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Abstract. In this paper, we analyze the effect on posterior parameter dis-
tributions of four possible alternative prior distributions, namely Normal-
Inverse Gamma, Normal-Scaled Beta two, Student’s t-Inverse Gamma and
Student’s t-Scaled Beta two. We show the effects of these prior distributions
when there is apparently conflict between the sample information and the
elicited hyperparameters. In particular, we show that there is not systematic
differences of posterior parameter distributions associated with these four pri-
ors using data of piped water demand in a linear model with autoregressive
errors. To test the hypothesis that this result is due to using a moderate sam-
ple size and a relatively high level of expert’s uncertainty, we perform some
simulation exercises assuming smaller sample sizes and lower expert’s un-
certainty. We obtain the general same pattern, although Student’s t models
are slightly less affected by prior information when there is a high level of
expert’s certainty, and Scaled Beta two models exhibit a higher level of pos-
terior dispersion of the variance parameter.

1 Introduction

Despite the fact that there is a debate regarding the relevance of prior robustness
analysis; on the one hand the coherent behavior claims for a single prior distri-
bution, but on the other hand it can be very difficult to obtain such a fine prior
distribution (Berger, 1985), we think that empirical arguments suggest a combi-
nation of elicitation procedures and robustness to possible prior misspecification
as an advisable rule. Therefore, the main goal in this paper is to perform posterior
sensitivity analysis trying four possible prior alternatives: Normal-Inverse Gamma,
Normal-Scaled Beta two, Student’s t-Inverse Gamma and Student’s t-Scaled Beta
two, in an environment where there is apparently misalignment between sample
information and elicited expert’s knowledge.

We analyze a linear model with autoregressive errors applied to the piped water
consumption in the Metropolitan Area of Medellín (Colombia). Additionally, we
perform some simulation exercises using smaller sample sizes and different prior
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covariance matrices that reflect different degrees of expert’s certainty to show the
dependence of posterior estimates to these characteristics.

The concept of probability from a Bayesian point of view is associated with de-
grees of belief. In this scenario, the experts’ knowledge about an event can be tack-
led from either a subjective or objective perspective. The construction of prior dis-
tributions based on the subjective approach should be adopted in scenarios where it
is tenable (Berger, 2006). However, this methodology is strongly influenced by the
experts’ perception of reality (Garthwaite, Kadane and O’Hagan, 2005); unfortu-
nately, experimental exercises have shown that human beings use heuristic strate-
gies to make statistical statements which lead to biased affirmations (Kahneman,
2011). It does not matter which technique is used, the main objective in science
is to maximize the process of learning from observation. This observation can be
compiled from data and/or researcher’s experience. However, what happens when
there is a conflict between sample information and prior distributions? Conjugate
priors have enormous effects on posterior estimates when there is conflict between
data and prior information (Berger, 1994). A possible solution is to use robust
priors (Fúquene, Cook and Pericchi, 2009, Fúquene, Pérez and Pericchi, 2014).
These can handle outliers in a more intelligent way (Bian and Tiku, 1997), as well
as influence in a wiser form the inferential process when there is conflict between
prior and sample information (Fúquene, Cook and Pericchi, 2009). The price to be
paid is computational, but nowadays that is not a problem.

In particular, we perform an elicitation procedure with an expert that used to
work in the main piped water company of the Metropolitan Area of Medellín
(Colombia), and obtain the mean prior elasticities, as well as their variance es-
timates, associated with the average household consumption of piped water. After
we implement an elicitation procedure, we use observed and simulated data to
perform sensitivity analysis to prior specifications. We show that posterior param-
eter estimates are robust to prior distributions, although Student’s t priors are less
affected by expert’s knowledge when there is a high level of certainty regarding
prior statements, and Scaled Beta two models show a higher level of dispersion
associated with posterior variance.

After this introduction, we outline the principal statements about our model in
Section 2. Section 3 shows the elicitation procedure and its results, and Section 4
exhibits the four models’ mathematical specifications. Section 5 shows the princi-
pal outcomes of our application, and Section 6 presents some simulation exercises.
Finally, we make some concluding remarks in Section 7.

2 Bayes regression with autoregressive errors

We study the average household piped water consumption of strata four in the
Metropolitan Area of Medellín (Colombia) using quarterly data from 1985 to 2009.
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Population in this country is divided in strata, the goal is to implement a cross
subsidy structure, where strata four pays the reference cost.

