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Bayesian Endogenous Tobit Quantile Regression

Genya Kobayashi*

Abstract. This study proposes p-th Tobit quantile regression models with en-
dogenous variables. In the first stage regression of the endogenous variable on the
exogenous variables, the assumption that the a-th quantile of the error term is
zero is introduced. Then, the residual of this regression model is included in the
p-th quantile regression model in such a way that the p-th conditional quantile
of the new error term is zero. The error distribution of the first stage regression
is modelled around the zero a-th quantile assumption by using parametric and
semiparametric approaches. Since the value of « is a priori unknown, it is treated
as an additional parameter and is estimated from the data. The proposed models
are then demonstrated by using simulated data and real data on the labour supply
of married women.
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1 Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression has received
substantial scholarly attention as an important alternative to conventional mean regres-
sion. Indeed, there now exists a large literature on the theory of quantile regression, see,
for example, Koenker (2005), Yu et al. (2003), and Buchinsky (1998) for an overview.
Notably, quantile regression can be used to analyse the relationship between the condi-
tional quantiles of the response distribution and a set of regressors, while conventional
mean regression only examines the relationship between the conditional mean of the
response distribution and the regressors.

Quantile regression can thus be used to analyse data that include censored responses.
Powell (1984; 1986) proposed a Tobit quantile regression (TQR) model utilising the
equivariance of quantiles under monotone transformations. Hahn (1995), Buchinsky and
Hahn (1998), Bilias et al. (2000), Chernozhukov and Hong (2002), and Tang et al. (2012)
considered alternative approaches to estimate TQR. More recent works in the area of
censored quantile regression include Wang and Wang (2009) for random censoring using
locally weighted censored quantile regression, Wang and Fygenson (2009) for longitudi-
nal data, Chen (2010) and Lin et al. (2012) for doubly censored data using the maximum
score estimator and weighted quantile regression, respectively, and Xie et al. (2015) for
varying coefficient models.

In the Bayesian framework, Yu and Stander (2007) considered TQR by extending the
Bayesian quantile regression model of Yu and Moyeed (2001) and proposed an estimation
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method based on Markov chain Monte Carlo (MCMC). A more efficient Gibbs sampler
for the TQR model was then proposed by Kozumi and Kobayashi (2011). Further ex-
tensions of Bayesian TQR have also been considered. Kottas and Krnjaji¢ (2009) and
Taddy and Kottas (2010) examined semiparametric and nonparametric models using
Dirichlet process mixture models. Reich and Smith (2013) considered a semiparamet-
ric censored quantile regression model where the quantile process is represented by a
linear combination of basis functions. To accommodate nonlinearity in data, Zhao and
Lian (2015) proposed a single-index model for Bayesian TQR. Furthermore, Kobayashi
and Kozumi (2012) proposed a model for censored dynamic panel data. For variable
selection in Bayesian TQR, Ji et al. (2012) applied the stochastic search, Alhamzawi
and Yu (2015) considered a g-prior distribution with a ridge parameter that depends
on the quantile level, and Alhamzawi (2014) employed the elastic net.

As in the case of ordinary least squares, standard quantile regression estimators are
biased when one or more regressors are correlated with the error term. Many authors
have analysed quantile regression for uncensored response variables with endogenous
regressors, such as Amemiya (1982), Powell (1983), Abadie et al. (2002), Kim and
Muller (2004), Ma and Koenker (506), Chernozhukov and Hansen (2005; 2006; 2008),
and Lee (2007).

Extending the quantile regression model to simultaneously account for censored re-
sponse variables and endogenous variables is a challenging issue. In the case of the
conventional Tobit model with endogenous regressors, a number of studies were pub-
lished in the 1970s and 1980s, such as Nelson and Olsen (1978), Amemiya (1979),
Heckman (1978), and Smith and Blundell (1986), with more efficient estimators pro-
posed by Newey (1987) and Blundell and Smith (1989). On the contrary, few studies
have estimated censored quantile regression with endogenous regressors. While Blun-
dell and Powell (2007) introduced control variables as in Lee (2007) to deal with the
endogeneity in censored quantile regression, their estimation method involved a high
dimensional nonparametric estimation and can be computationally cumbersome. Cher-
nozhukov et al. (2015) also introduced control variables to account for endogeneity. They
proposed using quantile regression and distribution regression (Chernozhukov et al.,
2013) to construct the control variables and extended the estimation method of Cher-
nozhukov and Hong (2002).

In the Bayesian framework, mean regression models with endogenous variables have
garnered a great deal of research attention from both the theoretical and the com-
putational points of view (e.g. Rossi et al., 2005; Hoogerheide et al., 2007b; 2007a;
Conley et al., 2008; Lopes and Polson, 2014). However, despite the growing inter-
est in and demand for Bayesian quantile regression, the literature on Bayesian quan-
tile regression with endogenous variables remains sparse. Lancaster and Jun (2010)
utilised the exponentially tilted empirical likelihood and employed the moment con-
ditions used in Chernozhukov and Hansen (2006). In the spirit of Lee (2007), Oga-
sawara and Kobayashi (2015) employed a simple parametric model using two asym-
metric Laplace distributions for panel quantile regression. However, these methods
are only applicable to uncensored data. Furthermore, the model of Ogasawara and
Kobayashi (2015) can be restrictive because of the shape limitation of the asymmetric
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Laplace distribution, which can affect the estimates. Indeed, the modelling of the first
stage error in this approach remains to be discussed.

Based on the foregoing, this study proposes a flexible parametric Bayesian endoge-
nous TQR model. The p-th quantile regression of interest is modelled parametrically
following the usual Bayesian quantile regression approach. Following Lee (2007), we
introduce a control variable such that the conditional quantile of the error term is cor-
rected to be zero and the parameters are correctly estimated. As in the approach of
Lee (2007), the a-th quantile of the error term in the regression of the endogenous vari-
able on the exogenous variables, which is often called the first stage regression, is also
assumed to be zero.

We discuss the modelling approach for the first stage regression and consider a
number of parametric and semiparametric models based on the extensions of Oga-
sawara and Kobayashi (2015). Specifically, following Wichitaksorn et al. (2014) and
Naranjo et al. (2015), we employ the first stage regression models based on the asymmet-
ric Laplace distribution, skew normal distribution, and asymmetric exponential power
distribution, for which the a-th quantile is always zero and is modelled by the regression
function. To introduce more flexibility into the tail behaviour of the models based on
the asymmetric Laplace and skew normal distributions, we also consider a semipara-
metric extension using the Dirichlet process mixture of scale parameters as in Kottas
and Krnjaji¢ (2009). The value of « is a priori unknown, while the choice of a can
affect the estimates. In this study, hence, « is treated as a parameter to incorporate
uncertainty and is estimated from the data. The performance of the proposed models is
demonstrated in a simulation study under various settings, which is a novel contribution
of the present study. We also illustrate the influence of the prior distributions on the
posterior in the cases where valid and weak instruments are used.

The rest of this paper is organised as follows. Section 2 introduces the standard
Bayesian TQR model with a motivating example. Then, Section 3 proposes Bayesian
TQR models to deal with the endogenous variables. The MCMC methods adopted
to make inferences about the models are also described. The simulation study under
various settings is presented in Section 4. The models are also illustrated by using the
real data on the working hours of married women in Section 5. Finally, we conclude in
Section 6.

2 Bayesian TQR

Suppose that the response variables are observed according to
yi =c(y’) =max{0,y;}, i=1,...,n.
Then, consider the p-th quantile regression model for y; given by
y; :xgﬂp—l—ei, i=1,...,n,

where x; is the vector of regressors, 3, is the coefficient parameter, and ¢; is the error
term whose p-th quantile is zero. The p-th conditional quantile of y* is modelled as
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Qy+1x(p) =% B, The equivariance under the monotone transformation ¢(+) of quantiles
implies that the p-th conditional quantile of y is given by

Qy|x(p) = C(Qy* \x(p))

The TQR model can be estimated by minimising the sum of asymmetrically weighted
absolute errors

r%inzpp(yi —c(xiB,)), (1)
Pog=1

where p,(u) = u(p — I(u < 0)) and I(-) denotes the indicator function (Powell, 1986).

The Bayesian approach assumes that e follows the asymmetric Laplace distribution,
since minimising (1) is equivalent to maximising the likelihood function of the asymmet-
ric Laplace distribution (Koenker and Machado, 1999; Chernozhukov and Hong, 2003).
The probability density function of the asymmetric Laplace distribution, denoted by
AL(o,p), is given by

1
fAL(e‘O—vp) = p( p) exXp {_pp(E) } ) —00 < x < 00, (2)
o o
where o > 0 is the scale parameter and p € (0,1) is the shape parameter (Yu and
Zhang, 2005). The mean and variance are given by FEle] = U% and Var(e) =
21—2p+2p°

e The p-th quantile of this distribution is zero, f_ooo f(e) = p. Assuming
the prior distributions for the parameters, the parameters are estimated by using the
MCMC method (e.g. Yu and Stander, 2007; Kozumi and Kobayashi, 2011). Posterior
consistency of Bayesian quantile regression based on the asymmetric Laplace distribu-
tion was shown by Sriram et al. (2013).

g

Estimates under the standard Bayesian TQR model are biased when endogenous
variables are included as regressors. Consider a simple motivating example where the
dataset was generated from

y; = Po + Pz + 0d; + uy,
di = vo + 7125 + Yow; + vy,

3)

for i = ]-7“'73003 where (507ﬁ1;5) = (13171)7 (70771772) = (17171)3 T, Wi ~ N(Oa 1)

and .
U; _ p
(Ui )~N(0,2), 2_[/) 1}

See also Chernozhukov et al. (2015). Note that p expresses the level of endogeneity.
While d is an exogenous variable when p = 0, d is endogenous when p # 0. Since
ulv ~ N (pv,1 — p?), the model can be rewritten as

y; = Bo+ Brxi + 0d; + pv + /1 — pPu;. (4)

Therefore, the standard model that models the conditional quantile of y* as 8o+ 812 +d0d
produces biased estimates.
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Figure 1: Posterior distributions of Sy, (81, and § using the standard Bayesian Tobit
median regression.

