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Abstract

According to the Dudley-Wichura extension of the Skorohod representation theorem,
convergence in distribution to a limit in a separable set is equivalent to the existence
of a coupling with elements converging a.s. in the metric. A density analogue of
this theorem says that a sequence of probability densities on a general measurable
space has a probability density as a pointwise lower limit if and only if there exists
a coupling with elements converging a.s. in the discrete metric. In this paper the
discrete-metric theorem is extended to stochastic processes considered in a widening
time window. The extension is then used to prove the separability version of the
Skorohod representation theorem. The paper concludes with an application to Markov
chains.
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1 Introduction

Let X1, X2, . . . , X be random elements in a general space (E, E) with distributions
P1, P2, . . . , P . Let f1, f2, . . . , f be the densities of P1, P2, . . . , P with respect to some
measure λ on (E, E). Note that such a measure λ always exists, we could for instance
take λ = P +

∑∞
n=1 2−nPn. If

lim inf
n→∞

fn = f a.e. λ

we write

Xn → X in density as n→∞.

Note that fn/f is defined almost everywhere P . It is the Radon-Nikodym derivative
dPn/dP of the absolutely continuous part of Pn with respect to P . Thus convergence in
density does not depend on λ and is equivalent to

lim inf
n→∞

dPn/dP = 1 a.e. P.
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Convergence in density and the Skorohod representation

In general, lim infn→∞ fn = f a.e. λ is weaker than limn→∞ fn = f a.e. λ and stronger
than convergence in total variation. However, if (E, E) is discrete (that is, ifE is countable
and E = 2E = the class of all subsets of E) then these three modes of convergence are
equivalent and simplify to

lim
n→∞

P(Xn = x) = P(X = x), x ∈ E;

see Theorems 6.1 and 7.1 in Chapter 1 of [12].
Let (X̂1, X̂2, . . . , X̂) denote a coupling of X1, X2, . . . , X; this means that the random

elements X̂1, X̂2, . . . , X̂ are defined on a common probability space and have the marginal
distributions P1, P2, . . . , P . In a 1995 paper [11], Section 5.4, this author showed that
convergence in density is equivalent to the existence of a coupling converging in the
discrete metric:

Theorem 0. It holds that

Xn → X in density as n→∞

if and only if there exists a coupling (X̂1, X̂2, . . . , X̂) of X1, X2, . . . , X such that for some
random variable N taking values in N = {1, 2, . . . },

X̂n = X̂, n > N. (1.1)

This density result is analogous to the Skorohod representation theorem which says
that convergence in distribution on a complete separable metric E with E the Borel sets
(a Polish space) is equivalent to the existence of a coupling converging a.s. in the metric.
Skorohod proved this theorem in the 1956 paper [10], Dudley removed the completeness
assumption in the 1968 paper [7], and Wichura showed in the 1970 paper [13] that it is
enough that the limit probability measure P is concentrated on a separable Borel set;
for historical notes, see [8]. Theorem 0 was rediscovered by Sethuraman [9] in 2002.
For recent developments going beyond separability and considering convergence in
probability, see the series of papers [2]–[6] by Berti, Pratelli and Rigo.

In the present paper we extend Theorem 0 to stochastic processes considered in a
widening time window. The main result, Theorem 2.1, is established in Section 2 while
Section 3 contains corollaries elaborating on that result. In Section 4, we show how this
yields a new proof of the separability version of the Skorohod representation theorem.
Section 5 concludes with an application to Markov chains.

2 Convergence in a widening time window

In this section we consider continuous-time stochastic processes without restriction
on state space or paths. Also we allow the state space to vary with time and include
infinity in the time set. Discrete-time processes are considered at the end of the section.

Let (Et, Et), t ∈ [0,∞], be a family of measurable spaces. Let H be a non-empty
subset of the product set {(zs)s∈[0,∞] : zs ∈ Es, s ∈ [0,∞]} and let H be the smallest
σ-algebra on H making the maps taking (zs)s∈[0,∞] ∈ H to zt ∈ Et measurable for all
t ∈ [0,∞]. For t ∈ [0,∞), let (Ht,Ht) be the image space of (H,H) under the map taking
(zs)s∈[0,∞] ∈ H to (zs)s∈[0,t).

