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linear additive distortion
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Abstract. We study nonlinear regression models when the response and pre-
dictors are unobservable and distorted in a multiplicative fashion by partial
linear additive models (PLAM) of some observed confounding variables. Af-
ter approximating the additive nonparametric components in the PLAM via
polynomial splines and calibrating the unobserved response and unobserved
predictors, we develop a semi-parametric profile nonlinear least squares pro-
cedure to estimate the parameters of interest. The resulting estimators are
shown to be asymptotically normal. To construct confidence intervals for the
parameters of interest, an empirical likelihood-based statistic is proposed to
improve the accuracy of the associated normal approximation. We also show
that the empirical likelihood statistic is asymptotically chi-squared. More-
over, a test procedure based on the empirical process is proposed to check
whether the parametric regression model is adequate or not. A wild boot-
strap procedure is proposed to compute p-values. Simulation studies are con-
ducted to examine the performance of the estimation and testing procedures.
The methods are applied to re-analyze real data from a diabetes study for an
illustration.

1 Introduction

Measurement error is common in many disciplines, such as economics, health sci-
ence and medical research, due to improper instrument calibration or many other
reasons. It is known that simply ignoring the errors can cause estimation bias.
Therefore, it requires particular care to eliminate such bias when estimating tar-
get parameters to accurately detecting the relationship among variables. Research
on classical errors-in-variables have been widely studied in the last two decades,
Carroll et al. (2006) gave comprehensive surveys on linear and nonlinear measure-
ment errors models for a variety of such real-world examples. In this paper, we
consider a situation both the response and predictors are unobservable and dis-
torted by the multiplicative effects of some observable confounding variables in
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the following covariate-adjusted setting:⎧⎪⎪⎨
⎪⎪⎩

Y = f (X,β) + ε,

Ỹ = φ(U)Y,

X̃ = ψ(U)X,

(1.1)

where f (·, ·) is a known continuous nonlinear function, β is an unknown q × 1
parameter vector on a compact parameter space �β ⊂ R

q . Y is the unobservable
response, X = (X1,X2, . . . ,Xp)τ is the unobservable continuous predictor vector
(the superscript τ denotes the transpose operator throughout this paper), while Ỹ

and X̃ are observed and distorted response and predictors, ψ(·) is a p×p diagonal
matrix diag(ψ1(·), . . . ,ψp(·)), where φ(·) and ψr(·) are unknown contaminating
smooth functions of an observed confounding vector U = (U1, . . . ,Ud)τ . The di-
agonal form of ψ(·) indicates that the confounding vector U distorts each compo-
nent of the unobserved predictors X in a multiplicative fashion. The confounding
vector U and model error ε are independent of (X, Y ).

This type of measurement error models is revealed by Şentürk and Müller
(2005, 2006) for analyze the data from some biomedical and health-related stud-
ies, in which confounding variables such as the body mass index, height or weight
usually have multiplicative effects on the primary response and predictor variables.
For example, Şentürk and Nguyen (2009) suggested the covariate “body mass in-
dex” (BMI) to be a potential confounding variable. Kaysen et al. (2002) also treat
BMI as the confounder on hemodialysis patients and they further realized that the
fibrinogen level and serum transferrin level should be divided by BMI to eliminate
the potential bias possibly caused by BMI. In fact, no one knows the exact rela-
tionship between the confounder and primary variables, and the way of naively
dividing BMI may not be appropriate and possibly lead to biased estimators of the
parameters. To avoid the model misspecified, Şentürk and Müller (2005, 2006) in-
troduced a flexible multiplicative adjustment by using unknown smooth distorting
functions φ(·),ψr(·) for the confounding variable U .

Recently, there are two main estimation procedures for the distortion measure-
ment errors, namely, the transformation method proposed by Şentürk and Müller
(2005, 2006, 2009), and the direct plug-in method proposed by Cui et al. (2009).
The readers can refer to the following work on the development of these two meth-
ods, see for example, Zhang, Zhu and Liang (2012), Zhang, Gai and Wu (2013),
Zhang et al. (2014) for the multivariate confounders, Li, Lin and Cui (2010), Zhang
et al. (2013) for some semi-parametric models, Zhang, Feng and Zhou (2014) for
an efficient estimator of the correlation coefficient between two variables, Li et al.
(2014) for the variable selection by employing the smoothly clipped absolute devi-
ation penalty (Fan and Li (2001), Liang and Li (2009, SCAD)), and Zhang, Li and
Feng (2015) for the problem of model checking on a parametric regression model
by using a residuals based empirical process based test statistic. Delaigle, Hall and
Wen-Xin (2016) obtained a fundamental work of nonparametric estimation of a
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regression curve when the data are observed with multiplicative distortion. Zhang
et al. (2016) considered the estimation and hypothesis testing problems for the par-
tial linear regression models under the distortion measurement error setting, and
the proposed estimation procedure is designed to accommodate undistorted as well
as distorted variables.

In this paper, we consider when more than one confounding variables affect
the response and predictors, that is, a d-dimensional confounding vector U . Note
that the distorting functions φ(·) and ψ(·) are unknown, the “curse of dimen-
sionality” problem occurs if one uses the d-dimensional smooth models: φ(U) =
φ(U1, . . . ,Ud), ψr(U) = ψr(U1, . . . ,Ud). To overcome the problem, Nguyen and
Şentürk (2008) modeled the distortions by single-index models (SIM) and con-
sidered to model the primary variables as a linear regression model. Nguyen and
Şentürk (2008) proposed a hybrid backfitting algorithm to simultaneously esti-
mate unknown single-index parameters and varying coefficient functions, and de-
rived final estimators of the parameters with a weighted-average of the estimated
coefficient functions. Zhang, Zhu and Liang (2012) extended the single-index dis-
tortions to the nonlinear regression models, and proposed to use the estimating
function method (EFM) proposed by Cui, Härdle and Zhu (2011) to estimate the
single-index parameters, and the direct plug-in procedure was used to give a non-
linear least squares estimators of β . Recently, Zhang et al. (2014) proposed to
use additive models (AM) as a competitor for the distortion functions, because
of the unique feature of interpretability and flexibility of the additive models. For
the estimations and application of additive models, the readers can refer the fol-
lowing literature Hastie and Tibshirani (1990), Huang (1999, 2003), Li (2000),
Li and Ruppert (2008), Liang et al. (2008), Opsomer and Ruppert (1997), Stone
(1985).

As claimed in Stone (1985), the AM and partial linear additive models (PLAM)
can also achieve dimension reduction as SIM does, and, be possibly greater es-
timation accuracy than fully nonparametric estimation. Moreover, SIM, AM, and
PLAM are nonnested each other. Each of the models can relax some strong as-
sumptions of standard parametric models. Therefore, in most cases, at most one
of these models can be correctly specified in a given application, and an analyst
should choose among the models. In Zhang, Zhu and Liang (2012), Zhang et al.
(2014), they modeled distorting functions as SIM and AM, respectively. As we
indicated above, the nonnesting phenomenon of SIM and AM, PLAM motivates
us to model distorting functions as PLAM in this paper. For the case of additive
components PLAM, the spline approximation method will be used to approximate
unknown distorting functions, then the profile least-square technique can be used
to obtain estimators of parameters. It is also of interest to investigate the asymp-
totic properties of the parameters when we use the PLAM distortion functions. In
this paper, we investigate PLAM distortion phenomenon in the context of multi-
ple distorting measurement error setting. To the best of our knowledge, this kind
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of error-prone distortion is new and the findings contribute to the literature on the
distortion measurement error modeling.

For the parameters estimation, we first calibrate distorted response and predic-
tors by using spline approximations for PLAM, and investigate the asymptotic
normality for the parameter in PLAM. Then, we estimate the parameter β by pro-
file nonlinear least squares procedure and establish asymptotic normality. The lin-
ear regression models, a special case of nonlinear models, are discussed as well.
To construct the confidence intervals of the parameter β , an empirical likelihood
based statistic is proposed. For the model checking on the adequacy of the para-
metric models, we also develop a lack-of-fit test for model (1.1). We developed a
Cramér-von Mises (CvM) test proposed by Stute, González Manteiga and Presedo
Quindimil (1998a), and we further present the bootstrap approximation for calcu-
lating critical values.

