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ASYMPTOTIC NORMALITY OF SCRAMBLED GEOMETRIC
NET QUADRATURE

BY KINJAL BASU1 AND RAJARSHI MUKHERJEE

LinkedIn Corporation and Stanford University

In a very recent work, Basu and Owen [Found. Comput. Math. 17 (2017)
467–496] propose the use of scrambled geometric nets in numerical inte-
gration when the domain is a product of s arbitrary spaces of dimension
d having a certain partitioning constraint. It was shown that for a class of
smooth functions, the integral estimate has variance O(n−1−2/d (logn)s−1)

for scrambled geometric nets compared to O(n−1) for ordinary Monte Carlo.
The main idea of this paper is to expand on the work by Loh [Ann. Statist.
31 (2003) 1282–1324] to show that the scrambled geometric net estimate has
an asymptotic normal distribution for certain smooth functions defined on
products of suitable subsets of Rd .

1. Introduction. Quasi-Monte Carlo (QMC) sampling has been well devel-
oped for the purposes of integration over the unit cube [0,1]s . Sampling over other
regular shapes is a much more challenging problem that is receiving a lot more fo-
cus in the recent era. Measure preserving mapping from the unit cube to such
shapes work very well for plain Monte Carlo. Unfortunately, the composition of
the integrand with the mapping may fail to have even mild smoothness properties
that QMC exploits [6].

In this paper, we consider the QMC integration via scrambled geometric nets as
introduced in Basu and Owen [7]. The domains of interest are product spaces of
the form X 1:s := ∏s

j=1 X (j) where each X (j) is a “nice” bounded set in dimension
d (defined in Section 2.1). Integration over sets like triangles, spherical triangles,
spheres and disks are important in graphical rendering [1]. For instance, when X (j)

is a triangle for j = 1,2, an integral of the form
∫
(T 2)2 f (x1,x2) dx1 dx2 describes

the potential for light to leave one triangle and reach another. The function f in-
corporates the shapes and relative positions of these triangles as well as whatever
lies between them.

In [7], the authors show that if each X (j) is a “nice” bounded set in dimension d ,
then we can estimate

μ = 1

vol(X 1:s)

∫
X 1:s

f (x) dx
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by the equal weight rule

(1) μ̂ = 1

n

n∑
i=1

f (xi ),

where xi are the points of a scrambled geometric net. In particular, [7] shows that
μ̂ is unbiased for μ (see Proposition 2) and there exists a finite constant C > 0
(depending on f ) such that

(2) Var(μ̂) ≤ C
(logn)s−1

n1+2/d
,

under certain smoothness conditions on f and a sphericity constraint on the parti-
tioning of X 1:s . This generalized the concept of scrambled nets which was intro-
duced in a sequence of papers by Owen [14–17, 19].

Although this provides an upper bound on the mean squared error of μ̂, it is of-
ten of interest to obtain more precise results. In particular, one might seek to obtain
asymptotically valid confidence interval type guarantees, as is the case with usual
Monte Carlo integration. However, a simple variance upper bound guarantee as (2)
is not sufficient for such purposes. To obtain central limit theorem-type results, it
is crucial to obtain an asymptotically matching lower bound to (2), and thereafter,
with this appropriate scaling, one can proceed to invoke standard tools to prove dis-
tributional convergence. This routine has been successfully realized in [12] where
the author studied the asymptotic distribution of the scrambled net estimator over
[0,1]s . The proof relied on ensuring a suitable lower bound on the variance of the
candidate μ̂ (matching up to constants to the upper bound obtained in [16]) and,
thereafter, invoking the exchangeable pair argument of Stein’s method [2] to prove
a central limit theorem for μ̂.

