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Abstract

We prove the Harnack inequality and boundary Harnack principle for the absolute
value of a one-dimensional recurrent subordinate Brownian motion killed upon hitting
0, when 0 is regular for itself and the Laplace exponent of the subordinator satisfies
certain global scaling conditions. Using the conditional gauge theorem for symmetric
Hunt processes we prove that the Green function of this process killed outside of
some interval (a, b) is comparable to the Green function of the corresponding killed
subordinate Brownian motion. We also consider several properties of the compensated
resolvent kernel h, which is harmonic for our process on (0,∞).
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1 Introduction

Let X = (Xt)t≥0 be a recurrent subordinate Brownian motion on R such that 0 is
regular for itself with φ : (0,∞) → (0,∞) the Laplace exponent of the corresponding
subordinator. We assume that φ is a complete Bernstein function satisfying a certain
global scaling condition (H).

The goal of this paper is to establish the Harnack inequality and boundary Harnack
principle for nonnegative harmonic functions of the absolute value of process X killed
upon hitting {0}, denoted by Z = (Zt)t≥0. In order to do so, we show that the Green
function for the killed process Z(a,b) on a finite interval (a, b), a > 0, is comparable to the
Green function of X(a,b). We introduce a third process Y = (Yt)t≥0 on (0,∞), obtained
from X(0,∞) by creation through the Feynman-Kac transform with rate equal to the killing
density κ(0,∞), see (4.1). The process Y is called the resurrected (censored) process on
(0,∞) corresponding to X. Using the conditional gauge theorems from [4] and the sharp
two-sided Green function estimates (4.3) for X(a,b) obtained in [5] we first show that the
Green functions of processes X(a,b) and Y (a,b) are comparable. In the second step we
relate Y (a,b) and Z(a,b) through a Feynman-Kac transform by a discontinuous additive
functional and apply the corresponding conditional gauge theorem.
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Boundary Harnack principle for the absolute value process

We examine a function h : R→ (0,∞) defined by

h(x) = lim
q↓0

(uq(0)− uq(x)),

which is harmonic for Z on (0,∞). Here uq is the q-potential density of process X, so h
is sometimes called the compensated resolvent kernel. This function is often considered
in relation to the local time of Lévy processes and its properties were extensively studied
in [11], [13] and [6]. By expressing the Green function of Z through the function h we
obtain estimates of the probability that Z does not die upon exiting the interval (0, R),
as well as estimates of the expected exit time of Z from the same interval in terms of h.
These results can be also found in a recent paper [6], where they have been considered
in a similar setting.

Using these results, as well as sharp two-sided Green function estimates for Z(a,b)

obtained through the conditional gauge theorem, we arrive to the main results of this
paper by applying standard methods from [8] and [9].

The paper is composed as follows. In Section 2 we recall some basic results for a
one-dimensional subordinate Brownian motion and consider several properties of the
function h. Applying these results, in Section 3 we prove several properties of the
first exit time of Z from a finite interval (0, R). In Section 4 we prove that the process
Z killed outside of a finite interval (a, b), 0 < a < b, can be obtained from the killed
censored process Y (a,b) by a combination of a discontinuous and continuous Feynman-
Kac transform and show that the Green functions for X(a,b) and Z(a,b) are comparable.
Finally, in Section 5 we give the proof of the Harnack inequality and boundary Harnack
principle for Z(a,b).

2 Preliminaries

Let φ : (0,∞)→ (0,∞) be a complete Bernstein function, φ ∈ CBF , with killing term
and drift zero, i.e.

φ(λ) =

∫ ∞
0

(1− e−λt)ν(t)dt,

where the Lévy measure satisfies the condition
∫∞

0
(1 ∧ t)ν(t)dt < ∞. Note that every

Bernstein function φ satisfies the condition

1 ∧ λ ≤ φ(λr)

φ(r)
≤ 1 ∨ λ, λ, r > 0. (2.1)

Let W = (Wt)t≥0 be a 1-dimensional Brownian motion and S = (St)t≥0 a subordinator
independent of W with the Laplace exponent φ, that is

E[e−λSt ] = e−tφ(λ), t ≥ 0, λ > 0.

Define a one-dimensional subordinate Brownian motion X = (Xt)t≥0 by Xt = WSt . Then
X is a Lévy process with the characteristic exponent

ψ(x) = φ(x2), x ∈ R

and a decreasing Lévy density

j(x) =

∫ ∞
0

(4πs)−1/2e
−x2
4s ν(s)ds, x ∈ R.