Figure 1 shows the posterior distributions of 8y, 1, and § for the standard model for
p = 0.5 obtained by using the method of Kozumi and Kobayashi (2011). The vertical
lines in the figure indicate the true values. In the case of p = 0, the posterior distributions
are concentrated around the true values. However, in the case of p = 0.6, the posterior
distributions are concentrated away from the true values.

3 Bayesian Endogenous TQR Model
3.1 Model

We propose the following model to deal with the endogenous variables:

yi = x08,+0pdi +np(di —zi7y) + e, (5)
di = ziy+u, (6)
fori=1,...,n, where x; is the vector of the exogenous variables whose the first element

is 1, d; is the endogenous variable, z; = (x},w;)’, and w; is the exogenous variable not
included in x;, which is also called the instrumental variable. The term d; — z,y = v; in
(5) is called the control variable and is introduced to account for endogeneity. Note that
np # 0 indicates d; is endogenous. We refer to (6) as the first stage regression and to (5)
as the second stage regression. A similar form is found in Lopes and Polson (2014) in the
context of the instrumental variable regression for means by using the Cholesky-based
prior.

Following Lee (2007), the error term ¢; of the standard Bayesian TQR, is decomposed
into the terms 1, (d; —2;7) and e;. It is assumed that relationship (6) is specified correctly
and the quantile independence of e; on z; conditional on v;:

Qs\d,z(p) = Qs\v,z(p) = Q€|v(p) = np(d - z/’)l)' (7)

As in Lee (2007), we also assume
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Qvlz(a) =0, (8)

where the a-th conditional quantile of v; is zero for some « € (0,1).

3.2 First Stage Regression

We are mainly concerned with modelling the first stage error that satisfies (8). A simple
and convenient approach is to assume v; ~ AL(P,a), i = 1,...,n, as in Ogasawara and
Kobayashi (2015), since (8) is always satisfied for the asymmetric Laplace distribution.
However, the asymmetric Laplace distribution has limitations, such as peaky density,
restrictive tail behaviour, and skewness. When a model lacks fit to the data, the estimate
of the conditional quantile would be away from the value such that (8) truly holds.
Then, assuming v; is homoskedastic, the estimate of the intercept, vy, may be biased as
well. Consequently, the estimate of 3,, would be affected through the introduced term
np(d; —z}7y). When v; is heteroskedastic, the entire coefficient vector would be affected.
Therefore, we consider some alternative models for the first stage error distribution.

Recently, Wichitaksorn et al. (2014) considered a class of parametric distributions
with a quantile constraint of the form (8), including the asymmetric Laplace distri-
bution, and applied them in the context of quantile modelling. Furthermore, Zhu and
Zinde-Walsh (2009), Zhu and Galbraith (2011), and Naranjo et al. (2015) considered a
flexible parametric distribution with the quantile constraint. Based on these studies, we
also consider the following two distributions to model the first stage error.

First, we consider the skew normal distribution denoted by SN/ (¢, a), where ¢ > 0
is the scale parameter and « € (0,1) is the shape parameter. The probability density
function is given by

~do(l - ) v?
antuloa) = 20 e [ Zaa - 10 < 02}, (9)

When a = 0.5, the distribution reduces to A(0, ¢). The mean and variance are given by
Ev] = /£ 21222 and Var(v) = pr=Bat3a’)—2(1-2a)" (see Wichitaksorn et al., 2014).

27 a(l—a) dra?(1—a)?
When the actual error distribution is close to the normal distribution, this distribution
would lead to better performance than the asymmetric Laplace distribution. However,
just as the asymmetric Laplace distribution, the skewness and the quantile level of the
mode are controlled by the single parameter .

Second, we consider the asymmetric exponential power distribution treated by Zhu
and Zinde-Walsh (2009), Zhu and Galbraith (2011), and Naranjo et al. (2015). The
probability density function of the asymmetric exponential power distribution, denoted

by ASP((ZSv a, gla CQ), is given by
G
} , if v<0,

G2
}, if v>0,

where ¢ > 0 is the scale parameter, « € (0,1) is the skewness parameter, ¢; > 0 is
the shape parameter for the left tail, and {5 > 0 is the shape parameter for the right

1 v
% P T |agra+i/an

fapp(vlg, o, G, G) = (10)

1 v
§ KPP T ) T—a)@/T(1+1/C2)
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tail. After some reparameterisation, the distribution reduces to the asymmetric Laplace
distribution when (; = (3 = 1 and to the skew normal distribution when (; = (s = 2.
The tails of the asymmetric exponential power distribution are controlled separately
by (1 and (o, respectively, and the overall skewness is controlled by «. Although the
distribution is more flexible than the above two distributions, the posterior computation
using MCMC would be inefficient, because it includes two additional shape parameters
and it has no convenient mixture representation, apart from the mixture of uniforms that
is inefficient, to facilitate an efficient MCMC algorithm. The computational efficiency
is also compared in Section 4.

In addition to the three parametric models, we also consider the semiparametric
extension of the models based on the asymmetric Laplace and skew normal distributions
to achieve both flexibility and computational efficiency. More specifically, the following
two models using the Dirichlet process mixtures of scales are considered:

farpp(|G) = [ far(vlg, a)dG(¢), G ~ DP(a, Go), (11)
fsnpp(W|G) = [ fsn(v|p, a)dG(¢), G ~ DP(a,Gy), (12)

where DP(a,Gy) denotes the Dirichlet process with the precision parameter ¢ > 0 and
the base measure Gy. For both models, we set Gy = ZG(co, dp) as it is computationally
convenient. While those mixture models have the same limitation as the parametric
versions in terms of skewness, they extend the tail behaviour of the error distribution
preserving (8) (Kottas and Krnjajié, 2009). Hereafter, the models with the asymmetric
Laplace, skew normal, and asymmetric exponential power first stage errors are respec-
tively denoted by AL, SN, and AEP, and those with the Dirichlet process mixtures are
denoted by ALDP and SNDP.

We must take care when selecting the « value in (8), as it is a part of the model
specification and can thus affect the estimates (Lee, 2007). We treat « as a parameter
and estimate its value along with the other parameters. Since a determines the quan-
tile level of the mode for all models considered here, our approach to modelling the
first stage regression can also be regarded as a kind of mode regression (see Wichitak-
sorn et al., 2014).

To gain further flexibility, we might extend the model through a fully nonparametric
mixture. Several semiparametric models in the context of Bayesian quantile regression
with exogenous variables have been proposed by Kottas and Gelfand (2001), Kottas
and Krnjaji¢ (2009), and Reich et al. (2010). For example, Kottas and Krnjaji¢ (2009)
considered the nonparametric mixture of uniform distributions for any unimodal density
on the real line with the quantile restriction at the mode using the Dirichlet process
mixture (see also Kottas and Gelfand, 2001). In the more flexible model proposed by
Reich et al. (2010), the mode of the error distribution does not have to coincide with
zero. This is achieved by using a nonparametric mixture of the quantile-restricted two-
component mixtures of normal distributions. However, their approaches are not directly
applicable in the present context where the value of « is estimated. If we were to estimate
the quantile level for which the quantile restriction holds, the computation under the
former model is expected to be extremely inefficient and unstable as the model involves
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many indicator functions, and « and the intercept would be highly correlated. The
intercept would not be identifiable in the latter model.

We could further extend the model to account for heteroskedasticity such that
d; = 7y + z.Kv;, (13)

for i = 1,...,n, where z;x > 0 for all 7 and the first element of & is fixed to one
(e.g. Reich, 2010). In this case, the a-th quantile of d is given by Qg,(a) = ziv +
2;KQy)z(a) = zi(7 + KQy|z()) as in the usual quantile regression. However, since the
first stage regression model is built based on (8), models (6) and (13) would produce
identical estimates.

3.3 Second Stage Regression

We next turn to the model of the new second stage error, e;, in (5). Since the p-th con-
ditional quantile of e; is now zero, we assume that e; ~ AL(0,p), i =1,...,n, as in the
standard Bayesian quantile regression approach. We utilise the location scale mixture of
normals representation for the asymmetric Laplace distribution to facilitate an efficient
MCMC method following Kozumi and Kobayashi (2011) (see also Kotz et al., 2001).
The model is expressed in the hierarchical form given by

yi = max{y;,0},
y;k ~ N(i;ﬂp + epgh TpQUg’L')a
gi ~ &(o),

for i = 1,...,n, where X, = (x},d;,d; — z}7v), Bp = (6;,,5]),77,,)’, E(0o) denotes the
exponential distribution with mean o, and
1—2p 9 2

Opzm, T, :p(l——p)' (14)

3.4 Prior Distributions

The coefficient parameter + is common to all first stage regression specifications. First,
we assume the normal prior for 4, since it is computationally convenient for the AL, SN,
ALDP, and SNDP models. Since we do not have information on the coefficient values,
the variances are set such that the prior distributions are relatively diffuse. Our default
choice is 4 ~ A (0, 1001I). For the scale parameters, ¢ for the AL, SN, and AEP distribu-
tions, a relatively diffuse inverse gamma distribution is assumed and the default choice
is set to ZG(0.1,0.1). For AEP, we assume (; ~ TN (,00)(1,1), where TN (4 (p,02)
denotes the normal distribution with the mean p and variance o2 truncated on the
interval (a,b). A similar prior specification is found in Naranjo et al. (2015). For all
models, o ~ U(0, 1) is assumed.