The main contribution of this paper is twofold. First, for a class of product
spaces, of which (T 2)s is a special case, we show that the lower bound on Var(μ̂)

matches the upper bound (2) if f satisfy certain smoothness assumptions. Second,
we establish asymptotic normality of scrambled geometric net estimators on very
general product spaces, for smooth functions where the lower bound to (2) holds.
The main idea to prove the asymptotic normality of the scrambled geometric nets is
based on the idea of Loh [12]. Assuming that there exists a matching lower bound,
we show that we can generalize the proof of asymptotic normality from scrambled
nets on [0,1]s to scrambled geometric nets on X 1:s . Loh states that the matching
lower bound for scrambled nets can be obtained from the results in Owen [16];
however, the same is not true for scrambled geometric nets. The lower bound does
not follow from the main result in [7]. We show that, for a certain class of functions
Fs (defined in Section 2.1), the lower bound on Var(μ̂) matches the upper bound.
That is, there exists a constant c > 0 (depending on f ) such that for all f ∈Fs and
large enough n,

(3) Var(μ̂) ≥ c
(logn)s−1

n1+2/d
.
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For s = 1 and X = T 2, we present a separate proof of the lower bound on variance
for a different class of functions, which might be of independent interest.

The rest of the paper is organized as follows. Assuming familiarity with scram-
bled geometric nets, in Section 2, we state the main results (asymptotic lower
bound on variance and central limit theorem for μ̂) of the paper, followed by some
numerical simulations in Section 3 to empirically validate the theoretical results.
For the sake of completeness, subsequently in Section 4 we discuss relevant back-
grounds on geometric nets and scrambled geometric nets. Section 5 contains dis-
cussions on ANOVA and multiresolution analysis on X 1:s along with the form of
Var(μ̂). Sections 6, 7 and 8 are devoted to proving the main theorems and corol-
laries pertaining to the lower bound on Var(μ̂) and asymptotic normality of μ̂.
Finally, we collect proofs of several required lemmas in Appendices A, B and C
in [3].

We conclude this section with some related work on similar spaces. Previous
work on using QMC for integration over simplices was due to Pillards and Cools
[20, 21]. Instead of using transformations Basu and Owen [5] developed two low-
discrepancy point sets on the triangle. One is a lattice like construction which
attained a discrepancy of O(logn/n). The other is a generalization of the van
der Corput sequence by using the new theory of Koksma–Hwalka inequality on
simplices [8]. Tractability results have been obtained in [4] for the s-fold prod-
uct of the simplex T d = {x ∈ [0,1]d | ∑j xj ≤ 1}. For a survey of randomized
QMC (RQMC) in general, see [11]. For an outline of QMC for computer graphics,
see [10].

2. Main results. In this section, we state and discuss our main results pertain-
ing to asymptotic normality of the scrambled geometric net estimator μ̂, as defined
in (1), with {xi : i = 1, . . . , bm} being a scrambled (0,m, s) geometric net in base
b (for a background on scrambled geometric nets refer to Section 4). Assuming
Var(μ̂) := σ 2

sgn > 0, define

W = μ̂ − μ

σsgn
.(4)

To avoid trivialities such as constant functions (which renders an identically zero
variance) and rough functions (for which even an upper bound on the variance
is unknown), we need to make certain assumptions on the class of functions f .
Indeed, we shall show that if f defined on X 1:s belongs to a class of “smooth
functions” Fs , then σsgn satisfies a matching lower bound to (2) and W is asymp-
totically normal.

2.1. Smooth functions on X 1:s . The results on scrambled nets and scrambled
geometric nets are highly dependent on the smoothness properties of the function.
Let u ⊆ 1 : s, then denote ∂uf as the mixed partial derivative of f taken once with
respect to each xj for j ∈ u.
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In [19], Owen defined a function f on [0,1]s to be smooth if ∂uf (x) is continu-
ous on [0,1]s for all u ⊆ 1 : s. Basu and Owen [7] generalize the same smoothness
definition in [19] for their results on scrambled geometric nets. The smoothness
conditions depend on the underlying domain X 1:s . If the space is Sobol’ extensi-
ble, then the function f is said to be smooth if ∂1:dsf is continuous on X 1:s . If
the domain is not Sobol’ extensible, the authors assume that f ∈ Cds(X 1:s). Al-
though, these mild conditions are enough to show the upper bound of σ 2

sgn, they
might not be enough to show a matching lower bound as per Theorem 1. For details
on Sobol’ extensible sets, see [7]. Also, for the proof of upper bound of σ 2

sgn, Basu
and Owen [7] assume a sphericity constraint for the construction of the scrambled
geometric net. See Section 4 for more details.

