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Efficient Metropolis–Hastings Proposal
Mechanisms for Bayesian Regression Tree

Models∗

Matthew T. Pratola†

Abstract. Bayesian regression trees are flexible non-parametric models that are
well suited to many modern statistical regression problems. Many such tree models
have been proposed, from the simple single-tree model to more complex tree en-
sembles. Their nonparametric formulation allows one to model datasets exhibiting
complex non-linear relationships between the model predictors and observations.
However, the mixing behavior of the Markov Chain Monte Carlo (MCMC) sam-
pler is sometimes poor, frequently suffering from local mode stickiness and poor
mixing. This is because existing Metropolis–Hastings proposals do not allow for
efficient traversal of the model space. We develop novel Metropolis–Hastings pro-
posals that account for the topological structure of regression trees. The first is
a novel tree rotation proposal that only requires local changes to the regression
tree structure, yet efficiently traverses disparate regions of the model space along
contours of high likelihood. The second is a rule perturbation proposal which
can be seen as an efficient variation of the change proposal found in existing lit-
erature. We implement these samplers and demonstrate their effectiveness on a
prediction problem from computer experiments, a test function where structural
tree variability is needed to fully explore the posterior and data from a heart rate
study.

Keywords: Markov chain Monte Carlo, proposal distribution, computer
experiments, uncertainty quantification, credible interval, coverage probability.

1 Introduction

Regression tree approaches to modeling complex nonlinear relationships have enjoyed
increasing popularity in the statistical literature in recent years under the guise of
Bayesian formulations (e.g. Chipman et al., 1998, 2002; Denison et al., 1998). A variety
of such Bayesian formulations have been developed, from single-tree models (Chipman
et al., 1998, 2002; Denison et al., 1998), treed Gaussian Process models (Gramacy and
Lee, 2008), sequential regression trees (Taddy et al., 2011) and Bayesian Additive Re-
gression Trees (BART) (Chipman et al., 2010). Recent work also indicates that efficient
and scalable parallel versions of regression tree models are possible (Pratola et al., 2014),
which is timely given the explosion in the size and complexity of modern datasets.

The benefits of regression tree models are well known; they allow for a flexible mod-
eling approach that can handle a wide variety of nonlinear problems, have a simple
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and easy to understand structure, and offer fast predictive performance. At the same
time, none of the drawbacks of conventional basis function approaches are present;
for instance, no specification of a basis is required, and the computationally expen-
sive matrix-algebra associated with basis function approaches is absent. The promise
of Bayesian formulations of regression trees is to combine the benefits of regression
tree models with the benefits of the Bayesian modeling paradigm, namely accounting
for various sources of uncertainty which are then propagated through to the posterior
predictive distribution.

In practice, the aspirations of Bayesian regression tree methodologies are realized
in many applications, but there are some problems that arise in certain cases. Pri-
marily, it is well known that the Metropolis–Hastings (MH) proposals in the Markov
Chain Monte Carlo (MCMC) sampler of these models can suffer from poor mixing (Wu
et al., 2007), resulting in overfitting the data and under-representing model uncertainty.
A few approaches that go some way towards mitigating this issue have appeared in
the literature. The method of Taddy et al. (2011) approaches the problem by using a
particle-based representation of the unknown posterior distribution. The BART model
of Chipman et al. (2010) forms a sum-of-trees representation of the data, where each
tree is penalized to have shallow depth. The idea is that with shallow trees, the simple
MH proposals that sometimes failed to explore the model space when used with deep
trees will be adequate due to the vastly reduced search space.

Gramacy and Lee (2008) improve mixing of a Bayesian treed Gaussian Process model
by applying the rotation algorithm from the Binary Search Tree literature (e.g. Sleator
et al., 1988). They show that such a move has high probability of acceptance as its
likelihood ratio is always 1. However, it requires that all 3 internal nodes involved in
a rotation split on the same variable. This constraint in general will usually not be
satisfied in Bayesian regression trees.

Another approach to improve mixing is the proposed “radical restructure” MH pro-
posal developed in Wu et al. (2007). Their result suggested that mixing problems could
be eliminated when their restructure proposal was combined with the usual proposal
mechanisms previously developed in the literature. However, their proposal is compu-
tationally expensive and does not scale well with high-dimensional problems (i.e. large
number of covariates, d) due to the curse of dimensionality. Additionally, in Section 5.1
we demonstrate a situation where the sampler of Wu et al. (2007) does not sample all
trees consistent with the data. The limitation in this case appears to be the inherent re-
striction on tree dimensionality with their proposal. In contrast, the samplers developed
in this article do sample all trees consistent with the data.

Alternatives to MH samplers have also been recently explored. Lakshminarayanan
et al. (2013) propose a Sequential Monte Carlo approach for a single decision tree model
and empirically demonstrate similar performance as MCMC methods. Their ideas are
extended to BART in Lakshminarayanan et al. (2015) using a particle Gibbs algorithm.

Our work was motivated by examples from disparate regression tree models that
exhibited poor mixing and severely underestimated posterior predictive uncertainty.
The solutions we develop in this paper include a vastly more efficient version of the
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classical “change” proposal (Chipman et al., 1998; Denison et al., 1998) and a novel
proposal mechanism that enables efficient searching of the tree space, thereby allow-
ing the Markov chain to mix adequately leading to accurate representation of model
uncertainty. The proposed samplers are applied to the motivating examples to demon-
strate the improvements realized. The samplers developed are applicable to Bayesian
regression tree models in general and should yield improvements similar to what we
demonstrate on a wide variety of applied problems.

In the next section, we motivate our development with a synthetic example from
Wu et al. (2007) using a single-tree model, and a simple example from Computer Ex-
periments (Sacks et al., 1989; Kennedy and O’Hagan, 2001; Oakley and O’Hagan, 2002;
Higdon et al., 2008; Gramacy and Lee, 2008) using the BART model. In Section 3,
we develop our novel tree rotation proposal mechanism. In Section 4 we introduce our
“perturb” move which is an enhanced version of the “change” proposal mechanism. In
Section 5, we apply the new samplers to the motivating problems to demonstrate the
improvements realized. Finally, we conclude in Section 6. Additional examples (a heart
rate study and a computer model calibration example) as well as methodology details
may be found in the online Supplementary Material (Pratola, 2016).

2 Background and Motivating Examples

An acknowledged challenge of Bayesian regression tree models has been the difficulty
to sometimes achieve proper mixing of the Markov chain. And, while this problem has
been recognized since such models were established (Chipman et al., 1998; Denison et al.,
1998), little progress has been made. Today, the majority of implementations continue to
rely on the birth/death/change/swap proposals that were originally described. A notable
exception to this is the work of Wu et al. (2007).

Regression trees model data using a stochastic binary tree representation made up
of interior nodes, T , and a set of maps, M , associated with the terminal nodes. Since
the tree is binary, any interior node, say node ηi, always has a left and right child,
denoted l(ηi), r(ηi) respectively. All nodes except for the root have a parent node, p(ηi).
Frequently, it is common to refer to a node by its unique integer identifier i. For example,
the root node η1 is node 1. In this paper, we will sometimes also refer to a subtree starting
at node ηi simply as Ti. The tree shown in Figure 1 summarizes our notation.