If Z = (Zs)s∈[0,∞] is a random element in (H,H) write Zt = (Zs)s∈[0,t) for a segment
of Z in a finite time window of length t ∈ [0,∞). Note that Zt is a random element in
(Ht,Ht). We also write Zt for a random element in (Ht,Ht) even if no Z is present.

According to the following theorem, convergence in density in all finite time windows
is the distributional form of discrete-metric convergence in a widening time window.
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Convergence in density and the Skorohod representation

(Note that the coupling in this theorem is not a full coupling of Z1,Z2, . . . ,Z but only
a coupling of Zt1

1 ,Z
t2
2 , . . . ,Z. Extensions to a full coupling are considered in the next

section.)

Theorem 2.1. Let Z1,Z2, . . . ,Z be random elements in (H,H) where (H,H) is as above.
Then

∀t ∈ [0,∞) : Zt
n → Zt in density as n→∞ (2.1)

if and only if there exists a sequence of numbers 0 6 t1 6 t2 6 · · · → ∞ and a coupling
(Ẑt1

1 , Ẑ
t2
2 , . . . , Ẑ) of Zt1

1 ,Z
t2
2 , . . . ,Z such that for some N-valued random variable N ,

Ẑtn
n = Ẑtn , n > N. (2.2)

Proof. First, assume existence of the coupling. Fix t ∈ [0,∞), take m ∈ N such that
tm > t, and note that then (2.2) yields Ẑt

n = Ẑt for n > max{N,m}. Use this and the fact
that (1.1) implies convergence in density to obtain (2.1).

Conversely assume that (2.1) holds. With t ∈ [0,∞) and n ∈ N, let Q be the distribu-
tion of Z, let Qt be the distribution of Zt, let Qt

n be the distribution of Zt
n, let f tn be the

density of Zt
n with respect to some measure λt on (Ht,Ht), and let νtn be the measure

on (Ht,Ht) with density gtn := infi>n f
t
i . Due to the assumption (2.1), gtn increases to

a density of Zt as n → ∞. Thus by monotone convergence, the measures νtn increase
setwise to Qt,

νt1 6 νt2 6 · · · ↗ Qt, t ∈ [0,∞).

Thus there are numbers 1 = n0 < n1 < n2 < . . . such that

0 6 Qk − νknk
6 2−k, k ∈ N ∪ {0}.

For A ∈ H and zk ∈ Hk, let qk(A | zk) be the conditional probability of the event {Z ∈ A}
given Zk = zk. Then

Q(A) =

∫
qk(A | ·) dQk, A ∈ H.

Since νknk
6 Qk the measure νknk

is absolutely continuous with respect to Qk. Thus we
can extend νknk

from (Hk,Hk) to a measure νk on (H,H) by

νk(A) :=

∫
qk(A | ·) dνknk

, A ∈ H.

The last three displays yield

0 6 Q− νk 6 2−k, k ∈ N ∪ {0}.

Let hk be a density of νk with respect to Q. For integers k < m let νk,m be the measure
with density mink6j6m hj with respect to Q. Partition H into sets Ak, . . . , Am ∈ H such
that mink6j6m hj = hi on Ai and thus

νk,m(· ∩Ai) = νi(· ∩Ai), k 6 i 6 m.

Now define tn = k if nk 6 n < nk+1. The last two displays yield

0 6 Q− νtn,m =

m∑
i=tn

(
Q(· ∩Ai)− νi(· ∩Ai)

)
6
∞∑

i=tn

2−i = 2−tn+1.
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Convergence in density and the Skorohod representation

Let µn be the measure with density inftn6i<∞ hi with respect to Q and send m→∞ to
obtain 0 6 Q− µn 6 2−tn+1. Thus the µn increase setwise to Q,

0 =: µ0 6 µ1 6 µ2 6 · · · ↗ Q. (2.3)

Let µk
n be the marginal of µn on (Hk,Hk). Note that νknk

is the marginal of νk on
(Hk,Hk) and that µn 6 νtn and νtnntn

6 νtnn (since ntn 6 n). Thus µtn
n 6 νtnn . Now νtn has

density infi>n f
t
i and Qt

n has density f tn and thus νtn 6 Qt
n. Since µtn

n 6 νtnn this yields

µtn
n 6 Qtn

n , n ∈ N. (2.4)

Keep in mind (2.3) and (2.4) throughout the following coupling construction.
Let (Ω,F ,P) be a probability space supporting the following collection of independent

random elements with distributions to be specified below:

N , V1, V2, . . . , W1, W2, . . .

