂtlfﬂmfnﬁk,6’7

and the same estimation holds for Y. Then by (4.19) we have P-a.s.

| ~ ~ v
/ sup |Vs(z — E) = Vi(x — —)|ds
(0.tA0k) |z| <K ly|V]v|<1 m m
<cf ap K- L)~ Ko - L)
(0,6A5%) ol <K [yl v]v] <1 m m
Yz — L) = V(e - 2)P)d
HEe = L) - T = L)) as

< 2nﬂ+lct1*5m77}5kﬁ.
Observe that |D,,(y, z)| < 2 foralln > 1 and y, z € R. It then follows that

m,n,k,i 2c iail N K ! ‘7 Yy ) Ts,m
g < 25on{ [ as [ de [ e L) e - T ey
(0,tAay) -K -1 m

a—1 m

ca—1 K 1 7
< 2co1 / daj/ E{/
a-1 J_ g ~1 (0,tAck)

sup Voo = L) = Vifa - ) Jds fe(y)dy

|z| <K, |y vIv|<1
22 ey O Kt = Pm =P (o — 1) 71, (4.20)

IN

where ¢y = SUP (s,2)€[0,T]x [~ K,K] ‘I’s(f?)- R
Step 2. We then estimate /73"’ (t). Since supp(¢}) C (an,an—1), then Dy (y,2) =0
for y > a,_1 and z > 0. It then follows that for each y,z > 0,

Dy(y,2) = Dn(y, 2)1{jy|<an_1}- (4.21)
One can also get (4.21) for the case y, 2z < 0. ~

By the Hoélder continuity of H, there is a constant c¢3 > 0 so that |Us(z — =) >
cs|Vi(z — L)|'/7 for all u € [~1,1]. Then
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{10, @] < an-1} < {Vale = 2] < (5 an-1)"}. (4.22)

To verify (4.22), if

€ _
Vo = 221 2 (5 an1),

then V,(z — “=m®)) -4 0 This implies that V,(z — %) # 0 for all u € [~1,1]. Then by the
continuity of u ~ V,(u) and the mean value theorem, V,(z — “)>0forallu e [-1,1],
or V,(z — %) < 0forall u € [-1,1]. On the other hand, H is a nondecreasing function
(condition (C4) in Section 1). Then Us(x — =) >0as Vi(z — =) >0and Uz — ) <O0as
Vi(z — %) < 0. Therefore,

‘/ )®(u )dUI —/llﬁe(z;i)@(u)du

U1 ~ Tsm(T
z/ Vol — ) F(u)du > ey V(e - P

1
B Z Ap—1,

which implies (4.22).
By (4.21) one can also see that

™ m > Ts,m - 5
= Dn (U, @), mehVi(w = =2Z)@ () Ly, (o 22m ) 0, (0, ) <1}
Putting together (4.22) with the fact |l~)n(y7 z)| <2forally,z € Rand m > 1, we have

‘D Us, ®™), mzhVy(z — xs—m)@(y))ffs(x— xs—m)
m

m
Ts.m -1 B
<2Vi(w = =)0, e 1<an 1y < 2005 an)”.

Then

t K 9]
I35 (t) < 2(c§1an_1)ﬁ/0 ds/K\IJs(a:)da: /1/. zmo(dz) < Cpd’®_i®',  te[0,T).

Combining with (4.18) and (4.20), we finish the proof. O

4.2 A remark on the proof

We remark that we have not considered the increased Holder regularity near its zero
(used in Mytnik and Perkins (2011) in proving the pathwise uniqueness of SPDE driven
by Gaussian white noise), i.e. the difference of two solutions is jointly Holder continuous
with the Holder exponent in space in (0,1) and with Holder exponent in time in (0,1/2)
when the difference is close to zero. But for the SPDE (1.4), it is hard to establish
the similar result of Holder regularity for the difference of two solutions because the
regularities of the solutions in time at fixed spacial point could be bad. For example,
for super-Brownian motion (i.e. G =0, H(z) = 2P and p = 1in (1.4)) it was proved in
[21, Theorem 1.2] that for any ¢, > 0 and almost every spatial point = € R fixed, the
essential supremum of the solution over time interval (¢,¢ + d) is infinity.