We propose a linear model with autoregressive errors due to having time series
data with an inertial effect on consumption. Ordinary and partial correlograms
indicate an autoregressive process of order one (these outcomes are available upon
request). We estimate the following model (equations (2.1) and (2.2))

log{cmet } = β1 log{It } + β2{nt } + β3 log{pt } + μt, (2.1)

where

μt = φμt−1 + εt (2.2)

t = 1,2, . . . , T and ε
i.i.d∼ (0, σ 2

ε ).
log{cmet }: natural logarithm of the average consumption of piped water.
log{It }: natural logarithm of average real per capita income.
nt : average number of people in household.
log{pt }: natural logarithm of the real price of piped water.
μt : autocorrelated stochastic perturbation.
We must estimate β1 and β3, which are the income and price demand elastici-

ties, and β2, which is the semi elasticity of piped water consumption with respect
to the number of people in the household. In addition, φ captures the inertial effect
on consumption, and σ 2

ε is the variance of the random noise.
In particular, we analyze the effects of four prior distributions on the posterior

estimates, namely Normal-Inverse Gamma, Normal-Scaled Beta two, Student’s
t-Inverse Gamma and Student’s t-Scaled Beta two (see Section 4 for mathemat-
ical details). We assume independent prior hyperparameters because Beach and
Swenson (1966) have shown that experts have difficulty giving information about
covariance between parameters. In addition, we use as prior for the autoregressive
coefficient a truncated normal distribution restricted to the stationary region using
as hyperparameters the maximum likelihood estimates, that is, 0.61 and 0.054 are
the prior mean and standard deviation, respectively.

The Normal-Inverse Gamma model can be the most used to handle linear regres-
sions with autoregressive processes (Greenberg, 2008). Its popularity can obey to
its mathematical tractability given that the conditional posterior distributions of
β ′ = [β1, β2, β3] and σ 2

ε have closed forms, and as a consequence the Gibbs sam-
pler can be used to simulate them. However, this model can have two pitfalls. First,
if the likelihood function is quite flat or the prior distribution is concentrated on
the tails of the likelihood, using a Normal prior cannot be a good idea due to its
thin-tailed property. Therefore, the posterior outcomes may be too sensitive to hy-
perparameters of the Normal prior (Berger, 1985). Second, the assumption that
σ 2

ε follows an Inverse-Gamma distribution can be questionable. In particular, it is
commonly considered as a “non-informative” improper prior distribution for the
variance parameter, IG(e, e), when e → 0 (Spiegelhalter et al., 2003). However,
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this prior distribution does not have any proper limiting posterior distribution. As
a consequence, posterior inference is sensitive to the choice of e (Gelman, 2006).
We use in our application a IG(α0/2, δ0/2), such that α0/2 = δ0/2 = 0.001, which
a common choice (Spiegelhalter et al., 2003).

Given the previous limitations of the Normal-Inverse Gamma model, and the
fact that robust Bayesian analysis, which has an excellent mathematical founda-
tion in Walley (1991), can be based on flat-tailed priors (Berger, 1985), we intro-
duce three additional prior specifications. The Normal-Scaled Beta two and the
Student’s t-Scaled Beta two, models that use as prior distributions of the variance
parameter a Scaled Beta two distribution (compound Gamma distribution (Satya,
1970)). This distribution emerges when the scale parameter has a Gamma distri-
bution which in turn is mixed through a Gamma distribution. The Scaled Beta two
prior has some advantages such as its flexibility, some hyperparameters can gen-
erate heavy tails, simulation from it is easy, and it can be inside a Gibbs sampling
in some circumstances. In addition, this prior distribution discounts its influence
when there is conflict between prior and sample information, and leads to strong
shrinkage when there is not conflict (Fúquene, Pérez and Pericchi, 2014, Pérez,
Pericchi and Ruíz, 2014). We use a SB2(α0, δ0, q), α0 = δ0 = 1 and q = 10, ob-
taining a bounded at the origin, heavy tail and vague prior distribution. In addition,
the Student’s t-Inverse Gamma and the Student’s t-Scaled Beta two use as prior
distribution for the location parameters a Student’s t distribution. It is well know
that this distribution has heavier tails than the Normal distribution when there are
few degrees of freedom. Specifically, we use an independent multivariate Student’s
t with only six degrees of freedom (v = 6), that is, two for each location parameter.
Thus, this prior is a flat-tailed distribution which might emerge in the context of a
hierarchical model whose first stage is based on a natural conjugate family where
there is a scale mixture of Normal distributions.

3 Elicitation: The hyperparameters of the prior distributions for
location parameters

We should have in mind that our point of departure are some families of prior
distributions, where the priors of the variance parameter are “non-informative”.
So, we follow a structural elicitation procedure (Kadane and Wolfson, 1998) to
elicit the income and price demand elasticities, and the semi elasticity associated
with the average number of people living in the household. The reason is that these
parameters are more approachable by the expert’s knowledge.

We elicit an expert who worked for two years in the most important public
utility company in the Metropolitan Area of Medellín (Colombia). In the last years,
this expert has worked as consultant of this company in several projects related to
estimation and forecasting of utility demand. In addition, this expert has a degree
in Economics, and two Masters degrees, Economics and Finance, and a PhD in
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Statistics. Finally, he has published papers associated with estimation of demand
functions in the utility sector. So, we guess that this person is an expert in the piped
water service with good foundations on statistics.

Regarding the elicitation procedure, the main objective is to convert the expert’s
knowledge into probabilistic statements: a mean elasticity or semi elasticity, and
their variances. The fundamental steps in this process are (Kadane and Wolfson,
1998):

1. Establishing the general framework of the elicitation process.
2. Obtaining some characteristics of the probability distribution function of

elicited parameters.
3. Checking the consistency of the expert’s statements.