Let N be N-valued with distribution function (see (2.3))

P(N 6 n) = µn(H), n ∈ N.

Let Vn be a random element in (H,H) with distribution (see (2.3))

µn − µn−1

P(N = n)
(arbitrary distribution if P(N = n) = 0).

Let Wn be a random element in (Htn ,Htn) with distribution (see (2.4))

Qtn
n − µtn

n

P(N > n)
(arbitrary distribution if P(N > n) = 0).

Put Ẑ = VN to obtain that Ẑ has the same distribution as Z,

P(Ẑ ∈ ·) =

∞∑
n=1

P(Vn ∈ ·)P(N = n) =

∞∑
n=1

(µn − µn−1) = Q.

Put Ẑtn
n = Vtn

N on {N 6 n} and Ẑtn
n = Wn on {N > n} to obtain that Ẑtn

n has the same
distribution as Ztn

n ,

P(Ẑtn
n ∈ ·) =

n∑
k=1

P(Vtn
k ∈ ·)P(N = k) + P(Wn ∈ ·)P(N > n)

=

n∑
k=1

(µtn
k − µ

tn
k−1) + (Qtn

n − µtn
n ) = Qtn

n .

By definition Ẑ = VN and thus Ẑtn = Vtn
N . Also by definition, Ẑtn

n = Vtn
N on {N 6 n}.

Thus Ẑtn
n = Ẑtn when n > N , that is, (2.2) holds.

If Z = (Z1, Z2, . . . , Z∞) write Zk = (Z1, Z2, . . . , Zk) for a segment in a finite time
window of length k ∈ N ∪ {0}. The following is a discrete-time version of Theorem 2.1.

Corollary 2.2. Let Z1,Z2, . . . ,Z be random elements in some product space (E1, E1)⊗
(E2, E2)⊗ · · · ⊗ (E∞, E∞). Then

∀k ∈ N : Zk
n → Zk in density as n→∞

if and only if there exists a sequence of integers 0 6 k1 6 k2 6 · · · → ∞ and a coupling
(Ẑk1

1 , Ẑ
k2
2 , . . . , Ẑ) of Zk1

1 ,Z
k2
2 , . . . ,Z such that for some N-valued random variable N ,

Ẑkn
n = Ẑkn , n > N.

Proof. Apply Theorem 2.1 to (Z
b1+sc
1 )s∈[0,∞], (Z

b1+sc
2 )s∈[0,∞], . . . , (Z

b1+sc)s∈[0,∞]. (Or re-
peat the proof of Theorem 2.1 with t and tn replaced by k and kn.)
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Convergence in density and the Skorohod representation

3 Extensions to a full coupling

The coupling in Theorem 2.1 is not a full coupling of Z1,Z2, . . . ,Z but only a coupling
of Zt1

1 ,Z
t2
2 , . . . ,Z. However, in the discrete-time case of Corollary 2.2, if we restrict all but

the infinite-time state space to be discrete, then there is the following simple extension
of the coupling. It will be used in Section 4 to establish the separability version of the
Skorohod representation theorem.

Corollary 3.1. Let Z1,Z2, . . . ,Z be random elements in the product space (E1, E1) ⊗
(E2, E2)⊗ · · · ⊗ (E∞, E∞) where (E1, E1), (E2, E2), . . . are discrete and (E∞, E∞) is some
measurable space. Then

∀k ∈ N : Zk
n → Zk in density as n→∞

if and only if there exists a coupling (Ẑ1, Ẑ2, . . . , Ẑ) of Z1,Z2, . . . ,Z such that, for some
N-valued random variable N and integers 0 6 k1 6 k2 6 · · · → ∞,

Ẑkn
n = Ẑkn , n > N.

