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Abstract

For any m ≥ 2, the homozygosity of order m of a population is the probability
that a sample of size m from the population consists of the same type individuals.
Assume that the type proportions follow Kingman’s Poisson-Dirichlet distribution
with parameter θ. In this paper we establish the large deviation principle for the
naturally scaled homozygosity as θ tends to infinity. The key step in the proof is a new
representation of the homozygosity. This settles an open problem raised in [1]. The
result is then generalized to the two-parameter Poisson-Dirichlet distribution.
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1 Introduction

Let γ(t) denote the gamma subordinator with Lévy measure

Λ(d x) = x−1e−xd x, x > 0.

For any θ > 0, let J1(θ) ≥ J2(θ) ≥ · · · denote the jump sizes of γ(t) over the interval [0, θ]

in descending order. If we set Pi(θ) = Ji(θ)/γ(θ), i ≥ 1, then the law of

P(θ) = (P1(θ), P2(θ), . . .)

is Kingman’s Poisson-Dirichlet distribution PD(θ)(cf.[10]). It is a probability on the
infinite-dimensional simplex

∇∞ = {p = (p1, p2, . . .) : p1 ≥ p2 ≥ · · · ≥ 0,

∞∑
i=1

pi ≤ 1}.

For any integer m ≥ 2, the function

H(p;m) =

∞∑
i=1

pmi
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Large deviations for homozygosity

is loosely called the homozygosity of orderm. The name is taken from population genetics
where the homozygosity corresponds to m = 2. The function is closely associated with
the Shannon entropy in communication, the Herfindahl-Hirschman index in economics,
and the Gini-Simpson index in ecology. It can be used to measure the population diversity
in terms of the number of different types and the evenness in the distribution among
those types. The value of H(p;m) decreases when the number of types increases and
the distribution among those types becomes more even.

In this paper we are interested in the behaviour of the random variable H(P(θ);m)

when θ tends to infinity. When a random sample of size m is selected from a population
whose individual types have distribution PD(θ), the probability that all samples are
of the same type is given by H(P(θ);m). Since H(P(θ);m) ≤ Pm−1

1 (θ), it follows that
H(P(θ);m) converges to zero as θ approaches infinity. In [7] and [9] it is shown that
H(P(θ);m) goes to zero at a magnitude of Γ(m)

θm−1 , and

√
θ

[
θm−1

Γ(m)
H(P(θ);m)− 1

]
⇒ Zm (1.1)

where⇒ denotes convergence in distribution and Zm is a normal random variable with
mean zero and variance

Γ(2m)

Γ2(m)
−m2.

It is natural to investigate more refined structures associated with the limits

H(P(θ);m)→ 0, θ →∞

and

θm−1

Γ(m)
H(P(θ);m)→ 1, θ →∞.

In [1], a full large deviation principle is established for H(P(θ);m) describing the

deviations from zero. For l in (0, 1/2), the quantity θl
(
θm−1

Γ(m)H(P(θ);m)− 1
)

converges

to zero in probability as θ tends to infinity. Large deviations associated with this limit
are called the moderate deviation principle for { θ

m−1

Γ(m)H(P(θ);m) : θ > 0}. In [5], the

moderate deviation principles are shown to hold for l in ( m−1
2m−1 ,

1
2 ). The large deviation

principle corresponding to l = 0 remains an open problem.

In this paper we will solve this open problem, namely, the large deviation principle
for θm−1

Γ(m)H(P(θ);m) describing deviations from 1. The two-parameter generalization is
also obtained. The key in the proof is a new representation of the homozygosity.

2 Large deviations

Let m is any integer that is greater than or equal to 2. The objective of this section is
to establish the large deviation principle for

L(P(θ);m) =
θm−1

Γ(m)
H(P(θ);m).

We begin with the case that θ takes integer values. For any 1 ≤ k ≤ θ, let Jki , i =

1, 2, . . . denote all the jump sizes of γ(t) over [k − 1, k]. Since the subordinator γ(t) will
not jump at t = 0, 1, . . . , θ with probability one, it follows that
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Large deviations for homozygosity

H(P(θ);m) =
1

γm(θ)

θ∑
k=1

(γ(k)− γ(k − 1))m
∞∑
i=1

(
Jki

γ(k)− γ(k − 1)

)m
(2.1)

=
1

γm(θ)

θ∑
k=1

Wm
k Hk

where W1, . . . ,Wθ are independent copies of γ(1), and independently, H1, . . . ,Hθ are
independent copies of H(P(1);m). Set

L0(P(θ);m) =
1

Γ(m)θ

θ∑
k=1

Wm
k Hk.

Then we have

L(P(θ);m) =
θm

γm(θ)
L0(P(θ);m).

