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Abstract

We propose a discrete analogue for the boundary local time of reflected diffusions in
bounded Lipschitz domains. This discrete analogue, called the discrete local time, can
be effectively simulated in practice and is obtained pathwise from random walks on
lattices. We establish weak convergence of the joint law of the discrete local time and
the associated random walks as the lattice size decreases to zero. A cornerstone of
the proof is the local central limit theorem for reflected diffusions developed in [7].
Applications of the join convergence result to PDE problems are illustrated.
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1 Introduction

Let D ⊂ Rd be a bounded Lipschitz domain where d ≥ 1. Intuitively, a reflected
Brownian motion (RBM) in D is a continuous Markov process which behaves like a
standard Brownian motion in the interior of D and which is instantaneously pushed back
by the inward normal vector ~n when it visits the boundary ∂D of D. RBMs are natural
mathematical objects to study for many reasons. After all, the random motions of the
pollen grains observed by Robert Brown in year 1827 were reflected at the boundary of
a container. Perhaps the most notable application of RBM is the scaling limit of queuing
models experiencing heavy traffic. See the monograph [13].

Reflected Brownian motion is a special case of Reflected diffusions which we now
precisely describe. Suppose ρ ∈ W 1,2(D) ∩ C(D̄) is a strictly positive function, and
a = (aij) is a symmetric, bounded, uniformly elliptic d× d matrix-valued function with
aij ∈ W 1,2(D) for each i, j, where W 1,2(D) := {f ∈ L2(D) : |∇f | ∈ L2(D)} and C(D̄) is
the space of continuous functions on D̄. It is well-known (cf. [2, 6]) that the bilinear form
(E , W 1,2(D)) defined by

E(f, g) :=
1

2

∫
D

a∇f(x) · ∇g(x) ρ(x) dx

is a regular Dirichlet form in L2(D̄, ρ). Hence there is an associated Hunt process X
which is unique in distribution. Furthermore, X is a continuous strong Markov process
in D̄ with symmetrizing measure ρ and infinitesimal generator

A :=
1

2 ρ
∇ · (ρa∇). (1.1)
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Discrete approximations to local times for reflected diffusions

Definition 1.1. The process X constructed above is called an A-reflected diffusion. An
important case is when a is the identity matrix, then X is called a reflected Brownian
motion with drift 1

2 ∇(log ρ). If in addition ρ = 1, then X is called a reflected Brownian
motion (RBM ).

Intuitively, X behaves like a diffusion process associated to the elliptic operator A in
the interior of D, and it is instantaneously pushed back in the direction of the co-normal
~ν := a~n when Xt ∈ ∂D, where ~n is the inward unit normal. Let σ be the surface measure
on ∂D. It is well-known that there is a unique positive continuous additive functional
(PCAF) of X corresponding to σ/2. See, for instance, the appendix of [9]. This PCAF
L = (Lt)t≥0 is called the boundary local time of X. It describes the amount of time X
spends near the boundary in the sense that

lim
δ→0

1

2δ

∫ t

0

1{Xs ∈ Dδ} ds = Lt in probability, (1.2)

where Dδ := {x ∈ D : dist(x, ∂D) < δ} and 1 is the indicator function. Moreover, X
admits the Skorohod decomposition

Xt = X0 +

∫ t

0

β(Xs) · dBs +

∫ t

0

~b(Xs)ds+

∫ t

0

ρa~n (Xs) dLs, t ≥ 0, (1.3)

where B is the standard d-dimensional Brownian motion, ~b = 1
2 (∇ · a + a∇ log ρ) is the

drift and β2 = a. See [2, 6, 15] for well-known properties about X and L.
Discrete approximations for reflected diffusions are ubiquitous in scientific literature.

However, many of them are adhoc and not rigorously justified. For numerical approxima-
tion schemes with mathematical justifications, there is a concise survey in [14, Section
5.6]. For random walk approximation schemes, Burdzy and Chen [4, 5] considered
RBM for a large class of domains D which contains bounded Lipschitz domains. Using
Dirichlet form method and some probabilistic tools, they showed that the laws of both
discrete time and continuous time simple random walks (SRW) on D(k) := D ∩ 2−kZd

moving at rate d 22k converge weakly, as k →∞, to the law of RBM in D. The following
natural question is the motivation of this paper.

Question: What is a discrete analogue to the boundary local time of a reflected diffu-
sion?

We consider this question interesting in its own right and in applications. A suitable
candidate for such a discrete analogue, henceforth called discrete local time, is useful
in the study of partially reflected diffusions [16] and in stochastic particle systems in
domains (such as [7, 8]) in which non-trivial interactions among particles occur only at
the boundary. It can also be used to generate Monte Carlo approximations to boundary
value problems in partial differential equations; see the application immediately after
the statement of Theorem 3.1.