Proof. Due to Corollary 2.2, we only need to show that (Ẑk1
1 , Ẑ

k2
2 , . . . , Ẑ) can be extended

to a coupling of Z1,Z2, . . . ,Z. For that purpose set, for n ∈ N and ikn ∈ E1×E2×· · ·×Ekn ,

Qn,ikn = the conditional distribution of Zn given {Zkn
n = ikn}. (3.1)

Let the probability space (Ω,F ,P) supporting Ẑk1
1 , Ẑ

k2
2 , . . . , Ẑ, N be large enough to also

support random elements in (E1, E1)⊗ (E2, E2)⊗ · · · ⊗ (E∞, E∞),

Vn,ikn , n ∈ N, ikn ∈ E1 × E2 × · · · × Ekn ,

that are independent, independent of (Ẑk1
1 , Ẑ

k2
2 , . . . , Ẑ, N), and such that

Vkn

n,ikn
= ikn and Vn,ikn has distribution Qn,ikn .

Note that Vkn

n,Ẑkn
n

= Ẑkn
n . Thus we can extend Ẑkn

n to a Ẑn by setting Ẑn := Vn,Ẑkn
n

. Then

P(Ẑn ∈ ·) =
∑
ikn

P(Vn,ikn ∈ ·)P(Ẑkn
n = ikn) =

∑
ikn

Qn,ikn (·)P(Ẑkn
n = ikn).

Since Ẑkn
n has the same distribution as Zkn

n we obtain from this and (3.1) that Ẑn has the
same distribution as Zn, as desired.

In Corollary 3.1 we obtained a full coupling of Z1, Z2, . . . , Z in the discrete-time case
by restricting Zk

n and Zk to a discrete state space for k ∈ N but without restricting the
state space of Z∞n and Z∞. We shall now much weaken this restriction at the expense of
putting a restriction on Z∞n and Z∞.

Corollary 3.2. Let Z1,Z2, . . . ,Z be random elements in the product of Polish spaces
(E1, E1)⊗ (E2, E2)⊗ · · · ⊗ (E∞, E∞). Then the coupling (Ẑk1

1 , Ẑ
k2
2 , . . . , Ẑ) in Corollary 2.2

can be extended to a coupling (Ẑ1, Ẑ2, . . . , Ẑ) of Z1, Z2, . . . , Z.

Proof. Set (G,G) = (E1, E1)⊗ (E2, E2)⊗ · · · ⊗ (E∞, E∞). Let (Ω,F ,P) be the probability
space supporting the random elements Ẑk1

1 , Ẑk2
2 , . . . , Ẑ, N in Corollary 2.2. Since a

countable product of Polish spaces is Polish, there exist probability kernels Qn( · | · ),
n ∈ N, such that Qn(A |zkn) is the conditional probability of {Zn ∈ A} given Zkn

n = zkn ,
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Convergence in density and the Skorohod representation

A ∈ G and zkn ∈ E1×E2×· · ·×Ekn . According to the Ionescu-Tulcea extension theorem
(see [1], Section 2.7.2), the set function defined, with A ∈ F , A1, A2 . . . ∈ G and n ∈ N, by

P̃(A×A1 × · · · ×An × En+1 × · · · × E∞)

=

∫
A

P(dω)

∫
A1

Q1

(
dz1 |Zk1

1 (ω)
)
. . .

∫
An

Qn

(
dzn |Zkn

n (ω)
)

extends to a probability measure P̃ on (Ω̃, F̃) where Ω̃ = Ω × G × G × . . . and F̃ =

σ(F × G × G × . . . ). Note that Qn

(
{zn : Ẑkn

n 6= zkn
n } | Ẑkn

n

)
= 0 a.s. P for all n ∈ N

which implies that P̃
(⋃∞

n=1{(ω, z1, z2, . . . ) : Ẑkn
n (ω) 6= ẑkn

n }
)