An important issue in an elicitation process is how people perceive reality, and
the way that people assign statistical statements to events. In particular, people
use heuristics to make statistical statements, and these heuristics can cause bias
(Tversky and Kahneman, 1973, 1974). Obviously, these heuristics are based on
available information, where recent events have a more important impact than past
events. Fischhoff and Beyth (1975) have shown that prior knowledge of an event
causes some distortions in the memory that can affect the elicitation procedure.
Furthermore, people make estimates by starting from an initial value that is ad-
justed to yield a final answer. Generally, this adjustment is typically insufficient.
This phenomenon is reinforced by conservatism, which means that the updating
process of prior statistical statements, given new information, is too close to prior
statements compared to the revision indicated by the Bayes’ theorem. Moreover,
Tversky and Kahneman (1971) have shown that individuals incorrectly think that
the characteristics of any sample are the same as the characteristics of the popula-
tion, even in the case of small samples. As we can see, the elicitation procedure has
a lot of shortcomings; we try to take into account some of these in our elicitation
process.

Although our expert has experience regarding piped water demand, we showed
him some descriptive statistics of our main data (1985q1–2009q4). These are in
Table 1 where we can see that the average monthly consumption of piped water of a
household of strata four is 20.96 m3 and its average annual growth rate is −3.01%.
The average monthly real per capita income is US$ 437.01 and the average piped
water real price is US$/m3 0.23, both using as base month December 2000, their
average annual growth rate are 1.50% and 3.44%, respectively. In addition, the
average number of people in the household is 4.07 with a standard deviation equal
to 0.44, and an average annual growth rate equal to −1.50%.

We introduced to our expert some basic concepts of our model, and the main
objective of this research. In addition, we warned the expert about the heuristic bi-
ases, availability, anchoring, conservatism and representativeness, and gave him
some training about consistency in elicited statements to mitigate the problems
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Table 1 Descriptive statistics: piped water demand of strata four in Medellín (Colombia)∗

Consumption Income Household size Water price
Variable (m3) (US$) (people) (US/m3)

Mean 20.96 437.01 4.07 0.23
(5.57) (53.66) (0.44) (0.10)

Annual Growth Rate −3.01% 1.50% −1.50% 3.44%
(3.45%) (12.85%) (2.27%) (10.65%)

∗Standard deviation in parenthesis.

associated with the elicitation technique. Regarding this last point, we first im-
plement an elicitation procedure based on the Cumulative Distribution Function,
assessment of fractiles, and then, we check the consistency of the expert’s state-
ments through bets (Winkler, 1967). After this stage, we perform some feedback
with the expert, and finally, we arrive to some expert’s concluding statements.

To mention an example of our elicitation process, we show some part of the
interview (Winkler, 1967): “Let us consider the income elasticity of piped water
demand of the representative household in stratum four in Medellín (Colombia).
What is the minimum (βMin

1 ) and maximum (βMax
1 ) income elasticities that you

can settle for this representative household in this city? Are you sure about these
limits? Are you ready to bet any quantity of money regarding the income elasticity?
Are you 100% sure that you gain this bet if you select this interval?

Now, can you select a point in the interval [βMin
1 , βMax

1 ] such that it is equally
likely that the elasticity is less than or greater than this point (β0.5

1 )? Given this
last value, can you determine a point between βMin

1 and β0.5
1 such that it is equally

likely that the elasticity is less than or greater than this new point (β0.25
1 )? In ad-

dition, can you determine a value between β0.5
1 and βMax

1 such that it is equally
likely that the elasticity is less than or greater than this new point (β0.75

1 )?
Select points in the interval [βMin

1 , βMax
1 ] such that there are probabilities of 0.1,

0.05 and 0.01 that the price elasticity is less that these points. Now select points in
the interval [βMin

1 , βMax
1 ] such that there are probabilities of 0.9, 0.95 and 0.99 that

the price elasticity is less that these points.”
Then, we check coherence of the expert’s statements. For instance, the expert

established 0.4 as the 0.25 fractile of the income elasticity, which corresponds to
1-to-3 odds (1/(1 + 3) = 0.25, UK format, that is fractional odds), then we settled
the following betting situation: “Given that β1 is the actual income elasticity, there
are two bets where you have to choose one:

• Bet I
– If β1 < 0.4, you win US$2.
– If β1 > 0.4, you lose US$1.
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• Bet II
– If β1 > 0.4, you win US$1.
– If β1 < 0.4, you lose US$2.

So, what is your choice?”
Given that the expert established 0.4 as the 0.25 fractile of the income elasticity,

the fair situation is to receive US$4 (US$1 (initial stake) + US$3 (winnings)) if
β1 < 0.4 and to lose US$1 (initial stake) in the case that β1 > 0.4. In the first
option the implicit probability associated with β1 < 0.4 is higher than expert’s
beliefs (0.33 vs 0.25), so it is not a good choice because the winnings are too low,
whereas in the second betting situation the implicit probability associated with
β1 > 0.4 is lower than expert’s beliefs (0.66 vs 0.75), so winnings are high, and as
a consequence is a good choice. Therefore, if the expert is coherent must choose
the second bet. If the choice is incoherent with the elasticity assessment, we show
to the expert this incoherence, and resolve it. We proceed in this way until expert’s
statements were consistent.