A rigorous answer to the above question does not follow directly from [4, 5] or other
published results; extra work is required to construct such an analogue and to prove
convergence. To see this, we consider the case when X is a RBM. Results in [4] imply
that for fixed δ > 0,

A
(k)
δ (t) :=

1

2δ

∫ t

0

1{X(k)
s ∈ Dδ} ds → 1

2δ

∫ t

0

1{Xs ∈ Dδ} ds (1.4)

in distribution as k →∞, where we used the same notation X(k) to denote both discrete
time and continuous time SRW on D(k) moving at rate d 22k. For discrete time SRW, the
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Discrete approximations to local times for reflected diffusions

time parameter is extended by interpolation. Even though we have (1.2), the results in
[4] do not tell us how small δ should be taken relative to k.

One might guess that a possible candidate is the left-hand side of (1.4) with δ = C 2−k

for some constant C > 0 large enough so that for all k ∈ N, we have DC 2−k
contains

the graph-boundary ∂D(k) := {x ∈ D(k) : vk(x) < 2d}, where vk(x) is the degree of the

vertex x in D(k). However, this candidate A(k)

C 2−k(t) turns out to be problematic since it is
too sensitive to the local configuration of the graph D(k) near the boundary. Our result
also indicates that the “naive" candidate

1

2 (2−k)

∫ t

0

1{X(k)
s ∈ ∂D(k)} ds,

which records the amount of time the random walk spends on ∂D(k), does not work either.
See Example 5.1 for an illustration. Another possible attempt to extract a candidate is
by deriving a discrete analogue of the Skorohod representation for X(k): one writes X(k)

t

as the sum of a local martingale and a process of finite variation, then tries to show that
the finite variational part converges in distribution to

∫ t
0
~n (Xs) dLs. However, this has to

be rigorously established. See Remark 2.2 (iv) below.
To the best of our knowledge, the question of discrete approximation to boundary

local time of reflected diffusions has not even been rigorously addressed before. The
main goal in this paper is to fill this gap. This paper is organized as follows:

In Section 2, we construct the discrete local time L(k) for RBM. This candidate is
defined pathwise explicitly in (2.2) (equivalently (2.4)) and is amenable to computer
simulations. In Section 3, we state our main result, Theorem 3.1, which is about weak
convergence of joint laws (X(k), L(k)) → (X, L). Section 4 collects the key properties
of transition density of X(k) including the local limit theorem, Theorem 4.5, which
is established in [7] with details in [11]. These properties will be used in the proof
of Theorem 3.1 in Section 5. Extension of our main result to more general reflected
diffusions is precisely stated in Theorem 6.1 in Section 6.

2 Discrete local time

An important feature in our approach is that we incorporate geometric information
of ∂D in our approximation scheme. That is, besides approximating D by D(k), we also
approximate ∂D by Λ(k), where for each k ∈ N, Λ(k) is a partition of ∂D into pieces of
comparable sizes and diameters. The choice of Λ(k) is specified by the following lemma.

Lemma 2.1. Suppose D is a bounded Lipschitz domain of Rd. Then there exists a
sequence of partitions {Λ(k)}k∈N of ∂D and a constant C ∈ (0,∞) which depends only
on D, such that (a), (b) and (c) below hold simultaneously:

(a) σ(λ) ≤ C 2−k(d−1) for λ ∈ Λ(k) and k ∈ N, where σ is the surface measure on ∂D.

(b) supx∈D̄ #
{
λ ∈ Λ(k) : λ ∩B(x, s) 6= ∅

}
≤ C

(
2ks ∨ 1

)d−1
for s ∈ (0,∞) and k ∈ N,

where #A is the cardinality of a finite set A and B(x, s) = {y ∈ Rd : |y − x| < s}.
(c) For any equi-continuous and uniformly bounded family F in C(∂D), we have

lim
k→∞

sup
f∈F

∑
λ∈Λ(k)

∣∣∣ sup
x∈λ

f(x)− inf
x∈λ

f(x)
∣∣∣σ(λ) = 0. (2.1)

The proof of Lemma 2.1 follows from an easy geometric argument which is basically
a dyadic decomposition of ∂D. This proof can be found in [7], in which a more general
result about partitioning any rectifiable subsets of ∂D is presented. (2.1) implies that

lim
k→∞

∑
λ∈Λ(k)

f(xλ)σλ =

∫
∂D

f dσ
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uniformly for f ∈ F and for all choices of {xλ} satisfying xλ ∈ λ for all λ ∈ Λ(k).
We are now describe our class of candidates for the desired discrete analogue for

boundary local time, which is defined pathwise.

Definition 2.1. (Discrete local time) Fix any α >
√

1 +M2 where M is the Lipschitz
constant for ∂D. Associate each λ ∈ Λ(k) a non-empty subset D(k)

λ ⊂ D(k) such that each

z ∈ D(k)
λ is of distance at most α 2−k to λ. Define, for each r.c.l.l. path ω : [0,∞)→ D(k)

and k ∈ N,

L
(k)
t (ω) :=

1

2

∫ t

0

∑
λ∈Λ(k)

∑
z∈D(k)

λ

1{ω(s) = z}
mk(z)

σ(λ)

#D
(k)
λ

ds, (2.2)

where mk(x) := 2−kd vk(x)/2d with vk(x) being the graph degree of the vertex x ∈ D(k).