Furthermore, we will only consider the case when 0 is regular for itself, i.e. when

P0(σ{0} = 0) = 1,
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Boundary Harnack principle for the absolute value process

where σB = inf{t > 0 : Xt ∈ B} is the first hitting time of B ∈ B(R) for X. By [13,
Lemma 3.1] this holds if and only if the Kesten-Bretagnolle condition is satisfied, that is
if ∫ ∞

1

1

φ(λ2)
dλ <∞. (2.2)

By [1, Theorem II.16] there exists a bounded and continuous density uq of the q-resolvent

Uqf(x) =

∫ ∞
0

e−qtEx[f(Xt)]dt =

∫
R

f(x)uq(x)dx

of the form

uq(x) =

∫ ∞
0

e−qtpt(x)dt =

∫ ∞
0

e−qt
1

2π

∫
R

e−iλxe−tφ(λ2)dλ dt =
1

2π

∫
R

cos(λx)

q + φ(λ2)
dλ.

Since the transition density pt(x) is decreasing in x it follows that uq is decreasing as
well.

Definition 2.1. A Borel measurable function f on R is harmonic on a Borel set D with
respect to a Markov process X if for every bounded open set B ⊂ B ⊂ D

f(x) = Ex[f(XτB )], x ∈ B (2.3)

where τB = inf{t > 0 : Xt 6∈ B} is the first exit time of X from B. If (2.3) holds also for
D in place of B, we say that f is regular harmonic on D.

Here we assume that the expectation in (2.3) is finite, X∞ = ∂, where ∂ is the
so-called cemetery point and that f(∂) = 0.

Define h : R→ [0,∞) as

h(x) = lim
q↓0

(uq(0)− uq(x)) =
1

π

∫ ∞
0

1− cos(λx)

φ(λ2)
dλ. (2.4)

The function h is symmetric and since uq is decreasing, h is increasing on [0,∞).
Let X0 be the process X killed at 0 and Z = (Zt)t≥0 the absolute value of that

process,

Zt =

{
|Xt|, t < σ{0}
∂, t ≥ σ{0}

, t ≥ 0.

Since 0 is not polar, that is Px(σ0 <∞) > 0 for all x ∈ R, X0 is a proper subprocess of X.
Also, if X is recurrent then, by [13, Theorem 3.1], Px(σ0 <∞) = 1 for all x ∈ R. By [13,
Theorem 1.1], h is harmonic for the process X0 on R \ {0}, and since it is symmetric, it
is also harmonic for Z on (0,∞). Let GX

0

(x, dy) and GZ(x, dy) be the Green measures
for X0 and Z respectively. Note that for every x > 0 and A ∈ B(0,∞),

GZ(x,A) =

∫ ∞
0

(Px(X0
t ∈ A) + Px(−X0

t ∈ A))dt =

∫
A

(
GX

0

(x, y) +GX
0

(x,−y)
)
dy

and thus the Green function of Z is equal to

GZ(x, y) = GX
0

(x, y) +GX
0

(x,−y). (2.5)

Furthermore, the Green function GX
0

of X0 can be represented in terms of the function
h. By [1, Corrolary II.18] it follows that Ex [e−qσ{0} ] = uq(x)

uq(0) and therefore

GX
0

(x, y) = lim
q↓0

uq0(x, y) = lim
q↓0

(
uq(x, y)− Ex

[
e−qσ{0}

]
uq(0, y)

)
(2.4)
= −h(y − x) + h(x) + h(y)− κh(x)h(y),
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Boundary Harnack principle for the absolute value process

where κ =
(

1
π

∫∞
0

1
φ(λ2)dλ

)−1

∈ [0,∞). Note that by the Chung-Fuchs type criteria for

recurrence and (2.2), κ = 0 if and only if X is recurrent. It follows from (2.5) that

GZ(x, y) = 2h(x) + 2h(y)− h(y − x)− h(y + x)− 2κh(x)h(y), x, y > 0. (2.6)

The following lemma is implied by [6, Proposition 2.2, Proposition 2.4], which estab-
lish similar bounds for GX

0

in terms of h.

Lemma 2.2. For every x, y > 0, GZ(x, y) ≤ 4h(x ∧ y). If X is recurrent then GZ(x, y) ≥
h(x ∧ y), for every x, y > 0.