What does T represent? Each internal node of a regression tree contains a split rule
that depends on some covariate, and a split location, or “cutpoint”. The representation
T is abstract, by which we mean that one might be referring to the tree T or one might
be referring to this modeling structure encoded in T . This modeling structure is simply
the parameterization of the split rules at each node in the tree and the topological
arrangement of nodes and edges forming the tree. Consider the n × d design matrix
X of covariates for our data. Each of the d columns represents a covariate variable
v, v = 1, . . . , d and each row x corresponds to the observed settings of these covariates.
Without loss of generality, assume that the covariates are scaled to the unit interval, so
that xv ∈ [0, 1] and x ∈ [0, 1]d. Then the split rule at a given interior tree node is of the
form xv < c which is parameterized by the chosen split variable v and the cutpoint c.
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Figure 1: A sample binary regression tree with internal nodes T = {η1, η2, η3} and
bottom-node maps M = {μ4(x), μ5(x), μ6(x), μ7(x)}. Each internal node has a rule
v < c for some variable v and cutpoint c. When a rule is true for an input x, branch
left, otherwise branch right. Input x maps to μ5(x) if it branches left at η1 and right at
η2. Node η2 is also the left child of the root, l(η1), while the root η1 is also the parent
p(η2). The sub-tree T3 denoted in grey consists of node η3 and all its children.

The stochastic regression tree representation arises by treating the split variable v as a
discrete random quantity in {1, . . . , d} and the cutpoint c as a discrete random quantity
in {0, 1

nv−1 , . . . ,
nv−2
nv−1 , 1} where nv is the resolution of discretization for variable v. For

a continuous covariate, nv = 100 is common, while for a discrete covariate this would
be adjusted accordingly. The nv’s are usually specified as fixed, known. The modeling
representation of T is often expressed as T = {(v1, c1), (v2, c2), . . .}.

The regression tree is completed by specifying the maps at terminal nodes. For nb =
|M | terminal nodes we have maps M = {μ1, . . . , μnb

}. These maps take as input the
covariates x mapping to a given terminal node and produce a response μj(x). Common
forms of the μj ’s are constants (i.e. μj(x) ≡ μj), linear regression models, Gaussian
Processes (Gramacy and Lee, 2008), etc. Taken all together, T represents a partitioning
of the covariate space χ and a mapping from an input covariate x ∈ χ to a response
value encoded in M . To be more exact, the regression tree defines a function g(x;T,M)
which maps input x to response μj(x).

2.1 Bayesian Tree Models

The simplest Bayesian models (Chipman et al., 1998; Denison et al., 1998) implementing
the above stochastic binary tree models the data using a single tree as

y = g(x;T,M) + ε, ε ∼ N(0, σ2) (1)

and uses priors of the form π(T,M, σ2) = π(M |T, σ2)π(T )π(σ2). A conjugate normal
distribution is used to specify the prior on bottom-node μ’s as well as for σ2, so these
parameters are drawn using the Gibbs sampler. The conjugacy also allows the marginal
T |y, σ2 to be expressed in closed-form by integrating out M . Drawing from T |y, σ2
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is then sampled using Metropolis–Hastings proposals, and is what poses challenges in
Bayesian tree models.

In the BART model of Chipman et al. (2010), the idea is to represent the data y as
a sum of simple trees,

y(x) =
m∑
j=1

g(x;Tj ,Mj) + ε, ε ∼ N(0, σ2) (2)

and the priors have the form
∏m

j=1 π(Mj |Tj , σ
2)π(Tj)π(σ

2). These simple trees are im-
plemented by specifying constants for the terminal node maps, Mj = (μj1, μj2, . . .), and
using a prior that penalizes the depth of each tree. The prior π(Tj) thus favors shallow
trees, or parsimony, over deep and complex trees. This parsimony is achieved by speci-
fying the prior probability that a node ηjk at depth djk of tree Tj is non-terminal to be
π(ηjk) ∝ α(1 + djk)

−β for α ∈ (0, 1) and β ∈ [0,∞).

The default number of trees used in this representation is m = 200, which seems to
work well for a wide variety of problems. Conjugate normal priors on the terminal node
μjk’s again leads to a standard Gibbs sampler for the terminal node maps. Similarly,
a conjugate inverse chi-squared prior for σ2 results in simple Gibbs updates for the
variance. Discrete uniform priors are placed on the split variables and split cutpoints and
combined with the prior on the probability that a node is non-terminal at a given depth
leads to a Metropolis–Hastings algorithm for sampling from π(Tj |y, σ2) by growing or
pruning nodes in the tree. This growing and pruning are handled by aptly named birth
and death proposals which either split a currently terminal node on some variable v at
some cutpoint c, or collapses two terminal nodes thereby removing a split.

In addition to the birth/death MH steps, which allows the parameter space of the
nodes at the bottom of the trees to be explored by the MCMC algorithm, there are
additional change and swap proposals aimed at exploring the parameter space of nodes
that are internal to the tree. These four MH proposal mechanisms are summarized in
Figure 11 of the Supplementary Material. For complete details of these MCMC algo-
rithms, the reader is referred to Chipman et al. (1998); Denison et al. (1998); Chipman
et al. (2010).

Our interest is to ensure good mixing of the MCMC for fitting the tree model. Using
the four proposal mechanisms in single tree regression models, it has frequently been
found that the sampler initially mixes well for the first few iterations as the tree grows
to fit the data, but then becomes trapped in a local mode being unable to accept death
moves with any reasonable probability. At the same time, change/swap moves tend to
have very low acceptance rates, further limiting the mixing that can occur. As a result,
while the in-sample prediction of these fits can be quite good, there is a danger of over-
fitting and the uncertainty intervals can be too small due to the MCMC sampler being
stuck in a local mode.

One of the advantages of the model in equation (2), with its additive representation
of simple trees, was to facilitate easier acceptance of birth/death proposals because
most trees would be shallow and only represent a small portion of the overall response
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signal. In addition, because of this shallow representation, removing the change/swap
proposals was believed to be justified (e.g. Taddy et al. (2011); Pratola et al. (2014)).
This seems reasonable for many regression problems investigated, but we have found
that even this simple additive tree representation can suffer from poor mixing in certain
problems. The applied problems where we have seen this occur come from computer
experiments applications, where the measurement error variance σ2 tends to be quite
small and/or the dataset size is quite large.

To explore these issues, we next introduce some motivating examples that are prob-
lematic and exhibit poor mixing of the regression tree structure.

2.2 A Single-Tree Example

This example is taken from Wu et al. (2007), and it serves as a simple demonstration
where proper mixing of the regression tree’s topological structure is important. Their
synthetic dataset had d = 3 covariates and the response y was calculated at n = 300
settings of these covariates as:

y(x) =

⎧⎪⎨
⎪⎩
1 +N(0, 0.25) if x1 ≤ 0.5, x2 ≤ 0.5

3 +N(0, 0.25) if x1 ≤ 0.5, x2 > 0.5

5 +N(0, 0.25) if x1 > 0.5

(3)

For this function, Wu et al. (2007) generated the covariates so the effects of x1 and x3

are confounded, as shown in the Supplementary Material. We fit this dataset using only
m = 1 trees and found that the acceptance rate of tree moves (after the initial few steps
of the sampler) was 0. In effect, the sampler collapsed on a single tree representation
of the data and would not accept any birth/death proposal that might lead to an
alternative representation of the data. The tree that was found is a 4-node representation
that does not split on x3. If one were to blindly believe this fit to the data, it would
appear that x3 has no effect on the response, whereas in fact we should conclude that
either x1 or x3 (or both) may affect the response due to the confounding.

2.3 Computer Experiments Example

In computer experiments, a statistical emulator is used to model the outputs of sim-
ulators, η(x), of complex physical processes (Sacks et al., 1989; Oakley and O’Hagan,
2002; Gramacy and Lee, 2008) as a function of the simulator inputs x. To simulate
such an example, we treated the deterministic Friedman function (Friedman, 1991)
as if it were our simulator, i.e., y(x) = η(x) + ε(x) where the Friedman function is
η(x) = 10sin(2πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5. We sampled 5,000 observations
from this simulator while adding i.i.d. normally distributed noise ε(x) ∼ N(0, σ2), and
evaluated the use of BART with m = 200 trees as a flexible statistical emulator as in
Pratola et al. (2014). We used the default BART priors as described in Chipman et al.
(2010), in particular α = 0.95 and β = 2 for the tree depth prior, and π(σ2) = νλ

χ2
ν

with default shape ν = 3 and λ found by calibrating the 90th percentile of the prior on



M. T. Pratola 891

σ is located at the sample standard deviation. The prior on the mean, π(μjk) is i.i.d.
N(0, τ2) for all j, k where τ2 is chosen so η(x) = E[Y |x] is within (ymin, ymax) with
95% prior probability.