In particular, when D(k)
λ is a single point {zλ}, then (2.2) is reduced to

1

2

∫ t

0

∑
λ∈Λ(k)

1{ω(s) = zλ}
mk(zλ)

σ(λ) ds. (2.3)

Remark 2.2. (i) Observe D
(k)
λ is non-empty by the condition on α, so that (2.2) is

well-defined. Note also that #D
(k)
λ is abounded above by some constant which

depends only on the Lipschitz constant M . Furthermore,
{
D

(k)
λ : λ ∈ Λ(k)

}
can

be flexibly chosen in such a way that ∂(k) := ∪λ∈Λ(k)D
(k)
λ is equal to the graph

boundary ∂D(k); in this case, #D
(k)
λ maybe larger than 1 for some λ and we have

to use (2.2) rather than (2.3).

(ii) Clearly, L(k)
t (ω) is non-decreasing in t and increases only when ω(t) ∈ ∂(k). Hence

L
(k)
t (ω) =

∫ t

0

1{w(s) ∈ ∂(k)} dL(k)
s (ω).

(iii) Intuitively, if the mass σ(λ) of λ is evenly distributed among elements in D(k)
λ , then

the total mass received by z is given by σk(z) :=
∑
{λ: z∈D(k)

λ }
σ(λ)/#D

(k)
λ . The

measure σk on ∂(k) approximates σ in the sense that limk→∞
∑
z∈∂(k) F (z)σk(z) =∫

∂D
F (z)σ(dz) for any F : D → R which is bounded and continuous on a neighbor-

hood of ∂D. This is an immediate consequence of Lemma 2.1. Moreover, (2.2) can
be written as

L
(k)
t (ω) =

1

2

∫ t

0

∑
z∈∂(k)

1{ω(s) = z}
mk(z)

σk(z) ds. (2.4)

(iv) In case ∂(k) is chosen to be ∂D(k), which is always possible according to (i), then
X(k) admits a pathwise decomposition analogous to (1.3):

X
(k)
t = B

(k)
t +

∫ t

0

η(k)
s dL(k)

s ,

where B(k) is the SRW on the whole lattice 2−kZd, under the law of X(k); and η(k)

is a FX(k)

t -adapted process with values in Rd. This “Skorohod decomposition" can
be used to study pathwise properties of X(k), but it will not play a role in our proof.

3 Main result and applications

Recall that X(k) is the simple random walk on the graph D(k) moving at rate d 22k,
either continuous time or discrete time. In the latter case, time parameter is extended
by interpolation as in [4]. In each case, X(k) has stationary distribution mk stated in
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Definition 2.1. We denote by Pxk and Pmk the law of SRW X(k) starting from xk ∈ D(k)

and mk respectively. We also denote by Px and Pm the law of RBM X starting from
x ∈ D̄ and m respectively, where m is the uniform measure on D. For a metric space
S, we denote by D([0, T ], S) the space of r.c.l.l. paths from [0, T ] to S equipped with
the Skorohod topology, and by C([0, T ], S) the space of continuous paths equipped with
uniform topology. Theorem 3.1 and Theorem 6.1 are our main results.

Theorem 3.1. Suppose D is a bounded Lipschitz domain. Then for T > 0, as k →∞ we
have

(i) (X(k), L(k)) under Pmk converges to (X, L) in distribution in both D([0, T ], D̄) ×
C([0, T ],R+) and D([0, T ], D̄ ×R+), where X is the reflected Brownian motion in D
with stationary initial distribution and L is the boundary local time of X.

(ii) If xk ∈ D(k) converges to x ∈ D, then (X(k), L(k)) under Pxk converges to (X, L)

in distribution in both D([0, T ], D̄)× C([0, T ],R+) and D([0, T ], D̄×R+), where X is
the reflected Brownian motion in D starting at x and L is the boundary local time
of X.

As an application, we consider the heat equation with general Robin boundary condition
∂u(t, x)

∂t
=

1

2
∆u(t, x) on (0,∞)×D

∂u(t, x)

∂~n
= g(t, x)u(t, x) + h(t, x) on (0,∞)× ∂D

(3.1)

and initial condition f ∈ Cb(D), where g, h ∈ Cb([0,∞)×∂D) and Cb(E) denotes the space
of bounded continuous functions on E. When h = 0 this equation reduces to the classical
Robin boundary problem. Using the Skorohod decomposition (1.3) and Itô formula, one
obtains a Feynman-Kac formula for the solution

u(t, x) = Ex
[
f(Xt) e

−
∫ t
0
g(t−s,Xs) dLs −

∫ t

0

h(t− θ,Xθ) e
−

∫ θ
0
g(θ−s,Xs) dLs dLθ

]
. (3.2)

See [7, Proposition 2.17] for details of such a calculation. Let G and H ∈ Cb([0,∞)× D̄)

be arbitrary continuous extensions of g and h respectively. Theorem 3.1 guarantees that

uk(t, xk) := Exk

[
f(ω(t)) e−

∫ t
0
G(t−s,ω(s)) dL(k)

s −
∫ t

0

H(t−θ, ω(θ)) e−
∫ θ
0
G(θ−s,ω(s)) dL(k)

s dL
(k)
θ

]
converges to u(t, x) whenever xk → x ∈ D̄. Furthermore if f ∈ C(D̄), then the conver-
gence is uniform on [a, b]× D̄ for any compact interval [a, b] ⊂ (0,∞).

