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Abstract

We investigate the transition density of a hyperbolic Bessel process for integer
dimensions and show a link between transition densities of a hyperbolic Brownian
motion and a Bessel process in the same dimension. Using the so-called Millson’s
formula for the densities of hyperbolic Brownian motion we also show a link between
transition density of n-dimensional hyperbolic Bessel process and 2-dimensional (if n
is even) or 3-dimensional (if n is odd) hyperbolic Brownian motion. This helps us to
get explicit formulas for the Bessel process transition density.
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1 Introduction

Hyperbolic Bessel process is one of many diffusion processes that are used to model
different physical and economic phenomena (e.g. Asian options pricing, see [11]). This
process has been recently investigated by Jakubowski and Wiśniewolski in a paper [9],
earlier its properties were investigated by Gruet in [6], [7], [8] and by Borodin in [1].
These authors defined hyperbolic Bessel process for parameters ν > − 1

2 as a solution of
a stochastic differential equation or a diffusion generated by a differential operator. They
also gave some formulas for the transition density. In particular, Gruet in ([6], Remarque
3 and [7], Theorem 6.1), using spectral theory for Jacobi semigroups developed by
Koornwinder [10], got the following formula for the transition density of a hyperbolic
Bessel process with parameter ν > − 1

2 : for a, b > 0

q
(ν)
t (a, b) = kν

∫ ∞
0

exp

(
−

((
2ν + 1

2

)2

+ p2

)
t

2

)
φ(ν)
p (a)φ(ν)

p (b)

∣∣∣∣Γ(ip+ ν + 1/2)

Γ(ip)

∣∣∣∣2 dp,
where kν = π−ν−12−2ν−1/Γ(ν + 1) and φ(ν)

p (r) = 2F1

(
ν+1/2−ip

2 , ν+1/2+ip
2 ; ν + 1,− sinh2 r

)
.

This formula is very complicated, except only for ν = 1/2, when hyperbolic Bessel
process is a radial part of a hyperbolic Brownian motion in three-dimensional space.
However, manageable formulas, at least for integer parameter ν, would be very useful
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Transition density of a hyperbolic Bessel process

for investigation of stable processes (and more general: subordinated Brownian motions)
with values in hyperbolic spaces. Such investigations have just started, compare for
instance [13].

In this paper we obtain such manageable formulas for the transition densities of
hyperbolic Bessel processes of integer dimension, that is for the radial parts of hyperbolic
Brownian motions. Using this connection between hyperbolic Brownian motion and
hyperbolic Bessel process we describe the transition density of a Bessel process as an
integral of a Brownian density. Moreover, application of the so-called Millson formula for
hyperbolic Brownian density gives much simpler formulas for hyperbolic Bessel densities
than all formulas known so far. For instance, in the case of a Bessel process of odd
dimension, such transition density is a sum of elementary functions and error function
Erf.

A transition density of a stochastic process with values in a subset of Rn can be
taken with respect to the Lebesgue measure or, if this subset is a Riemannian manifold,
with respect to the volume measure on this manifold. Moreover, a transition density
of any linear diffusion process can be taken with respect to the Lebesgue measure or
with respect to the speed measure. In order to avoid misunderstanding, all densities we
consider in this paper, if taken with respect to the Lebesgue measure, will be denoted by
p (with sub- or superscripts), otherwise they will be denoted with bar: p̄.

2 Hyperbolic spaces and hyperbolic processes

There are several different models of n-dimensional hyperbolic space (see e.g. [14]).
For our considerations the unit ball model of a hyperbolic space will be convenient but
our results concerning hyperbolic Bessel process do not depend on the model.

2.1 Hyperbolic space

Let us define Dn as the unit ball in Rn, that is Dn = {x ∈ Rn : |x| < 1}, where |x|
denotes the Euclidean norm. This set, equipped with the Riemannian metric ds2 =

4|dx|2
(1−|x|2)2 , is a model of n-dimensional hyperbolic space (compare e.g. [3] or [14]). The

volume element in Dn is given by dVn = dx
(1−|x|2)n and the hyperbolic distance dDn(x, y)

between points x and y is given by

ch (dDn(x, y)) = 1 +
2|x− y|2

(1− |x|2)(1− |y|2)
. (2.1)

If x = ~0 = (0, ..., 0), formula (2.1) simplifies: for y ∈ Dn dDn(~0, y) = ln((1 + |y|)/(1− |y|)).
This implies that the hyperbolic spheres with center ~0 are ordinary Euclidean spheres,
the same is true for all hyperbolic spheres (see e.g. [3], p. 156).