The paper is organized as follows. In Section 2, we propose an estimation pro-
cedure for the partial linear additive distortions, associated asymptotic results. We
also develop an empirical log-likelihood ratio statistic for the parameter β , and
show that the empirical likelihood statistic has an asymptotic chi-squared distri-
bution. In Section 3, we propose a Cramér-von Mises (CvM) test to investigate
the model checking. In Section 4, we conduct simulation studies to examine the
performance of the proposed methods. In Section 5, an analysis of a very low
birth weight infants dataset is presented. All the technical proofs of the asymptotic
results are given in the Appendix.

2 Estimation procedure for semiparametric additive distorting
functions

For real data analysis, a partial linear additive structure of distorting functions is
valid, i.e., partial linear models (PLMs) (Härdle and Liang (2007), Härdle, Liang
and Gao (2000), Heckman (1986), Speckman (1988)), additive partial linear mod-
els (APLMs) (Li (2000), Liang et al. (2008), Liang et al. (2009b)). The PLMs and
APLMs combine both linear components and non-parametric components, so that
they balance model interpretability and flexibility better than the additive models.
Thus, it is desirable to determine the linear components in the additive models.
Chen, Liang and Wang (2011) proposed a test procedure based on the square of
the differences of the fitted models under null and alternative hypothesis, and the
authors further proposed a bootstrap procedure to obtain the critical values for
approximating the true underlying finite-sample distributions of the test statistic.
Under the distorting measurement error setting considered in this paper, one can
easily use the Chen, Liang and Wang’s (2011) test procedure to investigate the lin-
ear components of every additive distorting function in model (1.1). Without loss
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of generality, the partial linear additive distorting functions can be written as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ(U) = α0 + ζ0,1
(
U1 − E(U1)

) + · · · + ζ0,d1

(
Ud1 − E(Ud1)

)
+ φd1+1(Ud1+1) + · · · + φd(Ud),

ψr(U) = αr + ζr,1
(
U1 − E(U1)

) + · · · + ζr,d1

(
Ud1 − E(Ud1)

)
+ ψr,d1+1(Ud1+1) + · · · + ψr,d(Ud).

(2.1)

In model (2.1), we consider a simple case in which the first d1 components of
U , U1, . . . ,Ud1 are all in the linear part of distorting functions φ(·) and ψr(·)’s,
r = 1, . . . , p and the rest d − d1 components of U are all involved in the additive
structure. A more general setting of model (2.1) can be determined by this test
procedure proposed by Chen, Liang and Wang (2011) in practice. Here we use the
model (2.1) to illustrate our methodology and theoretical results.

The distorting functions φs ’s and ψr,s ’s are unknown smooth functions. To en-
sure identifiability for the additive model (2.1), one need to assume that

E
{
φs(Us)

} = 0, E
{
ψr,s(Us)

} = 0,
(2.2)

s = d1 + 1, . . . , d, r = 1, . . . , p.

Suggested by Şentürk and Müller (2005, 2006, 2009), the following identifiability
conditions are also essential for the distorting functions φ(U) and ψr(U):

E
{
φ(U)

} = 1, E
{
ψr(U)

} = 1, r = 1, . . . , p. (2.3)

Identifiability conditions (2.2) and (2.3) entail that α0 = 1, αr = 1. An equivalent
model for (2.1) is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ(U) = α̇0 + ζ̇0,1U1 + · · · + ζ̇0,d1Ud1 + φd1+1(Ud1+1)

+ · · · + φd(Ud),

ψr(U) = α̇r + ζ̇r,1U1 + · · · + ζ̇r,d1Ud1

+ ψr,d1+1(Ud1+1) + · · · + ψr,d(Ud).

(2.4)

For the model (2.4), besides the identifiability conditions E{φs(Us)} = 0
and E{ψl(Ul)} = 0, the identifiability conditions (2.3) entail that α̇0 +∑d1

m=1 ζ̇0,mE(Um) = 1, α̇r + ∑d1
m=1 ζ̇r,mE(Um) = 1. We use model (2.1) instead

of model (2.4) for simplicity.
Without loss of generality, suppose the covariate Us is distributed on a compact

interval [0,1] for s = d1 + 1, . . . , d . Under the smoothness assumptions given in
the Appendix, φo and ψo

r can be well approximated by spline functions. Let Qn

denote polynomial splines on [0,1] of degree ρ ≥ 1. A knot sequence for these
polynomial splines with Jn interior knots is denoted by k−ρ = · · · = k−1 = k0 =
0 < k1 < · · · < kJn < 1 = kJn+1 = · · · = kJn+ρ+1, where Jn increases with the
increases of sample size n. The exact order of Jn is presented in condition (C4) in
the Appendix. Moreover, Qn consists of functions g(·) which satisfy:
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• g(·) is a polynomial of degree ρ on each of the subintervals [kt , kt+1), t =
0,1, . . . , Jn − 1, and the last subinterval is [kJn,1];

• ρ ≥ 2, g(·) is a (ρ − 1)-times continuously differentiable function on [0,1].
For simplicity, we use equally spaced knots. Let h = 1

Jn+1 be the distance between
two consecutive knots.

2.1 Estimation for additive partial linear distorting functions

By the independence of U and (Y,X), we know that E(Ỹ |U) = φ(U)E(Y ),
E(X̃r |U) = ψr(U)E(Xr). Moreover, the identifiability condition (2.3) entails that
E(Ỹ ) = E(Y ), E(X̃r) = E(Xr). As such,

E

{
Ỹ

E(Ỹ )

∣∣∣U}
= φ(U), E

{
X̃r

E(X̃r)

∣∣∣U}
= ψr(U). (2.5)

Recalling the distorting functions φ, ψr ’s in (2.1) have a partial linear additive
mean structure, a natural way of estimating φ and ψr ’s is to find functions φo,ψo

r ∈
Qn and values of α0, αr that minimize the least squares objective functions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

{
Ỹi/

¯̃
Y − α0 −

d1∑
l=1

ζ0,l(Ul,i − Ūl)

− �φd1+1(Ud1+1,i) − · · · − �φd(Ud,i)

}2

,

n∑
i=1

{
X̃r,i/

¯̃
Xr − αr −

d1∑
l=1

ζr,l(Ul,i

− Ūl) − �ψr,d1+1(Ud1+1,i) − · · · − �ψr,d(Ud,i)

}2

,

�φs ∈Qn, �ψr,s ∈ Qn, r = 1, . . . , p, s = d1 + 1, . . . , d,

(2.6)

where ¯̃
Y = 1

n

∑n
i=1 Ỹi ,

¯̃
Xr = 1

n

∑n
i=1 X̃r,i , r = 1, . . . , p, Ūl = 1

n

∑n
i=1 Ul,i , l = d1 +

1, . . . , d are the moment estimators of E(Ỹ ), E(X̃r)’s and E(Ul)’s.
For the sth covariate Us , let bj,s(us) denote the B-spline basis function of de-

gree ρ. For any φo,ψo
r ∈ Qn, we can use B-spline basis function of degree ρ to

approximate
∑d

s=d1+1 φs(us) and
∑d

s=d1+1 ψr,s(us) by

d∑
s=d1+1

φs(us) ≈ γ τ
0,d−d1

bd−d1(ud−d1),

(2.7)
d∑

s=d1+1

ψrs(us) ≈ γ τ
r,d−d1

bd−d1(ud−d1),



92 Zhang, Zhou, Chen and Chu

where ud−d1 = (ud1+1, . . . , ud)τ , bd−d1(ud−d1) = {bj,s(us), j = −ρ, . . . ,

Jn, s = d1 + 1, . . . , d}τ are the spline basis functions and γ 0,d−d1
= {γ0,j,s , j =

−ρ, . . . , Jn, s = d1 + 1, . . . , d}, γ r,d−d1
= {γr,j,s, j = −ρ, . . . , Jn, s = d1 +

1, . . . , d}, r = 1, . . . , p.
Let ζ 0 = (ζ01, . . . , ζ0d1)

τ , ζ r = (ζr1, . . . , ζrd1)
τ . The estimation procedure

of (α0, ζ
τ
0,γ τ

r,d−d1
)τ , (αr, ζ

τ
r ,γ

τ
r,d−d1

)τ can be obtained by finding α∗
0 , α∗

r ,
ζ ∗

0, ζ
∗
r ,γ

∗
0,d−d1

,γ ∗
r,d−d1

which minimize

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

{
Ỹi/

¯̃
Y − α∗

0 − ζ ∗τ
0 (U i,d1 − Ūd1) + · · ·

+ γ ∗τ
0,d−d1

bd−d1(U i,d−d1)
}2

,
n∑

i=1

{
X̃ri/

¯̃
Xr − α∗

r − ζ ∗τ
r (U i,d1 − Ūd1) + · · ·

+ γ ∗τ
r,d−d1

bd−d1(U i,d−d1)
}2

,

(2.8)

where U i,d1 = (Ui,1, . . . ,Ui,d1)
τ , U i,d−d1 = (Ui,d1+1, . . . ,Ui,d)τ and Ūd1 =

(n−1 ∑n
i=1 Ui,1, . . . , n−1 ∑n

i=1 Ui,d1)
τ .