Since L(k)
s (ω) increases only when ω(s) ∈ ∂(k) := ∪λ∈Λ(k)D

(k)
λ , there is flexibility in

the choice of G and H. Hence Theorem 3.1 provides us with a convenient discrete
approximation to the solution of (3.1), using simple random walks and a decomposition
of the boundary. Similar application of Theorem 3.1 also holds for elliptic equations (cf.
[15]), using the probabilistic representation of the solutions.

The next two sections are devoted to the proof of Theorem 3.1.

4 Discrete heat kernel and local limit theorem

In this section, we collect some fundamental properties of the transition density of
random walks in domains. Most of these properties are proved in [7] for biased random
walks which approximates RBM with drifts. See also [11] for detail of the calculations.
We consider Dε := D ∩ εZd for ε > 0, and let ∂Dε := {x ∈ Dε : vε(x) < 2d} be the
graph-boundary, where vε(x) is the degree of x in Dε. We define Xε to be the simple
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random walk (SRW) on Dε moving at rate d/ε2, either continuous time or discrete time

(as before, in the latter case, we extend time parameter by interpolation). Hence X2−k

in this section is the X(k) in Theorem 3.1.
The transition density of Xε with respect to measure mε(x) := εd vε(x)/2d is defined

as

pε(t, x, y) :=
Px(Xε

t = y)

mε(y)
, t > 0, x, y ∈ Dε. (4.1)

Clearly, pε is strictly positive and is symmetric in x and y. It is proved in [7] that the
transition density pε enjoys two-sided Gaussian bound and is jointly Hölder continuous
uniform in ε ∈ (0, ε0) for some ε0 > 0, and that pε converges to p uniformly on compact
subsets of (0,∞) × D̄ × D̄. In rigorous terms, we have the following four results. The
important point is that the constants involved are uniform for ε small enough.

Theorem 4.1. (Gaussian upper bound) There exist Ck = Ck(d,D, T ) ∈ (0,∞), k = 1, 2,
and ε0 = ε0(d,D) ∈ (0, 1] such that for every ε ∈ (0, ε0) and x, y ∈ Dε,

pε(t, x, y) ≤ C1

(ε ∨ t1/2)d
exp

(
−C2

|x− y|2

t

)
for t ∈ [ε, T ] and (4.2)

pε(t, x, y) ≤ C1

(ε ∨ t1/2)d
exp

(
−C2

|x− y|
t1/2

)
for t ∈ (0, T ]. (4.3)

Corollary 4.2. (Exit time estimate) There exist Ck = Ck(d,D, T ) ∈ (0,∞), k = 1, 2, and
ε0 = ε0(d,D) ∈ (0, 1] such that for all t ∈ (0, T ], x ∈ Dε, η > 0 and ε ∈ (0, ε0),

Px
(

sup
s≤t
|Xε

s − x| ≥ η
)
≤ C1 exp

(
− C2 η

(t1/2 ∨ ε)

)
. (4.4)

Theorem 4.3. (Gaussian lower bound) There exist Ck = Ck(d,D, T ) ∈ (0,∞), k = 1, 2,
and ε0 = ε0(d,D) ∈ (0, 1] such that for every ε ∈ (0, ε0), t ∈ (0, T ] and x, y ∈ Dε,

pε(t, x, y) ≥ C1

(ε ∨ t1/2)d
exp

(
−C2

|x− y|2

t

)
. (4.5)

Theorem 4.4. (Hölder continuity) There exist constants α(d,D, T ), β(d,D, T ),
C(d,D, T ) ∈ (0,∞) and ε0(d,D) ∈ (0, 1] such that for all ε ∈ (0, ε0), (t, x, y), (t′, x′, y′) ∈
(0, T ]×Dε ×Dε, we have

|pε(t, x, y)− pε(t′, x′, y′)| ≤ C ( |t− t′|1/2 + |x− x′|+ |y − y′| )α

(t ∧ t′)(d+β)/2
. (4.6)

Theorem 4.5. (Local limit theorem) Let p(k) = p2−k
be the transition density of X(k)

with respect to mk, and p(t, x, y) be the transition density of the RBM with respect to
Lebesque measure. Then we have

lim
k→∞

sup
t∈[a,b]

sup
x,y∈D(k)

∣∣∣p(k)(t, x, y) − p(t, x, y)
∣∣∣ = 0

for any compact interval [a, b] ⊂ (0,∞).

The proofs for the above properties are standard once we establish a discrete ana-
logue of a relative isoperimetric inequality in [7, Theorem 5.5] for bounded Lipschitz
domains. Details and stronger versions can be found in [7] and are omitted here. The
following uniform estimate has a continuous analog. It is crucial to our proof of the main
theorem.
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Lemma 4.6. There exist C = C(d,D, T ) ∈ (0,∞) and ε0 = ε0(d,D) ∈ (0, 1] such that

sup
x∈Dε

εd−1
∑
y∈∂Dε

pε(t, x, y) ≤ C

ε ∨ t1/2
(4.7)

for all t ∈ (0, T ] and ε ∈ (0, ε0).