The Laplace-Beltrami operator in Dn is given by

∆Dn =
(1− |x|2)2

4

n∑
k=1

∂2

∂x2
k

+ (n− 2)
(1− |x|2)

2

n∑
k=1

xk
∂

∂xk
.

We will use the following (hyperbolic) spherical coordinates in Dn. Let r = dDn(~0, x)

be the radial coordinate of a point x ∈ Dn and let φ1, φ2, . . . φn−1 be the angular coordi-
nates, where φn−1 ranges over [0, 2π) and φ1, φ2, . . . φn−2 range over [0, π]. Observe that
if r = dDn(~0, (R, 0, ..., 0)) = log 1+R

1−R then R = tanh r
2 , hence

x1 = tanh
(r

2

)
cos(φ1), (2.2)

xk = tanh
(r

2

)
sin(φ1) . . . sin(φk−1) cos(φk), k = 2, 3, ..., n− 1,
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xn = tanh
(r

2

)
sin(φ1) . . . sin(φn−2) sin(φn−1).

The volume element in the spherical coordinates is given by the Jacobi determinant

dV (spher)
n = sh n−1r sinn−2(φ1) sinn−3(φ2) . . . sin(φn−2) dr dφ1 dφ2 . . . dφn−2 dφn−1.

Observe that∫ π

0

sinn−2(φ1 )dφ1

∫ π

0

sinn−3(φ2) dφ2 . . .

∫ π

0

sin(φn−2) dφn−2

∫ 2π

0

dφn−1 =
2πn/2

Γ(n/2)
= Ωn−1

is the area of the Euclidean unit sphere in Rn. We also have Ωn−3 = n−2
2π Ωn−1 and

Ω0 = 2.
In polar coordinates the Laplace-Beltrami operator has the following form

∆Dn =
∂2

∂r2
+ (n− 1) coth(r)

∂

∂r
+

1

sh 2r
∆S , (2.3)

where ∆S is the Laplace operator on the unit sphere (see [3], p. 158).

2.2 Hyperbolic Brownian motion and its density

The hyperbolic Brownian motion in Dn is defined as a diffusion generated by 1
2∆Dn .

Let us denote the hyperbolic Brownian motion in Dn by X = (X1, X2, . . . , Xn). It is
well-known (see e.g. [3]) that the transition density p̄Br

n (t;x, y) of a hyperbolic Brownian
motion in a real n-dimensional hyperbolic space (with respect to the volume element dVn
of this space) is a function of t and the distance r between x and y, hence a formula for
p̄Br
n (t; r) does not depend on the model of a hyperbolic space.

The density p̄Br
n (t; r) can be expressed by the Gruet’s formula ([6])

p̄Br
n (t; r) =

e−(n−1)2t/8

π(2π)n/2t1/2
Γ

(
n+ 1

2

)∫ ∞
0

e(π2−b2)/2t sh (b) sin(πb/t)

( ch (b) + ch (r))(n+1)/2
db. (2.4)

Being complicated, formula (2.4) is not very useful in applications. Fortunately, it is
possible to get simpler formulas for the density in dimensions 2 and 3 (see [5] and
references therein):

p̄Br
2 (t; r) =

e
−t
8

2(πt)
3
2

∫ ∞
r

se
−s2

2t

√
ch s− ch r

ds,

p̄Br
3 (t; r) =

1

(2πt)3/2

r

sh r
exp

(
− t

2
− r2

2t

)
.