When the measurement error was large, e.g. σ2 = 1, the MCMC algorithm (with
birth/death proposals only) was found to mix reasonably well, having an acceptance
rate around 18% and the 90% pointwise credible interval for η(x) having an empirical
coverage of 81%. However, as the error variance was decreased, this behavior changed
drastically. The results of fitting BART when σ2 = 0.1 are shown in the left pane of
Figure 2. The MCMC was burned-in for 5,000 iterations and a further 5,000 iterations
were drawn as samples from the posterior. In this case, the acceptance rate was very
low at around 4%. In effect, the tree structure became stuck in a local mode with, for
all practical considerations, zero chance of moving to a different area of tree-space that
could give an equally good fit to the data.

The empirical coverage of the 90% pointwise credible interval for η(x) shown in the
figure is also very low at 53.8%. Since the tree structure of the model is not being
explored by the sampler in this example, it suggests that the uncertainty coming from
the terminal node μjk’s is only accounting for roughly half of the true uncertainty that
should be explored by the MCMC sampler. This missing uncertainty is attributed to
variability in partition rules of the interior tree nodes and other topological structural
variability of the regression trees in this example.

Figure 2: 90% credible intervals for posterior predictions of the Friedman function with
σ2 = 0.1 Left pane: The credible intervals using only birth/death proposals have an em-
pirical coverage of 53.8%, under-represent the uncertainty, and the very low acceptance
rate of birth/death proposals of 4% indicate poor mixing of the MCMC sampler. Right
pane: The credible intervals using the proposed rotate and perturb proposal mechanisms
have an empirical coverage of 90.6% and the acceptance rate is 25% indicating good
mixing of the MCMC sampler.
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2.4 Sampling π(T |y, σ2)

The problems demonstrated in the above examples result from the difficulty in sam-
pling π(T |y, σ2). As mentioned earlier, often one thinks of T as T = {(v1, c1), . . .} but
this is a misleading simplification as underlying the variables and cutpoints is the tree
topology, τ . The topology τ encodes the number of nodes in the tree, whether a node
is internal or terminal, parent/child edge connections between all internal nodes, and
node depths. Slow mixing results from the limited ability to sample this posterior topol-
ogy, τ |y, σ2, {(vi, ci)} using birth/death proposals, and limited or inefficient sampling of
the variables and cutpoints, (vi, ci)|y, τ, σ2, {(v−i, c−i)}, ∀i. This paper proposes a novel
sampling algorithm allowing easier sampling of tree topology and efficient sampling of
variables and cutpoints. The proposed algorithm for a single-tree consists of:

1. Draw τ |y, σ2, {(vi, ci)} using birth/death or tree rotation proposals

2. Draw (vi, ci)|y, τ, σ2, {(v−i, c−i)}, ∀i using peturb or perturb within change-of-
variable proposals

3. Draw μj |y, τ, σ2, {(vi, ci)} using conjugate Gibbs proposals

4. Draw σ2|y, τ, σ2, {μj}, {(vi, ci)} using conjugate Gibbs proposals

In this algorithm, Step 3 and Step 4 are the usual Gibbs draws using conjugate priors,
so the novelty of our proposed algorithm lies in the new tree rotation proposal of Step
1 and the perturb or peturb within change-of-variable proposals of Step 2. In the next
section, we first introduce the tree rotation proposal that is used in Step 1 of the above
algorithm, while in Section 4 we introduce the perturb and perturb within change-of-
variable proposals that are used in Step 2.

3 Tree Rotation Proposal

A limitation of current Bayesian regression tree proposals is that they do not directly
explore radically different tree arrangements nor do they change the dimension of the
tree itself except for birth/death moves. In fact, of all the proposal mechanisms that
have been developed in the literature, only the birth/death move changes dimensionality
of the model. Because these moves only alter the bottom of the tree, it is unlikely for
a regression tree MCMC algorithm to fully explore the space of nearly equivalent trees
that have high posterior probability.

Here we develop by construction a more radical proposal, which can be thought of
as a multivariate generalization of the simple univariate rotation mechanism found in
the binary search tree literature (e.g. Sleator et al., 1988) and implemented in Gramacy
and Lee (2008). This generalization allows dimension-changing proposals to occur at
any interior node of a tree, and directly moves between modes of high likelihood. The
basic idea of our rotate algorithm is demonstrated in Figure 3, which shows one possible
trajectory of tree arrangements that can be constructed through rotation moves applied
to node 2 (double circled). Note that Figure 3 indicates that if we start at the right tree,
it is possible to rotate back to the original topology. The notion that a rotate traverses



M. T. Pratola 893

Figure 3: Two rotate moves applied sequentially at the same node (shown as double
circled). The sub-trees Tq, Tr and Ts are arbitrary. Note that the rotate operation can
be undone by a subsequent rotate.

between modes of high likelihood is motivated by viewing the effect of the first rotation
performed in the example of Figure 3 in the plane of the X-space that is being affected.
This is shown in Figure 14 of the Supplementary Material, which shows that the rotation
has extended a rule further through the covariate space at this level of the tree. These
features of the rotation operation allow us to satisfy the seemingly contradictory needs
of a structural tree proposal that (i) is a local and computationally feasible operation,
(ii) allows the sampler to move between very different tree arrangements of differing
dimensionality, and yet (iii) moves directly between tree arrangements that have high
likelihood.

3.1 The Rotation Operator, R
More formally, for a rotatable node ηi (i.e. an interior node) who is the left child of
its parent node p(ηi), a right-rotation proposal T ′ = R[T ] is constructed according to
the pseudo-code shown in Listing 1 of the Supplementary Material (a similar algorithm
for a left-rotation applies if ηi is the right child of p(ηi)). Note that a rotatable node is
simply an internal node of the tree except for the root node, since left/right rotation at
the root node is equivalent to rotation at its left/right children.

While the details of the rotation are a bit challenging due to the recursive formula-
tion, we can summarize the details by viewing the rotation operator as the composition
of simpler operations, that is, R[T ] = RL

mergeRR
mergeRL

cutRR
cutRR

rot[T ] where RR
rot sets

up the initial rearrangement of the tree structure for a right rotation, RL
cut, RR

cut per-
form the cut operations and RR

merge, RL
merge perform the merge operations. We describe

each of these in further detail next when performing such a right rotation, and leave
the analogous operations for performing left rotations to the reader.

RR
rot

First, the operation RR
rot ≡ RR

rot(ηi;T ) does the initial setup of the right-rotation at
node ηi of tree T (a left rotation, RL

rot would be similar). For instance, starting from the
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top-left arrangement in Figure 3, this operation swaps the rules of ηi and its parent node
p(ηi), and also introduces a new node for the right child of its parent node, r(p(ηi)), also
using the same rule that was in p(ηi). At the same time, the sub-tree starting at the right
child r(ηi) is moved to become the subtree at l(r(p(ηi))). Subsequently, the sub-trees
at the right child, r(ηi), and the parents right-right child, r(r(p(ηi))), are initialized to
duplicates of Ts, where Ts is the sub-tree starting at the parents right child r(p(ηi)) in
the original tree T .