In view of the above discussion, throughout the rest of the paper we assume X 1:s
to be a Sobol’ extensible region, with a recursive partition satisfying the sphericity
constraint. We define a subclass of smooth functions Fs on X 1:s as follows. For any
u ⊆ 1 : s, we denote the order u gradient of f as a d |u| dimensional vector, ∇uf (x).

Formally, the coordinates of ∇uf (x) are ∂ |u|f (x)∏
j∈u ∂xjij

where ij ∈ {1, . . . , d} for each

j , stacked in some prefixed lexicographic order. A smooth function is a function
f such that mixed partial gradient satisfies the following Lipschitz condition.

DEFINITION 1. Let X 1:s be Sobol’ extensible. A real-valued function f on
X 1:s is smooth if, for all u ⊆ 1 : s,∥∥∇uf (x) − ∇uf

(
x∗)∥∥ ≤ B

∥∥x − x∗∥∥β

for some finite B ≥ 0 and β ∈ (0,1] for all x,x∗ ∈ X 1:s .

DEFINITION 2. Let X 1:s be Sobol’ extensible. Define Fs as the class of all
smooth functions f on X 1:s such that, for all u ⊆ 1 : s,∥∥∥∥

∫
X 1:s

∇uf (x) dx
∥∥∥∥2

> 0,

where the above integral is done coordinatewise.

REMARK 1. Under additional smoothness assumptions, our results hold even
when the domain is not Sobol’ extensible. However, for sake of compactness of
proof we only work with Sobol’ extensible sets.

2.2. Lower bound on variance. As mentioned earlier, a crucial step towards
understanding the asymptotic distribution of W is obtaining a matching lower
bound to (2). To state the result, we need the following notation. Let ncj

and wj

denote the center of Xj,(kj ,tj ,cj ) and Xj,(kj ,tj ) which satisfy

(5)
∫
Xj,(kj ,tj )

〈x − wj , δ〉dx = 0,

∫
Xj,(kj ,tj ,cj )

〈x − ncj
, δ〉dx = 0,
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for any fixed vector δ. Here, Xj,(kj ,tj ,cj ) and Xj,(kj ,tj ) denote the narrow and wide
cells of X (j) as defined in Definition 9 and (11). For notational simplicity, we hide
the dependence on kj and tj for ncj

,wj . Finally, let

(6) Aj =
b−1∑
cj=0

(ncj
− wj )(ncj

− wj )
T ,

and λ1(Aj ) be the minimum eigenvalue of Aj . With this, we are ready to state our
first main result of the paper regarding the matching lower bound on variance.

THEOREM 1. If f ∈ Fs and λ1(Aj ) ≥ c̃b−2kj /d for all j = 1, . . . , s, c̃ > 0,
then there exists a positive constant c such that

σ 2
sgn ≥ c

(logn)s−1

n1+2/d
(7)

for all sufficiently large m.

Indeed, to prove appropriate lower bounds on variance by applying Theorem 1
above, one needs to show that λ1(Aj ) ≥ c̃b−2kj /d . This is often a rather space-
specific property. In the following two corollaries, we show this indeed holds for
the cases of interval or triangle.

COROLLARY 1. Let b = 4 and X = T 2 and f ∈ Fs for s ≤ b. Then there
exists positive constants c,C such that

c
ms−1

b2m
≤ Var(μ̂) ≤ C

ms−1

b2m

as m → ∞.

REMARK 2. To prove the above result for general s, one can choose b = 4�

such that b ≥ s and follow the similar proof technique as in Section 7.

COROLLARY 2. Let b ≥ max(s,2),X = [0,1] and f ∈ Fs . Then there exists
positive constants c,C such that

c
ms−1

b3m
≤ Var(μ̂) ≤ C

ms−1

b3m

as m → ∞.

Loh [12] stated that, for the scrambled net, the lower bound result follows from
Theorem 2 in Owen [16]. However, in a later paper, Owen [19] acknowledges that
there was an error in Lemma 1 of [16] and appropriately corrects the proof with
milder smoothness assumptions. However, unfortunately, the lower bound result
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does not automatically follow from the new proof in [19]. Corollary 2 corrects the
proof for X = [0,1].