Moreover, the following formula attributed to Millson (compare [5]): for n = 1, 2, ...

p̄Br
n+2(t; r) = − e−nt/2

2π sh (r)

∂

∂r
p̄Br
n (t; r), (2.5)

gives a tool to compute p̄Br
n for all n ≥ 3. Namely, iterating (2.5) one can get the following

formulas, proved by Grigor’yan and Noguci in [5] by a different method: if n = 2m+ 1,
then

p̄Br
n (t; r) =

(−1)m

(2π)m
1√
2πt

(
1

sh r

∂

∂r

)m
e
−m2t

2 − r2

2t , (2.6)

and if n = 2m+ 2, then

p̄Br
n (t; r) =

(−1)m

(2π)m
1

2(πt)
3
2

e
−(2m+1)2t

8

(
1

sh r

∂

∂r

)m ∫ ∞
r

se
−s2

2t

√
ch s− ch r

ds. (2.7)

Observe, that for odd dimensions the densities are elementary functions.

ECP 21 (2016), paper 50.
Page 3/10

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP8
http://www.imstat.org/ecp/


Transition density of a hyperbolic Bessel process

2.3 Hyperbolic Bessel process of integer dimension

We are interested in hyperbolic Bessel processes of dimensions greater than one,
because one-dimensional hyperbolic Bessel process is simply a reflected one-dimensional
hyperbolic Brownian motion (compare [7]).

We use the following definition of the hyperbolic Bessel process Z(n)
t of dimension n:

Z
(n)
t = dDn(~0, Xt),

that is, Z(n)
t is the hyperbolic distance of Xt from its starting point ~0 = (0, 0, . . . , 0).

Z
(n)
t is a one-dimensional diffusion (with values in [0, ∞)) generated by 1

2∆
(r)
Dn =

1
2
∂2

∂r2 + n−1
2 coth r ∂∂r , the radial part of 1

2∆Dn . By the general theory of linear diffusions
(see e.g. [2]) we infer that its speed measure is equal to mn(dx) = 2 sh n−1x dx, its scale

function is equal to sn(x) =
∫ x
c

sh 1−nu du and that Z(n)
t has a density of the transition

probability (with respect to the speed measure) with the following property:

p̄Bess
n (t; y, x) = p̄Bess

n (t;x, y). (2.8)

Because for every n = 2, 3, ... the hyperbolic Brownian motion with probability one does
not hit its starting point for t > 0, the hyperbolic Bessel process does not hit zero
for n ≥ 2. In the next section, using Millson formula for the transition density of the
hyperbolic Brownian motion, we will compute pBess

n (t; a, b) for all a, b > 0. Using (2.8),
the above-mentioned symmetry of p̄Bess

n , we may and do assume that a ≤ b.

3 Transition density of the hyperbolic Bessel process

All formulas for densities pBess
n (t; a, b) of hyperbolic Bessel processes we obtain in

this section, are computed with respect to the Lebesgue measure db on the real line. In
order to obtain the symmetric form of the density of the hyperbolic Bessel process in
dimension n (that is, the density with respect to the speed measure) we have to divide by
2 sh n−1b the density computed with respect to the Lebesgue measure. Such normalized
density p̄Bess

n (t; a, b) = pBess
n (t, a, b)/(2 sh n−1(b)) has property (2.8) and fulfills equation

∂p̄Bess
n

∂t
=

1

2

(
∂2p̄Bess

n

∂b2
+ (n− 1) coth(b)

∂p̄Bess
n

∂b

)
.

Let S(~0, r) denote a hyperbolic sphere in Dn with center ~0 and hyperbolic radius r > 0.
We will use the following simple fact: hyperbolic Bessel process of dimension n moves
from point a > 0 to b > 0 if and only if the hyperbolic Brownian motion in Dn moves from
S(~0, a) to S(~0, b).

Let S(~a, r) denote a sphere in Dn with Euclidean center ~a = (tanh(a/2), 0, . . . , 0) and
hyperbolic radius r for any a ≥ 0 and r > 0. Fix b ≥ a and observe that spheres S(~0, b)

and S(~a, r) intersect only if b− a ≤ r ≤ a+ b. Then their intersection is a sphere in Rn−1

or a single point:

S(~a, r)∩S(~0, b) =

{
x ∈ Dn : dDn(~0, x) = b, x1 = xa,b(r) :=

tanh2 b
2 + tanh a+r

2 tanh a−r
2

tanh a+r
2 + tanh a−r

2

}
.