RL
cut,RR

cut

Next, the left cut RL
cut ≡ RL

cut(r(ηi), vp(ηi);T ) of the subtree starting at right child node
r(ηi) along variable vp(ηi) at cutpoint cp(ηi) (the variable, cutpoint pair of ηi’s parent)
and the right cut RR

cut ≡ RR
cut(r(r(p(ηi))), vp(ηi), cp(ηi);T ) of the subtree starting at

parents right-right child node r(r(p(ηi))) along variable vp(ηi) at cutpoint cp(ηi) are
performed. These occur since after the initial steps performed by RR

rot, both of the
right subtrees r(ηi) and r(r(p(ηi))) of the tree are now under the constraint of the
new rule appearing in p(ηi), and they need to be made consistent with this rule. This is
performed by the cutting operations RL

cut,RR
cut which remove inadmissible sub-subtrees

splitting on variable vp(ηi), leading to the modified TL
s and TR

s as shown in the top-right
arrangement of Figure 3. Pseudo-code describing the left-wise cut operation is shown
as Listing 2 in the Supplementary Material (a similar procedure performs right-wise
cutting). In essence, the rotation operation leads to “dividing” the tree Ts along the
parent node’s cutpoint cp(ηi) of the parent node’s variable vp(ηi). Accordingly, T

L
s is

arrived at by removing all nodes from Ts that do not satisfy the rule vp(ηi) < cp(ηi)

while TR
s is arrived at by removing all nodes from Ts that do not satisfy the rule

vp(ηi) > cp(ηi).

RL
merge,RR

merge

Finally, the merge operation RL
merge ≡ Rmerge(l(ηi), r(ηi), vηi , cηi ;T ) merges the sub-

trees at l(ηi) and r(ηi) along variable vηi at cutpoint cηi and the merge operation
RR

merge ≡ Rmerge(l(r(p(ηi))), r(r(p(ηi))), vp(r(ηi)), cp(r(ηi));T ) merges the two subtrees
l(r(p(ηi))) and r(r(p(ηi))) along variable vηi at cutpoint cηi .

The merge operation proceeds in a recursive fashion, always comparing the current
nodes for the left tree, right tree and the merging variable and cutpoint (vi, ci) to the
arrangements listed in Figure 4. For example, suppose we are attempting to merge TL

s

and TR
s , and say we are at node 2 in both of these subtrees, which we will call ηL2 , η

R
2

respectively. If both nodes split on vi (i.e. v
L
2 = vR2 = vi) then clearly it must be the case

that cL2 < ci and cR2 > ci and that in the original tree these two nodes were a parent-
child pair or trivially had the vi, ci node above them (this corresponds to arrangement 7
in Figure 4). Ignoring the trivial case, the original tree could have had ηL2 as the parent
with ηR2 as the right-child or ηR2 as the parent with ηL2 as the left-child, a situation
which is described in the merge diagram of Figure 27 in the Supplementary Material.
We work through a simple example shortly to help make this process more intuitive.
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To see why such a merge operation is needed, consider that in a subsequent rotation
the “dividing” of tree Ts can be possibly undone so that Prob(RR[T ] = T ) > 0, as
required for a valid MCMC algorithm. This is handled by the merge operations, which
have the effect of going from the arrangement at the right of Figure 3 back to the original
arrangement with some probability. The transition probability P (T → T ′) needs to take
into account that the probability of moving from T to T ′ is affected by the number of
ways that two subtrees can be merged into the new tree.

In performing the merge operation, one of the many possible reconstructions need be
chosen randomly, and the total number of such random decisions is recorded so that the
accept/reject calculation can be correctly calculated. In Listing 1, these counts are stored
in the n1

m, n2
m variables. These two count variables reflect the fact that the merging oper-

ation need be applied to l(ηi)∪r(ηi) merged along vηi , cηi and to l(r(p(ηi)))∪r(r(p(ηi)))
merged along vp(r(ηi)), cp(r(ηi)), where here the symbol ‘∪’ represents merging. That is,
n1
m and n2

m represent the total number of possible mergings that can occur in forming
l(ηi) ∪ r(ηi) and l(r(p(ηi))) ∪ r(r(p(ηi))). Of the n1

m possible mergings of l(ηi) ∪ r(ηi)
only one will be randomly selected, and similarly only one of the n2

m possibilities will be
selected as the merging of l(r(p(ηi)))∪ r(r(p(ηi))). This merging process should become
more clear in Section 3.3 where we work through a simple example.

Similarly, to calculate the return transition probability P (T ′ → T ) we need to take
into account that the probability of returning to the current configuration from the
rotated configuration T ′ is again affected by the number of ways that two sub-trees
in the rotated tree can be merged in the inverse step to return to the current tree. In
Listing 1, these counts are stored in the n1

s, n
2
s variables.

In calculating the number of merges possible in both the forward proposal and in
calculating the probability of inverting the rotation, one need recognize that a non-
trivial merge of both l(ηi) ∪ r(ηi) and l(r(p(ηi))) ∪ r(r(p(ηi))) leads to an inadmissible
state. A non-trivial merge is one that does not retain the original variable and cutpoint
node (e.g. vηi , cηi or vp(r(ηi)), cp(r(ηi))). If both merges are non-trivial, then the (variable,
cutpoint) pair required for inverting the rotation has been removed from the tree which
would not allow inversion to take place, so such proposals are rejected.

3.2 Calculating the M-H Ratio

When calculating the log-integrated likelihoods for the accept/reject step, one need
only consider terminal nodes that are part of the sub-tree of p(ηi) since the rest of
the tree T remains unchanged by the rotation proposal. Hence, the computational cost
of a rotation step, while greater than a simple birth/death proposal, is much reduced
compared to a more drastic restructure move such as the proposal of Wu et al. (2007).
While the operation of cutting unreachable sub-branches is entirely deterministic, there
are usually many possible merges and the stochasticity of the rotation proposal comes
from selecting one of these arrangements at random. The number of possible merges
at any given level of the left and right trees is summarized in Figure 4. This figure is
interpreted as follows. For each possible merging of two nodes, there are six topological
properties to be considered, itemized by the last six columns. For instance, in merge



896 Efficient Metropolis–Hastings Proposal Mechanisms

Figure 4: Listing of possible merging arrangements and corresponding index of unique
merge types for an arbitrary left (l) and right (r) tree. The label l → v (r → v)
corresponds to the left (right) tree’s variables, and l → c (r → c) corresponds to the
left (right) trees cutpoints. The left and right trees are being merged under the split
rule (vi, ci). The final two columns indicate whether the left or right tree is actually a
terminal leaf node. Note that when a node is a leaf, it cannot have a v or c rule which
corresponds to the hashed-out boxes. A diagram depicting merge type 7 is shown in
Figure 27 while diagrams for the remaining merge types are found in the Supplementary
Material (Figures 20–26).

type 4 we have l → v = r → v as noted by the ‘x’ under that column, as well as
l → c = r → c. This means that the node from the left tree and right tree both split on
the same variable and cutpoint. This situation is addressed by the corresponding figure
for merge type 4 which describes how the merge may be performed. Figures depicting
how the merges are performed can be found in the Supplementary Material (Figures
20–26).

The dark grey cells of Figure 4 denotes columns which are not applicable. For exam-
ple, in merge type 1 we have that r is a leaf and therefore has no variable or cutpoint.
As such, three columns for merge type 1 are greyed out since they are not applicable.
There are, in total, 7 particular merge types to consider plus an additional “otherwise”
scenario shown as merge type 8.

The actual number of merge reconstructions can, of course, be higher due to the
recursive definition of the merging operation. For example, merge type 7 of Figure 4
identifies three possibilities denoted (i), (ii) and (iii), which are shown in Figure 27.
This latter diagram demonstrates the recursive nature of the merging operation, and
this recursion is followed down the levels of the right and left trees when counting
the number of possible merges in the proposal distribution. We explicitly recursively
calculate these counts when constructing a rotation proposal.