The examples in Corollaries 1 and 2 naturally give rise to a class of domains
which are invertible linear transformations of the square and the triangle, and for
which similar variance upper and lower bounds continue to hold. In particular, a
general result in this direction can be described as follows. For the sake of simplic-
ity, consider s = 1 and a domain X ⊂ Rd for which the condition of Theorem 1
hold. Then consider a d × d invertible matrix B such that the eigenvalues of BBT

are bounded away from 0. Then it is easy to show that the resulting domain B(X )

and the corresponding recursive split induced by the image of the recursive split
of X under B satisfy the condition of Theorem 1. As a result, the lower bound on
σ 2

sgn continue to hold on the transformed domain B(X ) by a simple application of
Theorem 1. In particular, one naturally obtains results analogous to Corollaries 1
and 2 for nonright-angle triangles and parallelograms, respectively.

REMARK 3. Note that the condition on λ1 in Theorem 1 is not necessary. To
see an example, consider s = 1, b = 2 and X = [0,1]2 which we split alternately
by horizontal and vertical splits. In the notation of Theorem 1, it is easy to show
λ1(A1) = 0 (owing to the collinearity of wk1,t1,nk1,t1,0 and nk1,t1,1 for all t1 =
0, . . . , bk1 − 1 and all k1). Now, following the arguments of Section 7.3 and using
the second eigenvalue and the corresponding eigenvector explicitly, one can easily
show that we get the same lower bound as in (7) provided ‖∇{1}f ‖2 > c for some
c > 0.

2.3. Asymptotic normality. Equipped with the lower bound in Theorem 1, we
are now ready to state the promised asymptotic normality of W in the next theorem.

THEOREM 2. Let b ≥ max(s, d,2), f ∈ Fs and W be as defined in (4). If (7)
holds, then W → N (0,1) in distribution as m → ∞.

Loh [12] proved a version of Theorem 2 for the scrambled net. The main idea of
the proof was to create a W̃ satisfying W − W̃ = op(1) and thereafter creating an
exchangeable pair (W̃ , W̃ ∗) to show that W̃ → N (0,1) in distribution as m → ∞.
We adopt the same proof technique. Indeed, if we assume that Theorem 1 holds,
it is not hard to see that our proof will follow along the exact same lines of Loh
[12] since most of the results from [12] do not depend on the domain being [0,1]s .
They mostly depend on the properties of the scrambled net. Since the scrambled
geometric net also has the same properties, it is not hard to see that almost all
results from Loh [12] will go through, except for Lemma 3 in that paper. The
result corresponding to Lemma 3 in [12] is our Lemma 3 in Appendix B.1 [3].

REMARK 4. We note that as a consequence of Corollary 2 and Theorem 2,
Theorem 2 in [12] follows as a special case.
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3. Numerical results. Before we describe the theoretical background, we
present some numerical studies which verify the convergence results. Throughout
this section and in practice to construct an estimate of the variance of the scram-
bled geometric net estimator, we use N independent replications of the sampling
scheme. For each � = 1, . . . ,N , let μ̂� denote the scrambled geometric net estima-
tor of the integral based on the �th sample of points from the domain of interest.
Then we estimate the variance of the estimator using

σ̂ 2
sgn = 1

N − 1

N∑
�=1

(μ̂� − ¯̂μ)2,(8)

where ¯̂μ = 1
N

∑N
�=1 μ̂�.

Using this estimate of the variance and Theorem 2, we can construct the (1 −
α)100% confidence interval for μ as

(9) (μ̂ − zα
2
σ̂sgn, μ̂ + zα

2
σ̂sgn),

where zα
2

is the (1 − α
2 )th quantile of the normal distribution.

EXAMPLE 1. In this example, we work with the integrand given by f (x1,

x2) = x11x
2
12 − x3

21x
4
22 defined over the product space T 2 × T 2, where xi =

(xi1, xi2) ∈ T 2 for i = 1,2. Figure 1 shows the natural logarithm of the estimated
variance as the sample size increases by taking N = 300 independent replications.
The solid line shows the estimated variance of the scrambled geometric net estima-
tor and the dashed line is used to display the estimated variance of the Monte Carlo
estimator. It can be observed from Figure 1 that the estimated variance of scram-
bled geometric net estimator decays at the rate log(n)/n2, whereas the estimated
variance of the Monte Carlo estimator behaves like C/n for some C > 0.