In this paper the proof of pathwise uniqueness for the solution to (1.3) relies on
the Holder continuity of the solution at a fixed time. If one uses the Holder continuity
at any given spatial point where the Holder exponent 7. = (3/a — 1) A 1 is bigger
than 7., it appears that the criterion for pathwise uniqueness could be improved with
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8 > W in Theorem 1.5 (with 7, replaced by 7. in (4.7) and 1 < a < (V17 +1)/4
for the case p = 1). But there is a problem with this approach, which we explain below.
For the stoping time o}, one gets an equation similar to (4.1) with ¢ replaced by ¢ A oy ().
Then by the same argument as in (4.2) we have
<¢n(<Ut/\7—k( ), ®7)), W)
1 m m
= 5/0 <¢n(<US7 ")) (Us, AP! >1{5§7k(')}’ Vs)ds
t
+ [ OO B ) s + / (Ou(Uanrn 0 @), W) ds
/ | a0 Ve )87 ) ) 0N )

/ dS/ mo dZ / (<Usa(pm> ZV( ) ( ))]‘{3<7’k()}’ >
= k) I k) I () A I (k) + Tt ),
where Uy, Vi, @7, Dy, ¢, Uy, v defined below (1.11), 74 (z) = v A or(x), Hp(y,2) =

on(y + 2) — ¢, (y) and R, denotes the difference of compositions of the two solutions into
function G. As in Lemmas 4.1-4.2, for each k£ > 1 one can get

mITILIEOOE{Im” (t,k)} = E / ds/ sgn(U. Qs(x )\I/S(x)l{sgm(x)}dﬂf}
and
t . A,
hm E{I "(t,k)} :E{/ ds/ |U3A7k(x)(x)\\lls(x)dx}, E{I;""(t,k)} = 0.

Similar to Lemma 4.3, we also have that if m = a,,°, for § > 0, then for each ¢ > 0 and
k>1,

lim E{I""(t,k)} =

m,n— oo

But it is hard to deal with
E{I}""(t,k)}.

The difficulty comes from the fact that = — 1{,<+, ()} iS not continuous. So we cannot
use the same argument as [23, Lemma 2.2(b)] to obtain an inequality like (4.10).

5 Appendix: proofs of Proposition 2.2 and Lemma 2.4

Before proving Proposition 2.2, we state a lemma.

Lemma 5.1. Let ¢t € [0,T] be fixed. For any k > 1, A > 0 and f € C(R) satisfying
Xo(]f]) < oo we have P-a.s.

¢
(Xinzes P—gnmyiaf) = Xo(Priaf) +/ (G(Xs), Posinf)lis<z,yds
0
t oo H(Xs— (u)® -
+// // 2Pt g yxnf(u)lis<5,yNo(ds, dz, du, dv), (5.1)
o Jo JrJo

where T is the stopping time defined in (2.5).
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Proof. We consider a partition A, ={0=th < t1 < - < t, =
|An| = maxi<i<n |IfZ Z 1| Let f>\ = PAf It is clear that M = %P
For k > 1 and s € [0, 7], let Zx(s) = Xsa7,. By Proposition 2. 1

}of [0,t]. Let
{(z) for s > 0.

(Zet), ) = Xo(fs) + 2 / (Xo FI)] aryds + / (G(X), )l jaeryds

H(Xo_ (u)®
/ / // zfa(u )1{S<Tk}N0(ds dz,du, dv).
o Jo 0
It follows that

(Zi(t), P—ns) I2)

n

= Xo(Prrf) +Z<Zk s P_tiniy In = Pi—to_inm) )

1=1

Z[<Zk( )y Pie i onin) Sa) = (Z(tiz1), Pt ans) )]
=1

1< t—(tiATk)
i=1 Jt—(ti—1ATk)
t;
+- Z/ Xs>Pt (ti— 1/\Tlc)f)\>1{s<7-k}d3
ti—1
+Z/ ), Fi- (ti— lATk)+/\f>1{5<7-k}dS
H(Xs— (u)” i
+Z/ / // 2P, (1, nr) S (W) gs<z,3 No(ds, dz, du, dv)
’L 1
= X PfJ,-Af / Xe,Pt (ti_ 1/\Tk)j’)\) < (i)th—(eff)]l{sgk}ds

+ / zn<s><G<Xs>,Pt_(tiwwﬁ1{s§+k}ds
0o

=1

t poo H(X,_(u)* zn: (5 "

+//// z Li(8)Pi—t,_ ns)enf(u
o Jo JrJo = b bma AT+

xl{sgﬁ}l\?o(ds,dz,du,dv), (5.2)

where I;(s) =1, _ 1)”( s).
Since ||f{]| < oo and (X, 1) < k on {s < 7}, then by the dominated convergence,
P-as.