A final item to note in calculating the acceptance ratio is determining the probability
of rotating at node ηi in both the forward proposal and the inverse step. For the forward
proposal, this is just the reciprocal of the number of internal nodes (less the root node)
in the tree. However, for the inverse step it may be possible to rotate back to the current
configuration from both ηi or the node “opposite” of ηi (which is r(p(ηi)) in a right-
rotation). In this case, the probability is 2 over the number of internal nodes in the
rotated configuration.
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Taking all these considerations into account, the acceptance ratio is calculated as

min

(
1,

π(T ′)pr(T
′)p1sp

2
sL(T

′)

π(T )pr(T )p1mp2mL(T )

)
(4)

where π(T ), π(T ′) are the prior probabilities of the trees, L(·) represent the integrated

likelihoods for the trees, L(T ) =
∏|M |

j=1

∫
Lj(y)π(μ)dμ where Lj is the likelihood func-

tion for the jth terminal node and π(μ) is a conjugate i.i.d. normal prior for the terminal
nodes under a constant terminal-node mean function model, pr(T ) =

1
|T |−1 is the prob-

ability of rotating at a particular internal node of T ,

pr(T
′) =

{
1

|T ′|−1 if only 1 way to invert
2

|T ′|−1 if two ways to invert,

and p1m, p2m, p1s and p2s are calculated as p1m = 1
n1
m
, p2m = 1

n2
m
, p1s = 1

n1
s
, p2s = 1

n2
s
, where

the values of n1
m, n2

m, n1
s and n2

s are calculated through the recursive application of the
merging process, using the merge types outlined in Figure 4.

For calculating π(T ) = π(τ)
∏|T |

i=1 π(ci|τ, vi, {(v−i, c−i)}) × π(vi|τ, ci, {(v−i, c−i)) =∏|M |
j=1(1 − π(ηj))

∏|T |
i=1 π(ηi) × π(ci|τ, vi, {(v−i, c−i)}) × π(vi|τ, ci, {(v−i, c−i)}) we use

the depth penalizing prior of Chipman et al. (2010), π(ηi) = γ(1 + di)
−β where di is

the depth of node ηi, and π(vi|·) represents the probability of splitting on variable vi at
node ηi which is 1

# available variables at ηi
and π(ci|·) represents the probability of splitting

at node ηi on variable vi at cutpoint ci which is 1
# available cutpoints at ηi

, which can be

determined based on Equation (5) derived in Section 4.

As with other tree proposal mechanisms, the acceptance probability (4) is modified
by the constraint requiring all terminal nodes to contain data, leading to automatic
rejection if this constraint is not met.

3.3 A Simple Rotation Example

A more concrete demonstration of the rotation proposal is shown in Figures 5–8 as well
as in Figures 15–17 in the Supplementary Material. Here, the basic structure of the
starting tree T in Figure 5 is similar to the left tree in Figure 3. In the first rotation
we propose transitioning from T → T ′ by performing a rotation at node η2 which
is highlighted with a double circle. The rotation occurs at node η2 with probability
pr(T ) =

1
|Tr|+|Tq|+5 . The rotated tree will be arrived at by sequentially performing the

operations RR
rot,RL

cut,RR
cut,RL

merge and RR
merge. Applying RR

rot, we arrive at the tree
arrangement of Figure 6. We see that the rules of the rotate node and its parent have
been swapped, an extra node with rule “X2 < 0.5” has been created on the right side
of the tree and two copies of the subtree Ts are now present. The parent of the subtree
Tr has also changed according to this operation.

Next, we need to perform the RL
cut and RR

cut steps by cutting the shaded subtree Ts

along the rule X1 < 0.6. This results in the shaded subtrees TL
s and TR

s shown in Fig-
ure 7. After performing the cut steps, we finally perform the merge stepsRL

merge,RR
merge.
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Figure 5: An example tree, T , where we will apply the rotate operator at node 2, denoted
by double circles. Terminal nodes are denoted by the small empty circles. The sub-trees
Tq and Tr are arbitrary. The sub-tree denoted Ts (shown in grey) starting with the
X1 < 0.7 rule is the tree that will be split during rotate.

Figure 6: The state of tree T after the first step in the rotate operator, RR
rot has been

applied. Note that Ts now appears on both sides of the tree.

Here, the two merges that need occur in the rotation are the merge of Tq ∪ TL
s along

the rule X2 < 0.5 and Tr ∪ TR
s also along the rule X2 < 0.5 as shown in Figure 8.

For simplicity of exposition, let us assume that the merges Tq ∪ TL
s and Tr ∪ TR

s can
only be performed in one way, retaining X2 < 0.5 as shown in Figure 15. As such,
p1m = p2m = 1.0.
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Figure 7: The state of tree T after the second step in the rotate operator, RL
cut and

RR
cut, have been applied. Note that both copies of the sub-tree Ts have been cut along

the X1 < 0.6 rule, resulting in the respective sub-trees TL
s and TR

s .

Figure 8: In the third stage of the rotate operator, the merge operation is applied to
the left and right sub-trees of the node X1 < 0.6. The merges are performed along the
rule X2 < 0.5.

In order to calculate the acceptance probability of the proposal T ′ = R[T ] we also
need to calculate the probability of transitioning from T ′ back to T . We can investigate
this by the behavior of rotating T ′ at node η2 or η3 in Figure 15. Because the rotation
can occur at either of these nodes, we have pr(T

′) = 2
|Tr|+|Tq|+6 . The reconstruction

will be the same in either case, so proceeding as if we rotate at node η2 in T ′ (shown
as double circled in Figure 15) we can apply RR

rot,RL
cut and RR

cut (not shown) thereby
arriving at the arrangement of Figure 16 (found in the Supplementary Material) where
the merge Tq ∪ Tr along X1 < 0.6 need be performed for the left subtree and the merge
TL
s ∪ TR

s along X1 < 0.6 need be performed for the right subtree. For simplicity we
again will assume that the merge Tq ∪ Tr can only be performed in one way, arriving
at the arrangement in Figure 17 (found in the Supplementary Material), which is the
same as the left subtree in the original Figure 5, and we have p1s = 1.0.

For merging TL
s ∪TR

s along X1 < 0.6 there are 7 possible merges as shown in Figure
18 of the Supplementary Material, one of which is the trivial merge 7(ii) and one of which



900 Efficient Metropolis–Hastings Proposal Mechanisms

forms the original arrangement in the right hand side of T , labeled as 7(iii),1(i),3(i).
These labels identify the sequence of merge types outlined in Figure 4 that were applied
to form each of the 7 possibilities. For the case of 7(iii),1(i),3(i), this sequence means
that merge type 7 case (iii) (Figure 27 in the Supplementary Material) was applied to
TL
s , TR

s , then merge type 1 case (i) (Figure 21 in the Supplementary Material), and
finally merge type 3 case (i) (Figure 23 in the Supplementary Material). Since there are
7 such possible sequences, we have p2s = 1

7 . Of these 7 possibilities, if we randomly select
the merge sequence 7(iii),1(i),3(i), then T ′′ = R[T ′] shown in Figure 17 corresponds to
the original arrangement of T in Figure 5, i.e. T ′′ = T , demonstrating reversibility.

Finally, combining these calculations with the integrated likelihoods L(T ), L(T ′) and
the prior probabilities of the tree states π(T ), π(T ′) one can calculate the acceptance
probability for T ′ using Equation (4) and perform the MH step.

4 Perturbation Proposal

Besides birth/death moves, a popular existing MH proposal for exploring the posterior
of Bayesian regression tree models is the change proposal. This move can be thought of
as changing a cutpoint, a variable or both simultaneously. We prefer to take a simple
one-at-a-time approach to our sampling algorithm, and so will first focus on proposing
a new cutpoint at internal node i, denoted ci, given the cutting variable vi and the rest
of the tree structure T .

