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Abstract

We are interested in the increment stationarity property of L2-indexed stochastic pro-
cesses, which is a fairly general concern since many random fields can be interpreted
as the restriction of a more generally defined L2-indexed process. We first give a
spectral representation theorem in the sense of Ito [9], and see potential applications
on random fields, in particular on the L2-indexed extension of the fractional Brownian
motion. Then we prove that this latter process is characterized by its increment
stationarity and self-similarity properties, as in the one-dimensional case.
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1 Introduction

It is known since the works of Ito [9] and Yaglom [20] that if a (multiparameter)
stochastic process X is increment-stationary in the sense that for any s, s′, t, t′ and
h ∈ Rd:

E [(Xt+h −Xs+h)(Xt′+h −Xs′+h)] = E [(Xt −Xs)(Xt′ −Xs′)] ,

then X admits a spectral representation, which is understood as follows. There exist a
complex-valued random measure M on Rd, with control measure µ, and an Rd-valued
random vector Y , such that:

∀t ∈ Rd, Xt =

∫
Rd

(
ei〈t,x〉 − 1

)
M(dx) + 〈t, Y 〉.

Besides, Y and M are uncorrelated, in the sense that they have finite second moments

and for any Borel set A, E
[
YM(A)

]
= 0. Such representations have important appli-

cations in the study of sample path properties of stochastic processes (see [13, 19], to
cite but a few). However, some processes that appear now frequently in the literature
(for instance in the domain of stochastic partial differential equations [5, 1]) possess a
different type of stationarity. This is the case of the Brownian sheet (the random field
whose distributional derivative is the white noise on Rd), and more generally of the
fractional Brownian sheet (see Example 2.5). This led to another spectral representation
theorem for these processes [2], which permitted the construction of multiparameter
stochastic integrals against these processes in the sense of Walsh.
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L2-increment stationary processes

Using a different technique, we obtain a similar result in Section 2, for a larger class
of processes. Our Theorem 2.9 states that any random field {X(f), f ∈ L2(T,m)}, where
(T,m) is any measure space such that L2(T,m) is separable, which has second moments
and satisfies the following increment-stationarity property: ∀f, f ′, g, g′, h ∈ L2(T,m),

E [(X(f + h)−X(g + h)) (X(f ′ + h)−X(g′ + h))] = E [(X(f)−X(g)) (X(f ′)−X(g′))] ,

admits a spectral representation. We explain in paragraph 2.2 why this property covers
many random fields, and how such random fields appear as the restriction of some
L2(T,m)-indexed process. In particular, all the known multiparameter extensions of
the fractional Brownian motion are part of this class of processes. The counterpart
for having such level of generality is that in some cases the resulting sprectral rep-
resentation is either degenerate, or expressed in a too abstract setting for potential
applications. However there are examples where the theorem permits to deduce sample
path properties of multiparameter processes [16]. A typical example of a process to
which our spectral representation theorem applies is the L2(T,m)-indexed fractional
Brownian motion (defined in [15] as an extension of the set-indexed fractional Brownian
motion [7]).

Hence in Section 3 of this paper, we focus on the L2(T,m)-indexed fBm. For any
H ∈ (0, 1/2], this real-valued centred Gaussian process has a covariance which is given,
for f, g ∈ L2(T,m), by:

E
[
BH(f) BH(g)

]
=

1

2

(
m
(
f2
)2H

+m
(
g2
)2H −m ((f − g)2

)2H)
, (1.1)

where m(·) denotes the linear functional
∫
T
· dm of L2(T,m). It encompasses most of

the different known extensions of the fractional Brownian motion. We characterize the
L2(T,m)-indexed fractional Brownian motions in terms of self-similarity and increment-
stationarity properties. Let us recall that the fractional Brownian motion of Hurst
parameter H ∈ (0, 1) is the only (up to normalization of its variance) Gaussian process on
R that has stationary increments and self-similarity of order H. In the multiparameter
setting, there are several possible definitions of increment stationarity as well as self-
similarity. For instance, the Lévy fractional Brownian motion of parameter H, whose
covariance is given by E

[
XH
s X

H
t

]
= 1

2

(
‖s‖2H + ‖t‖2H − ‖s− t‖2H

)
, is self-similar of

order H and has a strong increment stationarity property on Rd, i.e. against translations
and rotations in Rd:

∀g ∈ G(Rd), {Xg(t) −Xg(0), t ∈ Rd}
(d)
= {Xt, t ∈ Rd},

where G(Rd) is the group of rigid motions of Rd. Reciprocally, it is the only Gaus-
sian process having these properties, up to normalization of its variance [17, p.393].
There is no such simple characterization for the fractional Brownian sheet (see the
review [8]). We extend the notions of self-similarity and increment stationarity in-
troduced in [7, 8], and give two characterizations of the L2-fBm, depending on the
definition of self-similarity and increment stationarity that are chosen for L2-indexed
processes.

2 Spectral representation of L2-increment stationary processes

2.1 Preliminaries

A special structure on Hilbert spaces will appear frequently here, and will be referred
to as triple of Hilbert spaces, or simply triple (this is a special case of Gel’fand triple).
A triple consists of a separable Hilbert space H and a larger separable Hilbert space
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L2-increment stationary processes

E such that H is densely and continuously embedded into E. We shall denote by E∗

the topological dual of E, thus the inclusion E∗ ⊂ H∗ leads to write E∗ ⊂ H ⊂ E by
identifying H with H∗. To continue with notations, we will use the duality bracket symbol
〈ξ, x〉, for any ξ ∈ E∗ and x ∈ E. Note that the previous properties imply that E∗ is dense
in H∗ and that the canonical injection, that we shall denote by S, is also continuous (see
for example [4, pp.136-137]). By a slight abuse of notations, we may write S : E∗ → H
for this embedding.
For an extension of Bochner’s theorem to be valid, we will need the embedding of these
triples to be of Hilbert-Schmidt type. The following lemma gives the existence of such
triples and is proved in [16] (actually with slightly stronger conclusions than written
here).