Proof Fix θ ∈ (0, T ]. By the Gaussian upper bound in Theorem 4.1, we have∑
y∈∂Dε

pε(θ, x, y)

≤ C1

(ε ∨ θ1/2)d

∑
y∈∂Dε

exp

(
−|y − x|
ε ∨ θ1/2

)

=
C1

(ε ∨ θ1/2)d

∫ ∞
0

# |{y ∈ Dε : |f(y)| > r}| dr where f(y) = 1∂Dε(y) exp

(
−|y − x|
ε ∨ θ1/2

)
=

C1

(ε ∨ θ1/2)d

∫ 1

0

# |{∂Dε ∩B(x, (ε ∨ θ1/2)(− ln r))}| dr

=
C1

(ε ∨ θ1/2)d+1

∫ ∞
0

# |{∂Dε ∩B(x, s)}| exp

(
−s

ε ∨ θ1/2

)
ds where s = (ε ∨ θ1/2)(− ln r),

≤ C1

(ε ∨ θ1/2)d
∨ C2

εd−1(ε ∨ θ1/2)d+1

∫ ∞
0

sd−1 exp

(
−s

ε ∨ θ1/2

)
ds

≤ 1

εd−1

(
C1

ε ∨ θ1/2
∨ C2

ε ∨ θ1/2

∫ ∞
0

wd−1e−wdw

)
where w =

s

ε ∨ θ1/2
.

Here Ci are all constants which depend only on d, D and T . Note that in the second
last line, we used the fact, which follows from Lipschitz property of ∂D, that # |{∂Dε ∩
B(x, s)}| ≤ C((s/ε)d−1 ∨ 1) for all s > 0, for some C = C(d,D) ∈ (0,∞). The proof is now
complete.

Recall ∂(k) in Remark 2.2, which can be chosen to be ∂D(k). Lemma 2.1 implies that
# |{∂(k) ∩B(x, s)}| ≤ C (2k s ∨ 1)d−1 for some C = C(d,D) ∈ (0,∞). Hence the proof of
Lemma 4.6 implies

Lemma 4.7. There exist C = C(d,D, T ) ∈ (0,∞) and k0 = k0(d,D) ∈ (0,∞) such that

sup
x∈D(k)

2k(d−1)
∑
y∈∂(k)

p(k)(t, x, y) ≤ C

2−k ∨ t1/2
(4.8)

for all t ∈ (0, T ] and k ≥ k0, where p(k) is the transition density of X(k) with respect to
mk.

This lemma is used crucially in the proof of Lemma 5.3.

5 Proof of main theorem

In the following lemmas, we let 0 ≤ a ≤ b and ` ∈ N be arbitrary, and

∆`[a, b] := {(s1, s2, · · · , s`) : a ≤ s1 ≤ s2 ≤ · · · ≤ s` ≤ b}.

We also denote by Bb(E) the space of bounded measurable functions on E.

Lemma 5.1. For f ∈ Bb(∂D) and x ∈ D̄, we have

Ex
[( ∫ b

a

f(Xs) dLs

)` ]
=

`!

2`

∫
∆`[0, b−a]

∫
∂D

· · ·
∫
∂D

σ(dy1) · · ·σ(dy`) ds1 · · · ds`

p(a+ s1, x, y1) p(s2, y1, y2) · · · p(s`, y`−1, y`)

f(y1) · · · f(y`) ρ(y1) · · · ρ(y`).
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Discrete approximations to local times for reflected diffusions

Proof Suppose h ∈ Bb([0, T ]× ∂D). Then for t ∈ [0, T ] and x ∈ D̄, we have

Ex
[∫ t

0

h(s,Xs)dLs

]
=

1

2

∫ t

0

∫
∂D

h(s, y) p(s, x, y) ρ(y)σ(dy) ds. (5.1)

See [15, Proposition 1.1] for the case when D has C3 boundary. For Libschitz boundary,
the same proof goes through in view of [2]. The remaining computation is standard. We
provide the detail here since it is used in the next lemma also. By Fubini’s Theorem and
Markov property,

Ex
[( ∫ t

0

f(Xs) dLs

)` ]
= `!Ex

∫
∆`[0,t]

f(Xs`) · · · f(Xs1) dLs` · · · dLs1

= `!Ex
∫ t

0

(∫
∆`−1[s1, t]

f(Xs`) · · · f(Xs2) dLs` · · · dLs2
)
f(Xs1) dLs1

= `!Ex
∫ t

0

Exs1
[ ∫

∆`−1[0, t−s1]

f(Xs`) · · · f(Xs2) dLs` · · · dLs2
]
f(Xs1) dLs1

=
`!

