Convergence in density in finite time windows and the Skorohod representation

Hermann Thorisson*

Abstract

According to the Dudley-Wichura extension of the Skorohod representation theorem, convergence in distribution to a limit in a separable set is equivalent to the existence of a coupling with elements converging a.s. in the metric. A density analogue of this theorem says that a sequence of probability densities on a general measurable space has a probability density as a pointwise lower limit if and only if there exists a coupling with elements converging a.s. in the discrete metric. In this paper the discrete-metric theorem is extended to stochastic processes considered in a widening time window. The extension is then used to prove the separability version of the Skorohod representation theorem. The paper concludes with an application to Markov chains.

Keywords: Skorohod representation; convergence in distribution; convergence in density; widening time window.
AMS MSC 2010: Primary 60B10, Secondary 60G99.
Submitted to ECP on October 19, 2015, final version accepted on August 15, 2016.

1 Introduction

Let X_{1}, X_{2}, \ldots, X be random elements in a general space (E, \mathcal{E}) with distributions P_{1}, P_{2}, \ldots, P. Let f_{1}, f_{2}, \ldots, f be the densities of P_{1}, P_{2}, \ldots, P with respect to some measure λ on (E, \mathcal{E}). Note that such a measure λ always exists, we could for instance take $\lambda=P+\sum_{n=1}^{\infty} 2^{-n} P_{n}$. If

$$
\liminf _{n \rightarrow \infty} f_{n}=f \quad \text { a.e. } \lambda
$$

we write

$$
X_{n} \rightarrow X \text { in density as } n \rightarrow \infty
$$

Note that f_{n} / f is defined almost everywhere P. It is the Radon-Nikodym derivative $d P_{n} / d P$ of the absolutely continuous part of P_{n} with respect to P. Thus convergence in density does not depend on λ and is equivalent to

$$
\liminf _{n \rightarrow \infty} d P_{n} / d P=1 \text { a.e. } P
$$

[^0]In general, $\liminf _{n \rightarrow \infty} f_{n}=f$ a.e. λ is weaker than $\lim _{n \rightarrow \infty} f_{n}=f$ a.e. λ and stronger than convergence in total variation. However, if (E, \mathcal{E}) is discrete (that is, if E is countable and $\mathcal{E}=2^{E}=$ the class of all subsets of E) then these three modes of convergence are equivalent and simplify to

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(X_{n}=x\right)=\mathbf{P}(X=x), \quad x \in E ;
$$

see Theorems 6.1 and 7.1 in Chapter 1 of [12].
Let $\left(\hat{X}_{1}, \hat{X}_{2}, \ldots, \hat{X}\right)$ denote a coupling of X_{1}, X_{2}, \ldots, X; this means that the random elements $\hat{X}_{1}, \hat{X}_{2}, \ldots, \hat{X}$ are defined on a common probability space and have the marginal distributions P_{1}, P_{2}, \ldots, P. In a 1995 paper [11], Section 5.4, this author showed that convergence in density is equivalent to the existence of a coupling converging in the discrete metric:

Theorem 0. It holds that

$$
X_{n} \rightarrow X \text { in density as } n \rightarrow \infty
$$

if and only if there exists a coupling $\left(\hat{X}_{1}, \hat{X}_{2}, \ldots, \hat{X}\right)$ of X_{1}, X_{2}, \ldots, X such that for some random variable N taking values in $\mathbb{N}=\{1,2, \ldots\}$,

$$
\begin{equation*}
\hat{X}_{n}=\hat{X}, \quad n \geqslant N . \tag{1.1}
\end{equation*}
$$

This density result is analogous to the Skorohod representation theorem which says that convergence in distribution on a complete separable metric E with \mathcal{E} the Borel sets (a Polish space) is equivalent to the existence of a coupling converging a.s. in the metric. Skorohod proved this theorem in the 1956 paper [10], Dudley removed the completeness assumption in the 1968 paper [7], and Wichura showed in the 1970 paper [13] that it is enough that the limit probability measure P is concentrated on a separable Borel set; for historical notes, see [8]. Theorem 0 was rediscovered by Sethuraman [9] in 2002. For recent developments going beyond separability and considering convergence in probability, see the series of papers [2]-[6] by Berti, Pratelli and Rigo.

In the present paper we extend Theorem 0 to stochastic processes considered in a widening time window. The main result, Theorem 2.1, is established in Section 2 while Section 3 contains corollaries elaborating on that result. In Section 4, we show how this yields a new proof of the separability version of the Skorohod representation theorem. Section 5 concludes with an application to Markov chains.

2 Convergence in a widening time window

In this section we consider continuous-time stochastic processes without restriction on state space or paths. Also we allow the state space to vary with time and include infinity in the time set. Discrete-time processes are considered at the end of the section.

Let $\left(E^{t}, \mathcal{E}^{t}\right), t \in[0, \infty]$, be a family of measurable spaces. Let H be a non-empty subset of the product set $\left\{\left(z^{s}\right)_{s \in[0, \infty]}: z^{s} \in E^{s}, s \in[0, \infty]\right\}$ and let \mathcal{H} be the smallest σ-algebra on H making the maps taking $\left(z^{s}\right)_{s \in[0, \infty]} \in H$ to $z^{t} \in E^{t}$ measurable for all $t \in[0, \infty]$. For $t \in[0, \infty)$, let $\left(H^{t}, \mathcal{H}^{t}\right)$ be the image space of (H, \mathcal{H}) under the map taking $\left(z_{s}\right)_{s \in[0, \infty]} \in H$ to $\left(z_{s}\right)_{s \in[0, t)}$.

If $\mathbf{Z}=\left(Z^{s}\right)_{s \in[0, \infty]}$ is a random element in (H, \mathcal{H}) write $\mathbf{Z}^{t}=\left(Z^{s}\right)_{s \in[0, t)}$ for a segment of \mathbf{Z} in a finite time window of length $t \in[0, \infty)$. Note that \mathbf{Z}^{t} is a random element in $\left(H^{t}, \mathcal{H}^{t}\right)$. We also write \mathbf{Z}^{t} for a random element in $\left(H^{t}, \mathcal{H}^{t}\right)$ even if no \mathbf{Z} is present.