= 0. Delete this P̃ null set

from (Ω̃, F̃ , P̃) to obtain a probability space (Ω̂, F̂ , P̂) such that if (ω, z1, z2, . . . ) ∈ Ω̂

then zn is restricted to satisfy zkn
n = Ẑkn

n (ω). Now extend Ẑkn
n to a Ẑn as follows: for

(ω, z1, z2, . . . ) ∈ Ω̂ and n ∈ N put Ẑn(ω, z1, z2, . . . ) := zn. Due to zkn
n = Ẑkn

n (ω), this
definition transfers Ẑkn

n consistently from (Ω,F ,P) to (Ω̂, F̂ , P̂). Finally transfer Ẑ to
(Ω̂, F̂ , P̂) by putting Ẑ(ω, z1, z2, . . . ) := Ẑ(ω) for (ω, z1, z2, . . . ) ∈ Ω̂.

The final corollary extends Corollary 3.2 to continuous time.

Corollary 3.3. Let Z1, Z2, . . . , Z be random elements in (D,D)⊗ (E, E) where (D,D) =

(D[0,∞),D[0,∞)) is the Skorohod space of a Polish space and (E, E) is Polish. Then the
coupling (Ẑt1

1 , Ẑ
t2
2 , . . . , Ẑ) in Theorem 2.1 can be extended to a coupling (Ẑ1, Ẑ2, . . . , Ẑ)

of Z1,Z2, . . . ,Z.

Proof. The Skorohod space (D,D) is Polish and thus the product (H,H) = (D,D)⊗ (E, E)

is Polish. Proceed as in the proof of Corollary 3.2 referring to Theorem 2.1 rather than
Corollary 2.2, replacing (G,G) by (H,H) and kn by tn, and with A ∈ H and ztn ∈ Htn .

4 The Skorohod representation

In this section let E be a metric space with metric d and E its Borel subsets. Recall
that Xn is said to converge to X in distribution as n→∞ if for all bounded continuous
functions h from E to R, ∫

h dPn →
∫
h dP, n→∞.

Recall also that A ∈ E is called a P -continuity set if P (∂A) = 0 where ∂A denotes
the boundary of A, and that by the Portmanteau Theorem (Theorem 11.1.1 in [8])
convergence in distribution is equivalent to

Pn(A)→ P (A) as n→∞ for all P -continuity sets A. (4.1)

We shall now use Corollary 3.1 to prove the Skorohod representation theorem in the
separable case.

Theorem 4.1. Let X1, X2, . . . , X be random elements in a metric space E equipped
with its Borel subsets E . Further, let X take values almost surely in a separable subset
E0 ∈ E . Then

Xn → X in distribution as n→∞ (4.2)

if and only if there is a coupling (X̂1, X̂2, . . . , X̂) of X1, X2, . . . , X such that

X̂n → X̂ pointwise as n→∞. (4.3)
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Convergence in density and the Skorohod representation

Proof. Let d be the metric. We begin with basic preliminaries. First, assume existence
of the coupling and let h be a bounded continuous function. Then (4.3) yields that
h(X̂n)→ h(X̂) pointwise as n→∞ and by bounded convergence,

∫
h dPn →

∫
h dP as

n→∞. Thus (4.2) holds.

Conversely, assume from now on that (4.2), and thus (4.1), holds. For each ε > 0, any
separable Borel set can be covered by countably many E-balls of diameter < ε. Note that
for every y ∈ E and r > 0, ∂{x ∈ E : d(y, x) < r} ⊆ ∂{x ∈ E : d(y, x) = r} and that the set
on the right-hand side has P -mass 0 except for countably many radii r. Thus the covering
sets below may be taken to be P -continuity sets. Moreover, since ∂(A ∩B) ⊆ ∂A ∪ ∂B
for all subsets A and B of E, the covering sets can be taken to be disjoint.