Lemma 2.1. Let H be a separable Hilbert space. There is a separable Hilbert space
(E, ‖ · ‖) such that E∗ ⊂ H ⊂ E is a triple and the embedding H ⊂ E is Hilbert-Schmidt.

Reproducing kernel Hilbert spaces (RKHS) will appear in the following, so for (T, d) a
separable metric space and C a continuous covariance on T × T , we denote by H(C) the
associated RKHS (for a definition, see for instance [12, p.203]), which is separable [12,
Theorem 5.3.1]. In particular, H(C) is spanned by the set of mappings {C(t, ·), t ∈ T}
with inner product given by (C(t, ·), C(s, ·))H(C) = C(t, s) for any t, s ∈ T . Thus one can
extract a basis of H(C) of the form {C(tn, ·), tn ∈ T} by the separability property of
H(C).
In addition, we will always consider a Borel measure m on T and write (T,m) for the
metric measure space (instead of (T, d,m)). In general, (T,m) will be chosen such
that L2(T,m) is separable (this the case for example when T is locally compact and
separable).

Spectral representations involve random measures. We provide a formal definition of
these objects.

Definition 2.2. Let µ be a finite measure on the Borel sets of a topological space X ,
which are denoted by B(X ). Let (Ω,F ,P) be a probability space. A complex-valued
random measure on B(X ) with control measure µ is a mapping M : B(X ) → L2

C(Ω)

satisfying:

(i) E [M(A)] = 0 for any A ∈ B(X );

(ii) M(A ∪B) = M(A) +M(B) a.s. for any disjoint A,B ∈ B(X );

(iii) E
[
M(A) M(B)

]
= µ(A ∩B) for any A,B ∈ B(X );

(iv) M(A) = M(−A) a.s. for any A ∈ B(X ).

Stochastic integrals with respect to a random measure can be defined for determin-
istic integrands. As usual, the first step is to define it for elementary functions via the
relation

∫
1AdM = M(A), then extending it to simple functions. This establishes a linear

isometry between the simple functions of L2(X , µ) and L2
C(Ω) (in the sequel we drop the

C indexing), which extends to the entire space L2(X , µ).

2.2 Definitions of increment-stationarity and examples

In this paragraph, we precise the terminology related to stationarity. Note that our
main result concerns L2-indexed stochastic processes, and since most random fields of
interest are neither indexed by an infinite-dimensional vector space, nor even a vector
space, our goal is also to explain why this setting is interesting nonetheless.

For a given second-order T -indexed random field X with covariance C, we will
consider the following objects: if there exist an H(C)-valued mapping f : t ∈ T 7→ ft ∈

ECP 21 (2016), paper 31.
Page 3/15

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP4727
http://www.imstat.org/ecp/


L2-increment stationary processes

H(C) and an H(C)-indexed process X̂ such that Xt = X̂(ft) for any t ∈ T , then we
say that X is compatible with H-indexing. In case there exist a set-valued mapping
A : t ∈ T 7→ At ∈ B(T ) and an isometry mapping ft to 1At in some L2(T,m) space, we
say that X is compatible with set-indexing.

Example 2.3 (Set-valued mappings). 1. The simplest example that comes to mind is
the collection of rectangles of Rd: At = [0, t] and m is the Lebesgue measure.

2. There is a mapping A and a measure md on Rd such that md(At 4As) = ‖t− s‖ for
any s, t ∈ Rd, where ‖ · ‖ is the Euclidean norm and 4 is the symmetric difference of sets.
Roughly, At is the set of all hyperplanes that separates 0 and t. This construction is fully
described in [11, Chap. 4] or [17, p.401].

3. A similar construction due to Takenaka (see also [17, p.402-403]) gives the existence
for H ∈ (0, 1/2] of a measure mH

d and a set-valued mapping A such that mH
d (At 4As) =

‖t − s‖2H ,∀t, s ∈ Rd. Identically for a vector H = (H1, . . . ,Hd) ∈ (0, 1/2]d, one can
construct, by tensorization of one-dimensional measures, a new measure mH

d and a

set-valued mapping A such that mH
d (At 4As) =

∏d
k=1 ‖tk − sk‖2Hk .

Definition 2.4. Let (T,m) be a measure space. We will say that a centred random field
X indexed by T is wide-sense increment-stationary if the following set of assumptions
holds:

(i) X is compatible with H-indexing for the mapping f (X̂(ft) = Xt for any t ∈ T ) and
dom X̂ is a subvector space of H(C);

(ii) X̂ is L2-increment stationary, i.e. it has finite second moments at any point and it
satisfies, for any f1, f2, g1, g2 and h ∈ domX̂ (domX̂ is the domain of definition of
X̂):

E
[
(X̂(f1+h)−X̂(f2+h))(X̂(g1+h)−X̂(g2+h))

]
=E

[
(X̂(f1)−X̂(f2))(X̂(g1)−X̂(g2))

]
.

Let us remark that the existence of X̂ is close to the notion of “model” described in
[11], although it is slightly less demanding. The choice of this type of stationarity for X̂
is motivated by the spectral representation theorem of the next section.

We present now a few wide-sense increment-stationary processes based on the
examples of measure spaces given above.

Example 2.5. 1. For any fixed H ∈ (0, 1) (H = 1/2 corresponds to the Brownian case),
there is a centred Gaussian process indexed by Rd which has the following increments:

E
[
(XH

t −XH
s )2

]
= ‖t− s‖2H .