2

∫ t

0

∫
∂D

p(s1, x, y) g(y) ρ(y)σ(dy) ds1 by (5.1),

where g(y) = Ey
[ ∫

∆`−1[0, t−s1]
f(Xs`) · · · f(Xs2) dLs` · · · dLs2

]
f(y). By induction, the re-

sult for the case a = 0 holds. The result also holds for a > 0 by Markov property of X.

By the same calculations and using the Makov property of X(k)
t , we obtain

Lemma 5.2. For f ∈ Bb(D), k ∈ N and x ∈ D(k), we have

Ex

[( ∫ b

a

f(X(k)
s ) dL(k)

s

)` ]
=

`!

2`

∫
∆`[0, b−a]

∑
λ1∈Λ(k)

· · ·
∑

λ`∈Λ(k)

p(k)(a+ s1, x, zλ1
)p(k)(s2, zλ1

, zλ2
) · · · p(k)(s`, zλ`−1

, zλ`)

f(zλ1
) · · · f(zλ`)σ(λ1) · · ·σ(λ`) ds1 · · · ds`.

The next convergence result is the key in identifying subsequential limits of (X(k), L(k)).

Lemma 5.3. For any f ∈ Bb(D) which is uniformly continuous in a neighborhood of ∂D,

lim
k→∞

Exk

[( ∫ b

a

f(X(k)
s ) dL(k)

s

)` ]
= Ex

[( ∫ b

a

f(Xs) dLs

)` ]
(5.2)

uniformly for x ∈ D̄ and for any sequence xk ∈ D(k) which converges to x. In particular,

lim
k→∞

Emk

[( ∫ b

a

f(X(k)
s ) dL(k)

s

)` ]
= Em

[( ∫ b

a

f(Xs) dLs

)` ]
. (5.3)

Proof It suffices to show the right hand side of the identities in Lemma 5.1 converges to
that of Lemma 5.2 in the sense stated for (5.2). We demonstrate the case ` = 1, as other
cases can be proved in the same way. We want to show that∫ b

a

∑
λ∈Λ(k)

p(k)(s, xk, zλ) f(zλ)σ(λ) ds→
∫ b

a

∫
∂D

p(s, x, z) f(z)σ(dz) ds (5.4)

uniformly for x ∈ D̄ and for any sequence xk ∈ D(k) which converges to x. We first argue
pointwise convergence. For fixed s ∈ (a, b), the integrand (with respect to ds) converges
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Discrete approximations to local times for reflected diffusions

by the local limit theorem (Theorem 4.5) and Lemma 2.1. Hence by Lemma 4.7 and
Lebesque dominated convergence theorem, we have (5.4) whenever xk → x.

By assumption on f , there exists k0 large enough such that f is uniformly continuous
in a neighborhood of ∂D which contains Λ(k) for all k ≥ k0. Besides, by interpolations
(see, for example, [7]), p(k) can be viewed as an element in C([0,∞) × D̄ × D̄). Now
the desired uniform convergence follow from the pre-compactness of the sequence
{gk} ⊂ C(D̄), where gk(x) =

∫ b
a

∑
λ∈Λ(k) p(k)(s, x, zλ) f(zλ)σ(λ) ds is the left hand side of

(5.4). More precisely, uniform boundedness follows from Lemma 4.7, while equicontinuity
follows from the Hölder continuity of p(k) in Theorem 4.4.

Proof of Theorem 3.1: By Lemma 5.2, we have

Ex

[( ∫ b

a

f(X(k)
s ) dL(k)

s

)` ]
≤ `!

2`
‖f‖` C`

∫
∆`[0,b−a]

1√
(a+ s1)s2 · · · s`

ds1 · · · ds`

≤ ‖f‖` C` `!

Γ((`+ 2)/2)
(b− a)`/2 (5.5)

for all x ∈ D(k) and k ≥ k0 = k0(D) ∈ (0,∞), where C = C(d,D, T ) ∈ (0,∞) and Γ is the
Gamma function. Taking f ≡ 1, we obtain

sup
k≥k0

sup
xk∈D(k)

Exk

[∣∣L(k)
b − L

(k)
a

∣∣`] ≤ C(b− a)`/2 (5.6)

for all 0 ≤ a ≤ b ≤ T , where k0 = k0(D) ∈ (0,∞) and C = C(d,D, `, T ) ∈ (0,∞) are
constants. By (5.6) and the Kolmogorov-Centov tightness criteria (see [10, Theorem
3.8.8]), we obtain tightness of {L(k)} under {Pxk} in C([0, T ],R+), where {xk} is any
sequence such that xk ∈ D(k). Besides, (5.6) clearly implies

sup
k≥k0

Emk

[∣∣L(k)
b − L

(k)
a

∣∣`] ≤ C(b− a)`/2. (5.7)

Hence we also have the tightness of {L(k)} under {Pmk}. By [4, Lemma 2.1, Lemma 3.2]
and [5, Remark 3.7], {X(k)} is tight in D([0, T ], D̄) under both {Pxk} and {Pmk}. The pre-
vious two sentences immediately imply tightness of {(X(k), L(k))} in the product space
D([0, T ], D̄)× C([0, T ],R+), under both {Pxk} and {Pmk}. Tightness of {(X(k), L(k))} in
D([0, T ], D̄ × R+) also holds since the second component is continuous. It remains to
identify subsequential limits.