Experts may violate the axioms of the subjective expected utility (Ellsberg,
1962, Millner et al., 2013), which is the most satisfactory ontology of subjective
probability (Savage, 1954), so we perform the strategy proposed by Millner et al.
(2013) to check that our expert follows these axioms.

We use βl,0 = ∑
i β

i
l (F (βi

l ) − F(βi−1
l )) and B(l,l),0 = ∑

i (β
i
l − βl,0)

2(F (βi
l ) −

F(βi−1
l )), l = {1,2,3} and i = {Min,0.01,0.05,0.1,0.5,0.9,0.95,0.99,Max} to

calculate the mean and variance from elicited fractiles, then we asked to the expert
about his belief of βl,0 as measure of central tendency and B(l,l),0 as a measure of
dispersion.

Mean and standard deviation of the elicited parameters can be seen in Table 2. In
addition, we observe in this table the mean and standard deviation of the posterior
distributions using non-informative priors (Chib, 1993), which imply a posterior
distribution that reflects only sample information (Judge et al., 1985). For instance,
the elicited mean of the price demand elasticity is equal to −0.51, whereas we
obtain −0.22 using sample information. The former value means that according
to the expert’s information, an increase of 10% in the price implies a reduction
of 4.0% ((Exp(−0.51) − 1) × 10) in water consumption. On the other hand, this
price increase implies a reduction of 1.97% ((Exp(−0.22)−1)×10) using sample
information.

Following the conventional approach of using prior distributions with well
known analytical expressions, we show in Figures 1, 2 and 3 the prior distribu-
tions of the parameters using the elicited mean and standard deviation under the
assumption of normal and Student’s t . Additionally, we can see the posterior dis-
tributions using non-informative priors, as well as the likelihood function of each
parameter conditioned to maximum of remaining parameters. As we can see the
prior distributions are concentrated on the tail of the likelihood in the case of the
income elasticity (Figure 1). Thus, we check robustness in an environment where
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Table 2 Parameter estimates: Elicited and non-informative priors∗

Parameter Elicitation Non-informative priors

Income elasticity 0.67 0.19
(0.28) (0.032)

Household size semi-elasticity 0.18 0.37
(0.53) (0.067)

Price elasticity −0.51 −0.22
(1.29) (0.062)

∗Standard deviation in parenthesis.

Figure 1 Distributions and likelihood: Income elasticity.

there is apparently misalignment between sample information and expert’s knowl-
edge.

4 Posterior distributions

The likelihood function of our model is given by

f
(
y : x|β, φ, σ 2

ε

) = 1

(2πσ 2
ε /(1 − φ2))1/2 Exp

{
− (y1 − x′

1β)2

2σ 2
ε /(1 − φ2)

}
(4.1)

× 1

(2πσ 2
ε )(T −1)/2 Exp

{
− 1

2σ 2
ε

T∑
t=2

(
ŷt − x̂′

tβ
)′(

ŷt − x̂′
tβ

)}
,
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Figure 2 Distributions and likelihood: Household size semielasticity.

Figure 3 Distributions and likelihood: Price elasticity.

where yt = log{cmet }, xt = [log{It }, nt , log{pt }]′, β = [β1, β2, β3]′, ŷt = yt −
φyt−1 and x̂t = xt − φxt−1.

In addition, we assume prior independent distributions

π(β, φ, σ 2
ε ) = π(β)π(φ)π(σ 2

ε ). (4.2)
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Therefore, the posterior distribution is given by

π(β,φ,σ 2
ε |y,x) ∝ f

(
y : x|β, φ, σ 2

ε

)
π(β)π(φ)π(σ 2

ε ). (4.3)

4.1 Normal-Inverse Gamma model

We initially assume that the prior distributions are β ∼ NK(β0,B0), σ 2
ε ∼

IG(α0/2, δ0/2) and φ ∼ N (φ0, σ
2
φ0

)Iφ∈(−1,1) where β0 = [β1,0β2,0β3,0], B0 =
diag{B(11),0B(22),0B(33),0} and Iφ∈(−1,1) denotes the indicator function of the set
(−1,1). There is the second order stationary assumption on the process, which
means the mean and all covariances of μt are finite and independent of time.
Thus, this assumption imposes the restriction that φ ∈ (−1,1) (Chib, 1993).