For the semiparametric models, we need to specify the parameters of the inverse
gamma base measure. Assuming that the data have been rescaled, ¢y and dy are chosen
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such that the variance of v; takes values between 0 and 3 with high probability (e.g. Ish-
waran and James, 2002). Our default choice is ¢p = 2 and dy = 0.5 for ALDP and ¢y =
dp = 1.5 for SNDP. Under this choice, when o« = 0.5 for ALDP, Pr(¢; < /3.0/8) = 0.802
as Var(v;) = 8¢2%. Similarly, when o = 0.4, Pr(¢; < 1/3.0/0.332) = 0.784. For SNDP,
Pr(¢; < 3) = 0.801 when a = 0.5 and Pr(¢; < 3/1.104) = 0.775 when a = 0.4. For the
precision parameter of the Dirichlet process, a, we assume a ~ G(2,2) such that both
small and large values for a, hence the number of clusters, are allowed.

For the coefficient parameters in the second stage, 3, and ¢, we also assume rela-
tively diffuse normal distributions. Our default choice of prior is (3}, 7,)" ~ A(0,100I).
Similar to ¢ in the parametric first stage, we assume an inverse gamma prior for the
scale of the AL pseudo likelihood. Our default choice is ZG(0.1,0.1).

The parameter 7, accounts for the endogeneity and we need to take care in prior
elicitation. When the data follow the bivariate normal distribution, as in the motivating
example (3), 1, is equal to poy /o2, where p is the correlation coefficient and o and
o9 are the standard deviations of the first and second stage errors, respectively. In this
case, we may follow Lopes and Polson (2014) to determine the variance of the normal
prior implied from an inverse Wishart prior for the covariance matrix. However, we do
not limit ourselves to normal data as the quantile regression approach is suitable for
heteroskedastic and non-normal data, and the non-normal models are used in the first
stage. In the literature on Bayesian non-normal selection models, the prior distribution
of 1, is normal typically with a very small variance, such as 1/2 (e.g. Munkin and
Trivedi, 2003; 2008; Deb et al., 2006). On the other hand, we use a more diffused prior
to reflect our ignorance about 7, and set our default choice of prior to be 7, ~ N(0,5).
When the instrument is weak, it is expected that our quantile regression models face the
problem of prior sensitivity and that the posterior distributions exhibit sharp behaviour,
as in the case of the Bayesian instrumental variable regression model. Section 4 considers
the alternative choices of the hyperparameters to study the prior sensitivity.

3.5 MCMC Method

The proposed models are estimated by using the MCMC method based on the Gibbs
sampler. We describe the Gibbs sampler for the semiparametric models with ALDP
and SNDP, which is an extension of the Gibbs sampler described in Kozumi and
Kobayashi (2011) and Ogasawara and Kobayashi (2015). The algorithms for the AL
and SN models can be obtained straightforwardly. We also mention the algorithm for
the AEP model.

The variables involved in the Dirichlet process are sampled by using the retrospective
sampler (Papaspiliopoulos and Roberts, 2008) and the slice sampler (Walker, 2007).
First, we introduce u;, ~ U(0,1) and k;, ¢ = 1,...,n, such that m; = Pr(k; = 1),l =
1,...,00. Then, as in Walker (2007), the Gibbs sampler is constructed by working on
the following joint densities

farpp(uiu) =Y T(ui <w)far(vilér, @),

=1
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fsnpp(visu;) ZI u; < wi) fsn (vil¢r, ),
=1

where ¢y ~ Go, m = wi[[;.,(1 —w;), wi ~ B(1l,a), and B(a,b) denotes the beta
distribution with the parameters a and b (Sethuraman, 1994). We also let k* denote the
minimum integer such that Ele m > 1—min{uy,...,uy}.

Algorithm for ALDP

For the ALDP model, we utilise the mixture representation for the asymmetric Laplace
distribution to sample v efficiently such that v;|h; ~ N (6, h“T,fgblhi), hiy ~ E(dy),
i=1,...,n, where , and 77 are defined as in (14). Let us denote 8, = (8,,,6,,7,)’ and
x; = (x},d;,v; — z}v)". Our Gibbs sampler proceeds by alternately sampling {u;}}_,,

k* n k* n YY) - n
{witi—ys kit o=y a5 v, {hati—y, o {yf iy, By, 0, and {9i}izy-
e Sampling {u;};_;: Generate u; from U(0,m,) for i =1,...,n.

e Sampling {wl};il: Generate w; from B(1 + n;,n — 32 oy n, + a) where n; =
S Ik = 1) for [ =1,...,k".

e Sampling {k;},_,: Generate k; from the multinomial distribution with probabil-
ities
PI‘(k’Z = l) X fAL(di — z;7|q§l,a)1(ui < 771), [l = 1,.. .,k*.

fori=1,...,n.

e Sampling {qﬁl}f:*l: Generate ¢; from ZG (¢, d;) where

d; — zjry — 0, h;)?
a=15n+c, d=Y_ [hz + ( QlZQh' ) +do.
ithi=l o

e Sampling a: Assuming the gamma prior, G(ag, bp), we use the method described
by Escobar and West (1995) to sample a. By introducing ¢ ~ B(a + 1,n), the full
conditional distribution of a is the mixture of two gamma distributions given by

©G(ag +n*,bg —loge) + (1 — p)G(ag + n* — 1,by — loge),

where n* is the number of distinct clusters and ¢/(1—¢) = (ag +n* —1)/(n(by —
log c)).
e Sampling ~: Assuming v ~ N (go, Go), v is sampled from N (g1, G1) where

-1

n 2
n 1 _
G — 5 P / G 1
1 ; Z (7‘20'91 + Tg ¢kL hz ) z'L + 0 )
< "7p yi — X;Bp —npd; — epgi) d; — O —1
= % G )
8 [E N ( 20g: T2 ) TR0
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as the density of the full conditional distribution denoted by 7 (+|—) is given by

" (yr — X;ﬁp — Opd; — p(di — Z77y) — ‘gpgi)2
") mp{§j o

i=1

n d _
xeXp{ > 272(;:7 }exp{—%('v—go)’(}al('v—go)}

i=1

x exp{—%('r —g1)’GI1(7—g1)}~

Sampling {h;};_,: The full conditional distribution of h; is the generalised inverse
Gaussian distribution, denoted by GZG (v, &, x). The probability density function
of GZG(v, &, x) is given by

(x/&)"”

1
v—1 L2 -1 2
flzlv. & x) = 3K, ()" exp{ 5 (& +xx)},
x>0, —-oco<v<oo, &x>0,

where K, (+) is the modified Bessel function of the third kind (Barndorff-Nielsen
and Shephard, 2001). For ¢ = 1,...,n, we sample h; from GZG(1/2,&;, x;) where
d; — z}7y)? 62 2
512:( 2Zf)’)7 X?: 2a L2
Tozd)ki Toz¢k?i ¢k‘i

Sampling «a: The density of the full conditional distribution of « is given by

(al-) o w(a) [ [ far(di — zivI¢n,. @),
=1

where m(a|—) andm(c) denote the full conditional and prior density of «, respec-
tively. We use the random walk Metropolis—Hastings (MH) algorithm to sample
from this distribution.

Sampling {y;}"_,: The full conditional distribution of y is given by
sz(yz>0)+TN( c><30)(X/8 +9pgzv ng)f(yizo), t=1,...,n.

Sampling ,@p: We sample ,Bp = (,@;,51,,771,)' in one block. Assuming Bp ~
N (bg,By), the full conditional distribution is given by A (by, B;) where

n o - - -1

E:X”/+B#

P png

B, =

, bi=B

zn: Xi(y; — 0p9:) +B; by

2 .
P Tp0Gi

Sampling o: Assuming o ~ ZG(myg, sg), we sample o from ZG(my,s;) where
mi =15n+mgand s1=> . gi+ >y (Ui xﬁ 0p9:)%/2729: + so.

Sampling {g;}.-;: Similar to h;, g; is sampled from GZG(1/2, A;,v) where

_x 62 2
Az_u, e S )
% 7—30 7'p20' g
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Algorithm for SNDP

The Gibbs sampler for SNDP consists of sampling {u;}_;, {wl}iil, {ki}? 1, {d)l};il,
a, v, o, {y;}_,, B, o, and {g;}7_,. The sampling algorithms for {u;}}_,, {wt,,
a, {y;}i_1, B,, o, and {g;};_, remain the same as in the case of ALDP. The sampling
scheme of {k;};_, and o can be obtained by replacing far(d; —z}y|¢x,, @) with fsn(d;—
2|k, , ).

Similar to the case of ALDP, the density of the full conditional distribution is given
by

m(v]—) o< exp {—%(v —g1(7)Gi(y) (v - gl(v))} :

where
—1
n 2 2

1 4(a — I(d; < z}y)) 1

G = Z; P + 2 Z; + G 5
(1) l; (T,?Ugi P, 0

- np(y; — X;ﬂp —npd; — Opg:)  4Ad;(a —I(d; < Z/"Y))2>
= G z; | — + :
s = G| ( s -
+G61g0] )

which is similar to the density of the normal distribution. Therefore, we sample + by
using the MH algorithm with the proposal distribution given by AN (g1(7), G1(7)).