Proof. First we show that h is a subadditive function on R. Since h is symmetric it
follows that

h(x) + h(y)− h(x+ y) = h(−x) + h(y)− h(x+ y) ≥ GX
0

(−x, y) ≥ 0.

By (2.6) and subadditivity of h for 0 < x < y we get

GZ(x, y) ≤ 2h(x) + 2h(y)− h(y − x)− h(y + x)− 2κh(x)h(y)

≤ 2h(x) + h(x) + h(y − x) + h(−x) + h(y + x)− h(y − x)− h(y + x) = 4h(x).

Since h is increasing on (0,∞), when κ = 0 it follows that

GZ(x, y) ≥ h(x) + h(y)− h(y − x) ≥ h(x).

Throughout this paper we will assume that the complete Bernstein function φ satisfies
the following global scaling condition
(H): There exist constants a1, a2 > 0 and 1

2 < δ1 ≤ δ2 < 1 such that

a1λ
δ1 ≤ φ(λr)

φ(r)
≤ a2λ

δ2 , λ ≥ 1, r > 0.

Note that, since δ1 >
1
2 , the regularity condition (2.2) is satisfied and κ = 0, i.e. X is

recurrent and 0 is regular for itself.
We will use the following estimate of h in terms of the characteristic function ψ

several times in the following chapter, see also [6, Lemma 2.14].

Lemma 2.3. There exists a constant c1 > 1 such that for all x > 0,

c−1
1

1

xψ
(

1
x

) ≤ h(x) ≤ c1
1

xψ
(

1
x

) .
Proof. For every x ∈ R it follows that

h(x) ≤ 1

π

∫ ∞
0

(
ξ2x2

2
∧ 2

)
1

ψ(ξ)
dξ =

x2

2π

∫ 2
x

0

ξ2

φ(ξ2)
dξ +

2

π

∫ ∞
2
x

1

φ(ξ2)
dξ

(H)

≤ x2

2π

a2

φ(4x−2)

(
2

x

)2δ2 ∫ 2
x

0

ξ2−2δ2dξ +
2x−2δ1

a1πφ (4x−2)

∫ ∞
2
x

ξ−2δ1dξ ≤ c̃1
1

xφ (x−2)
.

On the other hand, denoting the Fourier transform operator by F we have

h(x) =
1

2π

(
F 1

ψ
(0)−F 1

ψ
(x)

)
≥ 1

4π

∫ ∞
0

(
ξ2x2

4
∧ 1

)
dξ

ψ(ξ)

=
x2

π

∫ 2
x

0

ξ2

φ(ξ2)
dξ +

1

π

∫ ∞
2
x

dξ

φ(ξ2)

(H)

≥ x2

4π

a1

φ(4x−2)

(
2

x

)2δ1 ∫ 2
x

0

ξ2−2δ1dξ +
2x−2δ2

a2πφ (4x−2)

∫ ∞
2
x

ξ−2δ2dξ ≥ c̃2
1

xφ (x−2)
.
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Boundary Harnack principle for the absolute value process

From the previous lemma and (H), it follows that h also satisfies a global scaling
condition, i.e. there exist constants d1, d2 > 0 such that

d1λ
2δ1−1 ≤ h(λt)

h(t)
≤ d2λ

2δ2−1, ∀λ ≥ 1, t > 0. (2.7)

This condition implies the following lower bound for the Green function GZ(0,R) of the

killed process Z(0,R), R > 0, which is obtained similarly as in [6, Lemma 4.2]. We omit
the proof.

Lemma 2.4. There exist λ1 ∈
(
0, 1

2

)
and λ2 > 0 such that for every R > 0,

GZ(0,R)(x, y) ≥ λ2h(R), x, y ∈ (0, λ1R).

3 Properties of the exit time of Z from a finite interval

Denote by σ0 := σ{0} the lifetime of Z and τ(0,R) = inf{t > 0 : Zt 6∈ (0, R)} the first
exit time of Z from (0, R), R > 0. The following probability estimate that Z does not die
upon exiting (0, R) was also obtained in [6, Proposition 2.7].

Lemma 3.1. For every R > 0 and x ∈ (0, R)

1

8

h(x)

h(R)
≤ Px

(
τ(0,R) < σ0

)
≤ h(x)

h(R)
.

Proof. First we prove the right inequality. For ε > 0 by harmonicity of h on (0,∞),

h(x) = Ex
[
h
(
Zτ(ε,R)

)]
= Ex

[
h
(
Zτ(ε,R)

)
: τ(ε,R) < σ{0}

]
.