Note that the exact value of this integral is μ = 41/5040. To see asymptotic
normality, we plot the smoothed histogram of W�, for � = 1, . . . ,N , where

W� = μ̂� − μ

σ̂sgn
.

This is shown in Figure 2. It can be seen from Figure 2 that as m increases we get
closer and closer to normality.

Using new independent replications, we construct 100 different confidence in-
tervals for μ at level α = 0.05. This is shown in Figure 3. Throughout this simu-
lation, we keep n = 46. The intervals shown in red fail to contain the true value of
μ, and as a result it can be seen that we have desired control over the coverage of
the confidence intervals.

EXAMPLE 2. In this example, we use the integrand

f (x1,x2) = x11x12x21x22 exp(x11x12x21x22),
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FIG. 1. Decay of estimated variance as a function of sample size in a log–log scale. The solid and
dashed black line show the log of estimated variance using scrambled geometric nets and Monte
Carlo sampling, respectively.

defined on T 2 × T 2 which is difficult to integrate analytically. A similar func-
tion was considered in [19]. For this function, we compare the confidence interval
formed by the scrambled geometric net estimator and the Monte Carlo estimator
in Figure 4. Here, too, we keep n = 46. The solid and dashed lines show the con-
fidence interval using scrambled geometric nets and Monte Carlo, respectively. It
can be easily seen that, as predicted by the theoretical results, we get systemati-
cally much smaller confidence interval using scrambled geometric nets than Monte
Carlo.

4. Background on scrambled geometric nets. Before proving the main re-
sults, we discuss some necessary background on digital nets and the scrambling
algorithm. We proceed through a sequence of definitions. Let b ≥ 2 be an integer
base, s ≥ 1 is an integer dimension and Zb = {0,1, . . . , b − 1}.

DEFINITION 3. For kj ∈ N0 and cj ∈ Z
b
kj for j = 1, . . . , s, the set

s∏
j=1

[
cj

bkj
,
cj + 1

bkj

)

is a b-adic box of dimension s.
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FIG. 2. Empirical verification of asymptotic normality for scrambled geometric net estimator. The
x-axis shows the centered (with the true mean μ) and scaled (with the estimated standard deviation)
scrambled geometric net estimator.

DEFINITION 4. For integers m ≥ t ≥ 0, the points x1, . . . ,xbm ∈ [0,1]s are
a (t,m, s)-net in base b if every b-adic box of dimension s with volume bt−m

contains precisely bt of the xi .

Owen [14] introduced the idea of nested uniform scramble of (t,m, s)-nets as
follows. Let a ∈ [0,1] have base b expansion a = ∑∞

k=1 akb
−k where ak ∈ Zb. If

a has two base b expansions, without loss of generality we take the one with a tail
of 0s, not a tail of b − 1s. We apply random permutations to the digits ak yielding
uk ∈ Zb and deliver u = ∑∞

k=1 ukb
−k . There are many different ways to choose the

permutations [18].
Consider a sequence of uniform random permutations of Zb,

{πj •, πj • aj1, πj • aj1,aj2, . . . , : ajk ∈ Zb,1 ≤ j ≤ s, k = 1,2, . . .},
where all of permutations are independent. In a nested uniform scramble of a =
(a1, . . . , as) ∈ [0,1]s , we apply the above set of permutations to all components
of a to get uj,k+1 = πj • aj1aj2,...,ajk

(aj,k+1) for j = 1, . . . , s, k ∈ N. We return u =
(u1, . . . , us) where uj = ∑∞

k=1 uj,kb
−k . The nested uniform scramble of a set of

n points a1, . . . ,an ∈ [0,1]s applies the same set of permutations to all n of those
points.
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FIG. 3. 100 replications of 95% confidence intervals for μ constructed using scrambled geometric
net estimators. The true value is denoted by the horizontal black line. The confidence intervals which
do not contain the true μ are shown in red.