Now, for 0 < h < a+ b− r, let us compute Aa,b(r, h), the area of this part of the sphere
S(~0, b), that is contained between spheres S(~a, r) and S(~a, r + h). For this purpose we

will integrate the Jacobi determinant dV (spher)
n over that part of S(~0, b), where x1 varies

from xa,b(r+ h) to xa,b(r), thus φ1 varies from arccos

(
xa,b(r+h)

tanh( b
2 )

)
to arccos

(
xa,b(r)

tanh( b
2 )

)
. We
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have:

Aa,b(r, h) = Ωn−2 sh n−1b

∫ arccos

(
xa,b(r+h)

tanh( b
2 )

)

arccos

(
xa,b(r)

tanh( b
2 )

) sinn−2 φ1dφ1,

where Ωn−2 is the area of the unit sphere in Rn−1.
Thus dSa,b(r), the surface element (on S(~0, b)) of intersection S(~0, b) with S(~a, r), is

given by

dSa,b(r) = (3.1)

= lim
h→0

Aa,b(r, h)

h
dr = Ωn−2 sh n−1b

 lim
h→0

1

h

∫ arccos

(
xa,b(r+h)

tanh( b
2 )

)

arccos

(
xa,b(r)

tanh( b
2 )

) sinn−2 φ1dφ1

 dr =

= Ωn−2 sh n−1b sinn−2

(
arccos

(
xa,b(r)

tanh
(
b
2

))) ∂

∂r
arccos

(
xa,b(r)

tanh
(
b
2

)) dr =

= Ωn−2 sh n−1b sinn−2

(
arccos

(
xa,b(r)

tanh
(
b
2

))) −1

sin

(
arccos

(
xa,b(r)

tanh( b
2 )

)) − sh r

sha sh b
dr =

=
Ωn−2 sh n−2b sh r

sha

(
1− ( chach b− ch r)2

sh 2a sh 2b

)n−3
2

dr.

But (
1− ( chach b− ch r)2

sh 2a sh 2b

)
=

( ch (b+ a)− ch r)( ch r − ch (b− a))

sh 2a sh 2b
,

hence

dSa,b(r) =
Ωn−2 sh b

sh n−2a
[( ch (b+ a)− ch r)( ch r − ch (b− a))]

n−3
2 sh r dr.

Now pBess
n (t; a, b), the transition density from a to b of the hyperbolic Bessel process, is an

integral of the Brownian transition density p̄Br
n (t; r) with respect to the measure dSa,b(r)

over the whole sphere S(0, b):

pBess
n (t, a, b) =

∫ b+a

b−a
p̄Br
n (t, r)dSa,b(r).

In this way we get our first result.

Theorem 3.1. For any n ≥ 2, t > 0, a > 0 and b ≥ a we have

pBessn (t; a, b) =
Ωn−2 sh b

sh n−2a

∫ b+a

b−a
[(ch (b+ a)− ch r)(ch r − ch (b− a))]

n−3
2 p̄Brn (t, r) sh rdr.

(3.2)

Theorem 1 describes a relation between transition densities pBess
n (t; a, b) and p̄Br

n (t, r).
Using Millson’s formula (2.5) and integrating by parts, it is possible to get a relation
between pBess

n (t; a, b) and p̄Br
n−2(t, r): for n ≥ 4

pBess
n (t; a, b) = (3.3)

= Ωn−2 shb
shn−2a

∫ b+a
b−a [( ch (b+ a)− ch r)( ch r − ch (b− a))]

n−3
2 p̄Br

n (t, r) sh rdr =

= − e
− (n−2)t

2

2π
Ωn−2 shb
shn−2a

∫ b+a
b−a [( ch (b+ a)− ch r)( ch r − ch (b− a))]

n−3
2 ∂

∂r p̄
Br
n−2(t, r)dr =

= − e
− (n−2)t

2

2π
Ωn−2 shb
shn−2a

[
[( ch (b+ a)− ch r)( ch r − ch (b− a))]

n−3
2 p̄Br

n−2(t, r)
]r=b+a
r=b−a

+

e−
(n−2)t

2

2π
Ωn−2 shb
shn−2a

∫ b+a
b−a

∂
∂r [( ch (b+ a)− ch r)( ch r − ch (b− a))]

n−3
2 p̄Br

n−2(t, r)dr.
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Clearly ( ch (b+ a)− ch r)( ch r− ch (b− a)) is equal to 0 for both r = b− a and r = b+ a,
thus the formula above reduces to the second term only:

pBess
n (t; a, b) =

=
e−

(n−2)t
2

2π

Ωn−2 sh b

sh n−2a

∫ b+a

b−a

∂

∂r
[( ch (b+ a)− ch r)( ch r − ch (b− a))]

n−3
2 p̄Br

n−2(t, r)dr.