Algorithm for AEP

Since no convenient representation for the AEP distribution is available, the full con-
ditional distributions of the parameters in the first stage regression, v, ¢, a, (;, and
(2, are not in the standard forms. Therefore, we employ the adaptive random walk MH
algorithm. Although Naranjo et al. (2015) proposed the scale mixture of uniform repre-
sentation for the AEP distribution, the algorithm based on this representation would be
inefficient, because it consists of sampling from a series of distributions that are trun-
cated on some intervals such that the mixture representation holds and such intervals
move quite slowly as sampling proceeds (see also Kobayashi, 2015). Since the additional
shape parameters in AEP free up the role of «, a controls the overall skewness by allo-
cating the weights on the left and right sides of the mode. Hence, the MCMC sample
would exhibit relatively high correlation between o and ~q.

4 Simulation Study

The models considered in the previous section are demonstrated using simulated data.
The aims of this section are (1) to compare the performance of the proposed models
(Section 4.2), (2) to study the sensitivity to the prior settings, and (3) to illustrate the
behaviour of the posterior distribution when the instrument is weak (Section 4.3).
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4.1 Settings

The data are generated from the model given by

y:‘ = 60 + ﬂll‘i + 5d1 + nv; + €4,

(15)
d; =0 + Nxi + Yew; + v,
for i = 1,...,300, where (y0,71,72) = (0,1,1.5) assuming that a valid instrument is
available, (8o, 81,9,1) = (0,1,1,0.6), z; ~ N(0,1), and w; ~ TN (g,00)(1,1). The per-
formance of the models is compared by considering the various settings for v;, while the
distributions of e; are kept relatively simple in order that the true values of the quantile
regression coefficients are tractable. The following five settings are considered:
Setting 1 v; ~ N(0,1), e; ~ N(0,1 —7n?),
Setting 2 v; ~ t4, ¢; ~ tg,
Setting 3 v; ~ ST(—0.430,1,0.980,4), ¢; ~ tg,
Setting 4 v; ~ N(0, (1 + 0.5w;)?), e; ~ N (0,1 — n?),
Setting 5 v; ~ ST (—0.430, (1 + 0.5w;)?,0.980,4), e; ~ tg,
where ST (11,02, o, v) denotes the skew t distribution with the location parameter u,
scale parameter o2, skewness parameter a = §/v/1 — 62, § € (—1,1), and degree of free-
dom v (see Azzalini and Capitanio, 2003; Frithwirth-Schnatter and Pyne, 2010), and we
set = 0.7. In Setting 1, the error terms follow the bivariate normal distribution as in
the motivating example in Section 2. Setting 2 considers the fat tailed first stage regres-
sion. Setting 3 considers a more difficult situation where the first stage error is fat tailed
and skewed. Setting 4 replaces the first stage error of Setting 1 with the heteroskedastic
error with respect to the instrument. Setting 5 is also a challenging situation where
the first stage error is fat tailed, skewed, and heteroskedastic. In Settings 3 and 5, the
location parameters of the first stage error distributions are set such that the mode of
v; is zero and the quantile level of the mode is 0.435. The average censoring rates for
the settings are around 0.25. For each setting, the data are replicated 100 times.

4.2 Results under the Default Priors

We first estimated the proposed models under the default prior specifications (see Sec-
tion 3.4) for p = 0.1 and 0.5 by running the MCMC for 20000 iterations and discarding
the first 5000 draws as the burn-in period. The standard Bayesian TQR model was
also estimated. The bias and root mean squared error (RMSE) of the parameters were
computed over the 100 replications. To assess the efficiency of the MCMC algorithm,
we also recorded the inefficiency factor, which was defined as a ratio of the numerical
variance of the sample mean of the Markov chain to the variance of the independence
draws (Chib, 2001).

Table 1 presents the biases, RMSEs, and median inefficiency factors for the param-
eters over the 100 replications. First, we examined the inefficiency factors. Overall, our
sampling algorithms appear to be efficient, especially for AL, SN, ALDP, and SNDP.
The table shows that the inefficiency factors for AL, SN, ALDP, and SNDP are reason-
ably small for 8,1, 0p, 7p, V1, and 2. Since a and vy determine the quantile level of the



TQR AL SN AEP ALDP SNDP
Setting p Parameter Bias RMSE IF Bias RMSE IF Bias RMSE IF Bias RMSE IF Bias RMSE IF Bias RMSE IF
1 0.1 Bpo -0.474 0.511 37.1 0.048 0.239 55.5 0.047 0.211 59.7 0.066 0.252 245.0 0.047 0.237 57.1 0.047 0.209 61.8
1 -0.248 0.272 17.0 -0.022 0.139 22.3 -0.020 0.134 189 -0.020 0.136 43.1 -0.022 0.140 24.7 -0.020 0.135 20.1
0p 0.200 0.212 27.4 -0.009 0.092 24.9 -0.007 0.085 20.0 -0.007 0.085 46.3 -0.008 0.092 24.6 -0.007 0.085 21.1
Np 0.001 0.122 18.5 -0.001 0.120 14.5 -0.001 0.120 29.8 0.000 0.122 17.5 -0.001 0.120 16.1
Yo 0.001 0.204 54.7 0.000 0.165 59.2 0.036 0.264 340.8 0.000 0.206 53.2 0.003 0.160 60.7
Y1 -0.012 0.066 16.7 -0.006 0.058 9.2 -0.007 0.060 96.3 -0.012 0.067 17.7 -0.007 0.059 9.6
Y2 -0.004 0.086 17.3 -0.002 0.074 9.2 -0.002 0.075 93.7 -0.004 0.086 16.9 -0.003 0.074 8.9
«a -0.002 0.052 66.1 -0.001 0.043 72.2 0.011 0.089 357.1 -0.002 0.054 65.0 -0.000 0.042 76.4
0.5 Bpo -0.426 0.443 11.7 0.0I7 0.I80 25.5 0.0I8 0.167 34.6 0.030 0.196 243.7 0.0I7 0.I82 25.3 0.0I7 0.I65 34.1
Bp1 -0.235 0.251 7.9 -0.001 0.089 12.8 0.001 0.087 9.9 0.001 0.088 27.3 -0.001 0.089 12.1 0.001 0.086 9.3
0p 0.233 0.238 9.7 -0.004 0.063 11.6 -0.003 0.061 10.1 -0.003 0.062 28.7 -0.004 0.063 11.6 -0.003 0.061 9.2
Np 0.004 0.086 8.7 0.003 0.084 8.2 0.003 0.085 183 0.004 0.086 8.2 0.003 0.083 7.6
Yo 0.003 0.206 37.6 0.003 0.163 44.2 0.028 0.254 313.0 0.003 0.209 41.0 0.003 0.161 47.4
Y1 -0.012 0.066 13.1 -0.006 0.058 5.7 -0.008 0.060 74.6 -0.012 0.066 12.2 -0.007 0.059 5.8
Y2 -0.005 0.085 12.0 -0.003 0.074 5.2 -0.003 0.075 60.5 -0.005 0.086 13.5 -0.003 0.074 5.9
«a -0.001 0.053 53.7 -0.000 0.043 57.1 0.008 0.086 328.5 -0.001 0.055 50.4 -0.000 0.042 62.3
2 0.1 Bpo -0.594 0.657 53.6 0.088 0.302 40.5 0.082 0.309 50.2 0.099 0.354 120.4 0.090 0.304 40.6 0.096 0.305 47.6
Bp1 -0.297 0.341 18.7 -0.009 0.161 22.3 -0.009 0.164 21.6 -0.008 0.159 38.0 -0.008 0.160 20.0 -0.010 0.160 21.1
0p 0.268 0.282 38.7 -0.025 0.115 23.4 -0.023 0.115 25.9 -0.024 0.115 35.9 -0.024 0.115 24.6 -0.023 0.115 24.1
p 0.005 0.139 19.0 0.003 0.138 18.9 0.005 0.138 27.2 0.005 0.138 19.7 0.004 0.137 19.8
Yo -0.025 0.189 27.8 -0.038 0.244 25.8 -0.001 0.339 203.2 -0.022 0.191 25.7 -0.015 0.176 32.6
Y1 0.001 0.073 11.6 0.003 0.082 7.8 0.000 0.070 70.1 0.001 0.073 12.4 -0.001 0.070 8.4
Y2 -0.002 0.092 12.1 0.004 0.094 8.2 -0.001 0.089 61.2 -0.002 0.092 14.6 0.002 0.087 8.1
«a -0.004 0.041 32.3 -0.005 0.059 32.3 0.004 0.107 2121 -0.003 0.041 34.2 -0.000 0.036 46.2
0 .5 . . . 198 16.6 -0. . . 0.0 288 . . . 4 0. .19 8.9
Bpl -0.302 0.323 6.9 0.003 0.127 9.4 0.002 0.130 9.2 0.001 0.123 222 0.002 0.126 9.8 -0.001 0.123 8.1
(f; 0.312 0.319 11.3 -0.004 0.082 9.0 -0.001 0.083 8.6 -0.002 0.080 20.3 -0.003 0.082 9.7 -0.001 0.080 8.4
Np 0.009 0.099 8.1 0.007 0.099 7.5 0.008 0.097 14.6 0.009 0.099 8.2 0.007 0.097 7.3
Yo -0.025 0.188 20.8 -0.041 0.245 17.8 -0.003 0.341 165.9 -0.023 0.191 25.3 -0.015 0.176 24.0
Y1 0.001 0.073 9.2 0.003 0.082 5.0 0.000 0.070 58.6 0.001 0.073 10.7 -0.001 0.070 5.8
Y2 -0.002 0.091 9.3 0.005 0.094 4.7 0.001 0.089 50.2 -0.002 0.092 10.4 0.002 0.087 5.3
« -0.004 0.041 29.7 -0.005 0.059 26.4 0.004 0.108 193.7 -0.003 0.041 35.8 -0.000 0.036 40.7
3 0.1 Bpo -0.464 0.539 36.0 0.028 0.287 33.0 -0.006 0.301 36.4 0.113 0.334 108.2 0.027 0.288 35.4 0.026 0.282 37.7
Bp1 -0.264 0.314 18.9 -0.007 0.180 18.1 -0.007 0.182 18.7 -0.010 0.181 31.5 -0.008 0.180 19.2 -0.009 0.182 17.8
(f; 0.235 0.253 26.8 -0.022 0.120 17.4 -0.022 0.118 18.0 -0.021 0.118 27.9 -0.021 0.120 20.1 -0.021 0.118 18.7
Np -0.011 0.149 14.5 -0.010 0.147 15.0 -0.012 0.148 21.7 -0.012 0.149 16.4 -0.011 0.147 12.8
Yo -0.096 0.201 23.6 -0.147 0.285 23.9 0.041 0.309 199.4 -0.099 0.207 25.5 -0.098 0.186 27.7
Y1 0.001 0.058 10.9 1.001 1.003 6.4 -0.001 0.055 66.7 0.000 0.058 10.9 -0.001 0.057 5.4
Y2 -0.002 0.084 9.8 1.496 1499 5.2 -0.001 0.079 60.1 -0.002 0.086 11.0 -0.002 0.077 6.1
« -0.041 0.060 33.4 -0.055 0.089 35.1 0.020 0.116 214.8 -0.042 0.061 35.5 -0.039 0.055 48.0