According to the following theorem, convergence in density in all finite time windows is the distributional form of discrete-metric convergence in a widening time window.
(Note that the coupling in this theorem is not a full coupling of $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}$ but only a coupling of $\mathbf{Z}_{1}^{t_{1}}, \mathbf{Z}_{2}^{t_{2}}, \ldots, \mathbf{Z}$. Extensions to a full coupling are considered in the next section.)
Theorem 2.1. Let $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}$ be random elements in (H, \mathcal{H}) where (H, \mathcal{H}) is as above. Then

$$
\begin{equation*}
\forall t \in[0, \infty): \quad \mathbf{Z}_{n}^{t} \rightarrow \mathbf{Z}^{t} \text { in density as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

if and only if there exists a sequence of numbers $0 \leqslant t_{1} \leqslant t_{2} \leqslant \cdots \rightarrow \infty$ and a coupling $\left(\hat{\mathbf{Z}}_{1}^{t_{1}}, \hat{\mathbf{Z}}_{2}^{t_{2}}, \ldots, \hat{\mathbf{Z}}\right)$ of $\mathbf{Z}_{1}^{t_{1}}, \mathbf{Z}_{2}^{t_{2}}, \ldots, \mathbf{Z}$ such that for some \mathbb{N}-valued random variable N,

$$
\begin{equation*}
\hat{\mathbf{Z}}_{n}^{t_{n}}=\hat{\mathbf{Z}}^{t_{n}}, \quad n \geqslant N . \tag{2.2}
\end{equation*}
$$

Proof. First, assume existence of the coupling. Fix $t \in[0, \infty)$, take $m \in \mathbb{N}$ such that $t_{m} \geqslant t$, and note that then (2.2) yields $\hat{\mathbf{Z}}_{n}^{t}=\hat{\mathbf{Z}}^{t}$ for $n \geqslant \max \{N, m\}$. Use this and the fact that (1.1) implies convergence in density to obtain (2.1).

Conversely assume that (2.1) holds. With $t \in[0, \infty)$ and $n \in \mathbb{N}$, let Q be the distribution of \mathbf{Z}, let Q^{t} be the distribution of \mathbf{Z}^{t}, let Q_{n}^{t} be the distribution of \mathbf{Z}_{n}^{t}, let f_{n}^{t} be the density of \mathbf{Z}_{n}^{t} with respect to some measure λ^{t} on $\left(H^{t}, \mathcal{H}^{t}\right)$, and let ν_{n}^{t} be the measure on $\left(H^{t}, \mathcal{H}^{t}\right)$ with density $g_{n}^{t}:=\inf _{i \geqslant n} f_{i}^{t}$. Due to the assumption (2.1), g_{n}^{t} increases to a density of \mathbf{Z}^{t} as $n \rightarrow \infty$. Thus by monotone convergence, the measures ν_{n}^{t} increase setwise to Q^{t},

$$
\nu_{1}^{t} \leqslant \nu_{2}^{t} \leqslant \cdots \nearrow Q^{t}, \quad t \in[0, \infty)
$$

Thus there are numbers $1=n_{0}<n_{1}<n_{2}<\ldots$ such that

$$
0 \leqslant Q^{k}-\nu_{n_{k}}^{k} \leqslant 2^{-k}, \quad k \in \mathbb{N} \cup\{0\} .
$$

For $A \in \mathcal{H}$ and $\mathbf{z}^{k} \in H^{k}$, let $q_{k}\left(A \mid \mathbf{z}^{k}\right)$ be the conditional probability of the event $\{\mathbf{Z} \in A\}$ given $\mathbf{Z}^{k}=\mathbf{z}^{k}$. Then

$$
Q(A)=\int q_{k}(A \mid \cdot) d Q^{k}, \quad A \in \mathcal{H}
$$

Since $\nu_{n_{k}}^{k} \leqslant Q^{k}$ the measure $\nu_{n_{k}}^{k}$ is absolutely continuous with respect to Q^{k}. Thus we can extend $\nu_{n_{k}}^{k}$ from $\left(H^{k}, \mathcal{H}^{k}\right)$ to a measure ν_{k} on (H, \mathcal{H}) by

$$
\nu_{k}(A):=\int q_{k}(A \mid \cdot) d \nu_{n_{k}}^{k}, \quad A \in \mathcal{H} .
$$

The last three displays yield

$$
0 \leqslant Q-\nu_{k} \leqslant 2^{-k}, \quad k \in \mathbb{N} \cup\{0\} .
$$

Let h_{k} be a density of ν_{k} with respect to Q. For integers $k<m$ let $\nu_{k, m}$ be the measure with density $\min _{k \leqslant j \leqslant m} h_{j}$ with respect to Q. Partition H into sets $A_{k}, \ldots, A_{m} \in \mathcal{H}$ such that $\min _{k \leqslant j \leqslant m} h_{j}=h_{i}$ on A_{i} and thus

$$
\nu_{k, m}\left(\cdot \cap A_{i}\right)=\nu_{i}\left(\cdot \cap A_{i}\right), \quad k \leqslant i \leqslant m .
$$

Now define $t_{n}=k$ if $n_{k} \leqslant n<n_{k+1}$. The last two displays yield

$$
0 \leqslant Q-\nu_{t_{n}, m}=\sum_{i=t_{n}}^{m}\left(Q\left(\cdot \cap A_{i}\right)-\nu_{i}\left(\cdot \cap A_{i}\right)\right) \leqslant \sum_{i=t_{n}}^{\infty} 2^{-i}=2^{-t_{n}+1}
$$

Let μ_{n} be the measure with density $\inf _{t_{n} \leqslant i<\infty} h_{i}$ with respect to Q and send $m \rightarrow \infty$ to obtain $0 \leqslant Q-\mu_{n} \leqslant 2^{-t_{n}+1}$. Thus the μ_{n} increase setwise to Q,

$$
\begin{equation*}
0=: \mu_{0} \leqslant \mu_{1} \leqslant \mu_{2} \leqslant \cdots \nearrow \nearrow Q \tag{2.3}
\end{equation*}
$$

Let μ_{n}^{k} be the marginal of μ_{n} on $\left(H^{k}, \mathcal{H}^{k}\right)$. Note that $\nu_{n_{k}}^{k}$ is the marginal of ν_{k} on $\left(H^{k}, \mathcal{H}^{k}\right)$ and that $\mu_{n} \leqslant \nu_{t_{n}}$ and $\nu_{n_{t_{n}}}^{t_{n}} \leqslant \nu_{n}^{t_{n}}$ (since $n_{t_{n}} \leqslant n$). Thus $\mu_{n}^{t_{n}} \leqslant \nu_{n}^{t_{n}}$. Now ν_{n}^{t} has density $\inf _{i \geqslant n} f_{i}^{t}$ and Q_{n}^{t} has density f_{n}^{t} and thus $\nu_{n}^{t} \leqslant Q_{n}^{t}$. Since $\mu_{n}^{t_{n}} \leqslant \nu_{n}^{t_{n}}$ this yields

$$
\begin{equation*}
\mu_{n}^{t_{n}} \leqslant Q_{n}^{t_{n}}, \quad n \in \mathbb{N} . \tag{2.4}
\end{equation*}
$$