Note that E(φr(Us)) = 0, E(ψr,s(Us)) = 0, the centered spline estimators of
each component function are

φ̂∗
s (us) =

Jn∑
j=−ρ

γ̂0,j,sbj,s(us) − 1

n

n∑
i=1

Jn∑
j=−ρ

γ̂0,j,sbj,s(Ui,s), (2.9)

ψ̂∗
r,s(us) =

Jn∑
j=−ρ

γ̂r,j,sbj,s(us) − 1

n

n∑
i=1

Jn∑
j=−ρ

γ̂r,j,sbj,s(Ui,s),

(2.10)
r = 1, . . . , p.

Now we further define a minimizing function which is mathematically equivalent
to (2.8). For s = d1 + 1, . . . , d and j = −ρ + 1, . . . , Jn, let b∗

j,s(us) = bj,s(us) −
‖bj,s‖2s

‖bj−1,s‖2s
bj−1,s(us), where ‖bj,s‖2s is defined as

‖bj,s‖2s = {
E

[
b2
j,s(Us)

]}1/2 =
{∫ 1

0
b2
j,s(us)fs(us) dus

}1/2
,

where fs(us) is the density function of Us . Define the standardized version of
spline basis as

Bj,s(us) = b∗
j,s(us)

‖b∗
j,s‖2s

. (2.11)
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It is worth to mention that the minimization problem in (2.8) is equivalent to find-
ing those α0, αr, ζ 0, ζ r ,γ 0,d−d1

,γ r,d−d1
which minimize⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑
i=1

{
Ỹi/

¯̃
Y − α0 − ζ τ

0(U i,d1 − Ūd1) − γ τ
0,d−d1

Bd−d1(U i,d−d1)
}2

,

n∑
i=1

{
X̃ri/

¯̃
Xr − αr − ζ τ

r (U i,d1 − Ūd1) − γ τ
r,d−d1

Bd−d1(U i,d−d1)
}2

,

(2.12)

where Bd−d1(ud−d1) = {Bj,s(us), j = −ρ + 1, . . . , Jn, s = d1 + 1, . . . , d}τ .
Similarly to (2.9) and (2.10), we can also defined the centered spline estima-

tors of every component function φ̂s and ψ̂r,s , s = d1 + 1, . . . , d and r = 1, . . . , p.
As noted in Wang et al. (2011), Zhang and Liang (2011), the basis {bj,s(us), j =
−ρ, . . . , Jn, s = d1 + 1, . . . , d}τ is used for data analytic implementation in prac-
tice, and the mathematical equivalent expression (2.11) is convenient for asymp-
totic derivation. Similarly, the estimators α̂∗

0 , α̂∗
r , ζ̂

∗
0, ζ̂

∗
r , γ̂ ∗

0,d−d1
, γ̂ ∗

r,d−d1
from

(2.8) can be used for data analysis in practice, and α̂0, α̂r , ζ̂ 0, ζ̂ r , γ̂ 0,d−d1
, γ̂ r,d−d1

from (2.12) is used for mathematical asymptotic derivation.

2.2 Estimating parameter β

After obtaining estimators φ̂ and ψ̂r ’s, denoted as

φ̂(U i ) = α̂0 + ζ̂
τ

0(U i,d1 − Ūd1) + γ̂ τ
0,d−d1

Bd−d1(U i,d−d1),

ψ̂r (U i ) = α̂r + ζ̂
τ

r (U i,d1 − Ūd1) + γ̂ τ
r,d−d1

Bd−d1(U i,d−d1).

The unobservable response and predictors {Yi,Xi}, i = 1, . . . , n can be obtained
as

Ŷi = Ỹi

φ̂(U i )
, X̂ri = X̃ri

ψ̂r (U i )
, r = 1, . . . , p. (2.13)

As a result, the nonlinear least squares estimator β̂ is obtained by solving

n∑
i=1

{
Ŷi − f (X̂i ,β)

}∂f (X̂i ,β)

∂βr

= 0, r = 1, . . . , p, (2.14)

where X̂i = (X̂1i , . . . , X̂pi)
τ and Ŷi are given in (2.13), ∂f (X̂i ,β)

∂βr
is the partial

derivative of f with respect to βr . When (2.14) has no closed form solution, one
may solve these equations by the Newton–Raphson iterative method.

2.3 Asymptotic results

In this subsection, we investigate the asymptotic properties for the estimators
proposed in Section 2.1 and 2.2. In what follows, define A⊗2 = AAτ for any
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vector or matrix A. Moreover, let e = (1,01×d1)
τ , Ǔd1 = Ud1 − E(Ud1 |Ud−d1),

� = E[(1, Ǔ
τ

d1
)τ ]⊗2, � = E{[Ud1 − E(Ud1)][Ỹ − E(Ỹ )]} and �d1 = Cov(Ud1).

For any function g(·) satisfying Eg2(U) < ∞, we further define

�g = E
[(

1, Ǔ
τ

d1

)τ
g(U)

]⊗2
, �g = E

[(
1, Ǔ

τ

d1

)τ
g(U)

]
,

Ag = E
{(

1, Ǔ
τ

d1

)τ
g(U)

[
Y − E(Y )

][
Ỹ − E(Ỹ )

]}
,

Bg = E
{(

1, Ǔ
τ

d1

)τ [
Ud1 − E(Ud1)

]τ [
Y − E(Y )

]
g(U)

}
,

Define ϑ0 = (α0, ζ
τ
0)τ , ϑ r = (αr, ζ

τ
r )

τ . For the estimators ϑ̂0 = (α̂0, ζ̂
τ

0)τ and
ϑ̂ r = (α̂r , ζ̂

τ

r )
τ , we have the following asymptotic results.

Theorem 1. Under the conditions (C1)–(C8) in the Appendix, we have that
√

n(ϑ̂0 − ϑ0)
L−→ N

(
0,�−1�ϑ0�

−1)
,

√
n(ϑ̂ r − ϑ r )

L−→ N
(
0,�−1�ϑr �

−1)
,

where

�ϑ0 = Var(Y )

[E(Y )]2 �φ + Var(Ỹ )

[E(Y )]2 �⊗2
φ + Bφζ 0e

τ + eζ τ
0Bτ

φ

E(Y )
− Aφ�τ

φ + �φAτ
φ

[E(Y )]2

− �φ�τ ζ 0e
τ + eζ τ

0��τ
φ

E(Y )
+ e⊗2ζ τ

0 �d1ζ0,

�ϑr = Var(Xr)

[E(Xr)]2 �ψr + Var(X̃r)

[E(Xr)]2 �⊗2
ψr

+ Bψr ζ re
τ + eζ τ

r B
τ
ψr

E(Xr)

− Aψr �
τ
ψr

+ �ψr A
τ
ψr

[E(Xr)]2 − �ψr �
τ ζ re

τ + eζ τ
r ��τ

ψr

E(Xr)
+ e⊗2ζ τ

r �d1ζr .

For the nonlinear least squares estimator β̂ , we have the following asymptotic
expression. Let f ′

β(X,β) = (f ′
1(X,β), . . . , f ′

q(X,β))τ , f ′
r (x,β) = ∂f (x,β)

∂βr
, and


β = E{f ′⊗2
β (X,β)}.

Theorem 2. Under the conditions of Theorem 1, we have that
√

n(β̂ − β)

= 1√
n

n∑
i=1


−1
β εif

′
β(Xi ,β)

− 1√
n

n∑
i=1


−1
β

Yif
′
β(Xi ,β)

φ(U i)

(
1, (U i,d1 − EUd1)

τ )
(ϑ̂0 − ϑ0)
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+ 1√
n

p∑
l=1

n∑
i=1


−1
β f ′

β(Xi ,β)

(2.15)

× Xlif
′
xl

(Xi ,β)

ψl(U i )

(
1, (U i,d1 − EUd1)

τ )
(ϑ̂ l − ϑ l)

− √
n
−1

β (Ūd1 − EUd1)
τ

{
ζ 0E

{Yf ′
β(X,β)

φ(U)

}

−
p∑

l=1

ζ lE

{Xlf
′
β(X,β)f ′

xl
(X,β)

ψl(U)

}}

+ oP (1).