Table 1: Biases, RMSEs,

and inefficiency factors under the default priors.
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TQR AL SN AEP ALDP SNDP
Setting p Parameter Bias RMSE IF Bias RMSE IF Bias RMSE IF Bias RMSE IF Bias RMSE IF Bias RMSE IF
0.5 Bpo -0.491 0.520 10.0 -0.053 0.191 13.6 -0.084 0.223 13.9 0.027 0.255 85.8 -0.054 0.192 14.5 -0.054 0.183 17.3
Bp1 -0.268 0.288 6.7 0.014 0.117 8.6 0.015 0.123 7.3 0.011 0.117 18.7 0.013 0.117 9.3 0.012 0.120 6.6
Op 0.292 0.298 7.7 -0.006 0.072 9.2 -0.007 0.071 7.2 -0.006 0.073 16.4 -0.006 0.072 8.6 -0.007 0.072 7.5
Np 0.009 0.101 7.3 0.010 0.100 6.2 0.009 0.101 11.9 0.009 0.101 6.9 0.009 0.101 5.9
Yo -0.096 0.202 19.1 -0.144 0.284 15.7 0.033 0.315 174.7 -0.098 0.206 24.6 -0.098 0.185 24.8
ot 0.001 0.058 8.2 1.001 1.003 3.6 -0.002 0.055 51.5 0.001 0.058 9.9 -0.001 0.057 4.6
Y2 -0.002 0.084 8.7 1.496 1.499 3.9 -0.001 0.078 47.4 -0.002 0.086 9.1 -0.002 0.077 5.0
o -0.040 0.060 27.7 -0.055 0.089 26.7 0.017 0.118 180.6 -0.041 0.060 34.9 -0.039 0.055 44.5
4 01 Bpo -0.888 0.908 50.5 0.054 0.246 6I.I 0.064 0.232 9I.I 0.058 0.325 440.6 0.054 0.246 64.5 0.062 0.239 88.6
Bp1 -0.401 0.416 20.1 0.001 0.148 49.7 0.006 0.143 53.1 0.007 0.144 114.2 0.002 0.153 42.7 0.005 0.144 52.9
Op 0.369 0.374 35.8 -0.018 0.101 49.0 -0.019 0.101 49.0 -0.019 0.099 128.8 -0.018 0.102 44.8 -0.017 0.098 56.2
Np 0.017 0.117 47.2 0.018 0.116 52.0 0.018 0.114 113.2 0.016 0.117 46.7 0.016 0.113 54.3
Yo -0.005 0.249 59.0 0.010 0.217 97.9 -0.008 0.412 528.2 -0.005 0.248 58.2 0.009 0.227 92.4
ot -0.005 0.105 32.5 -0.001 0.096 27.1 -0.000 0.096 146.3 -0.005 0.106 31.5 -0.001 0.093 26.3
Y2 0.016 0.188 52.3 0.009 0.167 55.1 0.012 0.170 181.4 0.017 0.191 51.5 0.014 0.169 56.7
o 0.001 0.060 104.4 0.003 0.048 166.2 -0.001 0.090 549.6 0.002 0.061 113.3 0.004 0.053 148.9
0.5 Bpo -0.676 0.685 15.1 0.005 0.20I 31.2 0.0I8 0.I90 48.6 0.0I6 0.296 355.5 0.005 0.203 33.9 0.0I14 0.I89 448
Bp1 -0.388 0.397 7.7 -0.003 0.141 25.7 -0.001 0.129 24.2 -0.002 0.130 70.0 -0.002 0.144 23.7 -0.003 0.129 26.4
» 0.380 0.382 11.7 -0.009 0.096 29.7 -0.010 0.088 28.4 -0.008 0.084 75.9 -0.010 0.098 28.6 -0.008 0.085 33.0
Np 0.023 0.106 26.5 0.024 0.098 27.0 0.022 0.095 65.9 0.024 0.108 25.8 0.022 0.095 29.8
Y0 -0.005 0.248 34.3 0.015 0.220 58.4 0.008 0.429 406.3 -0.004 0.251 37.7 0.011 0.220 57.0
ot -0.005 0.105 20.0 -0.001 0.095 14.1 -0.001 0.095 96.3 -0.004 0.105 23.2 -0.001 0.093 15.8
Y2 0.017 0.188 36.3 0.011 0.164 32.6 0.015 0.166 114.9 0.017 0.192 32.7 0.015 0.167 39.3
o 0.001 0.059 76.6 0.004 0.048 99.8 0.003 0.094 444.4 0.002 0.062 76.5 0.004 0.051 103.7
5 0.1 Bpo -0.853 0.900 41.8 0.016 0.299 38.2 -0.032 0.339 47.6 0.155 0.408 158.2 0.0I14 0.298 39.0 -0.004 0.295 39.1
Bp1 -0.405 0.438 20.9 0.028 0.198 27.1 0.045 0.222 33.3 0.029 0.202 58.1 0.030 0.198 25.1 0.030 0.205 25.9
» 0.393 0.401 30.3 -0.048 0.146 26.6 -0.066 0.161 28.5 -0.049 0.145 61.1 -0.050 0.146 27.7 -0.051 0.148 26.4
Np 0.028 0.158 26.7 0.046 0.170 27.3 0.029 0.157 55.4 0.029 0.158 25.8 0.031 0.159 25.1
Y0 -0.093 0.240 26.8 -0.159 0.360 34.5 0.124 0.412 257.2 -0.097 0.247 25.5 -0.120 0.243 31.1
ot 0.001 0.088 17.1 -0.000 0.127 16.7 0.001 0.087 74.4 0.001 0.088 16.8 -0.001 0.090 11.9
Y2 -0.056 0.160 24.9 -0.081 0.202 22.4 -0.055 0.156 104.9 -0.058 0.164 25.5 -0.064 0.161 20.6
o -0.041 0.061 51.3 -0.057 0.094 57.3 0.020 0.101 288.7 -0.043 0.063 49.8 -0.048 0.066 65.7
0.5 Bpo -0.754  0.768 9.8 -0.042 0.20I 16.0 -0.088 0.257 2I.8 0.093 0.333 1235 -0.043 0.206 17.3 -0.061 0.200 2I.5
Bp1 -0.394 0.406 7.0 0.052 0.148 15.2 0.068 0.181 13.9 0.049 0.147 35.1 0.052 0.148 14.4 0.052 0.154 12.1
0p 0.430 0.432 7.6 -0.042 0.102 15.1 -0.059 0.124 15.0 -0.040 0.100 41.7 -0.042 0.101 16.2 -0.045 0.105 14.0
p 0.042 0.115 13.5 0.059 0.134 15.2 0.040 0.112 33.1 0.042 0.115 15.3 0.045 0.117 13.2
Y0 -0.093 0.239 18.7 -0.158 0.361 19.9 0.113 0.420 177.0 -0.095 0.247 21.4 -0.122 0.243 26.9
Y1 0.002 0.088 12.6 -0.000 0.127 9.5 0.000 0.086 59.9 0.001 0.088 14.4 -0.002 0.090 8.8
Y2 -0.058 0.162 19.3 -0.081 0.203 14.7 -0.052 0.155 75.0 -0.058 0.163 21.9 -0.064 0.161 16.3
o -0.042 0.062 38.0 -0.057 0.094 42.0 0.018 0.104 209.2 -0.043 0.063 44.4 -0.049 0.067 54.2
Table 1: (continued.)
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mode and location of the mode, respectively, the MCMC sample exhibits correlation
between « and -y and this results in higher inefficiency factors for them. Hence, the
inefliciency factors for 8,0 tend to be higher than those for the other parameters. This
pattern is more profound in the case of AEP where the inefficiency factors for «, o,
and fpo are quite high. Since the additional shape parameters in AEP free up the role
of o, the MCMC sample exhibits higher correlation between «a and ~g. Furthermore,
the inefficiency factors for the other parameters for AEP are also higher than those for
the other endogenous models.