t n
|Ahr|ri>0 ZI’L(S)|<X53 Pt—(ti,l/\%k)f;\/> - <Zk(ti)a Ptfsf;\/>|]-{s§7~'k}ds
n 0 7,':1

S ‘Alilirl)O 0 ;I( )|<X57Pt (t7 1/\Tk) ;\/_Ptfsf;\/>|1{ss7~'k}ds

t n
+ dm | ;I( KXo, P ) = (Xrinis P f) L sy ds

t n
< li L(s)(Xs, P, = P 1 sennd
_/OATILI&O; (s)I{ s Lt —(ti— i AFe) I t f/\>|{§k}8

o[ Ahﬁioz[ (X0 Prea ) — (Xins Pea S0 zrgds =0, (5.3)
0

where the right continuities of ¢’ — Py f{ and ¢ — (X, P,_sf{) were used in the last
equation.

EJP 22 (2017), paper 4. http://www.imstat.org/ejp/
Page 40/48


http://dx.doi.org/10.1214/16-EJP23
http://www.imstat.org/ejp/

Pathwise uniqueness for an SPDE

By the Lipschitz condition on G and the dominated convergence we can also have
P-as.

t n
\Ah?io ; D LG (Xs), Pieoo iz inf) — (G(Xs), Prosin )] 1 (a<, yds
T n
< ; ;Iz‘(SNG(Xs% 1Pt ynmi)+nf = Peesiaf)L{s<zyds = 0. (5.4)

Observe that for s € [0, 7]

f(s,u, A n, k) ZI NP t; ynm)+af (W) — Pe—sin f(w)| < 2/ f]|

and f(s,u,\,n,k) converges to zero by the right continuity of ¢ — Py f for s < 7 as
A, — 0. By the same argument as in (2.7) and (2.8),

/t/\des/ 14 Xs(w)?]Pryr f(u)d }<oo

for each £ > 1. Then by the dominated convergence and Burkholder-Davis-Gundy
inequality it is easy to see that as A,, — 0,

)// // o Zl )Pty nin)eaf (w)

—P_ s-‘,—)\f( )} 1{S§;k}N0(ds, dz,du, dv) ‘}

< 2/ zmo(dz)E / ds/ H(X (s,u, \,n k)1{5<7k}du}
1
< 2C/ zmg(dz) E / ds/ 14+ Xs(u)P]f(s,u, \,n k)1{5<7k}du} —0 (5.5)
1
and
t el H(Xs— (u)® n
E ‘//// z Li(8) Pty ni) 2 f (1)
{OO]RO [; tr bt
- 2
N )}1{g<;k}N0(ds,dz,du,du)‘ }
< C|\f||/ 2?mo(dz)E / ds/ 1+ Xs(u)P]f(s,u, \,n k)1{5<7k}du} — 0. (5.6)
Now it is obvious that (5.1) follows from (5.2)-(5.4) and (5.5)—-(5.6). d

Now we are ready to present proof of Proposition 2.2.
Proof of (2.3). Recall that the stopping time 7, is defined in (2.5). Let f € B(R) with
Ao(|f]) < oo in this step. For each n > 1 and z € R define f,(z) =n [ \/n f(y)dy. Then
fn € C(R) and \o(|fn]) < Ao(]f]) < oo by integration by parts. Then (5.1) holds with
f replaced by f,, by Lemma 5.1. By the right continuity of ¢t — P f,, and the same
argument in (5.5) and (5.6),

b oo H(X— (u)® i
EH/ / / / AP irfu(u) — Pt,sfn(u)}l{s<;_}No(ds7dz,dmdv)‘} 50
o Jo R Jo =

as A — 0. Since (5.1) holds with f replaced by f,,, taking A\ — 0 we get

t
(Xins: Prins fu) = Xo(Prfu) + / (G(X0), Prs fu) Lpoenyds
0
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topoo p pH(Xa(w)® .
+/ / // 2P fn(u)ls<5,1 No(ds, dz, du, dv). (5.7)
o Jo JrJo