Theorem 2.1. A large deviation principle holds for L(P(θ);m) as θ converges to infinity
on space R with rate θ1/m and good rate function

I(x) =

{
[Γ(m)(x− 1)]1/m, x ≥ 1,

+∞, otherwise.

Proof: By Ewens sampling formula and direct calculation we have

E[Wm
1 H1] = Γ(m).

Let

J(y) = sup

{
λy − logE[eλ

Wm
1 H1

Γ(m) ] : λ ∈ R
}
.

Since E[eλ
Wm

1 H1
Γ(m) ] =∞ for λ > 0, it follows that

J(y) = sup

{
λy − logE[eλ

Wm
1 H1

Γ(m) ] : λ ≤ 0

}
.

By Cramér’s theorem (cf. Theorem 2.2.3 in [2]), we have that for any x

lim sup
θ→∞

θ−1 logP{L0(P(θ);m) ≤ x} ≤ − inf
y≤x

J(y). (2.2)

Rewrite J(y) as

sup

{
log eλy − logE[eλ

Wm
1 H1

Γ(m) ] : λ ≤ 0

}
= sup

{
− logE

[
exp

{
λ

(
Wm

1 H1

Γ(m)
− y
)}]

: λ ≤ 0

}
= − inf

{
logE

[
exp

{
λ

(
Wm

1 H1

Γ(m)
− y
)}]

: λ ≤ 0

}
= − log inf

{
E

[
exp

{
λ

(
Wm

1 H1

Γ(m)
− y
)}]

: λ ≤ 0

}
.

Let F (λ) = E[exp{λ(
Wm

1 H1

Γ(m) − y)}]. Then we have

F ′(λ) = E

[(
Wm

1 H1

Γ(m)
− y
)

exp

{
λ

(
Wm

1 H1

Γ(m)
− y
)}]
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and

F ′′(λ) = E

[(
Wm

1 H1

Γ(m)
− y
)2

exp

{
λ

(
Wm

1 H1

Γ(m)
− y
)}]

> 0.

If y < 1, then F (0) = 1, F ′(0) = 1− y > 0. Thus there exists λ < 0 such that F (λ) < 1

which implies that J(y) > 0 for y < 1. This combined with (2.2) and the fact that J(·) is
non-increasing implies that for any x < 1

lim sup
θ→∞

θ−1/m logP{L0(P(θ);m) ≤ x}

= lim inf
θ→∞

θ−1/m logP{L0(P(θ);m) < x} = −∞ (2.3)

and thus

lim
δ→0

lim sup
θ→∞

θ−1/m logP{|L0(P(θ);m)− x| ≤ δ}

= lim
δ→0

lim inf
θ→∞

θ−1/m logP{|L0(P(θ);m)− x| < δ} (2.4)

= −∞.

Now consider the case x > 1. Since

P{Wm
1 H1 > Γ(m)x} ≤ P{W1 > [Γ(m)x]1/m} = e−[Γ(m)x]1/m ,

it follows from Theorem 3 in [11] that

lim sup
θ→∞

θ−1/m logP{L0(P(θ);m) ≥ x} ≤ −[Γ(m)(x− 1)]1/m. (2.5)

On the other hand, for any ε > 0 and 0 < δ < 1

P{L0(P(θ);m) > x}

≥ P
{

1

θ

(
Wm

1 H1

Γ(m)
− 1

)
≥ x− 1 + ε

}
P

{
1

θ

θ∑
k=2

(
Wm
k Hk

Γ(m)
− 1

)
≥ −ε

}

≥ P{H1 ≥ δ}P{Wm
1 > δ−1Γ(m)[1 + θ(x− 1 + ε)]}P

{
1

θ

θ∑
k=2

(
Wm
k Hk

Γ(m)
− 1

)
≥ −ε

}
= P{H1 ≥ δ}

×P

{
1

θ

θ∑
k=2

(
Wm
k Hk

Γ(m)
− 1

)
≥ −ε

}
exp

{
−
(
δ−1Γ(m)[1 + θ(x− 1 + ε)]

)1/m}
Since { 1

θ

∑θ
i=2(

Wm
k Hk

Γ(m) − 1) ≥ −ε} converges to one as θ tends to infinity, it follows that

lim inf
θ→∞

θ−1/m logP{L0(P(θ);m) > x} ≥ −[δ−1Γ(m)(x− 1 + ε)]1/m.