If the model (1.1) is in fact a linear regression model: Y = βτ
LSXo + ε, where

Xo = (1,Xτ )τ , βLS = (β0,β1, . . . ,βp)τ , β0 represents the intercept. The estima-
tion equation (2.14) becomes the classical least squares estimate. In this context,
denote the estimator obtained from (2.14) as β̂LS, we have the following asymp-
totic expression.

Theorem 3. Let � = E[{Xo}⊗2] and ψ0(U) ≡ 1. Under the conditions of Theo-
rem 1, we have that√

n(β̂LS − βLS)

= 1√
n

n∑
i=1

�−1εiX
o
i

− 1√
n

n∑
i=1

�−1 YiX
o
i

φ(U i )

(
1, (U i,d1 − EUd1)

τ )
(ϑ̂0 − ϑ0)

(2.16)

+ 1√
n

p∑
l=1

n∑
i=1

�−1Xo
i

Xliβ l

ψl(U i )

(
1, (U i,d1 − EUd1)

τ )
(ϑ̂ l − ϑ l)

− �−1√n(Ūd1 − EUd1)
τ

{
ζ 0E

{
YXo

φ(U)

}
−

p∑
l=0

ζ lE

{
XlX

oβ l

ψl(U)

}}

+ oP (1).

2.4 Empirical likelihood based inference

We can use the asymptotic results of Theorem 1 and the asymptotic expressions
(A.15) and (2.16) to present the asymptotic covariance matrices of β̂ and β̂LS.
For example, the confidence regions and intervals for β̂ got from normal approx-
imation is, Iα,NOR = {β ′ : n(β̂ − β ′)τ �̂β(β̂ − β ′) ≤ cα}, where �̂β is the direct
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plug-in estimator of the asymptotic covariance matrix of β̂ . As revealed by Cui
et al. (2009), Li, Lin and Cui (2010), Zhang, Feng and Zhou (2014), Zhang et al.
(2014), the direct plug-in estimator for �̂β may not be appropriate, as one need
to estimate so many complicated terms in the asymptotic variance and their finite-
sample behaviors may not perform well. Although the estimator can be shown
to be consistent under some mild assumptions. As such, the empirical likelihood
(EL) method (Owen (2001), Qin and Lawless (1994)) or the bootstrap procedure
(Zhang, Feng and Zhou (2014), Zhang, Li and Feng (2015), Zhang et al. (2014))
is a preferable choice.

In this paper, we suggest to use the EL method since the EL method has some
attractive advantages such as: avoiding estimating asymptotic covariances, improv-
ing accuracy of coverage, implementing easily and studentizing automatically, and
widely applicable. There has been many literature to discuss the EL method and
its applications. We recommend the following references: Li, Lin and Zhu (2012),
Lian (2012), Liang et al. (2009a), Tang and Zhao (2013a, 2013b), Wang, Li and
Lin (2011),Wei and Zhu (2010), Zhang et al. (2011), Zhu et al. (2010). In the
following, we make statistical inference based on the EL principle.

In previous subsections, the proposed estimation method for α̂0, ζ̂ 0, γ̂ 0,d−d1
,

α̂r , ζ̂ r , γ̂ r,d−d1
, r = 1, . . . , p and the additive partial linear distorting functions

φ̂(·), ψ̂r (·), r = 1, . . . , p are used only in the construction of the empirical likeli-
hood based confidence interval in the following. Usually, the empirical likelihood
method needs an auxiliary random vector ℘n,i(β

′) = (℘1
n,i(β

′), . . . ,℘q
n,i(β

′))τ
with the property of that E℘n,i(β

′) = 0 when β ′ = β:

℘s
n,i

(
β ′) = (

Yi − f
(
Xi ,β

′))∂f (Xi ,β
′)

∂β ′
s

.

Because of {Yi,Xi , i = 1, . . . , n} are unavailable, we need to estimate them by us-

ing the relationship Yi = Ỹi

φ(U i )
and Xli = X̃li

ψl(U i )
, l = 1, . . . , p. After implementing

the estimation procedures proposed in Sections 2.1 and 2.2, we obtain “calibrated”

variables Ŷi = Ỹi

φ̂(U i )
and X̂li = X̃li

ψ̂l (U i )
, l = 1, . . . , p.

We now define a calibrated EL principle can be applied by plugging in the
estimated arguments {Ŷi , X̂i}ni=1 into ℘s

n,i(β
′):

l̂n
(
β ′) = −2 max

{
n∑

i=1

log(npi) : pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pi℘̂n,i

(
β ′) = 0

}
, (2.17)

where ℘̂s
n,i(β

′) = (Ŷi − f (X̂i ,β
′)) ∂f (X̂i ,β

′)
∂β ′

s
, s = 1, . . . , q . By the Lagrange multi-

plier method, we have l̂n(β
′) = 2

∑n
i=1 log{1+λτ �̂n,i(β

′)}, where λ is determined

by 1
n

∑n
i=1

�̂n,i (β
′)

1+λτ �̂n,i (β
′) = 0.
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Theorem 4. Suppose that conditions (C1)–(C8) in the Appendix hold, then l̂n(β)

converges to χ2
q , namely, a chi-squared distribution with q degrees of freedom.

Theorem 4 tells us that one can construct a confidence region of β by Iα,EL =
{β ′ : l̂n(β ′) ≤ cα}, where cα denotes the α quantile of the χ2

q distribution. As noted
in Cui et al. (2009), Zhang et al. (2014), Zhang, Zhu and Liang (2012), the EL-
based statistic is free of the infinite-dimensional nuisance parameters φ(·), ψr(·)’s.
This property makes EL statistic easy to be implemented and computationally ef-
ficient.

3 Model checking

In this section, we consider the problem of model checking for the mean function
m(X) = E(Y |X):

H0 : m(X) = f (X,β) a.s. for some β. (3.1)

For testing (3.1), if (X, Y ) can be observed directly, we can follow one of these
literature: Eubank and Spiegelman (1990) for the linear models, Härdle and Mam-
men (1993) for comparing parametric and nonparametric fit, Stute, Thies and
Zhu (1998) for a more general regression testing, and Hart (1997) for the vari-
ous goodness-of-fit tests based on smoothing methods.

Our testing procedure proposed here is motivated by Stute, González Manteiga
and Presedo Quindimil (1998a): an optimal test should be based on the empirical
process of the regressors marked by the residuals. As (Xi , Yi) cannot be obtained
directly, instead, the estimated (X̂i , Ŷi) can be remitted. Now, we propose the em-
pirical process:

Tn(x1, . . . , xp) = 1√
n

n∑
i=1

I {X̂i1 ≤ x1, . . . , X̂ip ≤ xp}ε̂i , (3.2)

where ε̂i = Ŷi − f (X̂i , β̂), i = 1, . . . , n and I {·} is the indicator function. Based
on (3.2), the Cramér-von Mises (CvM) statistic is proposed by

Z2
n = 1

n

n∑
i=1

T 2
n (X̂i1, . . . , X̂ip). (3.3)

This test procedure (3.3) is easy to implement. The null hypothesis H0 is rejected
for large values of Z2

n . To define its p-values, we propose a wild bootstrap tech-
nique to mimic the null distribution of Z2

n .

Step 1: Compute the test statistic Zn from (3.3).
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Step 2: Generate B times i.i.d. variables eib, i = 1, . . . , n, b = 1, . . . ,B with a

two-point distribution which respectively takes values 1∓√
5

2 with proba-

bility 5±√
5

10 . For each b, compute the arguments {ε̂1e1b, ε̂2e2b, . . . , ε̂nenb}
and

Ŷ b
i = f (X̂i , β̂) + ε̂ieib, i = 1, . . . , n.

Step 3: For each b, we re-calculate the bootstrap nonlinear least squares estimator
β̂b based on (Ŷ b

i , X̂i ), and the bootstrap fitted value f (X̂i , β̂
b) and resid-

uals ε̂b
i = Ŷ b

i − f (X̂i , β̂
b). Then, we define the bootstrap test statistic:

Tnb(x1, . . . , xp) = 1√
n

n∑
i=1

I {X̂i1 ≤ x1, . . . , X̂ip ≤ xp}ε̂b
i ,

Z2
nb

def= 1

n

n∑
i=1

T 2
nb(X̂i1, . . . , X̂ip).