Observe that || f,,|| < ||f]| < oo and lim,, o fn(z) = f(z), Ao-a.e. . Then letting n — o
in (5.7), by the dominated convergence and the same argument in (5.5)—(5.6) again, we
obtain

t

(Xtns, P—ns) f) = Xo(Prf) +/ (G(Xy), P—s [)1{5<7,ds
0
t poo H(Xs—(u)” B
—|—// // 2P s f(u)ls<z,1 No(ds, dz, du, dv), (5.8)
o Jo JrJo

which implies (2.3) by taking k£ — oo. O
Proof of (2.4). Let t > 0 and f € B(R) with Ao(]f]) < oo be fixed. By Fubini’s theorem,

tATy oo H(Xs—(u)” B
/ / / / 2P, s f(u)No(ds, dz, du, dv)
0 1 JrJo
tATR oo H(Xo—(u)”
= / / / / th_sf(u)No(ds dz,du, dv)
tATE Xs— (u
—/ ds/ modz/du/ 2P f (u)dv
tATE
= / f(zx / / / / zpt_s(x — u)Ny(ds, dz, du, dv)} dx
tATy H(Xs— (u)”
—/fa: / ds/ mo(dz) /du/ Zpi— é)(x—u)dv]d
tATE
= / f(zx / / / / 2pi—s(x — u)No(ds, dz, du, dv)} dz. (5.9)
By stochastic Fubini’s theorem (see e.g. [15, Theorem 7.24]), to prove P-a.s.,
AR pl H(Xoo (u)® )
/ / / / 2P s f(u)No(ds, dz, du, dv)
0 0o JrJo
AR el H(X oo (u)® .
= / f(m)[/ / / / z:pt,s(yc—u)No(ds,clz,du,clv)]dac7 (5.10)
R 0 o JrJo
we only need to verify
LAFy 1 H(Xs (u)®
E{/ f(x)dx/ ds/ mo(dz)/ du/ zzpt_s(x—u)Zdv}
R 0 0 R 0
1 tATE
§C/ szO(dz)E{/ ds/ |f(x)|dx
0 0 R

X /]R[l + Xs(u)Plpr—s(x — u)Zdu} < o0. (5.11)

Indeed, for the case 0 < p < 1, by an argument similar to (2.7),

tATE
/ ds/|f |dx/X YPpi_s(z — u)’du

<)\0(\f|)/0 [2ms]™ “ [1+4 (2ms)~Y2k]ds < oo.

For the case p =1,

tATE
/ ds/ |f(z \dm/X w)pi—s(x —u) du<k||f||/ [27(t — 5)"Y/?]ds < oo.

Observe that
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Xo(u)Ppe—s(z — u)? = [Xs (WP peos(a —u)' ) x [Xs(u) pros(z — u) ).

For the case 1 <p < 2 choosmg 0=(g—p)/(¢g—1) € (0,1) for q given in Assumption 1.4,
it is easy to see that ¢ = . Then by the Holder inequality,

[ (o /}R X0 prs(z — )2
i [ s Lo [ 0o - nn]
x /Wk ds/ dx/ X (w)po_s( x—u)m/édur

tATE 1—§ tATE
<|\f||/ ds/X qdu ‘/ 27 (t — s) "1V (X, 1>ds
<Ml [ 5 /<2é>ds} <o,
0

which implies (5.11).
Combining (5.8)-(5.10), we have P-a.s.

/13, Xine, (0) Po_inz) [ () dx
- [ mez)x'; :iX g ))/d [ peslo - 6K )
/ k/ // Zps— S(:cfu)No(ds dz,du, dv)| f(x)dx.

Letting £ — oo one completes the proof. |

Proof of Lemma 2.4. If (2.10) holds for 1 V p < p < «, the rest can be given by the Jensen
inequality. So in the following we always assume that 1 Vp < p < a.

Step 1. Note that
p
‘/ ds/pt s(x — 2)G(Xs(2))dz

SCtp/ ds/pt,s(gc—z )G (X4(2))Pdz
0 R
t

SCtﬁ/ ds/pt,s(x—z)[l—&—XS(z)ﬁ]dz. (5.12)
0 R

Recalling the stopping time 7 defined in (2.5), one can see that

B tATE 0o H(Xs—(u)” 5
Zy(t,x) = / / // 2pi—s(x — u)No(ds, dz, du, dv)
0 0

t el TR () )

//// zpt_s(x—u)l{sg;k}No(ds,dz,du,dv)
Xo—(u)) B

// // 2pi—s(x — u)l{5<7,3No(ds, dz, du, dv)

=: Zkltl' +Zk2tx

By (1.6) in [31] and the fact u? < u? + 1 for u > 0, for a < p < 2 we have

E{|Z;€’1(t7x)\f’} < C/ 2Pmgy(dz)E /ds/H “pr_s(z —u)? 1{S<Tk}du}
< on{ [ (t—sr*ds/R[HX( Wl s(w—U)l{sw}du}
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< CE{ /Ot(t—s)—ﬁzlds/R[lJrXs(u)p]pts(:v—u)l{sqk}dU}