After differentiation under the integral sign, we get

pBess
n (t; a, b) = (n−3)Ωn−2e

− (n−2)t
2 shb

2π shn−2a
× (3.4)

×
∫ b+a
b−a [( ch (b+ a)− ch r)( ch r − ch (b− a))]

n−5
2 ( chach b− ch r)p̄Br

n−2(t, r) sh r dr.

When we use equality (n−3)Ωn−2

2π = Ωn−4, we get the following theorem.

Theorem 3.2. For any n ≥ 4, t > 0, a > 0 and b > a there holds

pBessn (t; a, b) = Ωn−4e
− (n−2)t

2 shb
shn−2a

× (3.5)

×
∫ b+a
b−a [(ch (b+ a)− ch r)(ch r − ch (b− a))]

n−5
2 (chach b− ch r)p̄Brn−2(t, r) sh r dr.

We could repeat this procedure until we get a formula with p̄Br
2 or p̄Br

3 under the
integral sign. Instead, we put (2.6) into (3.2) and get for odd dimensions n = 2m+ 1

pBess
n (t; a, b) = (−1)mΩn−2 shb

(2π)m
√

2πt shn−2a
× (3.6)

×
∫ b+a
b−a sh r [( ch (b+ a)− ch r)( ch r − ch (b− a))]

n−3
2
(

1
shr

∂
∂r

)m (
e
−m2t

2 − r2

2t

)
dr.

As we did it before, we may compute the integral in the above formula by parts:

pBess
n (t; a, b) =

(−1)mΩn−2 sh b

(2π)m
√

2πt sh n−2a
× (3.7)

×

[[( ch (b+ a)− ch r)( ch r − ch (b− a))]
n−3
2

(
1

sh r

∂

∂r

)m−1

e
−m2t

2 − r2

2t

]r=b+a
r=b−a

+

−
∫ b+a

b−a

(
∂

∂r

1

sh r

)
( sh r [( ch (b+ a)− ch r)( ch r − ch (b− a))]

n−3
2 )×

×
(

1

sh r

∂

∂r

)m−1 (
e
−m2t

2 − r2

2t

)
dr

)
.

Again, if n > 3 then the first expression is equal to 0 for both r = b − a and r = b + a,
hence

pBess
n (t; a, b) =

(−1)m+1Ωn−1 sh b

(2π)m
√

2πt sh n−2a
×

×
∫ b+a

b−a

(
∂

∂r

)(
[( ch (b+ a)− ch r)( ch r − ch (b− a))]

n−3
2

)
×

×
(

1

sh r

∂

∂r

)m−1 (
e
−m2t

2 − r2

2t

)
sh rdr.

After (m − 1) such integrations by parts, we express pBess
n (t; a, b) as an integral of(

1
shr

∂
∂r

) (
e−r

2/(2t)
)

= − r
t shr e

−r2/(2t), and this function, multiplied by −e−t/2

(2π)3/2t1/2
, is the
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Brownian transition density p̄Br
3 (t; r). Every integration by parts changes the sign of the

expression, so that after (m− 1) such operations and after additional multiplication by
(−1), factor (−1)m in (3.6) turns into (−1)m+(m−1)+1 = 1.

Evidently the same may be done in even dimensions n = 2m+ 2, using formula (2.7).
This time, however, we transfer all m differentiations from the second factor to the first
one. In this way we get the following result, which may be seen as a Bessel counterpart
of Grigor’yan-Noguchi result ([5]):

Theorem 3.3. For any n ≥ 2, t > 0, a > 0 and b > a: if n = 2m+ 1, thenm−1 = n−3
2 and

pBessn (t; a, b) = Ωn−2e
−m2t

2 shb

t(2π)m
√

2πt shn−2a
× (3.8)

×
∫ b+a
b−a

(
∂
∂r

1
shr

)m−1
{
sh r [(ch (b+ a)− ch r)(ch r − ch (b− a))]

n−3
2

}
r
shr e

− r2

2t dr,

and if n = 2m+ 2, then

pBessn (t; a, b) = Ωn−2e
−(2m+1)2t

8 shb

(2π)m2(πt)
3
2 shn−2a

× (3.9)

×
∫ b+a
b−a

[(
∂
∂r

1
shr

)m {
sh r [(ch (b+ a)− ch r)(ch r − ch (b− a))]

n−3
2

}∫∞
r

se
−s2

2t√
chs−chr

ds

]
dr.