We first consider subsequential limits in D([0, T ], D̄ ×R+). Suppose, without loss of
generality, that the full sequence (X(k), L(k)), under {Pmk}, converges in distribution to
(X̃, L̃) defined on some probability space (Ω̃, F̃ , P̃). Then results in [4] implies that X̃ is
the RBM under P̃, because the map from D([0, T ], D̄ ×R+) to D([0, T ], D̄) which sends
(ω1, ω2) to ω1 is continuous (see problem 13 in [10, Chapter 3]). It remains to check that
L̃ is the boundary local time of X̃ under P̃.

We first show that L̃ is a PCAF of X̃. First, L̃t is continuous by (5.7). This continuity
then implies the convergence of finite dimensional distributions (see Theorem 7.8 in [10,
Chapter 3])

(L
(k)
t1 , · · · , L

(k)
tm )→ (L̃t1 , · · · , L̃tm) as k →∞

for all 0 ≤ t1 < · · · < tm < ∞. In particular, L̃0 = 0 P̃-a.s. By first considering rational
numbers and then using continuity of L̃, we can check that L̃t is non-decreasing in t, since
each of its prelimits is non-decreasing. Second, observe that L(k) is an additive functional
by construction. Hence by convergence of joint distribution (L

(k)
s , L

(k)
t , L

(k)
s ◦ θt) for

t, s ≥ 0, we have L̃t+s(ω) = L̃t(ω) + L̃s(θtω) a.s. for all t, s ≥ 0. By continuity of L̃, we
can strengthen the previous statement to obtain the additive property

L̃t+s(ω) = L̃t(ω) + L̃s(θtω), t, s ≥ 0, P̃ -a.s.
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Discrete approximations to local times for reflected diffusions

Third, L̃t is σ(X̃s : s ≤ t) measurable by Skorohod representation theorem and the fact

that L(k)
t is σ(X

(k)
s : s ≤ t) measurable for all k ∈ N and t ≥ 0. These assert that L̃ is a

PCAF of X̃.
Fix any f ∈ Cb(∂D). Let F ∈ Cb(D̄) be any extension of f . The map (µ, ν) 7→∫ ·

0
F (µs)dνs is continuous from D([0, T ], D̄ ×R+) to D([0, T ],R+). Hence

∫ ·
0
X

(k)
s dL

(k)
s →∫ ·

0
X̃sdL̃s in law in D([0, T ],R+). Since

∫ t
0
X̃sdL̃s is continuous in t by continuity of L̃, we

have for all t ≥ 0,

Ẽ

∫ t

0

f(X̃s) dL̃s = Ẽ

∫ t

0

F (X̃s) dL̃s

= lim
k→∞

Emk

∫ t

0

F (X(k)
s ) dL(k)

s

= Em

∫ t

0

f(Xs) dLs by (5.3)

=
t

2

∫
∂D

f(y)σ(dy) by (5.1).

By a standard monotone convergence argument, we have Ẽ
∫ t

0
f(X̃s) dL̃s =

t
2

∫
∂D

f(y)σ(dy) for all f ∈ Bb(∂D). Therefore, L̃ is the PCAF of X̃ associated with

the measure σ/2 (see [9, Appendix]). By definition, L̃ is the boundary local time of X̃
under P̃. The same arguments in the last three paragraphs work for subsequential limits
of (X(k), L(k)) under {Pxk}, using (5.2) rather than (5.3). Therefore, sub-sequential
limits in D([0, T ], D̄ ×R+) are identified to be the same. Finally, subsequential limits in
D([0, T ], D̄)× C([0, T ],R+) can be identified in the same way. The proof is complete.

Example 5.1. Let D be the square with vertices {(1, 0), (−1, 0), (0, 1), (0,−1)} and C ∈
(
√

2, 3/
√

2). Then DC 2−k ⊃ ∂D(k) for all k ∈ N and for each k, the set DC 2−k ∩ D(k)

remains the same for all such C. Arguing as in the proof of (5.4), we have

lim
k→∞

Exk
[
A

(k)

C 2−k(t)
]

=
3

C
√

2
Ex[Lt] and

lim
k→∞

Exk

[ 1

2 (2−k)

∫ t

0

1{X(k)
s ∈ ∂D(k)} ds

]
=

1√
2
Ex[Lt]

whenever xk → x. Hence neither A(k)

C 2−k(t) nor 1
2 (2−k)

∫ t
0
1{X(k)

s ∈ ∂D(k)} ds is a suitable

approximation to Lt. It is clear that in the second case above, the factor 1/
√

2 comes from
the fact that only about 2k points on each side of the square is used in the calculation of
the left-hand side, while Definition 2.1 asserts that about 2k

√
2 points should be used.