Step 4: We calculate the 1 − κ quantile of the bootstrap test statistic Z2
nb as the

κ-level critical value.

We use the wild bootstrap method to define p-values. There are a number
of literature on the wild bootstrap procedure, for example, Wu (1986), Stute,
González Manteiga and Presedo Quindimil (1998a), Xia et al. (2004), Escanciano
(2006). Especially for the parametric model check, the wild bootstrap method per-
forms well in general, which is shown in Stute, González Manteiga and Presedo
Quindimil (1998a). It is noted that the wild bootstrap samples eib should satisfy
E∗(eib) = 0, Var∗(eib) = 1 and |eib| ≤ c1∞ for some positive constant c1. One can
easily show that E∗(ε̂ieib) = 0 and Var∗(ε̂ieib) = ε̂2

i , where the E∗(·) and Var∗(·)
denote the expectation and variance carrying the bootstrap samples eib’s. The two-

point distribution 1∓√
5

2 for eib attaching masses 5±√
5

10 is suggested by Mammen
(1993). Note that E∗(ξ3

ib) = 1, and this extra third moment condition can generally
improve the performance of wild bootstrap. See more details in Stute, González
Manteiga and Presedo Quindimil (1998b), Zhang, Li and Feng (2015), Zhang et
al. (2014).

4 Simulation studies

In this section, we present simulation results to evaluate the performance of the
proposed estimation and testing procedures. In Example 1, we consider the esti-
mation under the additive partial linear distortion measurement error settings. In
Example 2, we conduct a simulation to evaluate model checking problem. Cubic
B-splines were used to approximate the additive distortion functions as described



Nonlinear models with PLAM 99

in Section 2. The number of knots in the approximation was selected by BIC crite-
ria (Zhang and Liang (2011, Section 4)). The range of Jn is selected from a neigh-

borhood of �n 1
5.5 �(�a� stands for the smallest integer not less than number a). The

optimal knot number, Nn, is the minimizer of the following BIC values:

Nn = arg min
N ′

n∈[�n 1
5.5 �,4�n 1

5.5 �]

{−Re
(
N ′

n

) + qn logn
}
,

where Re(N ′
n) is the residuals obtained from (2.8), qn is the total number of param-

eter in the mean regression model after the spline approximations. It is noted that
the nonlinear function (4.1) in the Example 1 in this section and nonlinear function
(5.1) in the following Section 5 is a special case of Y = λ1 +X1(λ2 +λ3X2)

λ4 +ε.
For example, in the nonlinear function (4.1) of the Example 1 in this section, we let
λ2 = λ3 = 1 and set λ1 = β1 and λ4 = β2; in the nonlinear function (5.1) in Sec-
tion 5, we set X1 ≡ 1, X2 = GA and let (λ1,λ2,λ3,λ4) = (β1,β2,β3,β4). The
reason of using model Y = λ1 + X1(λ2 + λ3X2)

λ4 + ε is based on our experience
for the simulation studies and real data analysis. The nonlinear function (5.1) in
Section 5 is also be used in Zhang et al. (2014).

Example 1. We generate 500 data sets from the models:

Y = β1 + X1(1 + X2)
β2 + ε, (4.1)

Y = β0 + β1X1 + β2X2 + β3X3 + ε. (4.2)

• For nonlinear model (4.1), we set (β1,β2) = (1,−0.5), the model error ε fol-
lows N(0,0.52) and is independent with (X1,X2)

τ . The predictors (X1,X2)
τ

follow N2(μX,�) with μX = (2,10)τ and � = (σij )1≤i,j≤2, σij = 0.5|i−j |. For
the distorting functions φ, ψr ’s, we use (4.3), (4.4)–(4.5) for Y , X1 and X2, re-
spectively. The sample size is chosen as n = 200,400,600.

• For linear model (4.2), we set (β0,β1,β2,β3) = (1,0.1,1,−0.1), X1 ∼
N(2,1.22), X2 ∼ N(0.5,0.52) and X3 ∼ N(1,1). For the distorting functions
φ, ψr ’s, we use (4.3), (4.4)–(4.6) for Y , X1, X2 and X3. The sample size is
chosen as n = 300,400,600.

The additive partial linear distorting functions are designed as

φ(U) = 1 + 0.2 cos(2πU1) + 0.2(U2 − 0.5), (4.3)

ψ1(U) = 1 + 0.2
(
exp(−6.5U1) − 0.1536

) + 0.25(U2 − 0.5), (4.4)

ψ2(U) = 1 + 0.2
(
exp(−3.5U1) − 0.2771

) − 0.30(U2 − 0.5), (4.5)

ψ3(U) = 1 + 0.1
(
exp(−9.5U1) − 0.1052

) + 0.05(U2 − 0.5). (4.6)

Distorting functions (4.3), (4.4)–(4.5) for Y , X1 and X2 are used for nonlinear
model (4.1), and (4.3), (4.4)–(4.6) for Y , X1, X2 and X3 are used for linear model
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Table 1 The estimated mean and associated standard error for nonlinear model (4.1)

α0 ζ 0 α1 ζ 1 α2 ζ 2

n = 200 Bias 0.0899 0.0001 0.0489 0.0003 −0.0059 0.0012
SD 0.1686 0.0835 0.2173 0.1148 0.0442 0.0238

n = 400 Bias 0.0862 0.0021 0.0338 0.0037 0.0085 0.0004
SD 0.1196 0.0637 0.1655 0.0823 0.0342 0.0170

n = 600 Bias 0.0875 −0.0014 0.0446 −0.0022 −0.0074 −0.0007
SD 0.0984 0.0507 0.1330 0.0706 0.0281 0.0139

(4.2). Confounding variables U1 and U2 are independently uniformly distributed
on [0,1].

Simulation results are reported in Tables 1–4. In Table 1 and Table 3, we report
the simulation results for estimators of ζ 0, ζ 1, ζ 2 and ζ 3 involved in additive
partial linear distorting functions (4.3)–(4.6). When sample size n increases, the
performance of those estimators of ζ 0, ζ 1, ζ 2 and ζ 3 gets better. From Table 2
and Table 4, we can see that the estimated values of β in the partial linear additive
distorting setting are also close to the true values in both nonlinear model (4.1)
and linear model (4.2). For the coverage probabilities and confidence intervals,
we also compare the EL approach and normal approximation (NA) approach by
directly estimating the asymptotic covariance matrices. Both in nonlinear model
(4.1) and linear model (4.2), the confidence intervals based on EL are uniformly
better than NA, and the average lengths of confidence intervals based on EL have
smaller values than NA. For nonlinear model (4.1), the coverage probabilities are
close to nominal level for both EL and NA. For linear model (4.2), the EL has
a better coverage probabilities than NA. We also conduct one simulation run to
construct the confidence regions of (β1,β2) for nonlinear model (4.1) based on
EL approach, and delineate them in Figure 1 for illustration.

Example 2. In this example, we generated 500 samples of size n = 300 of data
from models (4.7) and (4.8):

Y = β1 + X1(1 + X2)
β2 + CoX1X2 + ε, (4.7)

Y = β0 + β1X1 + β2X2 + β3X3 + Co

(
X2

1 + X2
2 + X2

3
) + ε. (4.8)

The null model holds if and only if Co = 0, in other words, we aim to test whether
the data are from model (4.1) if Co = 0 for model (4.7), and test whether the data
are from model (4.2) if Co = 0 for model (4.8). In each case B = 500 bootstrap
samples were generated and corresponding values of Z2

n and Z2
nb were calculated.