3.1 General form of the density for odd dimensions

We will now investigate the expression(
∂

∂r

1

sh r

)m−1 {
sh r [( ch (b+ a)− ch r)( ch r − ch (b− a))]

m−1
}
,

which appears in formula (3.8). Define the following function

fa,b(r) = ( ch (b+ a)− ch r)( ch r − ch (b− a)).

It is easy to see that the part of (fa,b(r))
m−1 which depends on r, consists only of

expressions of the form ch kr with multiplicative constants:

(fa,b(r))
m−1 sh r = sh r

2m−2∑
k=0

Ck ch kr,

where Ck depends only on k, a and b.
Let A denote the following operator: A =

(
∂
∂r

1
shr

)
. Applying (m − 1) times A to

(fa,b(r))
m−1 sh r, where A0g(r) = g(r), we get

Am−1
(
(fa,b(r))

m−1 sh r
)

= sh r
m−1∑
k=0

Dk ch kr, (3.10)

where Dk also depends only on k, a and b. Thus, in order to compute the transition
density of the hyperbolic Bessel process in odd dimensions, by (3.8) and (3.10) one has
only to compute the integrals of the form∫ b+a

b−a
r ch k re−

r2

2t dr.

But

ch kr =

(
er + e−r

2

)k
=

1

2k

k∑
l=0

(
k

l

)
e(2l−k)r.
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Transition density of a hyperbolic Bessel process

Now, let j be an integer and compute the integral
∫ b+a
b−a re

jre
−r2

2t dr. By substitution

s = r−jt√
2t

, we get

∫ b+a
b−a re

jre
−r2

2t dr =
∫ b+a−jt√

2t
b−a−jt√

2t

√
2t
(√

2ts+ jt
)
e−s

2+ j2t
2 ds = (3.11)

= e
j2t
2

[
2t
∫ b+a−jt√

2t
b−a−jt√

2t

se−s
2

ds+
√

2jt
3
2

∫ b+a−jt√
2t

b−a−jt√
2t

e−s
2

ds

]
=

= e
j2t
2

[
t
(
e
−(b−a−jt)2

2t − e
−(b+a−jt)2

2t

)
+
√

π
2 jt

3
2

(
Erf

(
b+a−jt√

2t

)
− Erf

(
b−a−jt√

2t

))]
,

where Erf(x) is the error function, Erf(x) = 2√
π

∫ x
0
e−s

2

ds. Thus for odd n the density

pBess
n (t; a, b) can be expressed as a sum of elementary functions and the error function.

Corollary 3.4. Let m ∈ N and n = 2m+ 1. Then for t > 0 and b > a > 0 the integral in
(3.8) is equal to

m−1∑
k=0

{
Ake

k2t
2

[
t

(
e
−(b−a−kt)2

2t − e
−(b+a−kt)2

2t

)
+ (3.12)

+

√
π

2
kt

3
2

(
Erf

(
b+ a− kt√

2t

)
− Erf

(
b− a− kt√

2t

))]
+

+ Bke
k2t
2

[
t

(
e
−(b−a+kt)2

2t − e
−(b+a+kt)2

2t

)
+

+

√
π

2
kt

3
2

(
Erf

(
b+ a+ kt√

2t

)
− Erf

(
b− a+ kt√

2t

))]}
,

where Ak and Bk are constants independent of a and b.

3.2 Examples

In principle, formula (3.8) allows us to express the transition density of the hyperbolic
Bessel process explicitly for odd dimensions. However, formulas get more and more
complicated in higher dimensions. For n = 3 formula (3.8) simplifies (compare e.g. [12],
[7] or [4]):

pBess
3 (t; a, b) =

e
−t
2 sh b√

2πt sha

∫ b+a

b−a

r

t
e
−r2

2t dr =
e
−t
2 sh b√

2πt sha

(
e
−(b−a)2

2t − e
−(b+a)2

2t

)
.