C/ 2Pmg(dz)E / ds/ H(X )pi—s(x — w)? 1{Q<Tk}du}
{/O<H) & ds/Rl+X< )l s<xfu>1{s<m}du}
oB{ /Ot(tS)TdSA[I+XS(u)ﬁ]pt_s(xu)l{sg;k}du}.

and

E{|Zk,2(t,x)|ﬁ}

IA

IN

IN

Then one obtains that
E{|Zu(t0)|7} < 2B{|Zka(t, )|} + 2B{| Zua(t, ) )
< C{ElZka(t, )] + E[ Zia(t, 2)") +1}

< B /Ot[(t ) (- s)—ﬁ%}ds/k[l Xl — )Lz, g} 4 C.

Combining this with (2.4) and (5.12), we have for any T' > 0,

T
E{ / dt/ Xi(y)Ppr—i(x — y)l{tﬁk}dy}
0 R

T T
3 / at / Xo(paly — )Ppr—i(z — y)dy + 3 / dt / B{| Zu(t, 9)|"}pr—o(x — y)dy

+3E / dt/ ‘/ ds/pf Sy — WG (X (u ))du’ pr_i( — )1{t§;k}dy}

p—1

C dt/ [+ (t— )7 4+ (t—5)" "7
0

IN

IN

xE{/[1+X( ) lpr- s(x—u)l{sgk}du}derCXou)ﬁT? +CT
= CE / ds/ [1+ Xs(u)Plpr—s(z — u)l{s<zydu

></ [ 4 (¢ — 5)~ 2 +(t—s)—’%1]dt} L OX (1T 4 CT

IN

T
o+ 4 7 4 )E{/ ds/[1+Xs(u)ﬁ]pT,s(x—u)l{sg;k}du}

0 R
+OXo(1)PT" + OT. (5.13)
In view of (2.7) and (2.8),

T
E{ / dt/ Xi(y)Ppr—i(x — y)l{tg;k}dy} < 0, T > 0.
0 R

~ ~ = ~3—D ~3—D ~
Taking Ty > 0 satisfying K’ := C(TE™ + 1,2 +T,2 ) <1, forall T € [0,Tp] and k > 1
we have

E{ /OT dt/RXt(y)ﬁpT,t(x - y)l{tsf.k}dy} <(1-K')! [CXO(l)ﬁT? + CT}.

Then by the monotone convergence theorem

T
sup E{/ dt/ Xt(x)ﬁpT,t(x—y)dx} < 00. (5.14)
Te[0,To) 0 R

Step 2. In this step we prove that (2.10) holds with 7 replaced by the T} specified
in Step 1. We assume that 0 < T' < Tj in the following of this step. Observe that for
O<r<l,
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[ @075t [ Xolwily = prite - )y
0 R T 7 )
g[(zw)—lxo(mﬁ/ (T —t)" %t~ 3dt < [(27) ' Xo(1)PT "5~ 2dt.  (5.15)
0

Forr € (0,1) and § € [1,2),

/OT(T—t)_Edt/ pT_t(x—y)dy/t ds/ Xy (w)Pps_s(y — w)’du
/T(T—t) 2dt/t(t—s) = ds/X P (i — u)du
—C/ dS/X Ppr_s :c—u)du/ (T —)"5(t— )" "7 dt

< crEE / ds/ Xs(u)Ppr_s(z — u)du. (5.16)
0 R

Similar to the argument in (5.13), combining (2.4) and (5.14)-(5.16), it is easy to see that
forO0<r<1,

T
sup. TgE{/ (T - )_gdt/ Xt(y)f’pT_t(ﬂc—y)dy} < 0. (5.17)
0 R

Te[0,T]

By (1.6) of [31] again we have

¢ H(Xo— (w)" ) 5
E{‘/ / // z2pi—s(x — u)No(ds, dz,du,dv)‘}
0o Jo JrJo
<C/ zﬁmo dz)E / ds/ H(X *pi_ S(x—u)pdu}
<C/ 2Pmo(dz) E / ds/ 1+ Xs(u)?]pe— S(m—u)pdu}

SCE{/O (t—s)~" ds/R[l—i—Xs( u)” ]pt—s(l‘—u)du}

fora < p <2 and

t oo po pH(X.—(w) i .