Keep in mind (2.3) and (2.4) throughout the following coupling construction.
Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space supporting the following collection of independent random elements with distributions to be specified below:

$$
N, \mathbf{V}_{1}, \mathbf{V}_{2}, \ldots, \mathbf{W}_{1}, \mathbf{W}_{2}, \ldots
$$

Let N be \mathbb{N}-valued with distribution function (see (2.3))

$$
\mathbf{P}(N \leqslant n)=\mu_{n}(H), \quad n \in \mathbb{N} .
$$

Let \mathbf{V}_{n} be a random element in (H, \mathcal{H}) with distribution (see (2.3))

$$
\frac{\mu_{n}-\mu_{n-1}}{\mathbf{P}(N=n)} \quad \text { (arbitrary distribution if } \mathbf{P}(N=n)=0 \text {). }
$$

Let \mathbf{W}_{n} be a random element in $\left(H^{t_{n}}, \mathcal{H}^{t_{n}}\right)$ with distribution (see (2.4))

$$
\frac{Q_{n}^{t_{n}}-\mu_{n}^{t_{n}}}{\mathbf{P}(N>n)} \quad \text { (arbitrary distribution if } \mathbf{P}(N>n)=0 \text {) }
$$

Put $\hat{\mathbf{Z}}=\mathbf{V}_{N}$ to obtain that $\hat{\mathbf{Z}}$ has the same distribution as \mathbf{Z},

$$
\mathbf{P}(\hat{\mathbf{Z}} \in \cdot)=\sum_{n=1}^{\infty} \mathbf{P}\left(\mathbf{V}_{n} \in \cdot\right) \mathbf{P}(N=n)=\sum_{n=1}^{\infty}\left(\mu_{n}-\mu_{n-1}\right)=Q
$$

Put $\hat{\mathbf{Z}}_{n}^{t_{n}}=\mathbf{V}_{N}^{t_{n}}$ on $\{N \leqslant n\}$ and $\hat{\mathbf{Z}}_{n}^{t_{n}}=\mathbf{W}_{n}$ on $\{N>n\}$ to obtain that $\hat{\mathbf{Z}}_{n}^{t_{n}}$ has the same distribution as $\mathbf{Z}_{n}^{t_{n}}$,

$$
\begin{aligned}
\mathbf{P}\left(\hat{\mathbf{Z}}_{n}^{t_{n}} \in \cdot\right) & =\sum_{k=1}^{n} \mathbf{P}\left(\mathbf{V}_{k}^{t_{n}} \in \cdot\right) \mathbf{P}(N=k)+\mathbf{P}\left(\mathbf{W}_{n} \in \cdot\right) \mathbf{P}(N>n) \\
& =\sum_{k=1}^{n}\left(\mu_{k}^{t_{n}}-\mu_{k-1}^{t_{n}}\right)+\left(Q_{n}^{t_{n}}-\mu_{n}^{t_{n}}\right)=Q_{n}^{t_{n}} .
\end{aligned}
$$

By definition $\hat{\mathbf{Z}}=\mathbf{V}_{N}$ and thus $\hat{\mathbf{Z}}^{t_{n}}=\mathbf{V}_{N}^{t_{n}}$. Also by definition, $\hat{\mathbf{Z}}_{n}^{t_{n}}=\mathbf{V}_{N}^{t_{n}}$ on $\{N \leqslant n\}$. Thus $\hat{\mathbf{Z}}_{n}^{t_{n}}=\hat{\mathbf{Z}}^{t_{n}}$ when $n \geqslant N$, that is, (2.2) holds.

If $\mathbf{Z}=\left(Z^{1}, Z^{2}, \ldots, Z^{\infty}\right)$ write $\mathbf{Z}^{k}=\left(Z^{1}, Z^{2}, \ldots, Z^{k}\right)$ for a segment in a finite time window of length $k \in \mathbb{N} \cup\{0\}$. The following is a discrete-time version of Theorem 2.1.
Corollary 2.2. Let $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}$ be random elements in some product space $\left(E^{1}, \mathcal{E}^{1}\right) \otimes$ $\left(E^{2}, \mathcal{E}^{2}\right) \otimes \cdots \otimes\left(E^{\infty}, \mathcal{E}^{\infty}\right)$. Then

$$
\forall k \in \mathbb{N}: \quad \mathbf{Z}_{n}^{k} \rightarrow \mathbf{Z}^{k} \text { in density as } n \rightarrow \infty
$$

if and only if there exists a sequence of integers $0 \leqslant k_{1} \leqslant k_{2} \leqslant \cdots \rightarrow \infty$ and a coupling $\left(\hat{\mathbf{Z}}_{1}^{k_{1}}, \hat{\mathbf{Z}}_{2}^{k_{2}}, \ldots, \hat{\mathbf{Z}}\right)$ of $\mathbf{Z}_{1}^{k_{1}}, \mathbf{Z}_{2}^{k_{2}}, \ldots, \mathbf{Z}$ such that for some \mathbb{N}-valued random variable N,

$$
\hat{\mathbf{Z}}_{n}^{k_{n}}=\hat{\mathbf{Z}}^{k_{n}}, \quad n \geqslant N .
$$

Proof. Apply Theorem 2.1 to $\left(Z_{1}^{\lfloor 1+s\rfloor}\right)_{s \in[0, \infty]},\left(Z_{2}^{\lfloor 1+s\rfloor}\right)_{s \in[0, \infty]}, \ldots,\left(Z^{\lfloor 1+s\rfloor}\right)_{s \in[0, \infty]}$. (Or repeat the proof of Theorem 2.1 with t and t_{n} replaced by k and k_{n}.)