For n = 5 formula (3.8) gives

pBess
5 (t; a, b) =

Ω3e
−2t sh b

t4π2
√

2πt sh 3a

∫ b+a

b−a

∂
∂r [( ch (b+ a)− ch r)( ch r − ch (b− a))] re−

r2

2t

sh r
dr.

But
∂

∂r
[( ch (b+ a)− ch r)( ch r − ch (b− a))] = 2 sh r( chach b− ch r)

and Ω3 = 2π2, hence by Corollary 3.4

pBess
5 (t; a, b) =

e−2t sh b

t
√

2πt sh 3a

∫ b+a

b−a
r( chach b− ch r)e−

r2

2t dr =

e−2t−a−be−(a+b)2/(2t) sh b

4
√

2πt sh 3a
(e2a − 1)(e2b − 1)(e2ab/t + 1)+

−e
−3t/2 sh b

4 sh 3a

(
Erf(

b+ a− t√
2t

)− Erf(
b− a− t√

2t
)− Erf(

b+ a+ t√
2t

) + Erf(
b− a+ t√

2t
)

)
.
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Transition density of a hyperbolic Bessel process

If we divide this density by m(db) = 2 sh 4b, we get the density p̄Bess
5 (t; a, b) with property

(2.8).
Observe, that both parts (elementary and ”Erf-part”) of pBess

5 (t; a, b) are positive
functions for b > a > 0 and t > 0. This is obvious for the elementary part. In order to
prove positivity of the ”Erf-part” let us write it down in the integral form:

Erf(
b+ a− t√

2t
)− Erf(

b− a− t√
2t

) + Erf(
b− a+ t√

2t
)− Erf(

b+ a+ t√
2t

) =

2√
π

(∫ (b−t+a)/
√

2t

(b−t−a)/
√

2t

e−x
2

dx−
∫ (b+t+a)/

√
2t

(b+t−a)/
√

2t

e−x
2

dx

)
.

Both integrals are over intervals of length 2a/
√

2t. Because function e−x
2

is even and
decreasing for x > 0, and |b − t − a| < b + t + a for 0 < a < b and t > 0, hence the
difference of the integrals is positive.

In a similar way, using (3.8), we compute

pBess
7 (t; a, b) = e−(a+b)2/(2t)e−9t/2(e2ab/t−1) sh 3b√

2πt sh 3a
+ (3.13)

3e−4t shb
8 sh 5a

[
e3t/2

(
Erf( b−a+2t√

2t
)− Erf( b−a−2t√

2t
) + Erf(a+b−2t√

2t
)− Erf(a+b+2t√

2t
)
)

+

−2 chach b
(

Erf( b−a+t√
2t

)− Erf( b−a−t√
2t

) + Erf(a+b−t√
2t

)− Erf(a+b+t√
2t

)
)]
.

Despite the fact, that they are more complicated than in the case of odd dimension,
our formulas for even n, given by (3.9), can also be useful. For instance formula (3.9)
gives for n = 2 (that is, for m = 0) the following:

pBess
2 (t; a, b) =

e−t/8 sh b

(πt)3/2
×

×
∫ b+a

b−a

(
sh r√

( ch (b+ a)− ch r)( ch r − ch (b− a))

∫ ∞
r

se−s
2/(2t)

√
ch s− ch r

ds

)
dr.

For n = 4 we get

pBess
4 (t; a, b) =

e−9t/8 sh b

(πt)3/2 sh 2a
×

×
∫ b+a

b−a

(
sh r( chach b− ch r)√

( ch (b+ a)− ch r)( ch r − ch (b− a))

∫ ∞
r

se−s
2/(2t)

√
ch s− ch r

ds

)
dr.

Function h(r) =
∫∞
r

se−s2/(2t)
√

chs−chr
ds is not elementary, nevertheless it is very regular: a

formula for the density p̄Br
2 and (2.5) imply that it is strictly positive and decreasing.

Using its approximation by elementary functions, one can obtain (at least numerically)
good approximations of graphs of pBess

2 or pBess
4 .
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