It can be shown that the posterior distributions are β|yt , xt , σ
2
ε , φ ∼ NK(β̄, B̄)

and σ 2
ε |yt , xt , β,φ ∼ IG(α1/2, δ1/2) where

B̄ =
[
σ−2

ε

{
x1x

′
1
(
1 − φ2) +

T∑
t=2

x̂t x̂
′
t

}
+ B−1

0

]−1

, (4.4)

β̄ = B̄

[
σ−2

ε

{
y1x1

(
1 − φ2) +

T∑
t=2

x̂t ŷt

}
+ B−1

0 β0

]
, (4.5)

α1 = α0 + T , (4.6)

δ1 = δ0 + (
y1 − x′

1β
)2(

1 − φ2) +
T∑

t=2

(
ŷt − x̂′

tβ
)2

. (4.7)

In addition,

φ|yt , xt , β, σ 2
ε ∝ (

1 − φ2)1/2 Exp
{
− 1

2σ 2
ε

((
y1 − x′

1β
)2(

1 − φ2))}

× Exp

{
− 1

2σ 2
ε

(
T∑

t=2

(
y∗
t − φy∗

t−1
)2

)}
(4.8)

× Exp
{
− 1

2σ 2
φ0

(φ − φ0)
2
}
Iφ∈(−1,1),

where y∗
t = yt − x′

tβ .
The conditional posterior distributions of β and σ 2

ε can be simulated by Gibbs
sampler. However, we must use a Metropolis–Hastings algorithm to draw φ. In
particular, we use as proposal density a Normal distribution whose variance and
mean are the following expressions:

σ 2
φp

=
(
σ−2

ε

T∑
t=2

(
y∗
t−1

)2 + σ−2
φ0

)−1

, (4.9)
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φ̄p = σ 2
φp

(
σ−2

ε

T∑
t=2

y∗
t y∗

t−1 + φ0σ
−2
φ0

)
. (4.10)

We retain the value if |φc| < 1, and then we accept this candidate following the
Metropolis–Hastings lineaments.

4.2 Normal-Scaled Beta two model

In the case that β ∼ NK(β0,B0), σ 2
ε ∼ SB2(α0, δ0, q) and φ ∼ N (φ0, σ

2
φ0

) ×
Iφ∈(−1,1). We have that β|yt , xt , σ

2
ε , φ ∼ NK(β̄, B̄) and φ|yt , xt , β, σ 2

ε is propor-
tional to expression (4.8). In addition,

π
(
σ 2

ε |yt , xt , β,φ
) ∝ Exp

{
− 1

2σ 2
ε

((
y1 − x′

1β
)2(

1 − φ2) +
T∑

t=2

(
ŷt − x̂′

tβ
)2

)}

(4.11)

× 1

(σ 2
ε )T /2+1−α0

(
1 + σ 2

ε

q

)−(α0+δ0)

.

We use the same strategy than in the previous model to draw β and φ. In addi-
tion, we implement a Metropolis–Hastings algorithm using as proposal density an
Inverse-Gamma distribution with shape parameter T/2 − α0 and scale parameter
−1

2((y1 − x′
1β)2(1 −φ2)+∑T

t=2(ŷt − x̂′
tβ)2). This is due to the fact that the mode

of σ 2
ε is equal to 0.002 using a non-informative prior in our application. This im-

plies (1 + σ 2
ε

q
)−(α0+δ0) ≈ 1, then equation (4.11) is approximately proportional to

an Inverse-Gamma distribution.

4.3 Student’s t-Inverse Gamma model

Now we assume that β ∼ TK(β0,B0, v), σ 2
ε ∼ IG(α0/2, δ0/2) and φ ∼ N (φ0,

σ 2
φ0

)Iφ∈(−1,1). In this case we have that σ 2
ε |yt , xt , β,φ ∼ IG(α1/2, δ1/2) and

φ|yt , xt , β, σ 2
ε is proportional to expression (4.8). Regarding the conditional dis-

tribution of β

π
(
β|yt , xt , σ

2
ε , φ

) ∝ Exp

{
− 1

2σ 2
ε

((
y1 − x′

1β
)2(

1 − φ2) +
T∑

t=2

(
ŷt − x̂′

tβ
)2

)}

(4.12)

×
(

1 + 1

v
(β − β0)

′B−1
0 (β − β0)

)−(v+K)/2
.

We can draw σ 2
ε from a Gibbs sampler, and φ in the same way than the previous

model. In addition, we can use a Metropolis–Hastings algorithm to draw β . In this
case we use as proposal density a Normal distribution whose covariance matrix
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and mean are given by

	βp =
(
σ−2

ε

T∑
t=2

x̂t x̂
′
t + B−1

0

)−1

, (4.13)

β̄p = 	βp

(
σ−2

ε

T∑
t=2

x̂t ŷt + B−1
0 β0

)
. (4.14)

4.4 Student’s t-Scaled Beta two model

In this case, β ∼ TK(β0,B0, v), σ 2
ε ∼ SB2(α0, δ0, q) and φ ∼ N (φ0, σ

2
φ0

) ×
Iφ∈(−1,1). Thus, π(β|yt , xt , σ

2
ε , φ), π(σ 2

ε |yt , xt , β,φ) and π(φ|yt , xt , β, σ 2
ε ) are

proportional to expressions (4.12), (4.11) and (4.8), respectively.
We use Metropolis–Hastings algorithms to draw β , σ 2

ε and φ. Regarding β the
proposal density is Normal with covariance matrix and mean vector given by ex-
pressions (4.13) and (4.14). In addition we use an Inverse-Gamma distribution
with shape parameter T/2 − α0 and scale parameter −1

2((y1 − x′
1β)2(1 − φ2) +∑T

t=2(ŷt − x̂′
tβ)2) as proposal density to draw σ 2

ε , and a normal density with vari-
ance and mean given by expressions (4.9) and (4.10) for φ.