Let A2, A3, . . . be disjoint P -continuity sets of diameter < 1 covering E0 and put
A1 = E \ (A2 ∪ A3 ∪ . . . ). Then A1 is also a P -continuity set since P (A1) = 0 and since
∂A1 cannot contain interior points of the P -continuity sets A2, A3, . . . Thus {Ai : i ∈ N}
is a partition of E into P -continuity sets. Put A11 = A1 and A12 = A13 = · · · = ∅. For
i > 1, let Ai2, Ai3, . . . be disjoint P -continuity subsets of Ai of diameter < 1/2 covering
E0 ∩ Ai and put Ai1 = Ai \ (Ai2 ∪ Ai3 ∪ . . . ). Then again {Ai2 : i2 ∈ N2} is a partition
of E into P -continuity sets. Continue this recursively in k ∈ N to obtain a sequence of
partitions {Aik : ik∈ Nk} of E into P -continuity sets such that

Aik , ik ∈ (N \ {1})k, cover E0 and are each of diameter < 1/k (4.4)

and such that the partitions are nested in the sense that for k ∈ N and ik∈ Nk it holds
that Aik = Aik1 ∪Aik2 ∪ . . .

After these basic preliminaries, we are now ready to apply Corollary 3.1. Let Z1,
Z2, . . . , Z be the random elements in (N, 2N)N ⊗ (E, E) defined as follows (well-defined
because the partitions are nested): set Z∞n = Xn and Z∞ = X and for k ∈ N

Zk
n = ik if Xn ∈ Aik and Zk = ik if X ∈ Aik .

Due to (4.1), we have P(Zk
n = ik)→ P(Zk = ik) as n→∞, ik ∈ Nk, k ∈ N. Thus Zk

n → Zk

in density as n→∞ and Corollary 3.1 yields the existence of a coupling (Ẑ1, Ẑ2, . . . , Ẑ)

of (Z1,Z2, . . . , Z), an N-valued random variable N, and integers 0 6 k1 6 k2 6 · · · → ∞,
such that

Ẑkn
n = Ẑkn , n > N. (4.5)

Now define the coupling of X1, X2, . . . , X by setting X̂n = Ẑ∞n and X̂ = Ẑ∞. Then (after
deleting a null event) we have that X̂ ∈ E0 and that for k ∈ N

Ẑk
n = ik if X̂n ∈ Aik and Ẑk = ik if X̂ ∈ Aik .

Thus X̂n ∈ AẐkn
n

and X̂ ∈ AẐkn for all n ∈ N. Apply (4.5) to obtain that

both X̂n ∈ AẐkn and X̂ ∈ AẐkn when n > N . (4.6)

Finally, apply (4.4): since X̂ ∈ E0 we have that Ẑkn ∈ (N \ {1})kn so AẐkn has diameter
< 1/kn. From this and (4.6) we obtain that

d(X̂n, X̂) < 1/kn, n > N.

Since N < ∞ and limn→∞ 1/kn = 0 this implies that d(X̂n, X̂) → 0 pointwise, that is,
(4.3) holds.
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5 Application to Markov chains

In this final section we shall first apply Corollary 3.1 to discrete time Markov chains
with time set N ∪ {0}, and then apply Corollary 3.3 to continuous time Markov chains
with time set [0,∞).

Theorem 5.1. Let X1,X2, . . . ,X be discrete time irreducible Markov chains on a count-
able state space E with initial distributions α1, α2, . . . , α and with transition matrices
M1,M2, . . . ,M . Then

αn → α and Mn →M pointwise as n→∞ (5.1)

if and only if there exists a coupling (X̂1, X̂2, . . . , X̂) of X1,X2, . . . ,X such that for some
N-valued random variable N and some sequence of integers 0 6 k1 6 k2 6 · · · → ∞,

X̂kn
n = X̂kn , n > N.

Proof. Let pn(i, j) and p(i, j) be the (i, j) ∈ E × E entries of Mn and M . Due to irre-
ducibility, (5.1) holds if and only if for all k ∈ N and i0, i1, . . . ∈ E

lim
n→∞

αn(i0)pn(i0, i1) . . . pn(ik−2, ik−1) = α(i0)p(i0, i1) . . . p(ik−2, ik−1),

that is, if and only if

∀k ∈ N : Xk−1
n → Xk−1 in density as n→∞.

The desired result now follows from Corollary 3.1 by taking Zk
n = Xk−1

n and Zk = Xk−1

for k, n ∈ N and letting Z∞n and Z∞ be arbitrary fixed states.