The model settings for X, U , ε and φ, ψ’s are the same as Example 1. The crit-
ical levels were κ = 0.01,0.025,0.05,0.10. In Table 5, Figure 2, we present the
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Table 2 The estimated mean and associated standard error for nonlinear model (4.1)

EL NA

Bias SD Lower Upper AL Coverage Lower Upper AL Coverage

n = 200 β1 0.0113 0.0805 0.9504 1.0494 0.0990 93.6% 0.9421 1.0581 0.1160 93.8%
β2 −0.0103 0.0509 −0.5165 −0.4835 0.0330 −0.5192 −0.4806 0.0386

n = 400 β1 0.0055 0.0582 0.9641 1.0353 0.0712 95.4% 0.9593 1.0414 0.0821 94.4%
β2 −0.0055 0.0358 −0.5119 −0.4882 0.0237 −0.5135 −0.4862 0.0273

n = 600 β1 0.0043 0.0437 0.9701 1.0277 0.0576 94.8% 0.9655 1.0330 0.0675 95.4%
β2 −0.0049 0.0280 −0.5100 −0.4906 0.0194 −0.5115 −0.4890 0.0225
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Table 3 The estimated mean and associated standard error for linear model (4.2)

α0 ζ 0 α1 ζ 1 α2 ζ 2 α3 ζ 3

n = 300 Bias 0.0790 −0.0088 0.0308 0.0064 −0.0154 −0.0109 0.0523 0.0204
SD 0.2718 0.1407 0.2254 0.1201 0.3737 0.1966 0.3465 0.1888

n = 400 Bias 0.0895 −0.0079 0.0407 −0.0013 −0.0195 0.0083 0.0693 −0.0020
SD 0.2420 0.1325 0.1998 0.1105 0.3212 0.1771 0.3155 0.1757

n = 600 Bias 0.0922 −0.0049 0.0412 −0.0035 −0.0216 −0.0018 0.0707 −0.0046
SD 0.1842 0.0989 0.1555 0.0817 0.2518 0.1502 0.2466 0.1449

Figure 1 Empirical likelihood confidence regions for nonlinear model (4.1) in the case of partial
linear additive distorting setting. n = 200 (solid lines), n = 400 (dashed lines) and n = 600 (dotted
lines).

simulation results for the power calculations. We can see that when Co = 0, all em-
pirical levels obtained by these two distorting settings are close to the four nominal
levels, which indicates that the bootstrap method gives proper Type I errors. As Co

increases, the power functions increases rapidly. This indicates that the proposed
bootstrap test under the distorting measurement error setting works well.
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Table 4 The estimated mean and associated standard error for linear model (4.2)

EL NA

Bias SD Lower Upper AL Coverage Lower Upper AL Coverage

n = 300 β0 0.0312 0.1416 0.9688 1.0314 0.0626 93.0% 0.9684 1.0329 0.0645 91.8%
β1 −0.0046 0.0522 0.0875 0.1126 0.0251 0.0874 0.1131 0.0257
β2 −0.0399 0.1461 0.9377 1.0628 0.1251 0.9368 1.0657 0.1289
β3 0.0007 0.0569 −0.1374 −0.0623 0.0750 −0.1379 −0.0606 0.0773

n = 400 β0 0.0385 0.1247 0.9720 1.0277 0.0557 94.2% 0.9701 1.0289 0.0588 93.0%
β1 −0.0021 0.0440 0.0888 0.1112 0.0224 0.0884 0.1116 0.0232
β2 −0.0200 0.1069 0.9441 1.0553 0.1112 0.9419 1.0578 0.1159
β3 0.0021 0.0506 −0.1335 −0.0669 0.0666 −0.1349 −0.0653 0.0696

n = 600 β0 0.0056 0.1041 0.9770 1.0221 0.0451 94.4% 0.9750 1.0235 0.0485 94.2%
β1 −0.0006 0.0358 0.0908 0.1088 0.0180 0.0900 0.1095 0.0195
β2 −0.0170 0.0874 0.9540 1.0443 0.0903 0.9499 1.0473 0.0974
β3 0.0037 0.0395 −0.1276 −0.0734 0.0542 −0.1300 −0.0716 0.0584
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Table 5 The estimated mean and associated standard error for nonlinear model (4.7) and linear
model (4.8)

κ = 0.01 κ = 0.025 κ = 0.05 κ = 0.10

Model (4.7) Co = 0.00 0.010 0.030 0.057 0.110
Co = 0.05 0.200 0.307 0.421 0.536
Co = 0.10 0.636 0.742 0.824 0.894
Co = 0.15 0.816 0.900 0.950 0.978
Co = 0.20 0.956 0.982 0.992 1.000
Co = 0.25 0.966 0.986 0.996 1.000
Co = 0.30 0.988 0.998 1.000 1.000
Co = 0.35 0.992 1.000 1.000 1.000

Model (4.8) Co = 0.00 0.012 0.028 0.042 0.102
Co = 0.05 0.028 0.054 0.124 0.228
Co = 0.10 0.166 0.274 0.374 0.516
Co = 0.15 0.380 0.564 0.714 0.840
Co = 0.20 0.736 0.860 0.934 0.974
Co = 0.25 0.898 0.960 0.982 0.996
Co = 0.30 0.974 0.992 0.998 0.999
Co = 0.35 0.984 0.994 1.000 1.000

Figure 2 Power plots (above four panels) for nonlinear model (4.7), and power plots (below four
panels) for linear model (4.8).

5 Real data analysis

In this section, we re-analyze a dataset on low birth infants weight. These infants
with very low (<1600 grams) birth weight (BW) from 1981–1987 were collected
at Duke University Medical Center by Dr. Michael O’Shea (Bowman Gray Med-
ical Center). Our interest is the relationship between the response “birth weight”
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(BW) and the predictor “gestational age” (GA). The covariates “lowest pH in first
four days of life” (Lowest.pH) and “the number of platelet count” (Platelet.count)
may affect BW and GA. Therefore, we consider Lowest.pH and Platelet.count as
confounding variables in this data analysis.

We first explore that partial linear additive distortion model is more proper for
this data set, compared with Zhang et al. (2014). The test procedure proposed
by Chen, Liang and Wang (2011) is adopted. For the distorting function φ(·) of
response BW, the covariate Lowest.pH is linear and the covariate Platelet.count
is nonlinear, and the estimated parameter for Lowest. pH is ζ 0 = 0.5617. While
for the distorting function ψ(·) of predictor GA, the covariate Lowest.pH is non-
linear and the covariate Platelet.count is linear, and the estimated parameter for
Platelet.count is ζ 1 = −3.4186 × 10−5. These test results also coincides with the
plots for φ(·) and ψ(·) presented in Zhang et al. (2014).

We then obtain synthesis data X̂i and Ŷi using (2.13) and substitute them in
(2.14) to obtain estimated values of BW and GA. These intermediate estimated
values are displayed in Figure 3, in which we depict the local linear smoothing
curve (thin solid line) and the 95% pointwise confidence band. A linear regres-

Figure 3 The local linear estimators (thin solid line) of adjusted birth weight (unit kg) against
adjusted gestational age (unit week), along with the 95% pointwise confidence intervals (dotted lines)
and a linear fitting (straight line).
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sion is also fitted for this dataset (straight line in Figure 3). Figure 3 shows that
the straight line is not encapsulated in the 95% pointwise confidence band. More-
over, we also use the Cramér-von Mises (CvM) statistics proposed in Section 3 to
test whether a linear model is appropriate for this dataset. The number of boot-
strap replications is 1000. The 99%, 97.5%, 95%, 90% quantiles of Z2

nb is 0.0085,
0.0061, 0.0052 and 0.0041, and the test statistic for the linear model Z2

n is 0.0335,
which indicates that the linear model is not appropriate for this data set. As a con-
sequence, a nonlinear model is a proper choice for this dataset. In what follows,
we used the following nonlinear model:

BW = β1 + (β2 + β3GA)β4 + ε. (5.1)

CvM statistics aims to testing the goodness of fit for the given model (5.1), and
AIC or BIC aim to estimate the quality of each model (linear or nonlinear model),
relative to each of the other models. Then, we also calculate the AIC and BIC cri-
teria for the linear model and the nonlinear model (5.1). The AIC and BIC for the
linear model are obtained as AICL = −2055.089 and BICL = −2046.342, and The
AIC and BIC for the nonlinear model (5.1) are obtained as AICNL = −2725.2737
and BICNL = −2707.7804. Both the AICNL and BICNL indicate that the non-
linear model (5.1) is a better choice than the linear model. The estimates are
(β̂1, β̂2, β̂3, β̂4) = (−0.2439,−12.3003,0.5248,0.2976). The corresponding em-
pirical likelihood intervals are as (−0.2588,−0.2315), (−12.3947,−12.2196),
(0.5215,0.5277) and (0.2871,0.3062), respectively. The marginal EL-based con-
fidence intervals are calculated using (5.1) by treating the estimated values of the
remaining parameters as the true values. We also apply the Cramér-von Mises
(CvM) statistic to check whether model (5.1) is appropriate or not. Based on
1000 bootstrap samples, the 99%, 97.5%, 95%, 90% quantiles of Z2

nb is 0.7946,
0.4944, 0.3250 and 0.1644, and the test statistics Z2

n for the nonlinear model (5.1)
is 0.0195, which indicates that the nonlinear model (5.1) is appropriate for this
dataset. In Figure 4, the fitted nonlinear curve along with 95% pointwise confi-
dence intervals is displayed. It also shows a nonlinear pattern between BW and
GA. We also fitted model (5.1) for the original data. The square-root of the sum
square residual error based on the naive method is 226, while the square-root of
the sum of the residual square error based on the adjusted method is 168. There-
fore, the confounding variables do have a substantial impact on the improvement
of model fitting in this dataset.