5 Application

In Table 3 and Figure 4 can be observed the results of our application. The main
characteristic of this application is that the results using different models are ro-
bust, and although there is conflict between sample information and elicited pa-
rameters, our results are similar to the results that we obtain using non-informative
priors (see Table 2).

In particular, we observe that the median income elasticity is approximately
equal to 0.20 with a 95% credible interval equal to (0.16,0.24). This implies that
an income increase of 1% generates an increase equal to 0.22% in piped water de-
mand. In addition, the household size semi elasticity is equal to 0.34, this implies
that one additional person in the household increases water consumption in 40.5%.
Regarding the price elasticity, its mean is equal to −0.25 with a 95% credible inter-
val equal to (−0.36,−0.16). Thus, 1% price increase implies a water consumption
decrease equal to 0.22%.

Regarding the estimation procedure, we implement the sampling algorithms us-
ing 110,000 iterations and a burn-in of 10,000. Then, we draw a sample every 10
iterations to have an effective size of 10,000. This last step is done to mitigate the
autocorrelation of the chains. All the chains seem stable, and different diagnostics
indicate that the chains converge to stationary distributions (see Table A.1 in the
Appendix. In addition, trace plots are available upon request).

We can see in Figure 5 the box plots associated with the posterior variance
parameter. The four models are centered around 0.002, and again we see robust
posterior estimates.
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Table 3 Summary posterior estimates

95% Credible interval

Parameter Mean Median Lower Upper

Normal-Inverse Gamma model
Income elasticity 0.202 0.201 0.165 0.245
Household size semi elasticity 0.339 0.341 0.249 0.418
Price elasticity −0.257 −0.255 −0.362 −0.163
Variance parameter 0.002 0.002 0.002 0.003
Autocorrelation coefficient 0.640 0.639 0.536 0.746

Normal-Scaled Beta two model
Income elasticity 0.202 0.188 0.164 0.244
Household size semi elasticity 0.340 0.312 0.251 0.419
Price elasticity −0.257 −0.289 −0.361 −0.164
Variance parameter 0.002 0.002 0.002 0.003
Autocorrelation coefficient 0.639 0.639 0.535 0.746

Student’s t-Inverse Gamma model
Income elasticity 0.198 0.197 0.159 0.243
Household size semi elasticity 0.347 0.349 0.256 0.427
Price elasticity −0.255 −0.254 −0.359 −0.162
Variance parameter 0.002 0.002 0.002 0.003
Autocorrelation coefficient 0.636 0.636 0.530 0.743

Student’s t-Scaled Beta two model
Income elasticity 0.198 0.197 0.160 0.244
Household size semi elasticity 0.346 0.348 0.252 0.426
Price elasticity −0.256 −0.254 −0.358 −0.163
Variance parameter 0.002 0.002 0.002 0.003
Autocorrelation coefficient 0.636 0.635 0.534 0.746

Source: Author’s calculations.

6 Simulation exercises

Although the concepts of Bayesian analysis hold valid for any sample size, it is
interesting to examine the effects of the prior distributions on the posterior distri-
butions given different sample sizes. In particular, it is well known that the prior
distributions play a relatively important role when the sample size is small, al-
though this effect tends to disappear when sample size increases (Zellner, 1996,
Greenberg, 2008). Therefore, the effect of the prior distributions on Bayesian in-
ference can be enormous when there are few data, especially when expert’s knowl-
edge is too tied around prior mean values. Under these circumstances, the method
that is chosen to build the prior distributions can be very relevant.

As a consequence, a possible cause that may be generating robust outcomes in
our application is the joint effect of a sample size equal to 100, and a moderate level
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Figure 4 Posterior estimates: location parameters.

of uncertainty regarding elicited parameters. The latter fact is reflected on prior
coefficients of variation equal to 0.41, 2.94 and 2.53 for the income, household
size and price parameters, respectively.

To test the previous hypothesis, we perform a limited simulation exercise where
we use smaller sample sizes, and assume different levels of uncertainty regarding
elicited parameters. In particular, we simulate the following model

log{cmet } = 0.18 log{It } + 0.38{nt } − 0.23 log{pt } + μt, (6.1)

where

μt = 0.61μt−1 + εt (6.2)

and t = 1,2, . . . , T and ε
i.i.d.∼ N (0,0.12), log{It } i.i.d.∼ N (6.07,0.112), nt

i.i.d.∼
N (4.23,0.532), and log{pt } i.i.d.∼ N (−0.46,0.502).
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Figure 5 Posterior estimates: Variance parameter.