This process is called Lévy fractional Brownian motion and has the simple increment
stationarity property: E

[
(XH

t+h −XH
s+h)(XH

t′+h −XH
s′+h)

]
= E

[
(XH

t −XH
s )(XH

t′ −XH
s′ )
]

for any s, s′, t, t′, h ∈ Rd. Besides, the Euclidean space is compatible with set-indexing
(see Example 2.3 point 2 for the definition of At and md) and the L2(Rd,md)-indexed
Gaussian process given by:

E
[
X̂H(f) X̂H(g)

]
=

1

2

(
md(f

2)2H +md(g
2)2H −md((f − g)2)2H

)
is well-defined for H ≤ 1/2 (see [7]) and for any t ∈ Rd, X̂H(1At) = XH

t .
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L2-increment stationary processes

2. The fractional Brownian sheet WH of Hurst parameter H = (H1, . . . ,Hd) ∈ (0, 1)d

is the centred Gaussian process with covariance defined for t = (t1, . . . , td) ∈ Rd+, s =

(s1, . . . , sd) ∈ Rd+ by:

E
[
WH

t WH
s

]
= 2−d

d∏
k=1

(
|tk|2Hk + |sk|2Hk − |tk − sk|2Hk

)
.

When H ∈ (0, 1/2]d, we observe that for f, g ∈ L2(R+, λ1), RHk(f, g) = 1/2(‖f‖4Hk +

‖g‖4Hk − ‖f − g‖4Hk) is a particular covariance of the form (1.1) (λd denotes the d-
dimensional Lebesgue measure) and RHk(1[0,tk],1[0,sk]) appears in the above product.

The tensor product of such covariances yields a covariance on
⊗d

k=1 L
2(R+, λ1) which

is isometric to L2(Rd+, λd), thus we define R⊗dH =
⊗d

k=1RHk , and it follows that the
covariance of the fractional Brownian sheet can be written:

E
[
WH

t WH
s

]
= R⊗dH (1[0,t],1[0,s]).

Let ŴH be the L2(Rd+)-indexed Gaussian process with covariance R⊗dH .

ŴH is L2-increment stationary: this follows from the sheet increment stationarity
property of WH. This property is the main object of study in [2] and is expressed as
follows: for any s 4 t, s′ 4 t′ and u ∈ Rd,

E
[
∆WH([s+ u, t+ u]) ∆WH([s′ + u, t′ + u])

]
= E

[
∆WH([s, t]) ∆WH([s′, t′])

]
where ∆WH is the process obtained by the inclusion-exclusion formula. That is, for s 4 t,
∆WH([s, t]) =

∑
ε∈{0,1}d(−1)εWH

c1(ε1),...,cd(εd)
, where ε = |ε| = ε1 + · · ·+ εd and ck(εk) = tk

if εk = 0, sk otherwise.

3. For any H ∈ (0, 1/2], the multiparameter fractional Brownian motion is the Gaussian
process with covariance given by:

E
[
BHs B

H
t

]
=

1

2

(
λd ([0, s])

2H
+ λd ([0, t])

2H − λd ([0, s]4 [0, t])
2H
)
, s, t ∈ Rd+. (2.1)

Writing B̂H(1[0,t]) = BHt yields a straightforward extension to an L2(Rd+, λ)-indexed
process which is L2-increment stationary and has a covariance of the form (1.1). Hence
BH is also wide-sense increment stationary. When only observed as a multiparameter
process, it satisfies: ∀t 4 t′ and any τ ∈ Rd+,

λ ([0, t′] \ [0, t]) = λ([0, τ ]) ⇒ BHt′ −BHt
(d)
= BHτ . (2.2)

This is in fact a weak form of the measure increment stationarity presented in Section 3.
When H = 1

2 and H = (1
2 , . . . ,

1
2 ), BH and WH above are the same process, known as

Brownian sheet.

One of our initial motivations for this work was to obtain a spectral representation
theorem for processes having the measure increment stationarity, and a fractal char-
acterization of the multiparameter fBm based on this property, but this sole property
seems in fact too weak for these purposes.
We only presented Gaussian examples, but stable process could also be exhibited ([17]).
These were examples of processes that are compatible with set-indexing and that extend
naturally to a function space indexing. If no such extension is available, one can always
resort to the following result.
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L2-increment stationary processes

Proposition 2.6. Let (T,m) be a measure space such that L2(T,m) is separable. Any
second order T -indexed process with covariance C extends to a linear H(C)-indexed
process and thus is wide-sense increment-stationary.

Proof. Let C be the covariance of X and let {tn ∈ T, n ∈ N} such that {C(tn, ·), n ∈ N}
is a basis of H(C) (recall that H(C) is separable, see the beginning of this section). Then
define X̂(C(tn, ·)) = Xtn for any n and extend X̂ to Span{C(tn, ·), n ∈ N} by linearity. X̂
is now a linear isometry from Span{C(tn, ·), n ∈ N} to L2(Ω). As such it can be extended
to a process from H(C) to L2(Ω) by density. The assertion follows.

This result is only here to emphasize how general our definition of increment stationarity
is. In fact, having in hands a linear H(C)-indexed process might not be very useful
(at least for the applications we have in mind), since it yields a somehow degenerate
spectral decomposition, as we will see in the next section. However this linear process
can be considered as a stochastic integral against X, whose space of (deterministic)
integrands coincides with the RKHS of X.

2.3 Spectral representation theorem for L2-increment stationary processes

In this section, the stochastic processes are indexed by a separable Hilbert space
H. E∗ ⊂ H ⊂ E is a triple as in Lemma 2.1 and S denotes the canonical injection from
E∗ to H (and S∗ is its dual). Note that the norm of E is denoted by ‖ · ‖ as it will be
the most frequently used. Any other norm will be written with a subscript, for instance
‖ · ‖L2(µ) or ‖ · ‖H. With these notations, the Hilbert-Schmidt property of the embedding
reads: S, resp. S∗, is a Hilbert-Schmidt operator of (E∗, ‖ · ‖E∗)→ (H, ‖ · ‖H), resp. of
(H, ‖ · ‖H)→ (E, ‖ · ‖).
Proposition 2.7. Let Φ : H → R be a symmetric continuous function and C : H×H → R

be a covariance of the form C(κ, κ′) = 1
2 (Φ(κ) + Φ(κ′)− Φ(κ− κ′)). Then there exist a

non-negative symmetric operator R : E∗ → E, and a finite Borel measure µ on E such
that:

∀ξ, Φ(Sξ) = 〈ξ,Rξ〉+ 2

∫
E

1− cos〈ξ, x〉
1 ∧ ‖x‖2

µ(dx). (2.3)

Besides, R ◦ iE is a trace-class operator on E (where iE is the Riesz isomorphism of
E → E∗), and µ({0}) = 0.