Next, we turn to the performance of the models. As expected, TQR produces biased
estimates in all cases. The RMSEs for the proposed endogenous models are generally
larger for p = 0.1, which is below the censoring point, than for p = 0.5. The AL
and ALDP models result in similar performance. The AEP model shows the largest
RMSEs for 7 and By among the proposed models for all cases. Combined with the
high inefficiency factors for those parameters, the convergence of the MCMC algorithm
for AEP may be difficult to ensure in the given simulation setting. This finding suggests a
considerable practical limitation and, thus, AEP will not be considered henceforth. The
same limitation applies to the potentially more flexible nonparametric models discussed
in Section 3.2.

Table 1 also shows that the estimation of the first stage regression can influence
the second stage parameters. For example, in Setting 1, the RMSEs for 7y for SN and
SNDP are smaller than those for AL and ALDP, as the true model is the normal and
thus SN and SNDP produce smaller RMSEs for 8,9. Similarly, in Setting 4, the RMSEs
for B0 for SN and SNDP are smaller than those for AL and ALDP. In addition, the
heteroskedasticity in the first stage influences the performance of the slope parameters,
resulting in slightly smaller RMSEs for 8,1 for SN and SNDP than for AL and ALDP.
However, the performance of the SN model becomes worse when the first stage error is
fat tailed, since the skew normal distribution cannot accommodate a fat tailed distri-
bution. While the results in Setting 2 are somewhat comparable across the models, the
table shows that SN results in larger biases and RMSEs in Setting 3 and, especially,
Setting 5. In Setting 3, SN results in larger RMSEs for 3,0 than for AL, ALDP, and
SNDP. In Setting 5, given the heteroskedasticity of the first stage, the biases and RM-
SEs for the intercept and slope parameters for SN are larger than those for AL, ALDP,
and SNDP. On the other hand, compared with SN, the semiparametric SNDP model is
able to cope with fat tailed errors and this produces results comparable with those for
AL and ALDP.

While the models result in reasonable overall performance, the results for Settings 3
and 5 also illustrate the limitation of our modelling approach to some extent. In Set-
ting 3, the models exhibit some bias in 3,9 because of the lack of fit in the first stage.
This lack of fit, which is represented by the bias for g, is reflected in the bias for 3.
The entire coefficient vector may be influenced by this lack of fit in the first stage in the
presence of heteroskedasticity as in Setting 5. The lack of fit in the first stage is also
indicated by the biases in «. This finding implies that an inflexible first stage model can
fail to estimate the true quantile such that (8) holds and that choosing the value of «
a priori could lead to biased estimates (see the discussion in Section 3.2).
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ALDP SNDP
Alternative 1  Alternative 2 Alternative 1  Alternative 2
Setting p Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE
1 0.1 Bpo 0.050 0.239 0.048 0.239 0.050 0.211 0.047 0.209
Bp1 -0.022  0.140 -0.022  0.139 -0.020 0.136 -0.020 0.135
Op -0.008  0.092 -0.009 0.092 -0.008 0.085 -0.007 0.086
0.5 Bpo 0.018 0.182 0.017 0.183 0.017 0.164 0.019 0.164
Bp -0.002  0.089 -0.001 0.089 0.001 0.087 0.001 0.087
dp -0.004 0.063 -0.004 0.063 -0.003 0.061 -0.003 0.061
2 0.1 Bpo 0.092 0.304 0.088 0.304 0.091 0.302 0.094 0.302
Bp1 -0.008  0.160 -0.007 0.160 -0.011 0.159 -0.012 0.158
Op -0.025 0.115 -0.025 0.116 -0.022 0.114 -0.023 0.114
0.5 Bpo -0.001  0.199 -0.001 0.200 0.003 0.194 0.002 0.194
Bp1 0.003 0.127 0.003 0.126 0.000 0.124 -0.001 0.123
Op -0.003  0.082 -0.004 0.082 -0.002 0.081 -0.001 0.081
3 0.1 Bpo 0.025 0.286 0.025 0.287 0.024 0.280 0.022 0.282
Bp1 -0.008  0.179 -0.009 0.180 -0.010 0.182 -0.010 0.182
dp -0.020  0.119 -0.021  0.120 -0.021 0.118 -0.021 0.118
0.5 Bpo -0.056  0.193 -0.056 0.192 -0.056 0.183 -0.056 0.184
Bp1 0.013 0.117 0.012 0.117 0.012 0.120 0.011 0.119
dp -0.006  0.072 -0.006 0.072 -0.006 0.072 -0.006 0.072
4 0.1 Bpo 0.053 0.246 0.054 0.246 0.063 0.237 0.063 0.236
Bp1 0.002 0.152 0.002 0.150 0.004 0.143 0.003 0.145
dp -0.018  0.102 -0.017 0.101 -0.017 0.097 -0.016  0.098
0.5 Bpo 0.003 0.202 0.003 0.203 0.015 0.193 0.013 0.191
Bp1 -0.003  0.140 -0.002  0.143 -0.003 0.130 -0.002 0.129
Op -0.009  0.096 -0.010 0.098 -0.007 0.086 -0.007 0.086
5 0.1 Bpo 0.011  0.300 0.010 0.301 -0.010 0.296 -0.014 0.295
Bp1 0.030 0.200 0.031 0.199 0.032 0.207 0.031 0.206
dp -0.050  0.148 -0.050 0.147 -0.054 0.150 -0.054 0.150
0.5 Bpo -0.046  0.206 -0.046  0.206 -0.065 0.202 -0.073  0.206
Bp1 0.052 0.148 0.053 0.148 0.053 0.154 0.055 0.156
dp -0.042  0.101 -0.043 0.102 -0.046 0.106 -0.046  0.107

Table 2: Biases and RMSEs for ALDP and SNDP under the alternative base measures.

4.3 Alternative Base Measures and Prior Specifications

For comparison purposes, we consider two alternative specifications for the inverse
gamma base measure for the semiparametric models. The following slightly less dif-
fuse settings than the default are considered. For ALDP, we consider ZG(2.5,0.6) such
that Pr(¢; < /3/8) = 0.854 and ZG(3.0,0.7) such that Pr(¢; < 1/3/8) = 0.891 when
a = 0.5. For SNDP, we consider ZG(2,2) such that Pr(¢ < 3) = 0.852 and ZG(2.5,2.5)
such that Pr(¢; < 3) = 0.893. For the other parameters, we use the default prior spec-
ifications. Table 2 presents the biases and RMSEs for ALDP and SNDP under the
alternative base measures for p = 0.1 and p = 0.5. The results in Table 2 are essentially
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identical to those in Table 1, suggesting that the default choice of the base measures
provides reasonable performance.

Next, the two alternative prior specifications for 7,, o, and ¢ are considered to
study the prior sensitivity. The first alternative specification considers the more diffuse
priors given by 7, ~ N(0,25), o ~ ZG(0.1,0.1), and ¢ ~ ZG(0.01,0.01). The second
alternative specification is the even more diffuse setting given by 7, ~ N(0,100), o ~
7G(0.001,0.001), and ¢ ~ ZG(0.001,0.001). For ALDP and SNDP, the default base
measures are used. For 3,,, d,, and «, we use the default specification. Table 3 presents
the biases and RMSEs for AL, SN, ALDP, and SNDP under the five simulation settings
for p = 0.1 and 0.5, showing that the result is robust with respect to the choice of
hyperparameters. We also considered some different prior choices for (,8;,517)’ and ~,
and obtained robust results.

These findings thus confirm the robustness of the results with respect to the choice
of base measures and prior distributions provided that a valid instrument is available. In
the context of mean regression models, however, when the instrument is weak, the poste-
rior distribution is known to exhibit sharp behaviour in the vicinity of non-identifiability
(Hoogerheide et al., 2007a) and the posterior distribution is greatly affected by the prior
specification (e.g. Lopes and Polson, 2014).

Here, we illustrate the behaviour of the posterior distribution by using a weak in-
strument. The data are generated from (4) without the regressor:

y; = dd; + nu; + ey,

16
d; = yw; + vy, (16)

for i = 1,...,300, where v = 0.1, (§,n) = (1,0.6), w; ~ N(0,1), v; ~ N(0,1), and
e; ~ N(0,1 —n?). The AL and SN models are estimated for p = 0.1 by running the
MCMC for 20000 iterations and discarding the first 5000 draws as the burn-in period
under the three prior specifications previously considered.

Figure 2 presents the joint posterior distribution of (4,+) and (8,7) for AL and SN
under the three prior specifications and shows that the posterior distribution is greatly
affected by the prior specification. The posterior distribution of § becomes more diffuse
as vy approaches zero. This trend becomes more profound as we use more diffuse prior
distributions, producing star shapes. The figure also suggests that the prior distribution
can act as an informative prior about the linear relationship between § and 7. Similar
results were also obtained under different prior specifications for 3,,, ,, and v as well
as for ALDP and SNDP.