Interestingly, while the “change” proposal has been around for some time, there are
some varied explanations of its implementation in the literature. Denison et al. (1998)
draw from a uniform proposal distribution on the range of values vi takes. This amounts
to an independence sampler when the prior is uniform with endpoints taken as the min
and max observed covariate values in the dataset. Chipman et al. (2002) take a similar
approach, drawing proposals from the prior distribution. In Chipman et al. (1998),
the proposal distribution is restricted to functions that depend only on the part of T
ancestral to node i. Their default is again to take the proposal to be uniform, but this
time restricted by the requirement that values drawn from this proposal cannot lead to
empty terminal nodes. This requires propagating the data through the proposed tree
to ensure this condition is met, which is an expensive operation. Wu et al. (2007) and
Chipman et al. (2010) use the above approach in their change proposal while Gramacy
and Lee (2008) use a random walk approach, essentially incrementing or decrementing
the cutpoint by the single smallest increment available from the covariate matrix X.

It is useful to think about the meaning of the cutpoint and split variable compo-
nents of regression tree models. Namely, the cutpoints of a regression tree relate to the
“wiggliness” of the response being modeled while the split variables are indicative of the
importance of that variable in modeling, or explaining the variability, of the response.
For a given collection of split variables and cutpoints {vi, ci} that form a fitted regres-
sion tree model, this collection represents a discrete encoding of the model. Changing
just a single vi or a single ci represents an entirely different model. However, intuitively,
changes involving ci are in some sense more local than changes involving vi.
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A reasonable proposal for a particular ci conditional on everything else is an interval
(avii , bvii ) that should take into account the full tree structure T \ ci. For node i, let Cvi

p(i)

be the collection of cutpoints for all nodes ancestral of node i that split on variable
vi, and let Cvi

l(i) (similarly Cvi
r(i)) be the collection of cutpoints for all nodes in the left

subtree of node i (similarly right subtree) that split on variable vi. The ancestral nodes
can be factored into ancestral nodes which are “left ancestors” of node i and those which
are “right ancestors” of node i, i.e. Cvi

p(i) = {Cvi
pl(i)

, Cvi
pr(i)

}. A left ancestor is an ancestor

of node i such that node i is on the ancestor node’s right subbranch, and similarly a
right ancestor is an ancestor such that node i is on the ancestor node’s left subbranch.

A uniform proposal that is consistent with the full tree structure draws a cutpoint
uniformly from the interval (avii , bvii ) where

avii = max
(
0,max(Cvi

pl(i)
),max(Cvi

l(i))
)
; bvii = min

(
1,min(Cvi

pr(i)
),min(Cvi

r(i))
)
. (5)

Note that the proposal does not directly depend on the data and so is easily computed.

Figure 9: An example of a perturb proposal at node 5. In this case, we have Cv1
p(5) =

{0.1, 0.8}, Cv1
pl(5)

= {0.1}, Cv1
pr(5)

= {0.8}, Cv1
l(5) = {0.2} and Cv1

r(5) = {}, giving the

open interval (av15 , bv15 ) = (0.2, 0.8) from which to draw proposals for a new cutpoint
value.

A simple example of the perturb proposal is shown in Figure 9, where we try to
perturb the cutpoint at node 5 which has initial rule “x1 < 0.5”. If we generate proposals
from the prior on the interval (0, 1), immediately 40% of these proposals are outside
the valid range (av15 , bv15 ) = (0.2, 0.8) and will be rejected. These rejections occur solely
because some terminal nodes will be unreachable and will therefore contain no data,
which automatically leads to rejection by the MH sampler. For example, proposing the
cutpoint to be c5 = 0.05 would be rejected because no data would be mapped to the right
sub-tree of node “x1 < 0.2” due to the constraint “x1 < 0.1” at node 2. Or, proposing
the cutpoint to be c5 = 0.9 would be rejected because no data would map to the right
sub-tree of node 5 due to the constraint “x1 < 0.8” at node 1. Similarly, generating
proposals from the prior conditioned on the structure of the tree above node 5 (i.e.



902 Efficient Metropolis–Hastings Proposal Mechanisms

from (0.1, 0.8)) leads to about 17% of such proposals being outside the valid range and
therefore guaranteed to be rejected. For instance, proposing c5 = 0.15 would be rejected
because no data would map to the right sub-tree of the node “x1 < 0.2”. In contrast, the
perturb proposal generates cutpoints from the valid range (av15 , bv15 ) = (0.2, 0.8), which
accounts for constraints from ancestral (i.e. Cv1

p(5)) and descendant (i.e. Cv1
l(5), C

v1
r(5)) parts

of the tree about node 5 to avoid such spurious rejections.

Greater flexibility is found by introducing a constant α ∈ (0, 1] (i.e. independent
of node), or αv ∈ (0, 1]) (i.e. a unique scaling for each of the covariate variables), that
scales the proposal to be more local, and α can be updated using adaptive MCMC to
target higher acceptance rates. This approach chooses cutpoints in the scaled interval,

savii = max

(
ci − α

(
bvii − avii

2

)
, avii

)
; sbvii = min

(
ci + α

(
bvii − avii

2

)
, bvii

)
, (6)

where the avii , bvii are computed as in equation (5), thereby making the proposals in a
more local neighborhood about the current cutpoint ci within the valid interval (avii , bvii ).
If we instead fix α to be very small, forcing minute local moves in cutpoint values, then
the proposals behavior would be similar to that of Gramacy and Lee (2008) although
one would expect mixing to be slow. In practice, we have fixed α to somewhere between
1%–10%, which has worked well in the problems we have tried. Alternatively, one might
instead tune it automatically using adaptive MCMC if desired. For example, an interval
which is too wide may lead to a proposed cutpoint that results in some terminal nodes to
contain no data, and hence be rejected. Tuning the scaled perturb in Equation (6) allows
one to minimize such poor proposals. Alternatively, the current practice of requiring
terminal nodes to contain data can be relaxed – setting this to zero has no ill effect on
either the samplers proposed in this paper or the resulting trees.

4.1 Perturb Within Change-of-Variable

While the perturbation proposal has the clear interpretation of exploring the “wig-
gliness”, or spatial variability of the response being modeled, it is less intuitive what
variability the usual change of variable proposal explores.

Changing a variable at some internal node within a regression tree implies that
for all observations mapping to that internal node, the variability of the response is
well represented by the tree structure below this internal node no matter if the node
splits on the current variable or the variable we propose to change to. This could be
reasonable if (i) the partition of observations when using the new variable is unique
from the partition of observations using the current variable, but nonetheless yields two
partitions that are adequately explained by the tree structure below the current node;
or,(ii) the partition of observations is nearly the same using either variable, which occurs
when the two covariates under consideration are dependent on one another, such as the
highly correlated covariates found in the synthetic example of Section 2.3. In our opinion,
the latter case seems more likely and so we develop a change-of-variable proposal that
explores the variability in the posterior that results from such correlated covariates. The
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approach taken is essentially to precondition the change-of-variable proposal by taking
into account the empirical correlation structure of the covariate matrix.

Using the pairwise correlation between current variable vk and the other variables
v\k, a change of variable at node ηi is proposed in the following way. First, the probability
of changing vk to vj , j �= k should be relatively higher if the current variable is highly
correlated with another (or many other) variables in the dataset. On the other hand,
this probability should be very small if the current variable is relatively independent
(uncorrelated) with all other variables. This is accomplished by proposing a transition
from vk to vj with probability proportional to

|Cor(Xk, Xj)| × I(avj
i ,b

vj
i ) �={}∑

l |Cor(Xk, Xl)| × I(avl
i ,b

vl
i ) �={}

(7)

where Cor(·, ·) represents a measure of relatedness between variables Xk and Xj . A sim-
ple approach would use the sample Pearson correlation between variables, however this
limits the proposal to assuming a linear relationship between variables. Instead, we cal-
culate the Spearman rank correlation between variables, which allows for non-linearly
related variables to be highly correlated. Note that if the variables are negatively corre-
lated, we proceed as if the variables were positively correlated but flip the left and right
subbranches of the node where change-of-variable is being proposed.