There are several important results related to digital nets and scrambling. For
details, we refer to the series of papers by Owen [14–17, 19] and [9, 13].

4.1. Geometric transformation and scrambled geometric nets. Scrambled ge-
ometric nets are created by a transformation of a scrambled (t,m, s)-net on [0,1]s
to the domain of interest. To explain the transformation, we introduce the concept
of recursive splits as in [7]. For sake of completeness, we restate the definitions.

DEFINITION 5. Let X ⊂ Rd have finite and positive volume. A b-fold split
of X is a collection of Borel sets Xa for a ∈ Zb with X = ⋃b−1

a=0 Xa , vol(Xa) =
vol(X )/b for a ∈ Zb, and vol(Xa ∩Xa′) = 0 for 0 ≤ a < a′ < b.

DEFINITION 6. Let X ⊂ Rd have finite and positive volume. A recursive b-
fold split of X is a collection X of sets consisting of X and exactly one b-fold split
of every set in the collection. The members of X are called cells.

See [7] for explicit splits of triangles, spherical triangles and discs. Given a set
X and a recursive splitting of it in base b, to define the transformation we begin
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FIG. 4. Confidence Intervals for μ generated by the two different sampling techniques. The solid
and dashed lines show the confidence intervals using scrambled geometric nets and Monte Carlo,
respectively, with n = 46.

by considering any point u ∈ [0,1]. We can expand u in base b as 0.u1u2 . . . .

Corresponding to this u, we define a sequence of sets

X1:K = Xu1,u2,...,uK
.

Then x := φ(u) is any point in
⋂∞

K=1 X1:K . The volume of X1:K is b−K which
converges to 0 as K → ∞. To get a unique limit x, Basu and Owen [7] use the
notion of a sequence of sets converging nicely to a point [23]. A recursive split in
base b is said to be convergent if for every infinite sequence u1, u2, . . . ,∈ Zb, the
cells Xu1,...,uK

converge nicely to a point as K → ∞. A simple sufficient condition
for a convergent split is the sphericity constraint.

DEFINITION 7. Let X be a recursive split of X ∈ Rd in base b. Then X sat-
isfies the sphericity condition if there exists a positive constant C < ∞ such that
diam(Xu1,...,uk

) ≤ Cb−k/d holds for all cells Xu1,...,uk
in X.

DEFINITION 8. Given a set X ⊂ Rd and a convergent recursive split X of X
in base b, the X-transformation of [0,1] is the function φ = φX : [0,1] → X given
by φ(u) = limK→∞Xu1,u2,...,uK

where u has the base b representation 0.u1u2 . . . .
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Now we are at a stage to define digital geometric nets in X s via recursive split-
tings. For ease of readability, we follow the same notation as in [7].

For s ∈ N, we represent the set {1,2, . . . , s} by 1 : s. For j ∈ 1 : s, we have
bounded sets X (j) ⊂ Rdj with vol(X (j)) = 1. For sets of indices u ⊆ 1 : s, the
complement 1 : s\u is denoted by −u. We use |u| for the cardinality of u. The
Cartesian product of X (j) for j ∈ u is denoted X u. A vector x ∈ X 1:s has compo-
nents xj ∈ X (j). The vector in X u with components xj for j ∈ u is denoted xu.
A point in X 1:s has

∑s
j=1 dj components. We write it as x = (x1,x2, . . . ,xs),

where each xj has dj components for j = 1, . . . , s.

DEFINITION 9. For j = 1, . . . , s, let Xj be a recursive split of X (j) in a com-
mon base b. Denote the cells of Xj by Xj,(k,t) for k ∈ N and t ∈ Zbk . Then a b-adic
cell for these splits is a Cartesian product of the form

∏s
j=1 Xj,(kj ,tj ) for integers

kj ≥ 0 and tj ∈ Z
b
kj .

DEFINITION 10. Let X (j) ⊂ Rdj have volume 1 for j ∈ 1 : s and let Xj be
a recursive split of X (j) in a common base b. For integers m ≥ t ≥ 0, the points
x1, . . . ,xbm ∈ X 1:s are a geometric (t,m, s)-net in base b if every b-adic cell of
volume bt−m contains precisely bt of the xi .