Parameters of the simulation are such that replicate data. We show the results of
using a sample size equal to 25 (we try using other sample sizes, the results follow
the same pattern that we show in the paper. Results available upon request).

Then we generate independent prior covariance matrices such that each
one shows different degrees of uncertainty B

(ρ)
0 = diag{(|0.67|ρ)2, (|0.18|ρ)2,

(| − 0.51|ρ)2}, such that ρ = {0.1,0.5,1,2}. Observe that 0.67, 0.18 and -0.51
are the mean elicited parameters (see Table 2).

We see from the box plots of the posterior income elasticity in Figure 6 that
when the hypothetical expert’s uncertainty is very low (ρ = 0.1), the posterior out-
comes are highly influenced by the prior mean. We observe this pattern in the four
models, although is slightly less remarkable in Student’s t models. However, this
pattern disappears when the level of uncertainty increases (ρ = {0.5,1,2}). So,
posterior estimates of the four model resembles the non-informative case (we ob-
served the same pattern in the other location parameters. Available upon request).

We see in Figure 7 that a high hypothetical prior expert’s certainty level
(ρ = 0.1) increases model’s variance. This pattern is common to the four mod-
els, although it is slightly higher in Scaled Beta two models. However, a decrease
of expert’s certainty level (ρ = {0.5,1,2}) generates that posterior distributions of
the variance in the four models converge to the non-informative outcome. In this
case, the Student’s t-Scaled Beta two model presents the highest level variabil-
ity.
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Figure 6 Posterior estimates: Income elasticity.

7 Concluding remarks

We found in our application that posterior parameter distributions are robust to
four prior specifications, namely Normal-Inverse Gamma, Normal-Scaled Beta
two, Student’s t-Inverse Gamma and Student’s-Scaled Beta two. To test the hy-
pothesis that this outcome is the result of a moderate sample size and a relatively
high level of expert’s uncertainty, we perform simulation exercises using smaller
sample sizes and lower levels of expert’s uncertainty. We show that the general
pattern stays, although Student’s t models are slightly less influenced by expert’s
knowledge when there is a high level of prior certainty, and Scaled Beta two mod-
els allow a higher level of variability.

Regarding the application, we found that the piped water demand in Medellín
(Colombia) is an normal inelastic service with income and price mean elasticities
equal to 0.20 and −0.25, respectively. In addition, this service is highly affected
by household size, its mean semi elasticity is 0.34.
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Figure 7 Posterior estimates: Variance parameter.

Appendix

Table A.1 Stationarity and convergence diagnostics: Application

Heidelberger Heidelberger
Parameter (1st part/p-value)a (2nd part)b Gewekec Rafteryd

Normal-Inverse Gamma model
Income elasticity 0.384 0.000 −1.013 0.999
Household size semi elasticity 0.443 0.001 0.538 1.020
Price elasticity 0.757 0.001 −0.431 1.010
Variance parameter 0.402 5.900E−06 1.552 0.984
Autocorrelation coefficient 0.322 0.001 −0.332 1.010
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Table A.1 (Continued.)

Heidelberger Heidelberger
Parameter (1st part/p-value)a (2nd part)b Gewekec Rafteryd

Normal-Scaled Beta two model
Income elasticity 0.624 0.000402 −0.3196 0.997
Household size semi elasticity 0.734 0.000849 0.1559 1.01
Price elasticity 0.929 0.001018 −0.1075 0.988
Variance parameter 0.872 6.04E−06 −0.4748 1.01
Autocorrelation coefficient 0.517 0.00104 −0.4928 0.997

Student’s t-Inverse Gamma model
Income elasticity 0.626 0.000414 0.4554 0.989
Household size semi elasticity 0.66 0.000861 −0.1973 0.993
Price elasticity 0.907 0.000971 0.3352 0.997
Variance parameter 0.712 6.03E−06 −0.6826 1.000
Autocorrelation coefficient 0.475 0.00107 0.4453 1.000

Student’s t-Scaled Beta two model
Income elasticity 0.687 0.000416 −0.03641 0.971
Household size semi elasticity 0.822 0.000867 −0.17993 0.990
Price elasticity 0.514 0.00098 −0.62794 1.030
Variance parameter 0.139 6.09E−06 0.2779 1.000
Autocorrelation coefficient 0.704 0.00107 1.052 1.010

aNull hypothesis is stationarity of the chain.
bHalf-width to mean ratio (threshold of 0.1).
cMean difference test z-score.
dDependence factor (threshold of 5).

References

Beach, L. and Swenson, R. (1966). Intuitive estimation of means. Psychonomic Science 5, 161–162.
Berger, J. (2006). The case for objective Bayesian analysis. Bayesian Analysis 1, 385–402.

MR2221271
Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Berlin: Springer.