3 Extensions to a full coupling

The coupling in Theorem 2.1 is not a full coupling of $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}$ but only a coupling of $\mathbf{Z}_{1}^{t_{1}}, \mathbf{Z}_{2}^{t_{2}}, \ldots, \mathbf{Z}$. However, in the discrete-time case of Corollary 2.2, if we restrict all but the infinite-time state space to be discrete, then there is the following simple extension of the coupling. It will be used in Section 4 to establish the separability version of the Skorohod representation theorem.
Corollary 3.1. Let $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}$ be random elements in the product space $\left(E^{1}, \mathcal{E}^{1}\right) \otimes$ $\left(E^{2}, \mathcal{E}^{2}\right) \otimes \cdots \otimes\left(E^{\infty}, \mathcal{E}^{\infty}\right)$ where $\left(E^{1}, \mathcal{E}^{1}\right),\left(E^{2}, \mathcal{E}^{2}\right), \ldots$ are discrete and $\left(E^{\infty}, \mathcal{E}^{\infty}\right)$ is some measurable space. Then

$$
\forall k \in \mathbb{N}: \quad \mathbf{Z}_{n}^{k} \rightarrow \mathbf{Z}^{k} \text { in density as } n \rightarrow \infty
$$

if and only if there exists a coupling $\left(\hat{\mathbf{Z}}_{1}, \hat{\mathbf{Z}}_{2}, \ldots, \hat{\mathbf{Z}}\right)$ of $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}$ such that, for some \mathbb{N}-valued random variable N and integers $0 \leqslant k_{1} \leqslant k_{2} \leqslant \cdots \rightarrow \infty$,

$$
\hat{\mathbf{Z}}_{n}^{k_{n}}=\hat{\mathbf{Z}}^{k_{n}}, \quad n \geqslant N .
$$

Proof. Due to Corollary 2.2, we only need to show that $\left(\hat{\mathbf{Z}}_{1}^{k_{1}}, \hat{\mathbf{Z}}_{2}^{k_{2}}, \ldots, \hat{\mathbf{Z}}\right)$ can be extended to a coupling of $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}$. For that purpose set, for $n \in \mathbb{N}$ and $\mathbf{i}^{k_{n}} \in E^{1} \times E^{2} \times \cdots \times E^{k_{n}}$,

$$
\begin{equation*}
Q_{n, \mathbf{i}^{k_{n}}}=\text { the conditional distribution of } \mathbf{Z}_{n} \text { given }\left\{\mathbf{Z}_{n}^{k_{n}}=\mathbf{i}^{k_{n}}\right\} . \tag{3.1}
\end{equation*}
$$

Let the probability space $(\Omega, \mathcal{F}, \mathbf{P})$ supporting $\hat{\mathbf{Z}}_{1}^{k_{1}}, \hat{\mathbf{Z}}_{2}^{k_{2}}, \ldots, \hat{\mathbf{Z}}, N$ be large enough to also support random elements in $\left(E^{1}, \mathcal{E}^{1}\right) \otimes\left(E^{2}, \mathcal{E}^{2}\right) \otimes \cdots \otimes\left(E^{\infty}, \mathcal{E}^{\infty}\right)$,

$$
\mathbf{V}_{n, \mathbf{i}^{k_{n}}}, \quad n \in \mathbb{N}, \mathbf{i}^{k_{n}} \in E^{1} \times E^{2} \times \cdots \times E^{k_{n}}
$$

that are independent, independent of $\left(\hat{\mathbf{Z}}_{1}^{k_{1}}, \hat{\mathbf{Z}}_{2}^{k_{2}}, \ldots, \hat{\mathbf{Z}}, N\right)$, and such that

$$
\mathbf{V}_{n, \mathbf{i}^{k_{n}}}^{k_{n}}=\mathbf{i}^{k_{n}} \text { and } \mathbf{V}_{n, \mathbf{i}^{k_{n}}} \text { has distribution } Q_{n, \mathbf{i}^{k_{n}}} .
$$

Note that $\mathbf{V}_{n, \hat{\mathbf{Z}}_{n}^{k_{n}}}^{k_{n}}=\hat{\mathbf{Z}}_{n}^{k_{n}}$. Thus we can extend $\hat{\mathbf{Z}}_{n}^{k_{n}}$ to a $\hat{\mathbf{Z}}_{n}$ by setting $\hat{\mathbf{Z}}_{n}:=\mathbf{V}_{n, \hat{\mathbf{Z}}_{n}^{k_{n}}}$. Then

$$
\mathbf{P}\left(\hat{\mathbf{Z}}_{n} \in \cdot\right)=\sum_{\mathbf{i}^{k_{n}}} \mathbf{P}\left(\mathbf{V}_{n, \mathbf{i}^{k_{n}}} \in \cdot\right) \mathbf{P}\left(\hat{\mathbf{Z}}_{n}^{k_{n}}=\mathbf{i}^{k_{n}}\right)=\sum_{\mathbf{i}^{k_{n}}} Q_{n, \mathbf{i}^{k_{n}}}(\cdot) \mathbf{P}\left(\hat{\mathbf{Z}}_{n}^{k_{n}}=\mathbf{i}^{k_{n}}\right) .
$$

Since $\hat{\mathbf{Z}}_{n}^{k_{n}}$ has the same distribution as $\mathbf{Z}_{n}^{k_{n}}$ we obtain from this and (3.1) that $\hat{\mathbf{Z}}_{n}$ has the same distribution as \mathbf{Z}_{n}, as desired.

In Corollary 3.1 we obtained a full coupling of $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}$ in the discrete-time case by restricting Z_{n}^{k} and Z^{k} to a discrete state space for $k \in \mathbb{N}$ but without restricting the state space of Z_{n}^{∞} and Z^{∞}. We shall now much weaken this restriction at the expense of putting a restriction on Z_{n}^{∞} and Z^{∞}.
Corollary 3.2. Let $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}$ be random elements in the product of Polish spaces $\left(E^{1}, \mathcal{E}^{1}\right) \otimes\left(E^{2}, \mathcal{E}^{2}\right) \otimes \cdots \otimes\left(E^{\infty}, \mathcal{E}^{\infty}\right)$. Then the coupling $\left(\hat{\mathbf{Z}}_{1}^{k_{1}}, \hat{\mathbf{Z}}_{2}^{k_{2}}, \ldots, \hat{\mathbf{Z}}\right)$ in Corollary 2.2 can be extended to a coupling $\left(\hat{\mathbf{Z}}_{1}, \hat{\mathbf{Z}}_{2}, \ldots, \hat{\mathbf{Z}}\right)$ of $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}$.