Proof. Due to the form of C, the application ξ ∈ E∗ 7→ Φ(Sξ) is continuous and negative
definite (see Definition 4.3 and Proposition 4.4 in [18]). Thus, according to Schoenberg’s
theorem, ξ 7→ exp(−tΦ(Sξ)) is positive definite for any t ∈ R∗+. The existence of b, R, µ0

in the next paragraph is explained in [3], but we give the main ingredients for the sake
of completeness.
It follows from Lemma 2.1 and Sazonov’s theorem (see [21, Theorem 3.2]), according to
which a Hilbert-Schmidt map is radonifying, that since κ 7→ exp(− t

2Φ(κ)) is continuous
on H for each t > 0, it is the Fourier transform of a measure νt on E. By Lévy’s continuity
theorem in Hilbert spaces ([3]), {νt, t > 0} weakly converges as t → 0 to the Dirac
mass δ0. Hence ξ ∈ E∗ 7→ exp

(
− 1

2Φ(Sξ)
)

is the characteristic function of the infinitely
divisible distribution ν1. So by the Lévy-Khintchine theorem [14, Theorem VI.4.10]:

∀ξ ∈ E∗, Φ(Sξ) = 2i〈ξ, b〉+ 〈ξ,Rξ〉 − 2

∫
E

(
ei〈ξ,x〉 − 1− i〈ξ, x〉

1 + ‖x‖2

)
µ0(dx),

where b ∈ E, R satisfies the hypotheses stated in the proposition, and µ0 is a Lévy
measure, in the sense that µ0({0}) = 0 and

∫
E

(
1 ∧ ‖x‖2

)
µ0(dx) <∞.
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L2-increment stationary processes

Using the equality Φ(−ξ) = Φ(ξ), we obtain that for any ξ ∈ E∗:

〈ξ, b〉 =

∫
E

(
〈ξ, x〉

1 + ‖x‖2
− sin〈ξ, x〉

)
µ0(dx).

The linearity of the left hand side term implies that for any n ∈ N,
∫
E

sin〈nξ, x〉 µ0(dx) =

n
∫
E

sin〈ξ, x〉 µ0(dx). Hence
∫
E

sin〈ξ, x〉 µ0(dx) = 0 for any ξ ∈ E∗ and it follows that µ0 is
a symmetric measure. Thus b =

∫
E

x
1+‖x‖2 µ0(dx) = 0 also. The result follows by defining

µ(dx) = (1 ∧ ‖x‖2) µ0(dx).

Similarly to Definition 2.4 and in more generality, we define L2-increment stationarity
for H-indexed processes.

Definition 2.8. A real-valued H-indexed centred1 random field Y is L2-increment sta-
tionary if it has finite second moments at any point and if it satisfies, for any κ1, κ2, κ′1, κ

′
2

and h ∈ H:

E [(Y (κ1+h)−Y (κ2+h))(Y (κ′1+h)−Y (κ′2+h))]=E [(Y (κ1)−Y (κ2))(Y (κ′1)−Y (κ′2))] .

Theorem 2.9. Let Y be a real-valued H-indexed L2-increment stationary process with
continuous covariance, and let E∗ ⊂ H ⊂ E be a triple with Hilbert-Schmidt embedding.
Then, there exist a random measure M on E, and an E-valued random variable Z such
that:

∀ξ ∈ E∗, Yξ = Y0 +

∫
E

ei〈ξ,x〉 − 1

1 ∧ ‖x‖
M(dx) + 〈ξ, Z〉,

and M and Z have the following properties, for µ and R as in Proposition 2.7:

• M has control measure µ and Z has finite second moments with covariance operator
R : E∗ → E, i.e. E [〈η, Z〉〈ξ, Z〉] = 〈η,Rξ〉 <∞ for any η, ξ ∈ E∗;

• M and Z are uncorrelated, in the sense that for any A ∈ B(E) and any ξ ∈ E∗,
E
[
〈ξ, Z〉M(A)

]
= 0.

The previous decomposition extends to H in the following manner: there exists a linear
mapping Z : H → L2(Ω) which is uncorrelated with M , such that E

(
Z(κ)2

)
= (κ, R̃κ)H,

where R̃ is a symmetric non-negative operator on H and

∀κ ∈ H, Y (κ) = Y (0) +

∫
E

γ(κ, x) M(dx) + Z(κ),

where γ is the unique uniformly continuous extension of ξ ∈ E∗ 7→ 1−ei〈ξ,·〉
1∧‖·‖ ∈ L

2(µ) to a

mapping from H → L2(µ). Conversely, any H-indexed process with this representation
is L2-increment stationary.

Before proving the theorem, let us state the following useful lemma, which can be proved
with the tools of [6, Chap. 39].

Lemma 2.10. Let E be a separable Banach space and µ a finite Borel measure on
E. Then the space of trigonometric polynomials T = Span

{
ei〈ξ,·〉, ξ ∈ E∗

}
is dense in

L2(E,µ).

1Theorem 2.9 still holds true if instead of Y centred, one assumes that E [Y (κ1)− Y (κ2)] =
E [Y (κ1 − κ2)− Y (0)], ∀κ1, κ2 ∈ H.
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L2-increment stationary processes

Proof of theorem 2.9. This proof is carried out in two steps. In the first one, we prove
the decomposition on E∗, while in the second step, we extend it toH. Without restriction,
we may assume that Y (0) = 0, since otherwise we can define Ỹ (κ) = Y (κ)− Y (0).

