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Discussion

The article presented by the authors addresses the issue of discretization uncertainty
when differential equation systems are solved numerically, and particularly, its effect
on the inference of unknown system parameters. I wish, firstly, to congratulate the
authors for a very nice piece of work which, to my knowledge, is one of the first papers
to highlight the issue and provide a Bayesian solution for it. Nevertheless, I do have
several concerns with the article which I hope that the authors can help clarify and
discuss.

On Discretization Uncertainty

What represents discretization uncertainty? The authors take the solution, u, of the dif-
ferential equation system and its derivative, ut, to be distributed according to a Gaus-
sian process a priori. On discretizing over the ordered partition s = {s1, s2, · · · , sN},
the discretization uncertainty is propagated as fn = f(sn, u

n−1(sn), θ) where un−1(sn)
is sampled from the marginal predictive prior [u(sn)|fn−1, fn−2, · · · , f1]. This current
fn then is used to update the mean and covariance functions of the Gaussian process
as in Algorithm 1 for the next step from n → n + 1. At step n + 1, un(sn+1) is sam-
pled from [un(sn+1)|fn, fn−1, · · · , f1], fn+1 is evaluated as fn+1 = f(sn+1, u

n(sn+1), θ),
and the mean and covariance functions are again updated as in Algorithm 1. This pro-
cess is repeated until n = N , the size of the discretization grid chosen. The posterior
[u(s), ut(s)|fN , fN−1, · · · , f1] is the discretization uncertainty, according to the authors,
as shown in Figure 1.

But why should Algorithm 1 terminated at n = N be interpreted as the final
discretization uncertainty? That is, why should it be interpreted as the discretiza-
tion uncertainty associated with the grid s? One could potentially repeat the itera-

tive process again for a second time, obtain a new sequence of fns, say f
(2)
n , n =

1, 2, · · · , N , and update the mean and covariance functions as in Algorithm 1. To elab-

orate, I am assuming that u∗(0) is fixed so f
(2)
1 = f(s1, u

∗(0), θ) will not change, but
based on this f1, the mean and covariance functions can be updated again from the fi-
nal posterior [u(s), ut(s)|fN , fN−1, · · · , f1] from the first cycle. Then, obtain u1,(2)(s2) ∼
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[u1,(2)(s2)|fN , · · · , f1, f (2)
1 ] and update the mean and covariance functions again using

Algorithm 1, and so on. As can be clearly seen, this updating scheme need not termi-
nate and can be continued until infinity. Each time, a new Gaussian process arises
with updated mean and covariance functions according to Algorithm 1. Note that

C
(s)
n (s, s) ≤ C

(r)
m (s, s), in terms of positive definiteness, where cycles r, s and integers

1 ≤ m,n ≤ N are such that either r < s or if r = s,m ≤ n. Two cases arise – either Cn

converges to 0 or Cn converges to C∗ > 0. Which is it? If this process converges, then,
in my opinion, this limiting Gaussian process should be interpreted as the discretization
uncertainty associated with the grid s.

The other issue with discretization uncertainty is its quantification, via Gaussian
processes, for numerical algorithms used to solve differential equations such as the Euler
and Runge–Kutta methods; see Dass et al. (2016). Such numerical methods for solving
differential equations consider a grid s over which an approximate solution of u may
be obtained. Thus, one may consider, instead of the somewhat artificial interrogation
process suggested by the authors, approximate values of u(sn) and ut(sn), say ũ(sn)
and ũt(sn), for n = 1, 2, · · · , N generated by the numerical method. What is the dis-
cretization uncertainty and how is it quantified, given the approximate values ũ(s) and
ũt(s)? Since Gaussian processes are involved, one may consider kriging as a natural way
of interpolation and uncertainty generation for the grid s. However, kriging has to be
considered with noise, since otherwise, the interpolation at the grid sites will be exactly
ũ(s), which of course, is just an approximation of u(s), with 0 uncertainty variance.

On Calibration

Acceptance probability of the Metropolis sampler: Could the authors provide details
of the Metropolis sampler in Algorithm 2 with regard to the acceptance probabilities
once candidate (θ′, α′, λ′) is generated from the proposal density? It would be likely
that as the grid size, N , as well as the dimensions of u (and y) increases, the acceptance
probabilities, ρ, should become smaller and smaller. In particular the first term of ρ can
significantly deteriorate with large N and large dimension of u. For actual running of the
Metropolis sampler, this may pose a problem with respect to mixing and convergence
to target.

The bias and variance trade-off is clearly highlighted in this paper. When θ is the
parameter of interest, clearly u can be viewed as a nuisance parameter whose estimation,
nevertheless, is necessary for the estimation of θ. The authors show that when a biased
estimate of u is used, for example, using a numerical solver with poor resolution, the
resulting poor estimate of u propagates significant bias in the estimation of θ. The point
of this paper is that the numerical solver can be enhanced by incorporating uncertainty
quantification which results in an increased variance for θ, consequently enveloping its
true value in the region of highest posterior density. This is illustrated in Figure 9. My
questions relates back to the two issues that I highlighted in the uncertainty quantifi-
cation section above. First, does the iterative procedure until infinity further improve
(i.e., reduce) the variance of θ but still manages to maintain its true value in the high-
est posterior density region? And, when an actual numerical solver is used, such as
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the Euler and the Runge–Kutta solvers, how would the uncertainty quantification be
developed in a Gaussian process framework to give the bias variance trade-off by the
current method?

I hope the authors will be able to provide their thoughts and insights into the matters
as above. I would like again to congratulate them on an excellent piece of work and hope
that the discussions will lead to further research developments in this new and exciting
area.
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