Proof. Set $(G, \mathcal{G})=\left(E^{1}, \mathcal{E}^{1}\right) \otimes\left(E^{2}, \mathcal{E}^{2}\right) \otimes \cdots \otimes\left(E^{\infty}, \mathcal{E}^{\infty}\right)$. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the probability space supporting the random elements $\hat{\mathbf{Z}}_{1}^{k_{1}}, \hat{\mathbf{Z}}_{2}^{k_{2}}, \ldots, \hat{\mathbf{Z}}, N$ in Corollary 2.2. Since a countable product of Polish spaces is Polish, there exist probability kernels $Q_{n}(\cdot \mid \cdot)$, $n \in \mathbb{N}$, such that $Q_{n}\left(A \mid \mathbf{z}^{k_{n}}\right)$ is the conditional probability of $\left\{\mathbf{Z}_{n} \in A\right\}$ given $\mathbf{Z}_{n}^{k_{n}}=\mathbf{z}^{k_{n}}$,
$A \in \mathcal{G}$ and $\mathbf{z}^{k_{n}} \in E^{1} \times E^{2} \times \cdots \times E^{k_{n}}$. According to the Ionescu-Tulcea extension theorem (see [1], Section 2.7.2), the set function defined, with $A \in \mathcal{F}, A^{1}, A^{2} \ldots \in \mathcal{G}$ and $n \in \mathbb{N}$, by

$$
\begin{aligned}
\tilde{\mathbf{P}}(A & \left.\times A^{1} \times \cdots \times A^{n} \times E^{n+1} \times \cdots \times E^{\infty}\right) \\
& =\int_{A} \mathbf{P}(d \omega) \int_{A^{1}} Q_{1}\left(d \mathbf{z}_{1} \mid \mathbf{Z}_{1}^{k_{1}}(\omega)\right) \cdots \int_{A^{n}} Q_{n}\left(d \mathbf{z}_{n} \mid \mathbf{Z}_{n}^{k_{n}}(\omega)\right)
\end{aligned}
$$

extends to a probability measure $\tilde{\mathbf{P}}$ on $(\tilde{\Omega}, \tilde{\mathcal{F}})$ where $\tilde{\Omega}=\Omega \times G \times G \times \ldots$ and $\tilde{\mathcal{F}}=$ $\sigma(\mathcal{F} \times \mathcal{G} \times \mathcal{G} \times \ldots)$. Note that $Q_{n}\left(\left\{\mathbf{z}_{n}: \hat{\mathbf{Z}}_{n}^{k_{n}} \neq \mathbf{z}_{n}^{k_{n}}\right\} \mid \hat{\mathbf{Z}}_{n}^{k_{n}}\right)=0$ a.s. \mathbf{P} for all $n \in \mathbb{N}$ which implies that $\tilde{\mathbf{P}}\left(\bigcup_{n=1}^{\infty}\left\{\left(\omega, \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots\right): \hat{\mathbf{Z}}_{n}^{k_{n}}(\omega) \neq \hat{\mathbf{z}}_{n}^{k_{n}}\right\}\right)=0$. Delete this $\tilde{\mathbf{P}}$ null set from $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbf{P}})$ to obtain a probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbf{P}})$ such that if $\left(\omega, \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots\right) \in \hat{\Omega}$ then \mathbf{z}_{n} is restricted to satisfy $\mathbf{z}_{n}^{k_{n}}=\hat{\mathbf{Z}}_{n}^{k_{n}}(\omega)$. Now extend $\hat{\mathbf{Z}}_{n}^{k_{n}}$ to a $\hat{\mathbf{Z}}_{n}$ as follows: for $\left(\omega, \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots\right) \in \hat{\Omega}$ and $n \in \mathbb{N}$ put $\hat{\mathbf{Z}}_{n}\left(\omega, \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots\right):=\mathbf{z}_{n}$. Due to $\mathbf{z}_{n}^{k_{n}}=\hat{\mathbf{Z}}_{n}^{k_{n}}(\omega)$, this definition transfers $\hat{\mathbf{Z}}_{n}^{k_{n}}$ consistently from $(\Omega, \mathcal{F}, \mathbf{P})$ to $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbf{P}})$. Finally transfer $\hat{\mathbf{Z}}$ to $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{\mathbf{P}})$ by putting $\hat{\mathbf{Z}}\left(\omega, \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots\right):=\hat{\mathbf{Z}}(\omega)$ for $\left(\omega, \mathbf{z}_{1}, \mathbf{z}_{2}, \ldots\right) \in \hat{\Omega}$.

The final corollary extends Corollary 3.2 to continuous time.
Corollary 3.3. Let $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}$ be random elements in $(D, \mathcal{D}) \otimes(E, \mathcal{E})$ where $(D, \mathcal{D})=$ $(D[0, \infty), \mathcal{D}[0, \infty))$ is the Skorohod space of a Polish space and (E, \mathcal{E}) is Polish. Then the coupling $\left(\hat{\mathbf{Z}}_{1}^{t_{1}}, \hat{\mathbf{Z}}_{2}^{t_{2}}, \ldots, \hat{\mathbf{Z}}\right)$ in Theorem 2.1 can be extended to a coupling $\left(\hat{\mathbf{Z}}_{1}, \hat{\mathbf{Z}}_{2}, \ldots, \hat{\mathbf{Z}}\right)$ of $\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}$.

Proof. The Skorohod space (D, \mathcal{D}) is Polish and thus the product $(H, \mathcal{H})=(D, \mathcal{D}) \otimes(E, \mathcal{E})$ is Polish. Proceed as in the proof of Corollary 3.2 referring to Theorem 2.1 rather than Corollary 2.2, replacing (G, \mathcal{G}) by (H, \mathcal{H}) and k_{n} by t_{n}, and with $A \in \mathcal{H}$ and $\mathbf{z}^{t_{n}} \in H^{t_{n}}$.

4 The Skorohod representation

In this section let E be a metric space with metric d and \mathcal{E} its Borel subsets. Recall that X_{n} is said to converge to X in distribution as $n \rightarrow \infty$ if for all bounded continuous functions h from E to \mathbb{R},

$$
\int h d P_{n} \rightarrow \int h d P, \quad n \rightarrow \infty
$$

Recall also that $A \in \mathcal{E}$ is called a P-continuity set if $P(\partial A)=0$ where ∂A denotes the boundary of A, and that by the Portmanteau Theorem (Theorem 11.1.1 in [8]) convergence in distribution is equivalent to

$$
\begin{equation*}
P_{n}(A) \rightarrow P(A) \text { as } n \rightarrow \infty \text { for all } P \text {-continuity sets } A \text {. } \tag{4.1}
\end{equation*}
$$

We shall now use Corollary 3.1 to prove the Skorohod representation theorem in the separable case.