MR0804611
Berger, J. O. (1994). An overview of robust Bayesian analysis. Test 3, 5–124. MR1293110
Bian, G. and Tiku, M. L. (1997). Bayesian inference based on robust priors and MML estimators:

Part I, symmetric location–scale distributions. Statistics: A Journal of Theoretical and Applied
Statistics 29, 317–345. MR1474944

Chib, S. (1993). Bayes regression with autoregressive errors. Journal of Econometrics 58, 275–294.
Ellsberg, D. (1962). Risk, ambiguity, and the Savage axioms. Quarterly Journal of Economics 75,

643–669.
Fischhoff, B. and Beyth, R. (1975). I knew it would happen: Remembered probabilities of once–

future things. Organizational Behavior and Human Performance 13, 1–16.
Fúquene, J., Cook, J. and Pericchi, L. (2009). A case for robust Bayesian priors with applications to

clinical trials. Bayesian Analysis 4, 817–846. MR2570090

http://www.ams.org/mathscinet-getitem?mr=2221271
http://www.ams.org/mathscinet-getitem?mr=0804611
http://www.ams.org/mathscinet-getitem?mr=1293110
http://www.ams.org/mathscinet-getitem?mr=1474944
http://www.ams.org/mathscinet-getitem?mr=2570090


Effects of prior distributions 19

Fúquene, J., Pérez, M. and Pericchi, L. (2014). An alternative to the inverted gamma for the variances
to modelling outliers and structural breaks in dynamic models. Brazilian Journal of Probability
and Statistics 28, 288–299. MR3189499

Garthwaite, P., Kadane, J. and O’Hagan, A. (2005). Statistical methods for eliciting probability dis-
tributions. Journal of American Statistical Association 100, 680–701. MR2170464

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian
Analysis 1, 515–534. MR2221284

Greenberg, E. (2008). Introduction to Bayesian Econometrics, 1st ed. Cambridge.
Judge, G., Griffiths, W., Hill, C., Lutkepohl, H. and Lee, T. (1985). Theory and Practice of Econo-

metrics. Wiley.
Kadane, J. and Wolfson, L. (1998). Experiences in elitation. The Statiscian 47, 3–19.
Kahneman, D. (2011). Thinking, Fast and Slow. New York: Farrar, Straus and Giroux.
Millner, A., Calel, R., Stainforth, D. and MacKerron, G. (2013). Do probabilities expert elicitations

capture scientists’ uncertainty about climate change. Climatic Change 116, 427–436.
Pérez, M., Pericchi, L. and Ruíz, I. (2014). The Scaled Beta2 distribution as a robust prior for scales,

and a explicit horseshoe prior for locations. Technical report, University of Puerto Rico, Puerto
Rico.

Satya, D. (1970). Compound gamma, beta and F distributions. Metrika 16, 27–31. MR0312624
Savage, L. (1954). The Foundations of Statistics. Wiley. MR0063582
Spiegelhalter, D., Best, T., Gilks, W. and Lunn, D. (2003). BUGS: Bayesian inference using

Gibbs sampling. Technical report, MRC Biostatistics Unit, England. Available at www.mrc-
bsu.cam.ac.uk/bugs/.

Tversky, A. and Kahneman, D. (1971). The belief in the law of small numbers. Psychological Bulletin
76, 105–110.

Tversky, A. and Kahneman, D. (1973). Availability: A heuristic for judging frequency and probabil-
ity. Cognitive Psychology 5, 207–232.

Tversky, A. and Kahneman, D. (1974). Judgement under uncertainty: Heuristics and biases. Science
185, 1124–1131.

Walley, P. (1991). Statistical with Imprecise Probabilities. Chapman and Hall. MR1145491
Winkler, R. (1967). The assessment of prior distributions in Bayesian analysis. Journal of the Amer-

ican Statistical Association 62, 776–800. MR0220368
Zellner, A. (1996). An Introduction to Bayesian Inference in Econometrics. Wiley. MR1411451

Department of Economics
Universidad EAFIT
Medellín, 3300
Colombia
E-mail: aramir21@eafit.edu.co

Department of Mathematics
University of Puerto Rico
San Jose, 23355
Puerto Rico
E-mail: lrpericchi@uprrp.edu

http://www.ams.org/mathscinet-getitem?mr=3189499
http://www.ams.org/mathscinet-getitem?mr=2170464
http://www.ams.org/mathscinet-getitem?mr=2221284
http://www.ams.org/mathscinet-getitem?mr=0312624
http://www.ams.org/mathscinet-getitem?mr=0063582
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.ams.org/mathscinet-getitem?mr=1145491
http://www.ams.org/mathscinet-getitem?mr=0220368
http://www.ams.org/mathscinet-getitem?mr=1411451
mailto:aramir21@eafit.edu.co
mailto:lrpericchi@uprrp.edu
http://www.mrc-bsu.cam.ac.uk/bugs/

	Introduction
	Bayes regression with autoregressive errors
	Elicitation: The hyperparameters of the prior distributions for location parameters
	Posterior distributions
	Normal-Inverse Gamma model
	Normal-Scaled Beta two model
	Student's t-Inverse Gamma model
	Student's t-Scaled Beta two model

	Application
	Simulation exercises
	Concluding remarks
	Appendix
	References
	Author's Addresses