First Step. The L2-increment stationarity implies that the covariance of Y is of the
form given in Proposition 2.7 (with a continuous function Φ), thus we let µ and R be
defined according to the result of this proposition. For some non-zero ξ0 ∈ E∗, let X
be defined by Xξ = Yξ+ξ0 − Yξ. Then X is L2-stationary, defined in a similar sense to
L2-increment stationarity, i.e. it has finite second moments and for any κ1, κ2 and h ∈ H:
E [X(κ1 + h)X(κ2 + h)] = E [X(κ1)X(κ2)]. Its covariance satisfies:

E [Xξ Xη] = E [(Yξ+ξ0 − Yξ) (Yη+ξ0 − Yη)]

=
1

2
(Φ(ξ − η + ξ0) + Φ(ξ − η − ξ0)− 2Φ(ξ − η))

and one can check that this quantity can be written Ψ(ξ − η) (we omit the dependence in
ξ0 in this notation), where Ψ reads:

∀ξ ∈ E∗, Ψ(ξ) = 〈ξ0, Rξ0〉+ 2

∫
E

ei〈ξ,x〉
1− cos〈ξ0, x〉

1 ∧ ‖x‖2
µ(dx).

Let us define a new finite measure on the Borel sets of E by:

µ̃ξ0(dx) = 2
1− cos〈ξ0, x〉

1 ∧ ‖x‖2
1{x 6=0}µ(dx) + 1{x=0}〈ξ0, Rξ0〉,

so that Ψ can be written Ψ(ξ) =
∫
E
ei〈ξ,x〉 µ̃ξ0(dx).

We shall now define a process Tξ0 on the vector space Span{ei〈ξ,·〉, ξ ∈ E∗} satisfying
the following linearity properties: for any λ ∈ R, ξ, η ∈ E∗,

Tξ0

(
λei〈ξ,·〉

)
= λXξ

Tξ0

(
ei〈ξ,·〉 + ei〈η,·〉

)
= Xξ +Xη.

We claim that this process is well-defined, as there are no couples (λ, ξ) 6= (λ′, ξ′) ∈
(R \ {0})×E∗ such that λei〈ξ,·〉 = λ′ei〈ξ

′,·〉, nor does there exist couples (ξ, η) 6= (ξ′, η′) ∈
E∗ × E∗ such that ei〈ξ,·〉 + ei〈η,·〉 = ei〈ξ

′,·〉 + ei〈η
′,·〉. Note that Tξ0 is a linear isometry of

T → L2(Ω) (recall that T is the space of trigonometric polynomials).
Since T is dense in L2(µ̃ξ0) (see Lemma 2.10), Tξ0 extends into a linear isometry of
L2(µ̃ξ0)→ L2(Ω), and we are able to define the following random measure:

M̃ξ0(A) = Tξ0(1A) , ∀A ∈ B(E),

so that M̃ξ0 has control measure µ̃ξ0 : E
[
M̃ξ0(A)

]
=0 and E

[
M̃ξ0(A) M̃ξ0(B)

]
= µ̃ξ0(A∩B),

for all A,B ∈ B(E). One can now construct a stochastic integral against M̃ξ0 which
satisfies, for any f ∈ L2(µ̃ξ0): ∫

E

f(x) M̃ξ0(dx) = Tξ0(f).

In particular, for f = ei〈ξ,·〉, we recover X(ξ0)
ξ =

∫
E
ei〈ξ,x〉 M̃ξ0(dx). Note that we shall

use the notation X(ξ0)
ξ for Xξ in the rest of this proof. By the same density argument as

above, there is a random variable Zξ0 in the L2(Ω)-closure of Span{Xξ, ξ ∈ E∗} such
that:

Zξ0 = M̃ξ0({0}).
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L2-increment stationary processes

At the end of this proof, we give more details on Zξ0 . But first, let us define the random
measure Mξ0

and the process X(ξ0) by:

∀A ∈ B(E), Mξ0
(A) = M̃ξ0(A)− 1{A∩{0}6=∅}M̃ξ0({0})

∀ξ ∈ E∗, X
(ξ0)
ξ = X

(ξ0)
ξ − Zξ0 =

∫
E

ei〈ξ,x〉Mξ0
(dx).

A few facts can be easily deduced from the previous definitions: firstly, the control
measure of Mξ0 is µ

ξ0
= 2 1−cos〈ξ0,x〉

1∧‖x‖2 1{x 6=0}µ(dx); secondly, X(ξ0) is still a stationary

process; and finally, for any ξ ∈ E∗, Zξ0 and X(ξ0)
ξ are uncorrelated.

Let us come back to X and let ξ′0 ∈ E∗: observe that for any ξ ∈ E∗,

X
(ξ0+ξ

′
0)

ξ = X
(ξ′0)
ξ+ξ0

+X
(ξ0)
ξ .

Thus for any ξ ∈ E∗,
∫
E
ei〈ξ,x〉M̃ξ0+ξ′0

(dx) =
∫
E
ei〈ξ+ξ0,x〉M̃ξ′0

(dx) +
∫
E
ei〈ξ,x〉M̃ξ0(dx). By

symmetry, this implies:

∀ξ ∈ E∗,
∫
E

ei〈ξ,x〉
(
ei〈ξ

′
0,x〉 − 1

)
M̃ξ0(dx) =

∫
E

ei〈ξ,x〉
(
ei〈ξ0,x〉 − 1

)
M̃ξ′0

(dx),

which can be transposed to M , since the previous integrals cannot charge {0}:

∀ξ ∈ E∗,
∫
E

ei〈ξ,x〉
(
ei〈ξ

′
0,x〉 − 1

)
Mξ0

(dx) =

∫
E

ei〈ξ,x〉
(
ei〈ξ0,x〉 − 1

)
Mξ′0

(dx). (2.4)

Let us define the following finite Borel measure µ
ξ0,ξ′0

(dx) := 2(1 − cos〈ξ′0, x〉) µξ0(dx),

and define also for any A ∈ B(E) the mapping

ϕξ0,ξ′0,A : x ∈ E 7→ 1A(x)(1 ∧ ‖x‖)
(

(ei〈ξ0,x〉 − 1)(ei〈ξ
′
0,x〉 − 1)

)−1
.