Basu and Owen [7] prove the following results regarding scrambled geometric
nets.

PROPOSITION 1. Let a1, . . . ,an be a (t,m, s)-net in base b. Let u1, . . . ,un

be a nested uniform scramble of a1, . . . ,an. For j ∈ 1 : s, let Xj be a recursive
base b split of the unit volume set X (j) ⊂ Rdj with Xj -transformation φj . Then
xi = φ(ui ) (componentwise) is a scrambled geometric (t,m, s)-net in base b with
probability one.

PROPOSITION 2. Let X (j) ⊂ Rdj with vol(X (j)) = 1 for j ∈ 1 : s have con-
vergent recursive splits Xj in bases bj ≥ 2 with corresponding transformations
φj . Let a ∈ [0,1]s and let xj be a base bj nested uniform scramble of aj . Then
φ(x) = (φ1(x1), . . . , φs(xs)) ∼ U(X 1:s).

4.2. Illustration on (T 2)s . It is easiest to visualize the scrambled geometric
net when the domain is a product of triangles. Denote T 2

j as the j th triangle, where

T 2 = {x ∈ R2 : x1, x2 ≥ 0, x1 + x2 ≤ 1} and we aim to construct a n point scram-
bled geometric net on (T 2)s = ∏s

j=1 T 2
j .

Let a1, . . . ,an denote a (t,m, s)-net in base 4. Corresponding to a1, . . . ,an, let
u1, . . . ,un denote the nested uniform scramble where ui = (ui1, . . . , uis) for i =
1, . . . , n. We expand uij in base 4 to get uij = ∑∞

k=1 uijk4−k , where uijk ∈ Z4. We
now map the initial sequence (uij1, uij2, . . . , uijK) to one of the four subtriangles
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FIG. 5. A labeled subdivision of 
(A,B,C) into 4 and then 16 congruent subtriangles.

of T 2
j of volume 4−K , illustrated in the left panel of Figure 5. We use a slightly

different labelling than in [7] to help us in the later proofs.
The subtriangle is T 2

j (uij1) where if T 2
j has corners A, B and C then

T 2
j (u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩




(
A,

A + B

2
,
A + C

2

)
, u = 0,




(
B + A

2
,B,

B + C

2

)
, u = 1,




(
C + A

2
,
C + B

2
,C

)
, u = 2,




(
B + C

2
,
A + C

2
,
A + B

2

)
, u = 3.

Next, T 2
j (uij1, uij2) = (T 2

j (uij1))(uij2) corresponding to digit uij2 within

T 2
j (uij1) as shown in the right-hand panel of Figure 5. In general, T 2

j (uij1, . . . ,

uijk) = (T 2
j (uij1, . . . , uij (k−1)))(uijk). This process maps the sequence (uij1, . . . ,

uijK) to the triangle T 2
j (uij1, uij2, . . . , uijK). The point xij = φj (uij ) is the cen-

ter of triangle T 2
j (uij1, uij2, . . . , uijK), and thus xi = (xi1, . . . , xis) ∈ (T 2)s . These

points x1, . . . ,xn form the scrambled geometric net on (T 2)s . For more details on
the triangular construction, we refer to [5, 7].

5. ANOVA and multiresolution for X 1:s . There is a well-known analysis of
variance (ANOVA) for [0,1]s . In [7], the authors present a general theory for X 1:s .
For sake of completeness and to introduce the related notation which we need in
our proofs, we describe the ANOVA for X 1:s and a multiresolution analysis of
L2(X 1:s).

5.1. ANOVA of X 1:s . Let f ∈ L2(X 1:s) and u ⊆ 1 : s. The ANOVA decompo-
sition of f generates terms such as fu which in a way represents the contribution
or effect of xj for j ∈ u beyond what can be explained by the lower order effects.
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Formally, we can write

fu(x) =
∫
X−u

(
f (x) − ∑

v�u

fv(x)

)
dx−u.(10)

Note that fu only depends on xu although it is defined on X 1:s . If u = ∅, we define

f∅(x) =
∫
X 1:s

f (x) dx = μ.