Since h is continuous and h(0) = 0, by the dominated convergence theorem and quasi-left
continuity of Z, it follows that h is regular harmonic for Z on (0, R),

h(x) = lim
ε→0

Ex
[
h
(
Zτ(ε,R)

)
: τ(ε,R) < σ{0}

]
= Ex

[
h
(
Zτ(0,R)

)
: τ(0,R) < σ{0}

]
.

Since h is increasing it follows that

h(x) =

∫ ∞
R

h(y)Px
(
Zτ(0,R)

∈ dy : τ(0,R) < σ0

)
≥ h(R)Px

(
τ(0,R) < σ0

)
.

For the other inequality, by continuity and harmonicity of the Green function GZ(·, 2R)

on (ε,R) and Lemma 2.2, it follows that

h(x) ≤ GZ(x, 2R) = lim
ε→0

Ex
[
GZ(Zτ(ε,R)

, 2R)
]

=

∫ ∞
R

GZ(z, 2R)Px(Zτ(0,R)
∈ dz)

≤ 4h(2R)Px(τ(0,R) < σ0)
(2.1),(2.4)
≤ 8h(R)Px(τ(0,R) < σ0).

The following estimate for the tail distribution function of the lifetime of Z was proven
in [6, Corollary 3.5.]. Under additional assumptions it is also possible to obtain estimates
of the derivatives of the tail distribution with respect to the time component. For more
details see [7].

Lemma 3.2. If there exist a1 > 0 and δ1 ∈ (0, 1] such that φ(λt) ≥ a1λ
δ1φ(t) hold for all

λ ≥ 1 and t > 0, then there exists a constant c2 = c2(n, φ) such that

c−1
2

h(x)

h
(
1/ψ−1

(
1
t

)) ≤ Px(σ0 > t) ≤ c2
h(x)

h
(
1/ψ−1

(
1
t

))
for every x 6= 0 and t > 0 such that tψ( 1

x ) ≥ 1.
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Boundary Harnack principle for the absolute value process

Using this result we can easily derive the following estimates for the expected exit
time of Z from interval (0, R) in terms of the function h.

Lemma 3.3. There exists a constant c3 = c3(R,φ) > 0 such that

(i) Ex
[
τ(0,R)

]
≤ 4Rh(x), 0 < x < R

(ii) Ex
[
τ(0,R)

]
≥ c3h(x), for x small enough.

Proof. (i) By Lemma 2.2,

Ex
[
τ(0,R)

]
=

∫ R

0

GZ(0,R)(x, y)dy ≤
∫ R

0

4h(x)dy = 4Rh(x)

(ii) For the other inequality note that for all t > 0,

Px(σ0 > t) = Px(σ0 > t, τ(0,R) ≥ σ0) + Px(σ0 > t, τ(0,R) < σ0)

≤ Px(τ(0,R) > t) + Px(τ(0,R) < σ0) ≤
Ex
[
τ(0,R)

]
t

+ Px(τ(0,R) < σ0),

where the last term follows from Markov’s inequality. Hence, by Lemma 3.1, Lemma 3.2
and Lemma2.3, if tψ

(
1
x

)
> 1 there exists a constant c̃1 > 0 such that

Ex
[
τ(0,R)

]
≥ t
(
Px(σ0 > t)− Px(τ(0,R) < σ0)

)
≥ c1t

h(x)

h
(
1/ψ−1

(
1
t

)) − t h(x)

h(R)

≥

(
c1c̃1

ψ−1
(

1
t

) − t

h(R)

)
h(x) = fR(t)h(x). (3.1)

Note that by (H) there exists a constants c̃2 > 0 such that for all t ≤ 1,

fR(t) ≥ c̃2ψ−1(1)t
−1
2δ1 − t

h(R)
,

so there exists t0 = t0(φ,R) ∈ (0, 1) such that fR(t) > 0 for all t < t0. Therefore,

Ex[τ(0,R)] ≥ fR(t0)h(x), for all x <
1

ψ−1( 1
t0

)
.

4 Green function estimates for Z(a,b)

Let X(a,b) and Z(a,b) be the processes X and Z killed outside of interval (a, b), 0 <

a < b. In this section we obtain sharp bounds on the Green function GZ(a,b) by comparing

it to the Green function of X(a,b).
Let Y be the process obtained from X(0,∞) through the Feynman-Kac transform

with respect to the positive continuous additive functional Aκ with potential κ(0,∞)(x) =∫ 0

−∞ j(|x− y|)dy, i.e.