6 Extensions

RBM with variable diffusion coefficient and gradient drift. We now generalize
our main result Theorem 3.1 to A-reflected diffusions with

A : =
a

2

(
∆ +∇h · ∇

)
(6.1)

for some a, h ∈W 1,2(D)∩ C(D̄) strictly positive. That is, time-changed Brownian motions
with gradient drifts. (6.1) corresponds to the general form A := 1

2 ρ ∇ · (ρa∇) in (1.1)

with a(x) = a(x) Id×d and ρ(x) = e2h(x)/a(x).
To state the result precisely, we need to first construct a biased random walk Y ε on

Dε = D ∩ εZd. Define the symmetric weights (conductances) {µxy : x, y ∈ Dε adjacent}
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Discrete approximations to local times for reflected diffusions

by two steps: First, assign for every x ∈ Dε \ ∂Dε and i = 1, 2, · · · , d,

µx,x+ε~ei := (1 + h(x+ ε~ei)− h(x))

(
e2h(x) + e2h(x+ε~ei)

2

)
εd−2

2

µx,x−ε~ei := (1 + h(x)− h(x− ε~ei))
(
e2h(x) + e2h(x−ε~ei)

2

)
εd−2

2
,

so that µxy = µyx for all x, y ∈ Dε \ ∂Dε. Second, extend to define

µxy ,

{
µyx, if x ∈ ∂Dε and y ∈ Dε \ ∂Dε are adjacent

εd−2/2, if x, y ∈ ∂Dε are adjacent.

Now µxy = µyx for all x, y ∈ Dε. Let µε(x) :=
∑
y µxy.

Definition 6.1. Let Y ε be the biased random walk on Dε with jump rate λε(x) = a(x)d/ε2

and one step transition probabilities pxy , µxy/µ(x). As before, Y ε can be either
continuous time or discrete time. In the latter case, we extend time parameter by
interpolation. We also let Y be the reflected diffusion with generator given by (6.1). It
is easy to check that Y ε and Y are symmetric with respect to mε(x) := µ(x)/λε(x) and
m(x) := e2h(x)/a(x) respectively.

Our generalization to Theorem 3.1 is precisely stated below. It is remarkable that the
same L(k) in Definition 2.1 can be used. As before, Y (k) = Y 2−k

and mk = m2−k .

Theorem 6.1. Suppose D ⊂ Rd is a bounded Lipschitz domain. Suppose a, h ∈
W 1,2(D) ∩ C(D̄) are strictly positive. Let Pxk and Pmk be the laws of Y (k) starting
from xk ∈ D(k) and mk(x) respectively. Let Px and Pm be the laws of Y starting from
x ∈ D̄ and m(x) := e2h(x)/a(x) respectively. For every T > 0, as k → ∞, the followings
hold:

(i) (Y (k), L(k)) under Pmk converges to (Y, L) in distribution in both D([0, T ], D̄) ×
C([0, T ],R+) and D([0, T ], D̄ × R+), where Y has stationary initial distribution
m(x)dx and L is the boundary local time of Y .

(ii) If xk ∈ D(k) converges to x ∈ D, then (Y (k), L(k)) under Pxk converges to (Y, L)

in distribution in both D([0, T ], D̄) × C([0, T ],R+) and D([0, T ], D̄ × R+), where Y
starts at x and L is the boundary local time of Y .

Proof Suppose a, h ∈ W 1,2(D) ∩ C(D̄) strictly positive. Then from Theorem 2.2.20 in
[11], Y ε converges weakly to Y . Moreover, let qε(t, x, y) be the transition density of
Y ε with respect to mε(x). Then qε(t, x, y) converges locally uniformly to the transition
density of Y with respect to m(x). In other words, the local central limit theorem holds.
Furthermore, all estimates in Section 4 hold for qε(t, x, y) (see Section 2.2.5 in [11]).
Now by the same argument used to prove Theorem 3.1, it is straightforward to check
that Theorem 3.1 remains true even if we generalize from RBM to reflected diffusions
with generator (6.1).

Remark 6.2. Nearest neighbor random walk approximations, such as the SRW Xε and
the biased random walk Y ε in definition 6.1, are very desirable from the point of view
of computer simulation and numerical algorithm. Nonetheless, it require a nontrivial
amount of extra work to generalize Theorem 3.1 or Theorem 6.1 to general reflected
diffusions (such as when the matrix a(x) is not of diagonal form). It seems, in view of
results in [17, 3], that nearest neighbor random walk approximations becomes highly
nontrivial even for symmetric diffusions on Rd. The Markov chain approximations in
[17, 3] are not nearest neighbor. One can expect that, due to regularity issues on the
boundary, nearest neighbor approximations of reflected diffusions are more challenging
to establish.
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Discrete approximations to local times for reflected diffusions

Other extensions. The idea in this paper can be easily extended to construct discrete
approximations to other positive continuous additive functionals (PCAF), such as the
local time on any (d− 1)-dimensional rectifiable subset in D̄, such as an open subset of
∂D, the slit [0, 1)× {0} in the unit disc, etc. The sequence 2−k for the lattice size in this
paper is chosen to follow that in [4]. Generalization of results in [4] and this paper to
any sequence which tends to zero is left to the readers. The fact that all estimates in
Section 4 hold for ε > 0 small enough will be useful.
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