

Electron. J. Probab. **22** (2017), no. 3, 1–2. ISSN: 1083-6489 DOI: 10.1214/16-EJP21

Erratum: Nonlinear filtering for reflecting diffusions in random environments via nonparametric estimation*

Michael A. Kouritzin^{\dagger} Wei Sun^{\ddagger} Jie Xiong[§]

Abstract

This is an erratum to EJP paper number 18, volume 9, Nonlinear filtering for reflecting diffusions in random environments via nonparametric estimation.

Keywords: nonlinear filtering; reflecting diffusion; random environment; nonparametric estimation; pathwise average distance; particle filter. **AMS MSC 2010:** Primary 60G35, Secondary 62M20. Submitted to EJP on December 6, 2016, final version accepted on December 19, 2016.

Equation (2.2) in [4] is incorrect, which puts the proof of Theorem 2 [4, Appendix] in doubt. The theorem is true as stated. In the following, we will revise the places in [4, Appendix] where equation (2.2) is used.

As in [4], we let $p^0(t, x, y)$ be the transition density function of X_t^0 . Theorem 3.1, Theorem 3.4 and Lemma 4.3 in [2] imply that

$$p^{0}(t,x,y) \le c_{1}t^{-d/2}\exp(-|x-y|^{2}/c_{2}t), \quad \forall t > 0, x, y \in \overline{D},$$
 (0.1)

and

$$p^{0}(t,x,y) \ge c_{3}t^{-d/2}, \quad \forall t > 0, x, y \in \overline{D} \text{ such that } |x-y| \le \varepsilon\sqrt{t},$$
 (0.2)

where $c_1, c_2, c_3, \varepsilon > 0$ are constants independent of x, y, t.

We denote by p(t, x, y) the transition density function of X_t and \mathcal{E} . It is known that (0.1) and (0.2) are quasi-isometry stable (cf. the remark before Section 1.2 and the remark after Theorem 1.2 in [3]). For any M > 0, there exist constants $c_1(M), c_2(M), c_3(M), \varepsilon(M) > 0$ independent of x, y, t, such that if $||W||_{\infty} \leq M$ then

$$p(t, x, y) \le c_1(M)t^{-d/2}\exp(-|x-y|^2/c_2(M)t), \quad \forall t > 0, x, y \in \overline{D},$$
 (0.3)

and

$$p(t, x, y) \ge c_3(M)t^{-d/2}, \quad \forall t > 0, x, y \in \overline{D} \text{ such that } |x - y| \le \varepsilon(M)\sqrt{t}.$$
 (0.4)

^{*}Main article: 10.1214/EJP.v9-214.

[†]University of Alberta, Canada. E-mail: michaelk@ualberta.ca

[‡]Concordia University, Canada. E-mail: wei.sun@concordia.ca

[§]University of Macau, China. E-mail: jiexiong@umac.mo

It is known that (0.3) and (0.4) imply that (cf. [1, Corollary 4.2]) for any M > 0, there exist constants $c_4(M), 0 < \alpha(M) < 1$ independent of x, x', t, such that if $||W||_{\infty} \leq M$ and $f \in B_b(\overline{D})$ satisfy $||f||_{\infty} \leq M$ then

$$\left| \int_{D} p(t,x,y) f(y) \mu(dy) - \int_{D} p(t,x',y) f(y) \mu(dy) \right| \le c_4(M) |x-x'|^{\alpha(M)}, \ \forall t > 0, x, x' \in \overline{D}.$$
(0.5)

Hence X_t is a strong Feller diffusion.

We define on $L^2(\overline{D}; dx)$ the symmetric bilinear form

$$\begin{cases} \mathcal{A}^{W}(u,v) = \frac{1}{2} \int_{D} \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial (ue^{W/2})}{\partial x_{i}}(x) \frac{\partial (ve^{W/2})}{\partial x_{j}}(x) e^{-W(x)} dx, \quad u,v \in D(\mathcal{A}^{W}), \\ D(\mathcal{A}^{W}) = \{u \in L^{2}(D; dx) : ue^{W/2} \in H^{1,2}(D)\}. \end{cases}$$

Let $W_n \in B_b(\overline{D})$, $n \in \mathbb{N}$, satisfy $\lim_{n\to\infty} ||W_n - W||_{\infty} = 0$. Similar to [5, Lemma, page 864], we can show that the form \mathcal{A}^{W_n} is Mosco-convergent to the form \mathcal{A}^W on $L^2(\overline{D}; dx)$, equivalently, $(s_t^{W_n})_{t>0}$ converges to $(s_t^W)_{t>0}$ strongly on $L^2(\overline{D}; dx)$, where $(s_t^{W_n})_{t>0}$ and $(s_t^W)_{t>0}$ denote the semigroups of \mathcal{A}^{W_n} and \mathcal{A}^W , respectively. Note that for $f \in B_b(\overline{D})$, we have

$$p_t f = e^{W/2} s_t^W (e^{-W/2} f), \quad \forall t > 0.$$

Denote by $(p_t^n)_{t>0}$ the semigroup associated with X^n . Then, we obtain by Theorem 1 in [4] that $p_t^n f$ converges to $p_t f$ on $L^2(\overline{D}; dx)$ for any $f \in B_b(\overline{D})$ and t > 0. Therefore, we obtain by (0.5) that for any sequence $\{\nu^n\}$ of probability measures on \overline{D} converging weakly to some probability measure ν on \overline{D} , $(X_0^n, X_{t_1}^n)$ with the initial distribution ν^n converges weakly to (X_0, X_{t_1}) with the initial distribution ν .

References

- M. Barlow, A. Grigor'yan and T. Kumagai, On the equivalence of parabolic harnack inequalities and heat kernel estimates, J. Math. Soc. Japan. 64 (2012), 1091–1146. MR-2998918
- [2] R.F. Bass and P. Hsu, Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains, Ann. Probab. 19 (1991), 486–508. MR-1106272
- [3] A. Grigor'yan, J. Hu and K.-S. Lau, Generalized capacity, Harnack inequality and heat kernels of Dirichlet forms on metric measure spaces, J. Math. Soc. Japan. 67 (2015), 1485–1549. MR-3417504
- [4] M.A. Kouritzin, W. Sun and J. Xiong, Nonlinear filtering for reflecting diffusions in random enviroments via nonparametric estimation, Electron. J. Probab. 9 (2004), no. 18, 560–574. MR-2080609
- [5] T. Uemura, On weak convergence of diffusion processes generated by energy forms, Osaka J. Math. 32 (1995), 861–868. MR-1380730