E ’/ / // zpi—s(x — u) Ny (ds, dz,du,dv)‘ }
<C/ 2Pmo(dz) E / ds/ H(X ) pr— S(az:—u)pdu}
<C/ 2Pmy(dz) E /ds/1+X Plps_s(x — u)P du}

SCE{/O (t—s)_ B ds/IR[1+Xs( u)? ]ptﬂ(,x(ac—u)du}7

which implies

E{‘ /Ot /000 /R/OH(XS_(U))Q 2pi—s(x — u)]\?o(ds,dz,du,dv)’ﬁ}
scE{[Umwr%*uwwrﬂﬂmégﬂu—mu+n@m@}+a

By (2.4) and (5.12) again, we have

E{X;(2)"}
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IN

ot % +CE ‘/ dS/Pt sz —2)G(Xs(2 ”dz‘ﬁ}

H(X, - ()" ) ;
+OE ‘/ / // Z2pe—s(@ u)No(ds7dz,du7dv)‘ }

CE{/O [tp—i-(t—s) %l—i-(t—s) = ]ds/]Rpt,s(:r—y)[l+Xs(y)5]dy}
+Ct‘g +C. (5.18)

IN

Then by (5.17) one sees that (2.10) holds with T’ replaced by TO )
Step 3. Similar to Step 1, for 5 € (0,1) and 0 < T} < Ty A Ty with 37110 (Ty — Ty) <
TP and Ty — Ty < Ty,

AT,
E{/ dt/Xt Y)Psg, 4(x —y)l{tg%k}dy}

/;Tzdt/ (t—s) ﬁQ;lJr(tis)*ﬁT_l]E /]R[lJrXs(U)ﬁ]

pryTQ S(I - U)1{5<7-k}du}d5 + CXO( ) j" ; + OTQ
3T>
/ E{/ + X ()P, (@ _“)1{sg%k}dU}ds
’YTl

3To - 51 b1
x/ 7 4 (t— )T 4 (t— )T dt

IN

IA

YT -
+ | s [0+ B @ o~ )

T2 p—1 p—1 ~ 2= ~
></ 7+ (t— 5)~ " + (t— s)" T ]dt + CXo ()T, * +CTo

T1
13 3—-p

Cl(YT2)PA(Ty — T1) +T +T,7 ]
X

Ty _
E / ds/ + Xs(WP]psp, (T U)l{ssmd“}

IN

o .3-p _3-5 ATy .
HCHA+APTTT + T, 7 +T,7 ] / o / [+ 5™ psz, _o(w — w)du+ Cp,
0 R

IA

. . 3 .3 i p
CEPRIE, ~ T+ 7 7 B{ [ s [ e X
311 R

N C U)l{sgmdU} +Cr,

T2 -
K’ E{ / ds/ 1+ Xs(u)p]p,yﬂ_s(x — u)l{sg;k}du} + CTO’ (5.19)
R

AT,

IN

where the assertion in Step 2 was used in the third inequality. This implies

sup E /VT2 dt/ X (y 7T2_t(:c - y)dy} < 00, (5.20)
(T1,T)eB 5T1
where
B:={(Th,Tz): Ty € [0,To), To — Ty < Tp, 37T (To — Th) < TP},
Then by the assertion in Step 2 again,

3T, _
5[0 00 te- o <

(Tl T2)€]B
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Similar to (5.17) we have

5Ty N . _
sup E{/ (AT, — t)ffdt/ Pag, (T — y)Xt(y)pdy} < 00 (5.21)
(Tl,T2)€IB 0 R

for r € (0,1). This together this with (5.18) shows that (2.10) holds with T replaced by
3Ty, where AP T1TP(Ty — Tp) < Tgﬂ and 75 < 27Tp.

Step 4. Since 1+ 3 + 1+ -+ 1 < 1+ Inn, one can chose ¥ € (0,1) so that
sup,,;»1 7Pt (1 +Inn)?/n < 1, which implies

~p+1 1 1
M+-+-++

sup

" <1
n>1 N -

1
23 n
Observe that Step 2 proves that (2.10) holds with T replaced by &TO. With 7} and T
replaced by T{(O < T{ < To) and (1 + %)T{ respectively, in (5.19)-(5.20), we get (2.10)
with T replaced by (1 + %)TO. Repeating the above argument, for each n > 1, with 7}
and T replaced by (1+ 3 + 1+ + L)T7 and (1+ 1 + T4+ )T, respectively,
in (5.19)~(5.20), we can get (2.10) with T replaced by 5(1 + 3 + % + -+ + )T, which
completes the proof. a
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