ϕξ0,ξ′0,A belongs to L2(µ
ξ0,ξ′0

) since

∫
E

∣∣ϕξ0,ξ′0,A(x)
∣∣2 µ

ξ0,ξ′0
(dx) =

∫
E

∣∣∣ϕξ0,ξ′0,A(x)
(
ei〈ξ

′
0,x〉 − 1

)∣∣∣2 µ
ξ0

(dx) =

∫
A

µ(dx)

is finite. Recall that Lemma 2.10 states that ϕξ0,ξ′0,A can be approximated by elements

in Span{ei〈ξ,·〉, ξ ∈ E∗}. Hence Equation (2.4) yields that for any A ∈ B(E) such that

A ∩ {0} = ∅,
∫
A

(1 ∧ ‖x‖)
(
ei〈ξ0,x〉 − 1

)−1
Mξ0(dx) is independent of ξ0 (and by definition,

Mξ0
({0}) = 0). Thus we call this quantity M(A), and one can verify that M is a random

measure whose control measure is precisely µ. From the equality:∫
E

ei〈ξ,x〉 − 1

1 ∧ ‖x‖
M(dx) =

∫
E

ei〈ξ,x〉 − 1

1 ∧ ‖x‖
1 ∧ ‖x‖
ei〈ξ,x〉 − 1

Mξ(dx) = Mξ(E) , ∀ξ ∈ E∗,

and due to X(ξ)
0 = Mξ(E), it is now clear that Y admits the following representation:

∀ξ ∈ E∗, Yξ = Zξ +

∫
E

ei〈ξ,x〉 − 1

1 ∧ ‖x‖
M(dx). (2.5)

To conclude this part of the proof, we need to show that there exists a random variable
Z with values in E such that Zξ = 〈ξ, Z〉 and whose covariance operator is R. One can
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L2-increment stationary processes

easily check that R is the covariance operator of {Zξ, ξ ∈ E∗}, so let us prove that for
any ξ, η ∈ E∗, Zξ + Zη = Zξ+η a.s. Using Equality (2.5),

E
[
(Zξ+η − Zξ − Zη)2

]
= E

[∣∣∣∣Yξ+η − Yξ − Yη +

∫
E

ei〈ξ,x〉 + ei〈η,x〉 − ei〈ξ+η,x〉 − 1

1 ∧ ‖x‖
M(dx)

∣∣∣∣2
]

= E
[
|Yξ+η − Yξ − Yη|2

]
+ E

[∣∣∣∣∫
E

ei〈ξ,x〉 + ei〈η,x〉 − ei〈ξ+η,x〉 − 1

1 ∧ ‖x‖
M(dx)

∣∣∣∣2
]

+ 2E

[
(Yξ+η − Yξ − Yη)

∫
E

ei〈ξ,x〉 + ei〈η,x〉 − ei〈ξ+η,x〉 − 1

1 ∧ ‖x‖
M(dx)

]
.

(2.6)

We analyze the three summands of the last line separately, and recall that the covariance

of Y is given by C(ξ, η) = 1
2 (Φ(ξ) + Φ(η) − Φ(ξ − η)), so that E

[
(Yξ+η − Yξ − Yη)

2
]

=

2Φ(ξ) + 2Φ(η)− Φ(ξ + η)− Φ(ξ − η). The decomposition of Φ given in (2.3) implies that:

E
[
(Yξ+η − Yξ − Yη)

2
]

= 4

∫
E

1− cos〈ξ, x〉
1 ∧ ‖x‖2

µ(dx) + 4

∫
E

1− cos〈η, x〉
1 ∧ ‖x‖2

µ(dx)

− 2

∫
E

1− cos〈ξ + η, x〉
1 ∧ ‖x‖2

µ(dx)− 2

∫
E

1− cos〈ξ − η, x〉
1 ∧ ‖x‖2

µ(dx),

(2.7)

because the quadratic terms cancel one another.
Next, we remark that Yξ+η−Yξ−Yη = −

∫
E

(
ei〈ξ,x〉 + ei〈η,x〉 − ei〈ξ+η,x〉 − 1

)
M(dx)+ρ(ξ, η),

where ρ(ξ, η) = M̃ξ+η({0}) − M̃ξ({0}) − M̃η({0}), and also that E
[
M̃ξ({0}) M(A)

]
= 0

for any ξ ∈ E∗ and A ∈ B(E). Hence ρ(ξ, η) is uncorrelated with M , so the sum of the
second and third summand in Equation (2.6) is in fact equal to:

−E

[∣∣∣∣∫
E

ei〈ξ,x〉 + ei〈η,x〉 − ei〈ξ+η,x〉 − 1

1 ∧ ‖x‖
M(dx)

∣∣∣∣2
]

=

−
∫
E

∣∣ei〈ξ,x〉 + ei〈η,x〉 − ei〈ξ+η,x〉 − 1
∣∣2

1 ∧ ‖x‖2
µ(dx).

The sum between this term and (2.7) is precisely 0. Thus E
[
(Zξ+η − Zξ − Zη)2

]
= 0. We

prove similarly that for any λ ∈ R, Zλξ = λZξ a.s. Hence Zξ is linear.
To find an E-valued random variable Z, let {ξn}n∈N be a complete orthonormal basis of
E∗ (with scalar product (·, ·)E∗) and {en}n∈N be the dual basis. For any N ∈ N, let us
define ZN =

∑N
n=1 Zξnen. For ξ ∈ E∗, we write ξ =

∑∞
n=1(ξ, ξn)E∗ξn the decomposition

of ξ in the previous basis, and ξN = ξ −
∑N
n=1(ξ, ξn)E∗ξn. Then, by linearity of Zξ,

E [|Zξ − 〈ξ, ZN 〉|] = E
[
|ZξN |

]
≤
√
E
[
|ZξN |2

]
=
√
〈ξN , RξN 〉.