The indicator functions in equation (7) ensure that we only give positive probability
to transition to variables which have cutpoints available at the node in question. That

is, I(avl
i ,b

vl
i ) �={} =

{
1 if ∃ cutpoints at ηi for vl
0 otherwise

. Note that if vk is independent of all

other variables, then with high probability this formula will propose staying at variable
vk. If vk is highly correlated with a single other variable vj , then this formula will lead
to proposals that stay at vk about 50% of the time and propose transitions to vj about
50% of the time, and so on.

This procedure could be made more flexible by only calculating the correlations
using the x’s that map to node i. This would then be taking into account more local
information which may be useful when the relationship between covariates is more com-
plex, such as when modeling waterways or other geographically constrained responses
(e.g. Rathbun, 1998; Løland and Høst, 2003; Pratola et al., 2015). On the other hand,
for nodes near the bottom of the tree, using only x’s mapping to a near-bottom node
i may lead to having a very small number of x’s mapping to node i and if the covari-
ate space is relatively large then the procedure is in some sense underdetermined and
sensitive to the small number of observations mapping to i. Hence, in practice we have
used the full sample correlations in forming our change-of-variable proposal procedure.

A final matter to note is the implementation of this preconditioner when the covariate
dimension is large. In such instances, many spurious small correlations between variables
may appear. We suggest treating such situations by using an empirical cutoff (e.g. all
sample correlations ≤ 0.30 are replaced with 0), although other approaches are also
feasible.
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5 Examples

We now return to the examples introduced in Section 2 to investigate the performance
of our proposed sampling strategies. We start with the single tree example and then
explore the computer experiments example. An additional dataset from a study of heart
rate conducted at The Ohio State University is discussed in the Supplementary Mate-
rial. Unless otherwise indicated, we used a MH algorithm with birth/death, rotation
and perturbation proposals. At each iteration of the MCMC, a rotation proposal at
a randomly chosen internal node was selected 30% of the time while a birth or death
proposal at a random terminal or next-to-terminal node occurred otherwise. Adapting
this percentage is possible but we have found it reasonably easy to set the proportion
manually and leave it fixed. Adapting α in the perturb proposal of Equation (6) was
done by initializing α to 0.1 and allowing it to adapt every 1,000 iterations for 10,000
iterations.

5.1 Single-Tree Example

In this example, we use the change-of-variable and rotation proposals to allow the
sampler to find 5-node (3 terminal nodes) and 7-node (4 terminal nodes) tree structures
that are consistent with the data. Note that using birth/death proposals in Section 2.2
only a single 7-node representation was found, simply as a result of the starting random
seed (we might have just as easily found a 5-node representation). If we were to augment
the birth/death proposal with change, swap or restructure (Wu et al., 2007) proposals,
which do not change the tree dimensionality, the diversity of tree structures found
would certainly improve, but it is unlikely that the more parsimonious 5-node structure
would be sampled if starting from the same random seed. This suggests the rotation
proposal greatly increases the diversity of tree structures that can be explored by the
MCMC sampler, potentially eliminating the need for random restart or multiple chain
approaches to fully explore the posterior. The diversity of tree structures found for the

Sampler Birth/Death ChV ChV and Rotate Rotate
# trees of size 5 0 2 2 1
# trees of size 7 1 2 6 2

# trees of size other 0 0 0 0

Table 1: Number of unique regression trees found for the synthetic example using the
tree rotation and change-of-variable (ChV) proposal mechanisms with m = 1 regression
trees compared to the default birth/death only sampler, and ChV or rotate separately.
Without using the rotation and/or change-of-variable proposals, only a single tree with
7 nodes (4 terminal nodes) was found in the posterior samples.

different samplers are summarized in Table 1. As noted, the birth/death sampler found
a single tree, while adding the rotate proposal finds 3 trees and adding the change-of-
variable proposal finds 4 trees. However, the greatest diversity is found with all moves
used in the sampler, resulting in 8 unique tree topologies in the posterior samples.
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Since x1 and x3 are highly correlated with each other (and independent of x2),
the preconditioned change-of-variable proposal is important in this example. Using this
proposal mechanism allows the sampler to propose transitions from x1 to x3 (or vice-
versa) about 50% of the time and maintains a high acceptance rate since proposals to
transition to x2 are rarely, if ever, made (and would always be rejected if proposed). The
rotate proposal is also important since the root node of a tree fitting the data can start
with either variable 2 or one of variable 1 or 3. Without the rotate proposal, it would be
extremely unlikely that the MCMC would prune the tree back to a single node to allow
for a potential transition to a different root node variable. One situation where poor

Figure 10: Variable activity measured as the proportion of internal tree nodes splitting
on variables for the birth/death sampler (left pane) and the birth/death sampler aug-
mented with change-of-variable (ChV) and rotate proposals (right pane). Each plotted
number represents the estimated variable activity for a single replicate of the 10-fold
cross-validation study. Note that in 9 of 10 cross-validation replicates, the birth/death
sampler incorrectly concludes that the proportion of splits on either variable 1 or vari-
able 3 is exactly 0.

sampling of the tree topologies may cause problems is in variable selection. Bleich et al.
(2014) investigate the important inferential task of variable selection using BART based
on measuring variable activity as the proportion of posterior tree internal nodes that
split on each variable as proposed in Chipman et al. (2010). Yet, for variables that are
related, poor sampling may lead to incorrect conclusions regarding variable selection.
As shown in Table 1, in this example the default birth/death sampler does not explore
posterior trees very well which may negatively affect variable selection. To explore this
in detail, a 10-fold cross-validation study was performed, and in each fold we estimate
the activity of variable i as the proportion of internal nodes splitting on i over all the
posterior samples. We performed this study for the default birth/death sampler and the
birth/death sampler with change-of-variable and rotate.

The results of this study are summarized in Figure 10. The left pane shows the vari-
able activity for all 3 variables using the birth/death sampler and the right pane shows
the variable activity using the full sampler. There are some stark differences between



906 Efficient Metropolis–Hastings Proposal Mechanisms

the samplers. For instance, the poor sampling of posterior trees using only birth/death
proposals results in a discretized spread of variable importance measures across the 10
folds, while the full sampler displays a more continuous spread of importance measures.

The most impactful difference is the interpretation of the correlated variables 1 and 3.
Since we know that variable 1 is used in defining the true underlying function of Equation
(3) and we know variables 1 and 3 are hopelessly confounded, given only observations
of the data an analysis of variable activity should conclude that both variable 1 and
3 could be important. However, in Figure 10, using the birth/death sampler results in
an importance of exactly 0 for variable 1 in four of the 10 cross-validation folds, while
an importance of exactly 0 for variable 3 is determined in 5 of the 10 cross-validation
folds. In other words, in 9 out of the 10 cross-validation folds, the analysis incorrectly
concludes that either variable 1 or 3 is not an important variable. In contrast, using the
full sampler, no variable is assigned an importance of exactly 0, and only in 2 of the 10
folds does the estimate of importance for variable 3 fall below 10%. Thus, the ability to
more fully explore the posterior distribution using the samplers proposed in this paper
can result in a vastly improved ability to infer variable activity.

5.2 Computer Experiments Example

In Section 2.3, it was shown that when modeling the Friedman function with BART
using only birth/death proposals, the 90% credible interval had an empirical coverage of
53.8% indicating that the posterior was underrepresenting model uncertainty. It seemed
likely that this behavior could be attributed to the poor mixing of the MCMC sampler,
which had an acceptance rate for birth/death proposals of only 4%.