Theorem 5.1 is an immediate consequence of Corollary 3.1 because the finite seg-
ments Xk

1 ,X
k
2 , . . .X

k are discrete. In the continuous time case the finite segments are
not discrete so the argument becomes more involved.

Theorem 5.2. Let X1,X2, . . . ,X be continuous time irreducible nonexplosive Markov
chains on a countable state space E with initial distributions α1, α2, . . . , α and intensity
matrices C1, C2, . . . , C. Then

αn → α and Cn → C pointwise as n→∞ (5.2)

if and only if there exists a coupling (X̂1, X̂2, . . . , X̂) of X1,X2, . . . ,X such that for some
N-valued random variable N and some sequence of real numbers 0 6 t1 6 t2 6 · · · → ∞,

X̂tn
n = X̂tn , n > N.

Proof. Let c(i, j) be the (i, j) ∈ E × E entry of C. Let c(i) =
∑

j 6=i c(i, j) be the total
intensity in state i ∈ E. For i 6= j let p(i, j) = c(i, j)/c(i) be the jump probability from i

to j. Let Y 0, Y 1, . . . be the states visited by X. Let S1, S2, . . . be the times when X enters
the states Y 1, Y 2, . . . Let K(t) be the last k such that Sk < t. Since X is nonexplosive,
K(t) is a.s. finite. Let cn(i), pn(i, j), Y 0

n , Y
1
n , . . . , S

1
n, S

2
n, . . . and Kn(t) be obtained in the

same way from Cn and Xn.

Both
(
Y 0
n , . . . , Y

Kn(t)
n , S1

n, . . . , S
Kn(t)
n

)
and

(
Y 0, . . . , Y K(t), S1, . . . , SK(t)

)
take values in the

union A(t) =
⋃∞

k=0A
(t,k) of the disjoint sets

A(t,k) = Ek+1×B(t,k) where B(t,k) = {(s1, . . . , sk) : 0 6 s1< · · · < sk< t}.
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Convergence in density and the Skorohod representation

Let λ(t) be the measure on A(t) defined by λ(t)(A(t,k) ∩ ·) = µ(t,k) where µ(t,k) is the
product of counting measure on Ek+1 and Lebesgue measure on B(t,k). On A(t,k), the
density f (t) of

(
Y 0, . . . , Y K(t), S1, . . . , SK(t)

)
with respect to λ(t) is

f (t)(i0, . . ., ik, s1, . . . , sk) = α(i0)p(i0, i1) . . . p(ik−1, ik)

c(i0) . . . c(ik−1)e−c(i0)s1 . . . e−c(ik−1)(sk−sk−1)e−c(ik)(t−sk)

and the density f (t)n of
(
Y 0
n , . . . , Y

Kn(t)
n , S1

n, . . . , S
Kn(t)
n

)
with respect to λ(t) is

f (t)n (i0, . . ., ik, s1, . . . , sk) = αn(i0)pn(i0, i1) . . . pn(ik−1, ik)

cn(i0) . . . cn(ik−1)e−cn(i0)s1 . . . e−cn(ik−1)(sk−sk−1)e−cn(ik)(t−sk).

Note that limn→∞ cn(i)e−cn(i)x = c(i)e−c(i)x holds for all x > 0 if and only if limn→∞cn(i) =

c(i) and if and only if lim infn→∞cn(i)e−cn(i)x = c(i)e−c(i)x holds for all x> 0. This and

irreducibility implies that (5.2) holds if and only if for all t ∈ [0,∞), lim infn→∞ f
(t)
n = f (t).

Now
(
Y 0
n , . . . , Y

Kn(t)
n , S1

n, . . . , S
Kn(t)
n

)
and

(
Y 0, . . . , Y K(t), S1, . . . , SK(t)

)
are random ele-

ments in a common space and Xt
n and Xt are random elements in a common space, and

since these two spaces are Borel equivalent we obtain that (5.2) holds if and only if

∀t ∈ [0,∞) : Xt
n → Xt in density as n→∞.

The theorem now follows from Corollary 3.3 by taking Zt
n = Xt

n and Zt = Xt for t ∈ [0,∞),
n ∈ N, and letting Z∞n and Z∞ be arbitrary fixed states.
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