Theorem 4.1. Let X_{1}, X_{2}, \ldots, X be random elements in a metric space E equipped with its Borel subsets \mathcal{E}. Further, let X take values almost surely in a separable subset $E_{0} \in \mathcal{E}$. Then

$$
\begin{equation*}
X_{n} \rightarrow X \text { in distribution as } n \rightarrow \infty \tag{4.2}
\end{equation*}
$$

if and only if there is a coupling $\left(\hat{X}_{1}, \hat{X}_{2}, \ldots, \hat{X}\right)$ of X_{1}, X_{2}, \ldots, X such that

$$
\begin{equation*}
\hat{X}_{n} \rightarrow \hat{X} \text { pointwise as } n \rightarrow \infty \tag{4.3}
\end{equation*}
$$

Proof. Let d be the metric. We begin with basic preliminaries. First, assume existence of the coupling and let h be a bounded continuous function. Then (4.3) yields that $h\left(\hat{X}_{n}\right) \rightarrow h(\hat{X})$ pointwise as $n \rightarrow \infty$ and by bounded convergence, $\int h d P_{n} \rightarrow \int h d P$ as $n \rightarrow \infty$. Thus (4.2) holds.

Conversely, assume from now on that (4.2), and thus (4.1), holds. For each $\epsilon>0$, any separable Borel set can be covered by countably many E-balls of diameter $<\epsilon$. Note that for every $y \in E$ and $r>0, \partial\{x \in E: d(y, x)<r\} \subseteq \partial\{x \in E: d(y, x)=r\}$ and that the set on the right-hand side has P-mass 0 except for countably many radii r. Thus the covering sets below may be taken to be P-continuity sets. Moreover, since $\partial(A \cap B) \subseteq \partial A \cup \partial B$ for all subsets A and B of E, the covering sets can be taken to be disjoint.

Let A_{2}, A_{3}, \ldots be disjoint P-continuity sets of diameter <1 covering E_{0} and put $A_{1}=E \backslash\left(A_{2} \cup A_{3} \cup \ldots\right)$. Then A_{1} is also a P-continuity set since $P\left(A_{1}\right)=0$ and since ∂A_{1} cannot contain interior points of the P-continuity sets A_{2}, A_{3}, \ldots Thus $\left\{A_{i}: i \in \mathbb{N}\right\}$ is a partition of E into P-continuity sets. Put $A_{11}=A_{1}$ and $A_{12}=A_{13}=\cdots=\varnothing$. For $i>1$, let $A_{i 2}, A_{i 3}, \ldots$ be disjoint P-continuity subsets of A_{i} of diameter $<1 / 2$ covering $E_{0} \cap A_{i}$ and put $A_{i 1}=A_{i} \backslash\left(A_{i 2} \cup A_{i 3} \cup \ldots\right)$. Then again $\left\{A_{\mathbf{i}^{2}}: \mathbf{i}^{2} \in \mathbb{N}^{2}\right\}$ is a partition of E into P-continuity sets. Continue this recursively in $k \in \mathbb{N}$ to obtain a sequence of partitions $\left\{A_{\mathbf{i}^{k}}: \mathbf{i}^{k} \in \mathbb{N}^{k}\right\}$ of E into P-continuity sets such that

$$
\begin{equation*}
A_{\mathbf{i}^{k}}, \mathbf{i}^{k} \in(\mathbb{N} \backslash\{1\})^{k}, \text { cover } E_{0} \text { and are each of diameter }<1 / k \tag{4.4}
\end{equation*}
$$

and such that the partitions are nested in the sense that for $k \in \mathbb{N}$ and $\mathbf{i}^{k} \in \mathbb{N}^{k}$ it holds that $A_{\mathbf{i}^{k}}=A_{\mathbf{i}^{k} 1} \cup A_{\mathbf{i}^{k} 2} \cup \ldots$

After these basic preliminaries, we are now ready to apply Corollary 3.1. Let \mathbf{Z}_{1}, $\mathbf{Z}_{2}, \ldots, \mathbf{Z}$ be the random elements in $\left(\mathbb{N}, 2^{\mathbb{N}}\right)^{\mathbb{N}} \otimes(E, \mathcal{E})$ defined as follows (well-defined because the partitions are nested): set $Z_{n}^{\infty}=X_{n}$ and $Z^{\infty}=X$ and for $k \in \mathbb{N}$

$$
\mathbf{Z}_{n}^{k}=\mathbf{i}^{k} \quad \text { if } \quad X_{n} \in A_{\mathbf{i}^{k}} \quad \text { and } \quad \mathbf{Z}^{k}=\mathbf{i}^{k} \quad \text { if } \quad X \in A_{\mathbf{i}^{k}}
$$

Due to (4.1), we have $\mathbf{P}\left(\mathbf{Z}_{n}^{k}=\mathbf{i}^{k}\right) \rightarrow \mathbf{P}\left(\mathbf{Z}^{k}=\mathbf{i}^{k}\right)$ as $n \rightarrow \infty, \mathbf{i}^{k} \in \mathbb{N}^{k}, k \in \mathbb{N}$. Thus $\mathbf{Z}_{n}^{k} \rightarrow \mathbf{Z}^{k}$ in density as $n \rightarrow \infty$ and Corollary 3.1 yields the existence of a coupling ($\hat{\mathbf{Z}}_{1}, \hat{\mathbf{Z}}_{2}, \ldots, \hat{\mathbf{Z}}$) of $\left(\mathbf{Z}_{1}, \mathbf{Z}_{2}, \ldots, \mathbf{Z}\right)$, an \mathbb{N}-valued random variable N, and integers $0 \leqslant k_{1} \leqslant k_{2} \leqslant \cdots \rightarrow \infty$, such that

$$
\begin{equation*}
\hat{\mathbf{Z}}_{n}^{k_{n}}=\hat{\mathbf{Z}}^{k_{n}}, \quad n \geqslant N . \tag{4.5}
\end{equation*}
$$

Now define the coupling of X_{1}, X_{2}, \ldots, X by setting $\hat{X}_{n}=\hat{Z}_{n}^{\infty}$ and $\hat{X}=\hat{Z}^{\infty}$. Then (after deleting a null event) we have that $\hat{X} \in E_{0}$ and that for $k \in \mathbb{N}$

$$
\hat{\mathbf{Z}}_{n}^{k}=\mathbf{i}^{k} \quad \text { if } \quad \hat{X}_{n} \in A_{\mathbf{i}^{k}} \quad \text { and } \quad \hat{\mathbf{Z}}^{k}=\mathbf{i}^{k} \quad \text { if } \quad \hat{X} \in A_{\mathbf{i}^{k}} .
$$