Lastly, we compare our partial linear distortion estimation procedure with the
single-index distortion estimation procedure proposed by Zhang, Zhu and Liang
(2012). After we modeled the distorting functions φ(U) = φ(θ1Lowest.pH +
θ2Platelet.count) and ψ(U) = ψ(θ1Lowest.pH + θ2Platelet.count), the resulting
estimator of (θ1, θ2) is obtained as (0.9998,0.0191). For model (5.1), the esti-
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Figure 4 The estimated curve of adjusted birth weigh (unit kg) against adjusted gestational age
(unit week) and the associated 95% pointwise confidence intervals (dotted lines).

mates under the single-index distortion setting are obtained as (β̂1, β̂2, β̂3, β̂4) =
(−0.4164,−13.3984,0.5999,0.3096). The corresponding empirical likelihood
intervals are (−0.4206,−0.3942), (−13.4212,−13.2150), (0.5988,0.6061) and
(0.3076,0.3201), respectively. The square-root of the sum of the residual square
error based on the single-index distortion estimation procedure is 169, a slightly
larger than that obtained from additive partial linear distortion estimation proce-
dure. Compare with the average lengths between additive partial linear distortion
and single-index distortion, the EL-based confidence intervals of β2, β3 based on
additive partial linear distortion are smaller than those obtained by single-index
distortion, while confidence intervals for β1, β4 are wider than those obtained
by single-index distortion. However, all the four confidence intervals exclude 0
whether we consider partial linear additive distortion or single-index distortion.
Based on above analysis, we can see that this additive partial linear distortion mod-
eling is also a strong competitor to vie with the single-index distortion in this data
analysis.
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Appendix

A.1 Conditions

Let ‖ · ‖2 be the Euclidean norm and ‖f ‖∞ = supt |f (t)| be the supremum norm
of a function f on [0,1]. Let ν be a positive integer and ι ∈ (0,1] such that v =
ν + ι > 2. Let F be the collection of functions f on [0,1] whose νth derivative,
f (ν) exists and satisfies the Lipschitz condition of order ν:

∣∣f (ν)(t1) − f (ν)(t2)
∣∣ ≤ Co|t1 − t2|ι, 0 ≤ t1, t2 ≤ 1,

where Co is a positive constant. We now list the conditions needed in the proofs of
the theorems and corollaries.

(C1) Distorting functions φs ∈ F , ψrs ∈ F , r = 1, . . . , p, s = d1 + 1, . . . , d .
(C2) The absolute values of φ and ψr ’s are greater than a positive constant on the

support of U .
(C3) Eε = 0 and Eε4 < ∞, and the covariance matrix of X is positive definite

and finite.
(C4) For l1, l2, l3, l4 = 0,1,2, l1 + l2 + l3 + l4 ≤ 3, 1 ≤ s1, s2 ≤ p, 1 ≤ t1, t2 ≤ q

and β ′ ∈ �β , the partial derivatives

∂l1+l2+l3+l4f (x,β ′)
∂l1β ′

t1
∂l2β ′

t2
∂l3xs1∂

l4xs2

exist, and

∣∣∣∣ ∂l1+l2+l3+l4f (x,β ′)
∂l1β ′

t1
∂l2β ′

t2
∂l3xs1∂

l4xs2

∣∣∣∣ ≤ C, when l3 + l4 ≥ 1,

for some positive constant C and

E
{

sup
β ′

∣∣∣∣ ∂l1+l2+l3+l4f (x,β ′)
∂l1β ′

t1
∂l2β ′

t2
∂l3xs1∂

l4xs2

∣∣∣∣
x=X

∣∣∣} < ∞,

when 1 ≤ l1 + l2 ≤ 2, and l3 + l4 = 0.

(C5) E[f (X,β ′) − f (X,β)]2 admits one unique minimum at β ′ = β .
(C6) The number of interior knots Jn satisfies: n1/(2v) � Jn � n1/3.
(C7) Let Z = (1,Ud1Bd−d1(Ud−d1)

τ )τ , EZ⊗2 exists and is nonsingular. The
largest and smallest eigenvalues of EZ⊗2 are bounded above and below by
a finite positive constant.

(C8) EY and E(Xr), r = 1, . . . , p are bounded away from 0.
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A.2 Proofs of the main results

In the following, we present the proofs of Theorem 1 and Theorem 2. The proofs of
Theorem 3 and Theorem 4 are similar to the Corollary 1 and Theorem 2 in Zhang
et al. (2014), so we omit the details.

Proof of Theorem 1. The proof of Theorem 1 is similar to the proof of Theorem 3
in Liu, Wang and Liang (2011). We first consider the distorting functions for φ(U)

and define a class of functions

Mn = {
m(U , α0, ζ 0) = α0 + ζ τ

0(Ud1 − Ūd1) + g(Ud−di
), g(·) ∈ Qn

}
. (A.1)

We define m̂i = α̂0 + ζ̂
τ

0(U i,d1 −Ūd1)+ γ̂ τ
0,d1

Bd−d1(U i,d−d1), m̂ = α̂0 + ζ̂
τ

0(Ud1 −
Ūd1) + γ̂ τ

0,d1
Bd−d1(Ud−d1) and m̂v = m̂ + (1, (U τ

d1
− ϒ̆

τ
(Ud−d1))

τ v for any

v ∈ R
d1+1, where ϒ̆(ud−d1) = ∑d

s=d1+1 ϒ̆s(us) such that ϒ̆s(us) ∈ Qn and

‖ϒ̆s − ϒs‖∞ = O(hv). Moreover, note that m̂v minimizes �(m) = ∑n
i=1{Ỹi/

¯̃
Y −

m(U i , α0, ζ 0)}2 for all m ∈ Mn when v = 0. As such, ∂
∂v�(m̂v)|v=0 = 0, and we

obtain that

0 = −
n∑

i=1

(Ỹi/
¯̃
Y − m̂i)

(
1,

(
U τ

d1
− ϒ̆

τ
(Ud−d1)

))
(A.2)

= −
n∑

i=1

(Ỹi/
¯̃
Y − m̂i)

(
1, Ǔ

τ

i,d1

)τ + OP

(
nhv)

.

Note that

Ỹi/
¯̃
Y − m̂i = {Ỹiα0 − ¯̃

Y α̂0}/ ¯̃
Y + {

Yiζ
τ
0(U i,d1 − EUd1) − ¯̃

Y ζ̂
τ

0(U i,d1 − Ūd1)
}
/

¯̃
Y

+
{
Yi

d∑
s=d1+1

φs(Uis) − ¯̃
Y γ̂ τ

0,d−d1
Bd−d1(U i,d−d1)

}
/

¯̃
Y (A.3)

def= Vn1i + Vn2i + Vn3i ,

together with (A.2) and (A.3), and α0 = 1 and ¯̃
Y = EỸ + OP (n−1/2) = EY +

OP (n−1/2), we have that
n∑

i=1

Vn1i

(
1, Ǔ

τ

i,d1

)τ =
n∑

i=1

(
1, Ǔ

τ

i,d1

)τ
(Yi − EY)/EY +

n∑
i=1

(
1, Ǔ

τ

i,d1

)τ
(α0 − α̂0)

(A.4)

+
n∑

i=1

(
1, Ǔ

τ

i,d1

)τ
(EY − ¯̃

Y)/EY + oP

(
n1/2)

,

n∑
i=1

Vn2i

(
1, Ǔ

τ

i,d1

)τ =
n∑

i=1

(
1, Ǔ

τ

i,d1

)τ
(Yi − EY)(U i,d1 − EUd1)

τ ζ 0/EY
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+
n∑

i=1

(
1, Ǔ

τ

i,d1

)τ
(U i,d1 − EUd1)

τ (ζ 0 − ζ̂ 0)

(A.5)

+
n∑

i=1

(
1, Ǔ

τ

i,d1

)τ
(U i,d1 − EUd1)

τ ζ 0(EY − ¯̃
Y)/EY

+
n∑

i=1

(
1, Ǔ

τ

i,d1

)τ
(Ūd1 − EUd1)

τ ζ 0 + oP

(
n1/2)

.