Ex[f(Yt)] = Ex

[
eAκ(t)f(X

(0,∞)
t )

]
= Ex

[
e
∫ t
0
κ(0,∞)(X

(0,∞)
s )dsf(X

(0,∞)
t )

]
(4.1)

for every bounded Borel function f on (0,∞). We call Y the resurrected (censored)
process on (0,∞) corresponding to X, see [2] for a study of the censored process
corresponding to a symmetric α-stable Lévy process, α ∈ (0, 2).

From the representation of Beurling-Deny and LeJan, the jumping measure associated
with the Dirichlet form (EZ ,FZ) corresponding to the process Z has a density equal to

i(x, y) = j(|x− y|) + j(|x+ y|).

ECP 21 (2016), paper 84.
Page 6/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP28
http://www.imstat.org/ecp/


Boundary Harnack principle for the absolute value process

The Dirichlet forms corresponding to the processes X(a,b), Y (a,b) and Z(a,b) are therefore
equal to

EX
(a,b)

(u, u) =
1

2

∫ b

a

∫ b

a

(u(x)− u(y))2j(|x− y|)dydx+

∫ b

a

u(x)2κ1(x)dx

EY
(a,b)

(u, u) =
1

2

∫ b

a

∫ b

a

(u(x)− u(y))2j(|x− y|)dydx+

∫ b

a

u(x)2κ2(x)dx

EZ
(a,b)

(u, u) =
1

2

∫ b

a

∫ b

a

(u(x)− u(y))2i(x, y)dydx+

∫ b

a

u(x)2κ3(x)dx,

where the killing densities κ1, κ2 and κ3 are of the form

κ1(x) =

∫
(a,b)c

j(|x− y|)dy,

κ2(x) =

∫
(0,∞)\(a,b)

j(|x− y|)dy,

κ3(x) =

∫
(0,∞)\(a,b)

i(x, y)dy.

Note that Y (a,b) can be obtained from X(a,b) by creation through the Feynman-Kac trans-
form at rate κ(0,∞). Therefore, by [4, Lemma 3.4] we can relate the Green functions of

processesX(a,b) and Y (a,b) through a conditional gauge function u1(x, y) = Eyx

[
eAκ(ζX(a,b))

]
by

GY(a,b)(x, y) = u1(x, y)GX(a,b)(x, y).

Here ζX(a,b) = inf{t > 0 : Xt 6∈ (a, b)} is the lifetime ofX(a,b) and Pyx denotes the probability

measure of the GX(a,b)(·, y)-conditioned process starting from x, i.e. the process with
transition probability

pyt (x, z) =
GX(a,b)(z, y)

GX(a,b)(x, y)
pX

(a,b)

t (x, z). (4.2)

Next we recall the definition of the Kato class S∞ from [4].

Definition 4.1. Let X be a transient Hunt process with the Green function G. A
nonnegative Borel function κ is said to be of the Kato class S∞(X) if for any ε > 0 there
is a Borel set K of finite measure and a constant δ > 0 such that

sup
x,z∈Rn

∫
Kc∪B

GX(x, y)GX(y, z)

GX(x, z)
κ(y)dy < ε

for all measurable sets B ⊂ K such that λ(B) < δ.

By the conditional gauge theorem [4, Theorem 3.3], if κ(0,∞) ∈ S∞(X(a,b)), the
conditional gauge function u1 is bounded between two positive numbers. The key
ingredient in showing κ(0,∞) ∈ S∞(X(a,b)) is the following Green function estimate
for GX(a,b) from [5, Corollary 7.4 (ii)]. Let Φ(x) := 1

φ(x−2) , δ(x) := dist(x, (a, b)c) and

a(x, y) := Φ(δ(x))
1
2 Φ(δ(y))

1
2 . There exists a constant c4 > 1 such that for every x, y ∈ (a, b)

c−1
4

(
a(x, y)

Φ−1(a(x, y))
∧ a(x, y)

|x− y|

)
≤ GX(a,b)(x, y) ≤ c4

(
a(x, y)

Φ−1(a(x, y))
∧ a(x, y)

|x− y|

)
. (4.3)

Also, (H) implies that Φ−1 satisfies the following scaling condition: there exists a constant
c5 > 1 such that for all 0 < r ≤ R <∞,

c−1
5

( r
R

)1/(2δ1)