5 Application: Labour Force Participation of Married
Women
The proposed endogenous models are applied to the dataset on the labour supply of

married women of Mroz (1987). The dataset includes observations on 753 individuals.
The response variable is the total number of hours in every 100 hours the wife worked



AL SN ALDP SNDP
Alternative 1  Alternative 2 Alternative 1 Alternative 2 Alternative 1 Alternative 2 Alternative 1 Alternative 2
Setting p Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE
1 0.1 Bpo 0.049 0.239 0.050 0.240 0.050 0.212 0.050 0.211 0.050 0.237 0.049 0.239 0.051 0.211 0.051 0.211
Bp1 -0.022  0.140 -0.021 0.140 -0.019 0.135 -0.019 0.135 -0.022 0.139 -0.022 0.139 -0.021 0.135 -0.020 0.135
Op -0.009 0.092 -0.009 0.092 -0.008 0.085 -0.008 0.085 -0.009 0.092 -0.009 0.093 -0.008 0.085 -0.008 0.085
0.5 Bpo 0.018 0.180 0.017 0.181 0.018 0.166 0.019 0.168 0.018 0.183 0.016 0.180 0.019 0.165 0.018 0.165
Bp1 -0.001  0.089 -0.001 0.089 0.001 0.087 0.002 0.087 -0.001 0.089 -0.001 0.089 0.001 0.087 0.001 0.087
Op -0.004 0.063 -0.004 0.063 -0.003 0.061 -0.003 0.061 -0.004 0.063 -0.004 0.063 -0.003 0.061 -0.003 0.061
2 0.1 Bpo 0.091 0.304 0.088 0.304 0.084 0.312 0.081 0.311 0.092 0.305 0.090 0.307 0.094 0.300 0.097 0.305
Bp1 -0.008 0.160 -0.008 0.160 -0.008 0.164 -0.008 0.164 -0.007 0.159 -0.007 0.160 -0.010 0.159 -0.010 0.159
Op -0.025 0.116 -0.025 0.115 -0.024 0.116 -0.023 0.115 -0.025 0.115 -0.025 0.116 -0.023 0.113 -0.024 0.114
0.5 Bpo -0.001 0.198 -0.001 0.199 -0.011 0.207 -0.011 0.209 0.002 0.199 0.001 0.200 0.005 0.196 0.005 0.195
Bp1 0.003 0.126 0.003 0.126 0.003 0.130 0.002 0.129 0.003 0.126 0.003 0.127 -0.000 0.123 0.000 0.123
Op -0.004 0.082 -0.004 0.082 -0.002 0.084 -0.002 0.083 -0.004 0.082 -0.004 0.082 -0.002 0.081 -0.002 0.081
3 0.1 Bpo 0.027 0.284 0.028 0.287 -0.004 0.301 -0.006 0.301 0.028 0.286 0.027 0.287 0.024 0.282 0.026 0.282
Bp1 -0.008 0.180 -0.007 0.180 -0.007 0.182 -0.007 0.182 -0.008 0.180 -0.008 0.180 -0.009 0.181 -0.009 0.182
Op -0.022  0.120 -0.022 0.120 -0.022 0.118 -0.022 0.118 -0.021 0.120 -0.022 0.120 -0.021  0.119 -0.021 0.118
0.5 Bpo -0.054 0.191 -0.053 0.191 -0.083 0.223 -0.084 0.223 -0.054 0.193 -0.056 0.192 -0.055 0.182 -0.054 0.183
Bp1 0.013 0.117 0.014 0.117 0.014 0.122 0.015 0.123 0.013 0.117 0.013 0.117 0.012 0.119 0.012 0.120
Op -0.006 0.072 -0.006 0.072 -0.008 0.071 -0.007 0.071 -0.007 0.072 -0.006 0.072 -0.006 0.072 -0.007 0.072
4 0.1 Bpo 0.056 0.245 0.055 0.246 0.066 0.232 0.066 0.231 0.0564 0.245 0.054 0.247 0.063 0.235 0.063 0.233
Bp1 0.004 0.152 0.002 0.151 0.005 0.142 0.006 0.143 0.003 0.151 0.003 0.150 0.004 0.143 0.005 0.145
Op -0.019  0.103 -0.018 0.102 -0.019 0.100 -0.020 0.101 -0.018 0.102 -0.018 0.101 -0.017 0.098 -0.018 0.099
0.5 Bpo 0.006 0.198 0.007 0.200 0.017 0.186 0.020 0.189 0.006 0.202 0.005 0.202 0.017 0.191 0.016 0.191
Bp1 -0.003 0.141 -0.003 0.142 0.001 0.129 0.001 0.129 -0.002 0.143 -0.002 0.143 -0.001 0.131 -0.002 0.129
Op -0.011  0.097 -0.010 0.097 -0.011 0.089 -0.011 0.089 -0.011 0.099 -0.010 0.097 -0.009 0.087 -0.008 0.085
5 0.1 Bpo 0.017 0.299 0.017 0.301 -0.029 0.342 -0.028 0.340 0.018 0.302 0.014 0.300 -0.003 0.296 -0.003 0.294
Bp1 0.030 0.199 0.030 0.201 0.045 0.223 0.045 0.224 0.031 0.200 0.030 0.198 0.032 0.207 0.032 0.207
Op -0.050 0.147 -0.050 0.148 -0.067 0.161 -0.068 0.164 -0.051 0.149 -0.050 0.148 -0.053 0.149 -0.052 0.148
0.5 Bpo -0.041  0.199 -0.041 0.201 -0.085 0.256 -0.087 0.256 -0.043 0.206 -0.042 0.206 -0.059 0.199 -0.061 0.201
Bp1 0.053 0.148 0.053 0.149 0.069 0.181 0.070 0.182 0.053 0.148 0.053 0.148 0.054 0.155 0.054 0.155
Op -0.042  0.102 -0.042 0.102 -0.059 0.123 -0.059 0.124 -0.042 0.102 -0.043 0.103 -0.045 0.106 -0.046 0.107

Table 3: Biases and RMSEs under the alternative priors for o, 7, and n,,.
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default alternative 1 alternative 2 default alternative 1 alternative 2
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Figure 2: Joint posterior of (4,v) and (d,7n) for AL (top row) and SN (bottom row).

for a wage outside the home during 1975. In the data, 325 of the 753 women worked
zero hours and the corresponding responses are treated as left censored at zero. Hence,
the censoring rate is approximately 0.43. The regressors of our model include years of
education (educ), years of experience (exper) and its square (expersq), age of the wife
(age), number of children under 6 years old (kidslt6), number of children equal to or
greater than 6 years old (kidsge6), and non-wife household income (nwifeinc). We treat
nwifeinc as an endogenous variable because it may be correlated with the unobserved
household preference for the labour force participation of the wife. As an instrument, we
include the years of education of the husband (huseduc), since this can influence both his
income and the non-wife household income, but it should not influence the decision of the
wife to participate in the labour force. Smith and Blundell (1986) considered a similar
setting where non-wife income was considered to be endogenous and the education of
the husband was employed as the instrumental variable. They applied the endogenous
Tobit model to data derived from the 1981 Family Expenditure Survey in the United
Kingdom.

Using the default prior specifications, the ALDP and SNDP models are estimated
for p = 0.05,0.1,...,0.95 by running the MCMC for 30000 iterations and discarding
the first 10000 draws as the burn-in period. Convergence is monitored by using the
trace plots and Gelman-Rubin statistic for two chains with widespread starting values
(Gelman et al., 2014). The upper bounds of the Gelman-Rubin confidence intervals for
the selected parameters, Bp educ, Ops Tps Vhuseducs Yage; and ¢, for SNDP in the case of
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Figure 3: Post burn-in trace plots for SNDP for p = 0.1.

p=0.1are 1.01, 1.01, 1.01, 1.00, 1.00, and 1.06, respectively. Figure 3 presents the post
burn-in trace plots for these parameters and shows the evidence of convergence of the
chains.

First, we present the results for the representative quantiles, p = 0.1, 0.5, and 0.9.
Table 4 shows the posterior means, 95% credible intervals, and inefficiency factors for
ALDP and SNDP for these quantiles. The table shows that the sampling algorithm
worked efficiently as the inefficiency factors are reasonably small. The posterior means
for the instrument, huseduc, are positive and the 95% credible intervals do not include
zero for all cases for both models, implying that huseduc is a valid instrument. For p =
0.5, the posterior means for 7, are 0.450 and 0.446 for ALDP and SNDP, respectively,
and the 95% credible intervals do not include zero. Therefore, it is suggested that non-
wife income be treated as an endogenous variable for the median regression.

To study the endogeneity in non-wife household income across quantiles, the pos-
terior distributions of 7, are presented. The results across the quantiles can be best
understood by plotting the posterior distributions as a function of p. Figure 4 shows
the posterior means and 95% credible intervals of 7, for ALDP and SNDP for p =
0.05,0.1,...,0.95. The figure shows that the two models produced similar results and
that the posterior distributions of 1, are concentrated away from zero for the mid quan-
tiles. Specifically, for 0.2 < p < 0.65, the 95% credible intervals do not include zero
for either model. There are notable peaks around p = 0.35, where the posterior means
of n, under the default prior specifications are 0.664 and 0.662 with the 95% credible
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ALDP SNDP

p  Parameter Mean 95% CI IF Mean 95% CI 1F
0.1 Bp constant -4.205 [ -10.758, 2.430] 13.0 -4.340 | -11.121, 2.288| 18.2
educ 1.126 | 0.656, 1.599] 12.7 1.117 [ 0.659, 1.614] 47.7
age -0.436 | -0.565, -0.311] 25.1 -0.424 | -0.554, -0.293] 37.0
exper 1.070 [ 0.731, 1.437] 41.3 1.051 [ 0.723, 1.387] 92.3
expersq -0.019 [ -0.030, -0.009] 24.7 -0.019 [ -0.029, -0.009} 52.4
kidslt6 -8.346 [ -11.145, -5.949] 80.4 -8.296 | -10.948, -5.861] 65.6
kigsge6 0.068 | -0.487, 0.534] 31.7 0.045 | -0.528, 0.512] 14.4