Hence for each ξ ∈ E∗, 〈ξ, ZN 〉 → Zξ a.s. as N → ∞. To prove that ZN has a limit

in E, observe that for any integers N ≥ P , E [‖ZN − ZP ‖] ≤
√
E[
∑N
n=P+1 Z

2
ξn

]. But

E[
∑N
n=P+1 Z

2
ξn

] =
∑N
n=P+1〈ξn, Rξn〉 ≤

∑∞
n=1〈ξn, Rξn〉 which is finite since R is trace-

class, thus there exists an E-valued random vector such that Zξ takes the announced
form.

ECP 21 (2016), paper 31.
Page 10/15

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP4727
http://www.imstat.org/ecp/
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Second Step. Let Ξ(Sξ) = 2
∫
E

1−cos〈ξ,x〉
1∧‖x‖2 µ(dx) be the integral part in the covariance

Φ. Then Ξ extends to a function on H. Indeed, the mapping:

γ : S(E∗)→ L2(µ)

Sξ 7→ 1− ei〈ξ,·〉

1 ∧ ‖ · ‖

satisfies ‖γ(Sξ) − γ(Sη)‖L2(µ) = ‖γ(S(ξ − η))‖L2(µ) ≤ Φ (S(ξ − η))
1/2 for any ξ, η ∈ E∗,

where the inequality holds since the difference between both terms is 〈ξ − η,R(ξ − η)〉 ≥ 0.
Note that γ is well-defined (since S is an injection) and that Φ1/2 is only a semi-
norm on H (it might not separate points). Hence we consider the quotient space
S(E∗)/Φ endowed with the proper norm Φ1/2, where the equivalence relation is given by
ξ ∼ η ⇔ Φ (S(ξ − η)) = 0. We still denote by γ the previous mapping. Thus γ is uniformly
continuous as a mapping from S(E∗)/Φ to L2(µ). Hence by a classical analysis result,
it extends to a uniformly continuous mapping (still denoted by γ) on the completion
of S(E∗)/Φ with respect to the Φ1/2 norm. Since Φ is continuous in H, the closure of
S(E∗)/Φ includes H/Φ. So γ can be finally considered as a mapping on the space H/Φ.
Now define R̃ as follows:

∀κ̄ ∈ H/Φ, R̃(κ̄, κ̄) = Φ(κ̄)− ‖γ(κ̄)‖2L2(µ),

and then R̃(κ̄, κ̄′) by polarization. This is a nonnegative definite symmetric bilinear oper-
ator, as the limit of R on E∗/Φ. In fact, R̃ and γ are well-defined on H by γ(κ) = γ(κ̄) and
R̃(κ, κ′) = R̃(κ̄, κ̄′) for any κ, κ′ ∈ H (κ̄ denotes the equivalence class of κ). Indeed if κ1, κ2
are two elements in the same equivalence class, ‖γ(κ1)−γ(κ2)‖L2(µ) ≤ Φ(κ1 − κ2)1/2 = 0,
and:

R̃(κ̄, κ1)− R̃(κ̄, κ2) = R̃(κ̄, 0̄) =
1

2

(
Φ(κ̄)− ‖γ(κ̄)‖2L2(µ) + Φ(0̄)

− ‖γ(0̄)‖2L2(µ) − Φ(κ̄+ 0̄) + ‖γ(κ̄+ 0̄)‖2L2(µ)

)
= 0.

As for the processes, we proceed as follows: define {M(κ) =
∫
E
γ(κ)(x) M(dx), κ ∈ H}.

This process is well-defined due to the preceding construction of γ, and it coincides with

the process
∫
E

1−ei〈·,x〉
1∧‖x‖ M(dx) on E∗. Then define Z(κ) = Y (κ)−M(κ), which coincides

with Z if κ ∈ E∗. This concludes the proof.

2.4 Discussion

Given a T -indexed random field X with covariance C, the linear H(C)-indexed
process X̂ constructed in Proposition 2.6 has the following spectral representation:
∀f ∈ H(C), X̂(f) = Z(f) where Z : H(C)→ L2(Ω). Hence X̂ has no spectral measure
and our theorem does not carry much information in that case. However as we will
see in the next example, this does not mean that there is not another process whose
restriction is X and which has a spectral measure.

Our second remark is related to the spectral representation of some fractional
processes. We recall that the covariance of the multiparameter fractional Brownian
motion is given in (2.1). In [16], a spectral representation was obtained as a particular
case of our theorem, due to special results available for stable measures on Hilbert
spaces. Hence the present work yields a more generic and complete (although more
lengthy) way to prove that:

∀t ∈ Rd+, BHt =

∫
E

γ
(
1[0,t], x

)
MH(dx),
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where E is some Hilbert space in which L2(Rd+) is (Hilbert-Schmidt) embedded, γ is
defined as in Theorem 2.9, and MH has control measure ∆H , where ∆H is the Lévy
measure of a stable measure on E. In particular, this representation helps studying the
sample path regularity of the multiparameter fBm, since BHt can now be written as a
sum of independent processes if E is sliced into disjoint subsets (see [16]).
It is also interesting to notice that ∆H has a similar form to the control measure of the
usual fractional Brownian motion. Indeed, we recall the spectral representation of the
fractional Brownian motion:

BHt = cH

∫
R

eitx − 1

|x|H+ 1
2

W(dx),

where cH is a normalizing constant and W is a complex Gaussian white noise. Hence
in that case the control measure is simply λ(dx)

|x|1+2H while from [10], we know that

∆H(B) =
∫∞
0

dr
r1+2H

∫
S
1B(ry) σH(dy), where σH is a finite, rotationally invariant mea-

sure on the unit sphere S of E.

3 Stationarity and self-similarity characterization

The L2(T,m)-fractional Brownian motion is the centred Gaussian process with covari-
ance (1.1). In this section, L2(T,m) becomes simply L2, and ‖ · ‖ refers to the L2(T,m)

norm. We give two characterizations of the L2-fBm: the first one is similar to the charac-
terization of the Lévy fBm, while the second one uses a notion of stationarity similar to
the one defined for set-indexed processes in [7, 8].