≤ Φ−1(r)

Φ−1(R)
≤ c5

( r
R

)1/(2δ2)

. (4.4)
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Boundary Harnack principle for the absolute value process

Theorem 4.2. Let X be a recurrent subordinate Brownian motion via a subordinator
with Laplace exponent φ ∈ CBF satisfying (H) for some δ1 >

1
2 . Then the function κ(0,∞)

is in Kato class S∞(X(a,b)). Therefore, the pair (X(a,b), κ(0,∞)) is conditionally gaugeable
and consequently the Green functions GX(a,b) and GY(a,b) are comparable.

Proof. Let ε > 0. From (4.3) we get the following 3G inequality,

A(x, y, z) :=
GX(a,b)(x, y)GX(a,b)(y, z)

GX(a,b)(x, z)
≤ c̃1Φ(δ(y))(|x− z| ∨ Φ−1(a(x, z)))

(|x− y| ∨ Φ−1(a(x, y)))(|y − z| ∨ Φ−1(a(y, z)))

(4.5)

for some c̃1 > 0. First note that, by (2.1) and (4.4), if δ(y) ≤ 2δ(x) then

Φ−1(a(x, y)) ≥ Φ−1

(
1

4
Φ (δ(y))

1/2
Φ(δ(y))1/2

)
≥ c−1

5 2−
1
δ1 δ(y).

Since δ(y) ≤ 2(δ(x) ∨ |x− y|), it follows that |x− y| ∨ Φ−1(a(x, y)) ≥
(

1
2 ∧ c

−1
5 2−1/δ1

)
δ(y).

Combining this inequality with (4.5), we arrive to A(x, y, z) ≤ c̃1
(
4 ∨ c2522/δ1

)
(b−a)Φ(δ(y))

δ(y)2 .

Next, let c̃2 = c̃1
(
4 ∨ c2522/δ1

)
(b−a) and A = [a, a+η]∪ [b−η, b] for some 0 < η < (b−a)∧1.

It follows that

sup
x,z∈(a,b)

∫
A

A(x, y, z)dy ≤ 2c̃2

∫ η

0

Φ(s)

s2
ds

(H)

≤ 2c̃2
a1φ(1)

∫ η

0

s2δ1

s2
ds = c̃3η

2δ1−1.

Therefore, by choosing η small enough and K := [a+ η, b− η], we get to

sup
x,z∈(a,b)

∫
Kc

A(x, y, z)dy <
ε

2
.

The function s 7→ Φ(s)
s2 is continuous on [η, b−a2 ], so there exists a constant M > 0 such

that sup
x,z∈(a,b)

∫
B

A(x, y, z)dy <
ε

2
for all B ⊂ K such that λ(B) < δ := ε

2c̃2M
. Since κ(0,∞)

is bounded on (a, b), this is enough to conclude that κ(0,∞) ∈ S∞(X(a,b)).

Next, we associate the Green functions for processes Y (a,b) and Z(a,b). Since

EZ
(a,b)

(u, u) = EY
(a,b)

(u, u) +

∫ b

a

∫ b

a

(u(x)− u(y))2F (x, y)j(|x− y|)dydx+

∫ b

a

u(x)2q(x)dx,

where F (x, y) = j(|x+y|)
j(|x−y|) and q = κ3 − κ2, Z(a,b) can be obtained from Y (a,b) through the

Feynman-Kac transform driven by a discontinuous additive functional

Aq+F (t) =

∫ t

0

q(Y (a,b)
s )ds+

∑
s≤t

F (Y
(a,b)
s− , Y (a,b)

s ). (4.6)

By [4, Lemma 3.9] the ratio of Green functions GZ(a,b)(x, y) and GY(a,b)(x, y) is equal to

the gauge function u2(x, y) = Eyx

[
eAq+F (ζY(a,b))

]
and ζY(a,b) = inf{t > 0 : Yt 6∈ (a, b)} is the

lifetime of Y (a,b) and Pyx is the probability measure of the GY(a,b)(·, y)-conditioned process
starting from x, see (4.2). We recall the definition of the Kato class A∞.