Letting ε go to zero followed by δ going to one, we obtain

lim inf
θ→∞

θ−1/m logP{L0(P(θ);m) > x} ≥ −[Γ(m)(x− 1)]1/m

which combined with (2.5) implies that

lim
θ→∞

θ−1/m logP{L0(P(θ);m) ≥ x} (2.6)

= lim
θ→∞

θ−1/m logP{L0(P(θ);m) > x}

= −[Γ(m)(x− 1)]1/m.
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Since I(x) is strictly increasing in x for x > 1 and for any δ > 0 such that x− δ > 1

P{L0(P(θ);m) ≥ x− δ} = P{|L0(P(θ);m)− x| ≤ δ}+ P{L0(P(θ);m) ≥ x+ δ},

it follows from (2.6) that

lim
δ→0

lim
θ→∞

θ−1/m logP{|L0(P(θ);m)− x| < δ}

= lim
δ→0

lim
θ→∞

θ−1/m logP{|L0(P(θ);m)− x| ≤ δ} (2.7)

= −[Γ(m)(x− 1)]1/m.

Putting together (2.3) and (2.6) we obtain that for any M > 0 and c = 1 + Mm

Γ(m)

lim sup
θ→∞

θ−1/m logP{L0(P(θ);m) 6∈ [−c, c]} ≤ −M, (2.8)

which combined with (2.4), (2.7) and Theorem (P) in [13] implies the large deviation
principle for L0(P(θ);m) with speed θ1/m and good rate function I(·).

By direct calculation

lim
θ→∞

θ−1/m logP

{∣∣∣∣(γ(θ)

θ

)m
− 1

∣∣∣∣ > δ

}
= −∞ (2.9)

By Lemma 2.1 in [5], the large deviation principle for L(P(θ);m) is the same as
L0(P(θ);m).

Finally for general θ ≥ 1, let [θ] denote the integer part of θ. By direct calculation we
have that(

γ([θ])

γ(θ)

)m
L(P([θ]);m) ≤ L(P(θ);m) ≤

(
γ([θ] + 1)

γ(θ)

)m
L(P([θ] + 1);m). (2.10)

For any 0 < δ < 1,

P

{∣∣∣∣(γ([θ])

γ(θ)

)m
− 1

∣∣∣∣ > δ

}
≤ P

{∣∣∣∣γ([θ])

γ(θ)
− 1

∣∣∣∣ > m−1δ

}
= P

{
γ([θ])

γ(θ)
< 1− δ

m

}
=

Γ(θ)

Γ([θ])Γ(θ − [θ])

∫ 1− δ
m

0

x[θ]−1(1− x)θ−[θ]−1d x

≤ Γ(θ)

Γ([θ])Γ(θ − [θ])

m

δ

(1− δ/m)[θ]

[θ]

where the second equality follows from the fact that γ([θ])/γ(θ) follows a Beta([θ], θ− [θ])

distribution. This implies that for any 0 < r < 1

lim
θ→∞

1

θr
logP

{∣∣∣∣(γ([θ])

γ(θ)

)m
− 1

∣∣∣∣ > δ

}
= −∞. (2.11)

Similarly we can prove that

lim
θ→∞

1

θr
logP

{∣∣∣∣(γ([θ] + 1)

γ(θ)

)m
− 1

∣∣∣∣ > δ

}
= −∞. (2.12)

Applying Lemma 2.1 in [5] again, we conclude that the large deviations at scales of

θr of

(
γ([θ])
γ(θ)

)m
L(P([θ]);m) and

(
γ([θ]+1)
γ(θ)

)m
L(P([θ] + 1);m) are the same as the corre-

sponding large deviations of L(P([θ]);m) and L(P([θ] + 1);m). 2

ECP 21 (2016), paper 83.
Page 5/8

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP34
http://www.imstat.org/ecp/


Large deviations for homozygosity

Remark 2.2. Considering Kingman’s coalescent and the time Tn when n ancestors are
found. Large deviation estimates were obtained in [3] for the scaled probability of two
randomly selected individuals at time zero having the same ancestor at time Tn. In our
notation this probability has the form(

n

γ(n)

)2
1

n

n∑
k=1

W 2
k .

This is the same as L0(P(n); 2) except Hk is replaced by 1. Our result shows that the
corresponding work in [3] can be generalized to any m ≥ 2.

Remark 2.3. (Connections to the result in [1]). The large deviation principle for
H(P(θ);m) obtained in [1] has speed θ and rate function

S(y) =

{
− log(1− y1/m), y ∈ [0, 1]

∞, otherwise

Since H(P(θ);m) and H(P(θ);m)− Γ(m)
θm−1 are exponentially equivalent, the same large

deviation principle holds for H(P(θ);m)− Γ(m)
θm−1 . Since

L(P(θ);m) =
θm−1

Γ(m)

[
H(P(θ);m)− Γ(m)

θm−1

]
+ 1,

one has that for L(P(θ);m) = x ≥ 1 and y = Γ(m)
θm−1 (x− 1)

exp{−θS(y)} = exp

{
−θ1/mθ(m−1)/m log

1

1− ( Γ(m)
θm−1 (x− 1))1/m

}
≈ exp{−θ1/mI(x)}.