Applying the rotation and perturbation proposals to the same dataset showed a
very noticeable improvement in the behavior of the MCMC sampler, shown in the
right pane of Figure 2. In this case, we selected a rotation step for 30% of the MH
proposals, and the usual birth/death step for the remaining 70% of MH proposals.
For the perturbation proposal, α was initialized to 0.10 and then adapted every 1,000
iterations for 10,000 iterations. After adaptation, the sampler was allowed to burn-in
for 5,000 iterations and then a final 5,000 iterations were saved as draws from the
posterior. The resulting behavior was a very good acceptance rate of around 25%, and
the empirical coverage of the 90% credible interval was 90.6%, indicating good coverage
with no under-representation of model uncertainty. The effect of the percentage of rotate
proposals on the convergence of the MCMC was investigated empirically by exploring
the relationship between a range of rotate proposal percentages on the convergence of
the traceplot for the error, σ. This was evaluated using the so-called fat-marker test
(visual inspection of the traceplots) as well as effective sample size and the Geweke
(1992) diagnostic. This is summarized in Table 2. It is difficult to asses convergence of a
high and varying dimensional non-parametric model such as regression trees, but in our
experience the traceplot of σ can be useful for such purposes. Table 2 suggests a useful
range for the percentage of rotate proposals is 20–40% in order to ensure convergence
of the MCMC. Considering computational cost suggests that setting the percentage of
rotate proposals to 30% as we have done is reasonable.
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Rotate 0% 10% 20% 30%
Avg. Tree Depth 2.3 1.8 1.5 1.3
Geweke Diagnostic 1.07 0.25 7.58 -0.23

Effective Sample Size 179 272 114 314
Effective Sample Size per Second 0.366 0.584 0.252 0.700

σ Converged? N N Y Y

Rotate 40% 50% 70% 90%
Avg. Tree Depth 1.1 0.9 0.5 0.16
Geweke Diagnostic -2.05 4.58 16.98 0.53

Effective Sample Size 585 77 47 64
Effective Sample Size per Second 1.26 0.162 0.101 0.136

σ Converged? Y N N N

Rotate Birth/Death Only
Avg. Tree Depth 2.4
Geweke Diagnostic 6.52

Effective Sample Size 204
Effective Sample Size per Second 0.356

σ Converged? N

Table 2: The effect of varying the percentage of rotate proposals on the convergence of
the traceplot of σ and the average depth of trees in the posterior for the example of
Section 2.3.

The good acceptance rate in this example indicates that the sampler is able to
easily explore birth/death proposals that have a good probability of acceptance, even
as the rotation step explores different modes of the posterior by altering the internal
structure of the regression trees. We also note in Table 2 that the average tree depth with
only birth/death proposals was around 2.3–2.4 while the average tree depth using our
proposals was around 1.1–1.5. This further suggests that the rotation proposal is able
to help the MCMC sampler explore the model space to find a more parsimonious fit to
the data along with superior predictive performance and coverage of credible intervals.

To more fully explore these behaviors, we ran a 10-fold cross-validation experiment
for this data using the basic birth/death sampler, a perturb-only sampler, a rotate-only
sampler, and both rotate and perturb. For each of these, we recorded the in-sample and
out-sample coverage of the 90% pointwise credible interval for η(x), the mean squared
prediction error and run-times to evaluate computational tradeoffs. The experiment was
performed for a typical error variance of σ2 = 1.0 and a smaller variance of σ2 = 0.01.

The overall pattern of empirical coverage for σ2 = 1.0 and σ2 = 0.01 is that the
birth/death sampler underrepresents the uncertainty in the predicted function η(x), and
this problem becomes worse as σ2 decreases and is worse for out of sample predictions
compared to in-sample predictions. For instance, with σ2 = 1.0 the average out of sample
coverage of the 90% credible interval for η(x) without the proposed samplers is 75%,
and this decreases to 54% when σ2 = 0.01. Having either perturb or both perturb and
rotate gives nominal intervals when σ2 = 1.0 and close to nominal for σ2 = 0.01 (perturb
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alone tends to be slightly conservative but adding in rotate arrives at nearly nominal
coverage). The average out of sample prediction error for the birth/death sampler when
σ2 = 1.0 is 0.201 while using both perturb and rotate gives 0.160, a 20% reduction. When
the variance is reduced to σ2 = 0.01, the average prediction error for the birth/death
sampler is 0.0306 while using both perturb and rotate gives 0.0203, a 33% reduction.
The full results in Figures 12 and 13 of the Supplementary Material also demonstrate
that these improvements are consistent across folds of the cross-validation study.

Variance default birth/death perturb both rotate
σ2 = 1.0 3479 4539 5067 4850
σ2 = 0.01 3462 4698 5051 4748

Table 3: Average runtimes of the four sampling schemes from the 10-fold cross-validation
study of the Friedman function.

Average runtimes for the study are summarized in Table 3. These runtimes corrob-
orate the shallower, more parsimonious trees found using the rotation sampler noted at
the start of this subsection and in Table 2. For example, with σ2 = 1.0 adding perturb
increases average runtime by 30% and separately adding rotate increases average run-
time by 40%. However, adding both perturb and rotate increases average runtime by
only 45%. A similar behavior is evident when σ2 = 0.01. In other words, the computa-
tional cost of introducing these various samplers is not simply additive as they interact
with eachother. Namely, rotate helps find more parsimonious trees with fewer internal
nodes to perturb – effectively reducing the cost of the perturb proposal.

6 Discussion

The underlying theme of the MCMC samplers we have discussed is to generate proposals
that are consistent with the current state in tree-model space. This avoids needing to
use the data to determine which proposals to try while also retaining a high acceptance
rate. By consistent, we mean tree arrangements that could only be arrived at by the
birth/death process – our proposals could be replaced by a sequence of birth/death
moves, but because such a sequence of moves would need to traverse through a region
of low posterior probability, it does not occur with reasonable probability in practice.
This is a key idea underlying all three of the proposed sampling strategies outlined.

The three proposals described explore different sources of information that may
account for variability in the posterior distribution. “Spatial” variability is explored
by our perturbation proposal which proposes new cutpoint values that are consistent
with the current tree. The change of variable proposal explores variability that comes
from possible non-independence of covariates. One interpretation of this proposal is of
a preconditioned version of the usual change of variable proposal, which leads to higher
acceptance rates. Finally, we explore the structural variability of the tree posterior by the
novel tree rotation proposal to move between tree structures that are nearly equivalent.
This method performs local changes to the tree which, over many MCMC iterations,
can yield trees with vastly different topological structures. It is also not restricted to
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exploring trees with a fixed number of terminal nodes as the rotation proposal can arrive
at trees of larger or smaller dimension. One interpretation of our rotation proposal is
that it is similar to the usual swap proposal except we maintain consistency with the
entire tree structure through the described rotation operation.

The approaches described are very different than Wu et al. (2007), which tries to
explore all three sources of variability in one mechanism. Their approach is powerful,
but is practically limited by the dimensionality of the covariates. An advantage of our
approach is the user may decide which mechanisms to use according to their data or
questions of interest. If it is known that the covariates are nearly independent, it is
reasonable to dispense with change-of-variable proposals. If the user is only interested
in prediction and does not require the interpretability from fully exploring the tree
structure, then it may be reasonable to dispense with rotation proposals and rely entirely
on perturbation. Ideally, one might like to use all three mechanisms to ensure accurate
exploration of the posterior, but in practice a reasonable compromise might be needed.

In the examples we explored in this paper, the proposed methods gave good perfor-
mance with acceptance rates at least in the low 20% range, and often higher. For the
single tree example, we used the change-of-variable and tree rotation proposals which
lead to posterior samples that fully explored all possible trees of depth 2. The computer
experiments example demonstrated similarly good results. Using the tree rotation and
perturbation proposals, the acceptance rate improved from 4% to 25% and the empirical
coverage of the 90% credible interval improved from 53.8% to 90.6%.

In conclusion, the developments in this paper shed new light on ideas for improving
the mixing of Bayesian regression tree models in situations where mixing is problematic.

Supplementary Material

Supplementary Material of “Efficient Metropolis–Hastings Proposal Mechanisms for
Bayesian Regression Tree Models” (DOI: 10.1214/16-BA999SUPP; .pdf).
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