Definition 4.3. Let X be a transient Hunt process with values in E ∈ B(R) with Green
function G and Lévy system (J,H), where Hs ≡ s. A bounded nonnegative function F on
E × E vanishing on the diagonal is said to be in the Kato class A∞(X) if for any ε > 0
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Boundary Harnack principle for the absolute value process

there is a Borel subset K of finite measure and a constant δ > 0 such that for every set
A = (K ×K)c ∪ (B × E) ∪ (E ×B)

sup
x,w∈E

∫
A

G(x, y)G(z, w)

G(x,w)
F (y, z)J(x, dy)dz < ε,

where B ⊂ K is a measurable set such that
∫
B

(∫
E
F (x, y)J(x, dy)

)
dx < δ.

By [4, Theorem 3.8], the conditional gauge function u2 is bounded between two
positive constants when q ∈ S∞(Y (a,b)) and F ∈ A∞(Y (a,b)). This is shown by using (4.3)
similarly as in Theorem 4.2, so we omit the proof.

Theorem 4.4. Let the assumptions from Theorem 4.2 hold and Aq+F be the discontin-
uous additive functional for Y (a,b) from (4.6). Then q ∈ S∞(Y (a,b)) and F ∈ A∞(Y (a,b))

and consequently the Green functions of the processes Y (a,b) and Z(a,b) are comparable.

5 Boundary Harnack principle for Z

The exit distribution of Zτ(a,b) starting from x is equal to

Px
(
Zτ(a,b) ∈ B

)
=

∫
B

KZ
(a,b)(x, z)dz, x ∈ (a, b), B ∈ B((0,∞) \ [a, b]),

where KZ
(a,b) is the Poisson kernel of Z(a,b) given by

KZ
(a,b)(x, z) =

∫ b

a

GZ(a,b)(x, y)i(y, z)dy, x ∈ (a, b), z ∈ (0,∞) \ [a, b].

Recall that the process Z can exit the interval (a, b) only by jumping out, since by [12,
Theorem 1],

Px

(
Xτ(a1,a2)

= ai

)
= 0, i = 1, 2

for all x ∈ (a1, a2) ⊂ R. Using the results from the previous sections we can similarly
as in [8, Section 4] prove the Harnack inequality and boundary Harnack principle for
nonnegative harmonic functions of process Z(a,b).

Theorem 5.1 (Harnack inequality). Let R > 0 and a ∈ (0, 1). There exists a constant
c6 = c6(R, a, φ) > 0 such that for all r ∈ (0, R) and every nonnegative function u on R
which is harmonic with respect to Z in (0, 3r),

u(x) ≤ c6u(y), for all x, y ∈ (ar, (3− a)r).

Proof. Let b1 = ar/2, b2 = ar, b3 = (3−a)r and b4 = (3−a/2)r. By Theorem 4.2, Theorem
4.4 and (4.3), the exists a c̃1 = c̃1(φ,R) > 1 such that

c̃−1
1

a(xi, y)

Φ−1(a(xi, y)) ∨ |x− y|
≤ GZ(b1,b4)(xi, y) ≤ c̃1

a(xi, y)

Φ−1(a(xi, y)) ∨ |x− y|
, i = 1, 2,

for all x1, x2 ∈ (b2, b3) and y ∈ (b1, b4). Furthermore, note that

ar

2
≤ δ(xi) ≤

(3− a)r

2
and δ(y) ≤ ar

4
⇒ |xi − y| ≥

ar

4
.

Therefore Φ−1(a(xi, y)) ∨ |xi − y| is comparable to r, so by (H) and (4.4) there exists a
constant c̃2 = c̃2(R, a, φ) > 0 such that

GZ(b1,b4)(x1, y) ≤ c̃2GZ(b1,b4)(x1, y)
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for all x1, x2 ∈ (b2, b3) and y ∈ (b1, b4). Consequently, we have

KZ
(b1,b4)(x1, z) ≤ c̃2KZ

(b1,b4)(x2, z)

for all x1, x2 ∈ (b2, b3), z ∈ [b1, b4]c. It follows that for all x1, x2 ∈ (ar, (3− a)r)

u(x1) = Ex1

[
u
(
Xτ(b1,b4)

)]
=

∫
(b1,b4)c

u(z)KZ
(b1,b4)(x1, z) dz

≤ c̃2
∫

(b1,b4)c
u(z)KZ

(b1,b4)(x2, z) dz = c̃2u(x2).

Theorem 5.2 (Boundary Harnack principle). Let R > 0. There exists a constant c7 =

c7(R,φ) > 0 such that for all r ∈ (0, R), and every nonnegative function u which is
harmonic for Z in (0, 3r) and continuously vanishes at 0, it holds that

u(x)

u(y)
≤ c7

h(x)

h(y)
, x, y ∈ (0, λ1r),

where λ1 is the constant from Lemma 2.4.