By the results of de Boor (2001, p. 149), we can find a γ̆ 0,d−d1
such that

‖∑d
s=d1+1 φs(us) − γ̆ τ

0,d−d1
Bd−d1(ud−d1)‖∞ = O(hv). Thus,

n∑
i=1

(
1, Ǔ

τ

i,d1

)τ(
d∑

s=d1+1

φs(Uis) − γ̆ τ
0,d−d1

Bd−d1(U i,d−d1)

)
= OP

(
nhv)

.

Similar to the analysis of L
[3]
n1 in the proof of Lemma A.3 in Zhang et al. (2014),

we further have (γ̆ 0,d−d1
− γ̂ 0,d−d1

)τ
∑n

i=1 Bd−d1(U i,d−d1) = oP (n1/2). Thus,
n∑

i=1

Vn3i

(
1, Ǔ

τ

i,d1

)τ

=
n∑

i=1

(
1, Ǔ

τ

i,d1

)τ
(Yi − EY)

d∑
s=d1+1

φs(Uis)/EY

+
n∑

i=1

(
1, Ǔ

τ

i,d1

)τ
(EY − ¯̃

Y)

d∑
s=d1+1

φs(Uis)/EY

(A.6)

+
n∑

i=1

(
1, Ǔ

τ

i,d1

)τ(
d∑

s=d1+1

φs(Uis) − γ̆ τ
0,d−d1

Bd−d1(U i,d−d1)

)

+ (γ̆ 0,d−d1
− γ̂ 0,d−d1

)τ
n∑

i=1

(
1, Ǔ

τ

i,d1

)τ
Bd−d1(U i,d−d1)

+ oP

(
n1/2)

.

In fact, the expression (A.6) can be further expressed as
n∑

i=1

Vn3i

(
1, Ǔ

τ

i,d1

)τ =
n∑

i=1

(
1, Ǔ

τ

i,d1

)τ
(Yi − EY)

d∑
s=d1+1

φs(Uis)/EY

+
n∑

i=1

(
1, Ǔ

τ

i,d1

)τ
(EY − ¯̃

Y)

d∑
s=d1+1

φs(Uis)/EY (A.7)

+ oP

(
n1/2) + OP

(
nhv)

.
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Define ϑ̂0 = (α̂0, ζ̂
τ

0)τ , ϑ0 = (α0, ζ
τ
0)τ and define Mn = n−1 ∑n

i=1(1, Ǔ
τ

i,d1
)τ (1,

U τ
i,d1

− EU τ
d1

). Together with (A.2)–(A.7), we have that

Mn

√
n(ϑ̂0 − ϑ0)

= 1√
n

n∑
i=1

(
1, Ǔ

τ

i,d1

)τ{
Yi − EY

EY
φ(U i ) −

¯̃
Y − EY

EY
φ(U i ) (A.8)

+ ζ τ
0(Ūd1 − EUd1)

}
+ oP (1) + OP

(
n1/2hv)

.

By condition (C4), we know that nh2v → 0. Together with Ūd1 − EUd1 =
OP (n−1/2), EỸ = EY , ¯̃

Y − EY = OP (n−1/2) and (A.8), the condition that U is
independent of Y , and Mn = E[(1, Ǔ

τ

d1
)τ ]⊗2 + oP (1), the asymptotic distribution

of
√

n(ϑ̂0 − ϑ0) can be directly obtained from (A.8). Moreover, the asymptotic
distributions of

√
n(ϑ̂ r − ϑ r ), r = 1, . . . , p can also be obtained similarly. �

Proof of Theorem 3. Directly using the fact that

φ̂(U i) − φ(U i )

= (ϑ̂0 − ϑ0)
τ (

1, (U i,d1 − EUd1)
τ )τ − ζ̂

τ

0(EUd1 − Ūd1) (A.9)

+
{
γ̂ τ

0,d−d1
Bd−d1(U i,d−d1) −

d∑
s=d1+1

φs(Uis)

}
,

ψ̂r (U i ) − ψr(U i )

= (ϑ̂ r − ϑ r )
τ (

1, (U i,d1 − EUd1)
τ )τ − ζ̂

τ

r (EUd1 − Ūd1) (A.10)

+
{
γ̂ τ

r,d−d1
Bd−d1(U i,d−d1) −

d∑
s=d1+1

ψrs(Uis)

}
.

Using (A.9) and (A.10), similar to the analysis of Ln1 and Ln2 in Lemma A.3 in
Zhang et al. (2014), as nh2v → 0, we have that

n−1
n∑

i=1

(Ŷi − Yi)T (Xi )

= −n−1
n∑

i=1

YiT (Xi )

φ(U i )

(
1, (U i,d1 − EUd1)

τ )
(ϑ̂0 − ϑ0) (A.11)

− E

{
YT (X)

φ(U)

}
(Ūd1 − EUd1)

τ ζ 0 + oP

(
n−1/2)

,
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and

n−1
n∑

i=1

(X̂ri − Xri)T (Xi )

= −n−1
n∑

i=1

XriT (Xi )

ψr(U i )

(
1, (U i,d1 − EUd1)

τ )
(ϑ̂ r − ϑ r ) (A.12)

−E

{
XrT (X)

ψr(U)

}
(Ūd1 − EUd1)

τ ζ r + oP

(
n−1/2)

.

Define f ′
β(x,β) = (f ′

1(x,β), . . . , f ′
q(x,β)), f ′

x(x,β) = (f ′
x1

(x,β), . . . , f ′
xp

(x,

β)), and f ′′
ββ(x,β) = ∂f ′

β(x,β)/∂βτ . Note that

0 = n−1
n∑

i=1

{
Ŷi − f (X̂i , β̂)

}
f ′

β(X̂i , β̂)

= n−1
n∑

i=1

{
Ŷi − f (X̂i ,β)

}
f ′

β(X̂i ,β)

+ n−1
n∑

i=1

{
f (X̂i ,β) − f (X̂i , β̂)

}
f ′

β(X̂i ,β)

(A.13)

+ n−1
n∑

i=1

{
Ŷi − f (X̂i ,β)

}{
f ′

β(X̂i , β̂) − f ′
β(X̂i ,β)

}

+ n−1
n∑

i=1

{
f (X̂i ,β) − f (X̂i , β̂)

}{
f ′

β(X̂i , β̂) − f ′
β(X̂i ,β)

}
def= Qn1(β) +Qn2(β) +Qn3(β) +Qn4(β).

Similar to the analysis of Lemma A.4 and Theorem 1 in Zhang et al. (2014), we
show that

Qn1(β)
def= n−1

n∑
i=1

{
Ŷi − f (X̂i ,β)

}
f ′

β(X̂i ,β)

= n−1
n∑

i=1

εif
′
β(Xi ,β) + n−1

n∑
i=1

{Ŷi − Yi}f ′
β(Xi ,β) (A.14)

− n−1
n∑

i=1

p∑
l=1

f ′
β(Xi ,β)f

′
xl

(Xi ,β)(X̂li − Xli) + oP

(
n−1/2)

.



Nonlinear models with PLAM 113

Applying (A.11) and (A.12) on (A.14), we obtain that

Qn1(β) = n−1
n∑

i=1

εif
′
β(Xi ,β)

− n−1
n∑

i=1

Yif
′
β(Xi ,β)

φ(U i )

(
1, (U i,d1 − EUd1)

τ )
(ϑ̂0 − ϑ0)

+ n−1
p∑

l=1

n∑
i=1

f ′
β(Xi ,β)

× Xlif
′
xl

(Xi ,β)

ψl(U i )

(
1, (U i,d1 − EUd1)

τ )
(ϑ̂ l − ϑ l) (A.15)

− (Ūd1 − EUd1)
τ

{
ζ 0E

{Yf ′
β(X,β)

φ(U)

}

−
p∑

l=1

ζ lE

{Xlf
′
β(X,β)f ′

xl
(X,β)

ψl(U)

}}

+oP

(
n−1/2)

.

Appealing to expression (A.13) again, similar to proof of Theorem 1 in Zhang
et al. (2014), we show that

√
nQn3(β) = oP (1),

√
nQn4(β) = oP (1), and also

Qn2(β) = 
β(β̂ − β) + oP (n−1/2). Together with expression (A.13), (A.8) and
(A.15), we have

√
n(β̂ −β) = 
−1

β

√
nQn1 +oP (1), the asymptotic distribution of√

n(β̂ − β) follows from (A.8) and (A.15). We complete the proof. �
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