3 Two-parameter generalization

For any 0 < α < 1 and θ > 0, let ρ(t) denote the subordinator with Lévy measure

αCαx
−(1+α)e−xd x, x > 0

where Cα > 0. Set

τ(α, θ) =
γ(θ/α)

CαΓ(1− α)
, σα,θ = ρ(τ(α, θ))

and let
P(α, θ) = (P1(α, θ), P2(α, θ), . . .)

denote the descending order statistics of the normalized jump sizes of ρ(t) over the ran-
dom interval [0, τ(α, θ)]. By Proposition 21 in [12], the law of P(α, θ) is the two-parameter
Poisson-Dirichlet distribution, σα,θ is a gamma random variable with parameters (θ, 1)

and is independent of P(α, θ). The case α = 0, θ > 0 can be recovered by choosing Cα
such that limα→0 αCα = 1.

The two-parameter homozygosity of order m is defined as

H(P(α, θ);m) =

∞∑
i=1

Pmi (α, θ).

Set

L(P(α, θ);m) =
θm−1Γ(1− α)

Γ(m− α)
H(P(α, θ);m).
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It is known ([8], [4]) that

√
θ[L(P(α, θ);m)− 1]⇒ Zαm, m→∞ (3.1)

where Zαm is a normal random variable with mean zero and variance

Γ(1− α)Γ(2m− α)

Γ2(m− α)
+ α−m2.

As in the one-parameter case, the moderate deviation principles hold for the two-
parameter Poisson-Dirichlet distribution ([6]), i.e., for any l in ( m−1

2m−1 ,
1
2 ) large deviation

principles hold for

θl[L(P(α, θ);m)− 1].

Our next result establishes the large deviation principle for L(P(α, θ);m).

Theorem 3.1. A large deviation principle holds for L(P(α, θ);m) as θ converges to
infinity on space R with rate θ1/m and good rate function

Iα(x) =


[

Γ(m−α)(x−1)
Γ(1−α)

]1/m
, x ≥ 1,

+∞, otherwise.

Proof: It suffices to consider the case that θ is an integer. Let ξ1, . . . , ξθ be i.i.d.
copies of (CαΓ(1− α))γ(1/α) and set

Wα
k = ρ(

k∑
i=1

ξi)− ρ(

k−1∑
i=1

ξi), k = 1, . . . , θ.

It is clear from the definition that Wα
1 , . . . ,W

α
θ are independent. For any λ > 0, the

Laplace transform of Wα
k has the form

E[e−λW
α
k ] = E[e−λW

α
1 ]

= E[exp{−γ(1/α)[(λ+ 1)α − 1]}]
= (1 + λ)−1.

HenceWα
1 , . . . ,W

α
θ are i.i.d. exponential with parameter one. In other words,Wα

1 , . . . ,W
α
θ

and W1, . . . ,Wθ in the previous section are equal in distribution.
For each 1 ≤ k ≤ θ, let {Jkj (α, θ) : j ≥ 1} denote all the jump sizes of ρ(·) in the

interval [
∑k−1
i=1 ξi,

∑k
i=1 ξi] and set

Hα,k =
∑
j

(
Jkj (α, θ)

Wα
k

)m
.

By Proposition 21 in [12], Hα,k is independent of Wα
k . It is not difficult to see that

Hα,1, . . . ,Hα,θ are i.i.d. with the same distribution as H(P(α, 1);m).
The two-parameter homozygosity can now be written as

H(P(α, θ);m) =

(
1

σα,θ

)m θ∑
k=1

(Wα
k )mHα,k. (3.2)

which has the same structure as (2.1) with Hα,k in place of Hk. Set

Lα(P(α, θ);m) =
Γ(1− α)

Γ(m− α)

1

θ

θ∑
k=1

(Wα
k )mHα,k
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and write

L(P(α, θ);m) =

(
θ

σα,θ

)m
Lα(P(α, θ);m),

the conclusion now follows from similar arguments used in the proof of Theorem 2.1. 2

Remark 3.2. The subordinator representation for the two-parameter Poisson-Dirichlet
distribution is a special case of subordination of a subordinator. The representations
(2.1) and (3.2) can be generalized to these models. But the independency between the
total jump size and the normalized individual jump sizes may no longer hold. It is not
clear whether our result can be generalized to these situations.

Remark 3.3. For 0 < α < 1, x > 1, we have Iα(x) < I(x). Thus L(P(α, θ);m) is more
spread out from 1 than L(P(θ);m) and α can then be used to describe the diversity of
the population in terms of large deviations.

Acknowledgments. We wish to thank the referee for the careful review of the paper
and many helpful suggestions.
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