Proof. Let x ∈ (0, λ1r). Since u is harmonic in (0, 3r) and vanishes continuously at 0, we
have

u(x) = lim
ε→0

Ex
[
u
(
Zτ(ε,r)

)]
= Ex

[
u
(
Zτ(0,r)

)]
= Ex

[
u
(
Zτ(0,r)

)
: Zτ(0,r) ∈ (r, 2r)

]
+ Ex

[
u
(
Zτ(0,r)

)
: Zτ(0,r) ≥ 2r

]
=: u1(x) + u2(x).

First note that
u(x)

u(λ1r)
≤ u1(x)

u(λ1r)
+

u2(x)

u2(λ1r)

and we estimate each term separately. By the previous Harnack inequality for a = λ1

2

and Lemma 3.1 there exists a constant c̃1 = c̃1(R,φ) > 0 such that

u1(x) ≤ c̃1Ex
[
u (λ1r) : Zτ(0,r) ∈ (r, 2r)

]
≤ c̃1u(λ1r)Px

(
τ(0,r) < τ

)
≤ c̃1u(λ1r)

h(x)

h(λ1r)
.

For the second term, since the Lévy density j of X is decreasing, it follows that

u2(x) =

∫ r

0

∫ ∞
2r

u(z)GZ(0,r)(x, y)i(y, z)dzdy ≤
∫ r

0

GZ(0,r)(x, y)dy

∫ ∞
2r

u(z)(j(z − r) + j(z))dz

= Ex[τ(0,r)]

∫ ∞
2r

u(z)(j(z − r) + j(z))dz ≤ 4rh(x)

∫ ∞
2r

u(z)(j(z − r) + j(z))dz

where the last line follows from Lemma 3.3. By [10, Theorem 3.4] there exists a constant
c̃2 = c̃2(φ) > 0 such that

c̃−1
2

φ(z−2)

z
≤ j(z) ≤ c̃2

φ(z−2)

z
, z > 0,

so by (2.1), it follows that j(z − r) ≤ c̃223j(z) when z ≥ 2r and therefore

u2(x) ≤ 4c̃22(23 + 1)rh(x)

∫ ∞
2r

u(z)j(z)dz.

On the other hand, by Lemma 2.4,

u2(x) ≥
∫ λ1r

0

GZ(0,r)(x, y)dy

∫ ∞
2r

u(z)(j(z) + j(z + r))dz ≥ λ2h(λ1r)λ1r

∫ ∞
2r

u(z)j(z)dz.
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Therefore, it follows that

u(x)

u(λ1r)
≤
(
c̃1 +

4c̃2(1 + 23)

λ1λ2

)
h(x)

h(λ1r)
. (5.1)

On the other hand, from [9, Lemma 5.1] for p = 1
3 , it follows that there exists a constant

c̃3 = c̃3(φ,R) > 0 such that for all x ∈ (0, r) and y ∈ (2r, 3r),∫ y

2r

KZ
(0,s)(x, y)ds ≤

∫ y

3r(1+1/3)/2

(KX
(−s,s)(x, y) +KX

(−s,s)(x,−y))ds

≤ 3c̃3r

φ((3r)−2)
j(y)

(2.1)
≤ 27c̃3r

φ(r−2)
j(y).

Now by applying [9, Lemma 5.2 and Lemma 5.3] for U = B(0, 2r) and p = 1
3 , it follows

that

u(x) ≤ c̃4
φ(r−2)

∫ ∞
2r

u(y)j(y)dy

for some constant c̃4 = c̃4(φ) > 0 and all x ∈ (0, r). Furthermore by Lemma 2.2,

u2(x) ≥
∫ λ1r

0

GZ(0,r)(x, y)dy

∫ ∞
2r

u(z)(j(z) + j(z + r))dz ≥ λ2h(x)λ1r

∫ ∞
2r

u(z)j(z)dz.

By the last two displays, (2.1) and Lemma 2.3, we get the required inequality, i.e.

u(x)

u(λ1r)
≥ u2(x)

u(λ1r)
≥ λ1λ2rh(x)

c̃4
φ(r−2)

≥ c̃5
h(x)

h(λ1r)
. (5.2)

Combining (5.1) and (5.2) we get the statement of the theorem.
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