We start with some definitions. Consider the set G, which is the restriction of the
general linear group of L2 to bounded linear mappings ϕ : L2 → L2 such that:

∀f, g ∈ L2, ‖f‖ = ‖g‖ ⇒ ‖ϕ(f)‖ = ‖ϕ(g)‖.

Let % : G → R+ be the application that maps ϕ to its operator norm in L2. Note that for
any ϕ ∈ G and any f ∈ L2, ‖ϕ(f)‖ = %(ϕ) ‖f‖, and that % is a group morphism.

We will say that an L2-indexed stochastic process X is:

• H–self-similar, if:

∀a > 0, {a−HXaf , f ∈ L2} (d)
= {Xf , f ∈ L2}; (SS1)

• strongly H–self-similar, if:

∀ϕ ∈ G, {Xϕ(f), f ∈ L2} (d)
= {%(ϕ)HXf , f ∈ L2}; (SS2)

• strongly L2-increment stationary, if for any translation or orthogonal transformation
ψ of L2:

{Xψ(f) −Xψ(0), f ∈ L2} (d)
= {Xf −X0, f ∈ L2}; (SI1)

• weakly L2-increment stationary, if for any f1, . . . , fn ∈ L2, g1, . . . , gn and h ∈ L2:

(Xf1+h −Xg1+h, . . . , Xfn+h −Xgn+h)
(d)
= (Xf1 −Xg1 , . . . , Xfn −Xgn) . (SI2)

The L2-fBm satisfies all the above properties. (SS1) and (SI1) are direct analogues
of the multiparameter properties presented in the introduction. They give a similar
characterization:
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Proposition 3.1. Let X be an L2-indexed Gaussian process and H ∈ (0, 12 ]. X is an
L2-fBm of Hurst parameter H if and only if it is 2H–self-similar and strongly L2-increment
stationary (i.e. it satisfies (SS1) and (SI1)), up to normalization of its variance.

The proof is similar to the characterization of the Lévy fractional Brownian motion ([17,
p.393]).

Before stating our second characterization theorem, note that property (SI2) is
equivalent to L2-increment stationarity defined in Section 2 if X is a Gaussian process.
We briefly discuss (SI2) and (SS2) for T -indexed processes which are compatible with
set-indexing. So let X be such process, X̂ be its L2(T,m)-indexed extension and A be
the associated set-valued mapping. The definition of measure increment stationarity
(presented in a weak form in (2.2)) is made precise here, in a form suited to non-Gaussian
processes: for any n ∈ N, any t0, t1, . . . , tn ∈ T , and any τ1, . . . , τn ∈ T ,

∀i, j, m
(
(Ati 4At0) ∩ (Atj 4At0)

)
= m

(
Aτi ∩Aτj

)
⇒ (Xt1 −Xt0 , . . . , Xtn −Xt0)

(d)
= (Xτ1 , . . . , Xτn) .

If X is a process such that X̂ satisfies properties (SI2) and (SS2), then X has the
measure increment stationarity. Note that the property (SS2) is a generalization of
the self-similarity proposed in [7], initially introduced for set-indexed processes. It is
well-suited for multiparameter processes, as in (SS2), for the special choice of mappings
ϕa, a ∈ R∗+ defined by ϕa

(
µ11[0,t1] + µ21[0,t2]

)
= µ11[0,at1] + µ21[0,at2], we can say that

a multiparameter process is H–self-similar if Xat = X̂(1[0,at])
(d)
= %(ϕa)HXt. Note that

here, %(ϕa) = ad.

Proposition 3.2. Let X be an L2-indexed Gaussian process and H ∈ (0, 12 ]. X is an
L2-fBm of parameter H if and only if X satisfies (SI2) and (SS2) of order 2H, up to
normalization of its variance.

Proof. We first prove that X is centred. Let f0 ∈ L2 be a unit vector, and for any f, g ∈ L2

we have:

E [Xf+g −Xg] = E
[
%(ϕ1)2HXf0 − %(ϕ2)2HXf0

]
where ϕ1, ϕ2 ∈ G are such that f + g = ϕ1(f0) and g = ϕ2(f0). We also have, by (SI2),
that:

E [Xf+g −Xg] = E [Xf ] = %(ϕ3)2HE[Xf0 ]

where ϕ3 ∈ G is such that f = ϕ3(f0). We know by definition of % that %(ϕ1) = ‖f + g‖,
%(ϕ2) = ‖g‖ and %(ϕ3) = ‖f‖. Hence, the equality between the last two equations implies
that: (

‖f + g‖2H − ‖g‖2H
)
E [Xf0 ] = ‖f‖2H E [Xf0 ] .

Since this is true for any f, g ∈ L2, we must have E(Xf0) = 0, and so E(Xf ) = 0, ∀f ∈ L2.
To obtain the covariance, just notice that by using (SI2) and (SS2) in the same fashion:

E
[
(Xf −Xg)

2
]

= ‖f − g‖4H E
[
X2
f0

]
.

Therefore, E [XfXg] = 1
2E
[
X2
f0

] (
‖f‖4H + ‖g‖4H − ‖f − g‖4H

)
. Finally, stationarity im-

plies that E
[
X2
f0

]
= E

[
X2
g0

]
for any g0 of norm 1.

As a final remark, let us observe that we could not prove any such fractal character-
ization for the multiparameter fractional Brownian motion (defined in (2.1)). Despite
that BH is a process compatible with set-indexing (with At = [0, t]), that it is measure
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L2-increment stationary processes

increment stationary and H–self-similar, we do not know if a centred Gaussian process X
with these three properties is a multiparameter fractional Brownian motion. If one was
willing to use Proposition 3.2 to prove this, the main difficulty would be to construct an
L2-indexed process extending the definition of X, which we leave as an open problem.
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