Thus $\hat{X}_{n} \in A_{\hat{\mathbf{Z}}_{n}^{k_{n}}}$ and $\hat{X} \in A_{\hat{\mathbf{Z}}^{k_{n}}}$ for all $n \in \mathbb{N}$. Apply (4.5) to obtain that

$$
\begin{equation*}
\text { both } \hat{X}_{n} \in A_{\hat{\mathbf{Z}}^{k_{n}}} \text { and } \hat{X} \in A_{\hat{\mathbf{Z}}^{k_{n}}} \text { when } n \geqslant N . \tag{4.6}
\end{equation*}
$$

Finally, apply (4.4): since $\hat{X} \in E_{0}$ we have that $\hat{\mathbf{Z}}^{k_{n}} \in(\mathbb{N} \backslash\{1\})^{k_{n}}$ so $A_{\hat{\mathbf{Z}}^{k_{n}}}$ has diameter $<1 / k_{n}$. From this and (4.6) we obtain that

$$
d\left(\hat{X}_{n}, \hat{X}\right)<1 / k_{n}, \quad n \geqslant N .
$$

Since $N<\infty$ and $\lim _{n \rightarrow \infty} 1 / k_{n}=0$ this implies that $d\left(\hat{X}_{n}, \hat{X}\right) \rightarrow 0$ pointwise, that is, (4.3) holds.

5 Application to Markov chains

In this final section we shall first apply Corollary 3.1 to discrete time Markov chains with time set $\mathbb{N} \cup\{0\}$, and then apply Corollary 3.3 to continuous time Markov chains with time set $[0, \infty)$.
Theorem 5.1. Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}$ be discrete time irreducible Markov chains on a countable state space E with initial distributions $\alpha_{1}, \alpha_{2}, \ldots, \alpha$ and with transition matrices M_{1}, M_{2}, \ldots, M. Then

$$
\begin{equation*}
\alpha_{n} \rightarrow \alpha \text { and } M_{n} \rightarrow M \text { pointwise as } n \rightarrow \infty \tag{5.1}
\end{equation*}
$$

if and only if there exists a coupling $\left(\hat{\mathbf{X}}_{1}, \hat{\mathbf{X}}_{2}, \ldots, \hat{\mathbf{X}}\right)$ of $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}$ such that for some N -valued random variable N and some sequence of integers $0 \leqslant k_{1} \leqslant k_{2} \leqslant \cdots \rightarrow \infty$,

$$
\hat{\mathbf{X}}_{n}^{k_{n}}=\hat{\mathbf{X}}^{k_{n}}, \quad n \geqslant N .
$$

Proof. Let $p_{n}(i, j)$ and $p(i, j)$ be the $(i, j) \in E \times E$ entries of M_{n} and M. Due to irreducibility, (5.1) holds if and only if for all $k \in \mathbb{N}$ and $i_{0}, i_{1}, \ldots \in E$

$$
\lim _{n \rightarrow \infty} \alpha_{n}\left(i_{0}\right) p_{n}\left(i_{0}, i_{1}\right) \ldots p_{n}\left(i_{k-2}, i_{k-1}\right)=\alpha\left(i_{0}\right) p\left(i_{0}, i_{1}\right) \ldots p\left(i_{k-2}, i_{k-1}\right)
$$

that is, if and only if

$$
\forall k \in \mathbb{N}: \quad \mathbf{X}_{n}^{k-1} \rightarrow \mathbf{X}^{k-1} \text { in density as } n \rightarrow \infty
$$

The desired result now follows from Corollary 3.1 by taking $Z_{n}^{k}=X_{n}^{k-1}$ and $Z^{k}=X^{k-1}$ for $k, n \in \mathbb{N}$ and letting Z_{n}^{∞} and Z^{∞} be arbitrary fixed states.

Theorem 5.1 is an immediate consequence of Corollary 3.1 because the finite segments $\mathbf{X}_{1}^{k}, \mathbf{X}_{2}^{k}, \ldots \mathbf{X}^{k}$ are discrete. In the continuous time case the finite segments are not discrete so the argument becomes more involved.
Theorem 5.2. Let $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}$ be continuous time irreducible nonexplosive Markov chains on a countable state space E with initial distributions $\alpha_{1}, \alpha_{2}, \ldots, \alpha$ and intensity matrices C_{1}, C_{2}, \ldots, C. Then

$$
\begin{equation*}
\alpha_{n} \rightarrow \alpha \text { and } C_{n} \rightarrow C \text { pointwise as } n \rightarrow \infty \tag{5.2}
\end{equation*}
$$

if and only if there exists a coupling $\left(\hat{\mathbf{X}}_{1}, \hat{\mathbf{X}}_{2}, \ldots, \hat{\mathbf{X}}\right)$ of $\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}$ such that for some \mathbb{N}-valued random variable N and some sequence of real numbers $0 \leqslant t_{1} \leqslant t_{2} \leqslant \cdots \rightarrow \infty$,

$$
\hat{\mathbf{X}}_{n}^{t_{n}}=\hat{\mathbf{X}}^{t_{n}}, \quad n \geqslant N .
$$

Proof. Let $c(i, j)$ be the $(i, j) \in E \times E$ entry of C. Let $c(i)=\sum_{j \neq i} c(i, j)$ be the total intensity in state $i \in E$. For $i \neq j$ let $p(i, j)=c(i, j) / c(i)$ be the jump probability from i to j. Let Y^{0}, Y^{1}, \ldots be the states visited by \mathbf{X}. Let S^{1}, S^{2}, \ldots be the times when \mathbf{X} enters the states Y^{1}, Y^{2}, \ldots Let $K(t)$ be the last k such that $S^{k}<t$. Since \mathbf{X} is nonexplosive, $K(t)$ is a.s. finite. Let $c_{n}(i), p_{n}(i, j), Y_{n}^{0}, Y_{n}^{1}, \ldots, S_{n}^{1}, S_{n}^{2}, \ldots$ and $K_{n}(t)$ be obtained in the same way from C_{n} and \mathbf{X}_{n}.
$\operatorname{Both}\left(Y_{n}^{0}, \ldots, Y_{n}^{K_{n}(t)}, S_{n}^{1}, \ldots, S_{n}^{K_{n}(t)}\right)$ and $\left(Y^{0}, \ldots, Y^{K(t)}, S^{1}, \ldots, S^{K(t)}\right)$ take values in the union $A^{(t)}=\bigcup_{k=0}^{\infty} A^{(t, k)}$ of the disjoint sets

$$
A^{(t, k)}=E^{k+1} \times B^{(t, k)} \text { where } B^{(t, k)}=\left\{\left(s_{1}, \ldots, s_{k}\right): 0 \leqslant s_{1}<\cdots<s_{k}<t\right\} .
$$