dp  nwifeinc -0.284 | -0.584, 0.010] 14.1 -0.279 | -0.577, 0.007] 33.4
Mp 0.176 | -0.117, 0.473] 11.5 0.171 | -0.125, 0.472] 27.8
v constant -10.117 [ -14.486, —5.490] 9.4 -10.609 [ -15.023, —6.112} 11.3
huseduc 1.013 [ 0.771, 1.239] 9.7 1.037 [ 0.812, 1.257] 4.9
educ 0.272 [ 0.018, 0.551] 6.6 0.286 [ 0.018, 0.562} 5.7
age 0.210 | 0.140, 0.280] 6.7 0.221 | 0.152, 0.290] 7.6
exper -0.090 [ -0.269, 0.084] 12.2 -0.122 [ -0.301, 0.052} 8.5
ezpersg  -0.003 | -0.009, 0.003]  12.2 -0.002 [ -0.008, 0.003] 4.7
kidslt6 -0.554 | -1.424, 0.351] 6.4 -0.472 | -1.430, 0.469] 5.5
kigsge6 0481 [ 0125  0.83§ 6.9 0464 [  0.080, 0.839)] 7.7

a 0.250 | 0.211, 0.298] 33.9 0.265 | 0.212, 0.322] 78.7
0.5 Bp constant 8.571 | -0.899, 17.634] 7.1 8.265 | -1.288, 17.473] 9.1
educ 1.287 | 0.734, 1.889] 11.0 1.291 | 0.727, 1.895] 8.2
age -0.510 [ -0.680, -0.333] 10.9 -0.502 | -0.670, -0.321] 12.9
exper 1.398 | 1.029, 1.787] 12.0 1.391 | 1.021, 1.777] 12.1
erpersq -0.021 [ -0.034, -0.009] 13.4  -0.021 [ -0.034, -0.009] 13.3
kidslt6 -9.546 [ -11.975, -7.305] 14.5 -9.441 [ -11.849, -7.123] 5.2
kigsge6 -0.255 [ -1.116, 0.620] 10.9 -0.268 [ -1.104, 0.592} 10.4

5, nwifeinc -0.525 | -0.944, -0.159] 155 -0.522 [ -0.917, -0.165] 8.5
Np 0.450 | 0.079, 0.885] 14.0 0.446 | 0.087, 0.852] 7.9
~ constant -10.318 | -14.784, -5.680]  12.3 -11.021 | -15.556, -6.377]  11.2
huseduc 1.013 | 0.768, 1.242] 9.7 1.032 [ 0.809, 1.251] 7.7
educ 0.277 | 0.025, 0.557) 5.8 0.301 | 0.028, 0.583] 5.5
age 0.212 [ 0.142, 0.283] 8.2 0.226 [ 0.156, 0.296} 11.5
exper -0.090 [ -0.274, 0.084] 43  -0120 [ -0.298,  0.054] 9.4
expersq -0.003 | -0.009, 0.003] 4.4 -0.002 | -0.008, 0.003] 8.4
kidslt6 -0.536 [ -1.408, 0.362] 2.9 -0447 [ -1.413, 0.515] 3.1
kigsge6 0491 [  0.136, 0.850] 2.7 0468 [  0.082, 0.863] 4.9

a 0.250 | 0.212, 0.297] 18.6 0.263 | 0.215, 0.315] 77.0
0.9 ,Bp constant 17.077 | 9.225, 25.430] 7.5 16.957 | 8.985, 25.429] 3.2
educ 0.405 [ -0.107, 0.905] 79 0420 [ -0.102, 0.921] 2.1
age -0.266 [ -0.424, -0.112] 6.7 -0.265 [ -0.419, -0.113] 2.7
exper 1.075 | 0.749, 1.387] 13.1 1.072 | 0.747, 1.389] 12.0
expersq -0.018 | -0.026, -0.010] 10.8 -0.018 | -0.026, -0.010] 8.8
kidslt6 -6.014 | -8.373, -3.553] 7.9 -6.085 | -8.476, -3.584] 8.3
kigsge6 0.254 [ -0.490, 0.978 5.7 0254 [ -0.492,  1.009] 9.9

dp  nwifeinc -0.043 | -0.384, 0.288] 4.5 -0.050 [ -0.380, 0.275] 6.7
Np -0.002 | -0.340, 0.339] 5.0 0.004 | -0.328, 0.337] 6.8
~  constant -10.174 | -14.698, -5.480] 6.1 -10.741 | -15.390, -5.046]  16.1
huseduc 1.013 [ 0.773, 1.240] 9.2 1.036 [ 0.812, 1.253] 6.3
educ 0.274 | 0.021, 0.551] 9.5 0.292 | 0.017, 0.582] 9.5
age 0.211 [ 0138,  0.283] 42 0223 [ 0151, 0294  14.0
exper -0.092 | -0.272, 0.085] 5.8 -0.126 | -0.300, 0.048] 6.9
expersq -0.003 [ -0.009, 0.003] 7.0 -0.002 [ -0.008, 0.003] 6.0
kidslt6 0550 [ -1.435,  0.349] 72 -0483 [ -1.450, 0.500] 9.5
kigsge6 0483 [ 0128, 0.837] 43 0464 [ 0.076, 0.857] 4.2

a 0.251 | 0.213, 0.291] 34.5 0.265 | 0.213, 0.321] 66.1

Table 4: Posterior Summary for Female Labour Data.
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Figure 4: Posterior means and 95% credible intervals of 7, under the default and alter-
native priors for p = 0.05,0.1,...,0.95.

intervals (0.201,1.137) and (0.230,1.124) for ALDP and SNDP, respectively. This is an
interesting result considering that the censoring rate is 0.43. The result implies that
the effect of the endogeneity of non-wife income is the most profound when the wife is
about to decide whether to enter the labour force. When the opportunity cost of labour
supply is very high (lower quantile) or the wife works on a more regular basis (higher
quantile), such endogeneity diminishes. Smith and Blundell (1986) also reported that
non-wife income is endogenous by using the endogenous Tobit regression model. The
mean of our dataset is 7.399, which approximately corresponds to the 0.6-th quantile.
For p = 0.6, the posterior mean of 1, for ALDP is 0.428 with the 95% credible interval
(0.036,0.832) and that for SNDP is 0.421 with the 95% credible interval (0.037,0.832).
The figure also shows the posterior means and 95% credible intervals under the two
alternative prior specifications considered in Section 4.3, confirming that our results are
robust with respect to the prior specifications.

Figure 5 compares the posterior means and 95% credible intervals of (,8;,51,)’ for
SNDP, ALDP, and TQR. for p = 0.05,0.1,...,0.95. The results for SNDP and ALDP
are quite similar. The figure clearly shows that the posterior distributions for the key
variable, nwifeinc, for the proposed models and TQR exhibit some differences for 0.2 <
p < 0.65, where nwifeinc is indicated to be endogenous. The difference becomes the
most profound around p = 0.35 for which the posterior mean for nwifeinc is —0.761
for ALDP, —0.756 for SNDP, and —0.147 for TQR, implying a stronger effect of non-
wife income when endogeneity is taken into account. The posterior distributions for
nwifeinc for ALDP and SNDP are more dispersed than that for TQR for all p. While
the 95% credible intervals include zero for all models for the upper quantiles, for the
lower quantiles, such as p = 0.1, those for ALDP and SNDP include zero and those for
TQR do not.

Differences in the results are also observed for other variables. For p = 0.35, the
posterior means for educ and age are respectively 1.689 and —0.513 for ALDP, 1.705
and —0.504 for SNDP, and 1.064 and —0.606 for TQR. For the upper quantiles, p > 0.85,
the 95% credible intervals for educ include zero for the proposed models, while those for
TQR do not, implying that an additional year of education does not increase the working
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Figure 5: Posterior means and 95% credible intervals of (,6;,, dp)" for ALDP, SNDP, and
TQR for p = 0.05,0.1, .. .,0.95.

hours for those quantiles when the endogeneity from non-wife income is taken into
account. For expersq, the endogenous models result in slightly more dispersed posterior
distributions for 0.2 < p < 0.7. The posterior means for p = 0.35 are —0.021, —0.020,
and —0.016 for ALDP, SNDP, and TQR, respectively. For kidsge6, the posterior means
for p = 0.35 are —0.274, —0.262, and —0.475 for ALDP, SNDP, and TQR, respectively.
However, the 95% credible intervals include zero for all p for all models. On the other
hand, the figure also shows that the models produced similar results for erper and
kidslt6 for all p.
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6 Conclusion

We proposed Bayesian endogenous TQR models using parametric and semiparametric
first stage regression models built around the zero a-th quantile assumption. The value
of o determines the quantile level of the mode of the error distribution and is estimated
from the data. From the simulation study, the AL, ALDP, and SNDP models worked
relatively well for the various situations, while they faced the same limitation pointed
out by Kottas and Krnjaji¢ (2009). On the other hand, the SN model could not accom-
modate the fat tailed first stage errors. Although AEP could be a promising model in
terms of flexibility, the inefficiency of the MCMC algorithm largely limits its applica-
bility in practice. The development of a more convenient mixture representation for the
AEP distribution is thus required. From application to data on the labour supply of
married women, the effect of the endogeneity in non-wife income was found to be the
most profound for the quantile level close to the censoring rate. For this quantile, some
differences in the parameter estimates between the endogenous and standard models
were found, such as the stronger effect of non-wife income on working hours.

This study only considered the case of continuous endogenous variables. We are
also interested in incorporating endogenous binary variables into a Bayesian quantile
regression model. An important extension might therefore be addressing multiple en-
dogenous dummy variables to represent selection among multiple alternatives, such as
the choice of a hospital and insurance plan, as considered in Geweke et al. (2003) and
Deb et al. (2006). However, such an extension would be challenging with respect to
the assumptions that must be imposed on the multivariate error terms. We leave these
issues to future research.

Supplementary Material

Supplementary Ox codes for “Bayesian endogenous Tobit quantile regression” (DOTI:
10.1214/16-BA996SUPP; .zip).
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