Let $\lambda^{(t)}$ be the measure on $A^{(t)}$ defined by $\lambda^{(t)}\left(A^{(t, k)} \cap \cdot\right)=\mu^{(t, k)}$ where $\mu^{(t, k)}$ is the product of counting measure on E^{k+1} and Lebesgue measure on $B^{(t, k)}$. On $A^{(t, k)}$, the density $f^{(t)}$ of $\left(Y^{0}, \ldots, Y^{K(t)}, S^{1}, \ldots, S^{K(t)}\right)$ with respect to $\lambda^{(t)}$ is

$$
\begin{aligned}
& f^{(t)}\left(i_{0}, \ldots, i_{k}, s_{1}, \ldots, s_{k}\right)=\alpha\left(i_{0}\right) p\left(i_{0}, i_{1}\right) \ldots p\left(i_{k-1}, i_{k}\right) \\
& c\left(i_{0}\right) \ldots c\left(i_{k-1}\right) e^{-c\left(i_{0}\right) s_{1}} \ldots e^{-c\left(i_{k-1}\right)\left(s_{k}-s_{k-1}\right)} e^{-c\left(i_{k}\right)\left(t-s_{k}\right)}
\end{aligned}
$$

and the density $f_{n}^{(t)}$ of $\left(Y_{n}^{0}, \ldots, Y_{n}^{K_{n}(t)}, S_{n}^{1}, \ldots, S_{n}^{K_{n}(t)}\right)$ with respect to $\lambda^{(t)}$ is

$$
\begin{aligned}
& f_{n}^{(t)}\left(i_{0}, \ldots, i_{k}, s_{1}, \ldots, s_{k}\right)=\alpha_{n}\left(i_{0}\right) p_{n}\left(i_{0}, i_{1}\right) \ldots p_{n}\left(i_{k-1}, i_{k}\right) \\
& c_{n}\left(i_{0}\right) \ldots c_{n}\left(i_{k-1}\right) e^{-c_{n}\left(i_{0}\right) s_{1}} \ldots e^{-c_{n}\left(i_{k-1}\right)\left(s_{k}-s_{k-1}\right)} e^{-c_{n}\left(i_{k}\right)\left(t-s_{k}\right)}
\end{aligned}
$$

Note that $\lim _{n \rightarrow \infty} c_{n}(i) e^{-c_{n}(i) x}=c(i) e^{-c(i) x}$ holds for all $x \geqslant 0$ if and only if $\lim _{n \rightarrow \infty} c_{n}(i)=$ $c(i)$ and if and only if $\liminf _{n \rightarrow \infty} c_{n}(i) e^{-c_{n}(i) x}=c(i) e^{-c(i) x}$ holds for all $x \geqslant 0$. This and irreducibility implies that (5.2) holds if and only if for all $t \in[0, \infty), \liminf _{n \rightarrow \infty} f_{n}^{(t)}=f^{(t)}$. Now $\left(Y_{n}^{0}, \ldots, Y_{n}^{K_{n}(t)}, S_{n}^{1}, \ldots, S_{n}^{K_{n}(t)}\right)$ and $\left(Y^{0}, \ldots, Y^{K(t)}, S^{1}, \ldots, S^{K(t)}\right)$ are random elements in a common space and \mathbf{X}_{n}^{t} and \mathbf{X}^{t} are random elements in a common space, and since these two spaces are Borel equivalent we obtain that (5.2) holds if and only if

$$
\forall t \in[0, \infty): \quad \mathbf{X}_{n}^{t} \rightarrow \mathbf{X}^{t} \text { in density as } n \rightarrow \infty
$$

The theorem now follows from Corollary 3.3 by taking $Z_{n}^{t}=X_{n}^{t}$ and $Z^{t}=X^{t}$ for $t \in[0, \infty)$, $n \in \mathbb{N}$, and letting Z_{n}^{∞} and Z^{∞} be arbitrary fixed states.

References

[1] Ash, R.B. (1972). Real Analysis and Probability. Academic Press, New York. MR-0435320
[2] Berti, P., Pratelli, L., Rigo, P. (2007). Skorohod representation on a given probability space. Prob. Theo. Relat. Fields 137, 277-288. MR-2278458
[3] Berti, P., Pratelli, L., Rigo, P. (2010). Skorohod representation theorem via disintegrations. Sakhya 72, 208-220. MR-2658171
[4] Berti, P., Pratelli, L., Rigo, P. (2011). A Skorohod representation theorem for uniform distance. Prob. Theo. Relat. Fields 150, 321-335. MR-2800912
[5] Berti, P., Pratelli, L., Rigo, P. (2013). A Skorohod representation theorem without separability. Electron. Commun. Probab. 18, 1-12. MR-3125256
[6] Berti, P., Pratelli, L., Rigo, P. (2015). Glueing lemmas and Skorohod representations. Electron. Commun. Probab. 20, 1-11. MR-3374303
[7] Dudley, R.M. (1968). Distances of probability measures and random variables. Annals of Mathematical Statistics 39, 1563-1572. MR-0230338
[8] Dudley, R.M. (2002). Real Analysis and Probability. Cambridge University Press, Cambridge. MR-1932358
[9] Sethuraman, J. (2002). Some extensions of the Skorohod representation theorem. Sankhya 64, 884-893. MR-1981517
[10] Skorohod, A.V. (1956). Limit theorems for stochastic processes. Theo. Probab. Appl. 1, 261-290. MR-0084897
[11] Thorisson, H. (1995). Coupling methods in probability theory. Scand. J. Statist. 22, 159-182. MR-1339749
[12] Thorisson, H. (2000). Coupling, Stationarity, and Regeneration. Springer, New York. MR1741181
[13] Wichura, M.J. (1970). On the construction of almost uniformly convergent random variables with given weakly convergent image laws. Annals of Mathematical Statistics 41, 284-291. MR-0266275

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS ${ }^{1}$)
- Easy interface (EJMS²)

Economical model of EJP-ECP

- Non profit, sponsored by $\mathrm{IMS}^{3}, \mathrm{BS}^{4}$, ProjectEuclid ${ }^{5}$
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *Department of Mathematics, University of Iceland, Dunhaga 5, 107 Reykjavik, Iceland. E-mail: hermann@ hi.is

[^1]: ${ }^{1}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{2}$ EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
 ${ }^{3}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{4}$ BS: Bernoulli Society http://www.bernoulli-society .org/
 ${ }^{5}$ Project Euclid: https://projecteuclid.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