Let us define variances σ 2
u = ∫

X 1:s fu(x)2 dx for |u| > 0 and σ 2
∅ = 0. A useful

property of the ANOVA decomposition gives us
∑

|u|>0 σ 2
u = σ 2 where σ 2 =∫

X 1:s (f (x) − μ)2 dx. Moreover, from the definition of f1:s , we have f (x) =∑
u⊆1:s fu(x), wherein we follow the convention that a integral over X−1:s leaves

the function unaltered.

5.2. Multiresolution. To explain the multiresolution of L2(X 1:s), we start by
considering a version of Haar wavelets in base b which is adapted to X ⊂ Rd using
a recursive split X of X in base b ≥ 2. As before, for ease of readability, we follow
the same notation as in [7].

Following Definition 9, recall that we denote cells at level k of a split by X(k,t)

for 0 ≤ t < bk . Here, we have dropped the subscript j since we are currently deal-
ing with a single domain. Note that these cells can be further split into cells at level
k + 1 using

(11) X(k,t) =
b−1⋃
c=0

X(k,t,c) where X(k,t,c) =X(k+1,bt+c).

To explain the multiresolution of X in terms of X, we introduce the following
functions. Let ϕ(x) = 1 for all x ∈X and

ψktc = b(k+1)/21x∈X(k,t,c)
− b(k−1)/21x∈X(k,t)

(12)
≡ b(k−1)/2(bNktc(x) − Wkt(x)

)
,

where Nktc and Wkt are indicator functions of the given narrow and wide cells,
respectively. In (12), we scale by b(k−1)/2 to make the norm of ψktc independent
of k. In fact, it is easy to see that

∫
ψ2

ktc(x) dx = (b − 1)/b.
Now consider any f1, f2 ∈ L2(X ). Let 〈f1, f2〉 = ∫

X f1(x)f2(x) dx denote their
inner product. Furthermore, let

fK(x) = 〈f,ϕ〉ϕ(x) +
K∑

k=1

bk−1∑
t=0

b−1∑
c=0

〈f,ψktc〉ψktc(x).

Note that if x belongs to only one cell level K + 1, then fK(x) is the average
of f over that cell. Now for any f ∈ L1(Rd), Lebesgue’s differentiation theorem
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states that local averages over sets SK , that converge nicely to x, satisfy

lim
K→∞

∫
SK

f (x) dx

vol(SK)
= f (x) a.e.

Hence, if X is convergent, then limK→∞ fK(x) = f (x) holds almost everywhere.
Thus, assuming a convergent split we get

(13) f (x) = 〈f,ϕ〉ϕ(x) +
∞∑

k=1

bk−1∑
t=0

b−1∑
c=0

〈f,ψktc〉ψktc(x).

Now, using tensor products, we can extend (13) to the multidimensional setup.
We begin by generalizing the notation to a multidimensional case. For j ∈ 1 : s, let
X (j) ⊂ Rd have recursive split Xj in base b ≥ 2. Let ϕj and ψj(ktc) be the basis
functions with narrow and wide cell indicators Njktc and Wjkt . For u ⊆ 1 : s, let
κ ∈ N|u| have elements kj ≥ 0 for j ∈ u. Similarly, let τ have elements tj ∈ Z

b
kj

and γ have elements cj ∈ Zb for j ∈ u.
Now for any x ∈ X 1:s we define

(14) ψuκτγ (x) := ∏
j∈u

ψjkj tj cj
(xj )

∏
j /∈u

ϕj (xj ).

Using (14), the multiresolution of L2(X 1:s) is

f (x) = ∑
u⊆1:s

∑
κ|u

∑
τ |u,κ

∑
γ |u

〈ψuκτγ , f 〉ψuκτγ (x)

= μ + ∑
|u|>0

∑
κ|u

∑
τ |u,κ

∑
γ |u

〈ψuκτγ , f 〉ψuκτγ (x),

where sums are over their entire ranges given the other variables.

5.3. Variance and gain coefficients. Here, we study the variance of the scram-
bled geometric net estimator. Let {ai}ni=1 ∈ [0,1]s be an arbitrary set of n points
not necessarily a digital net. Let ui ∈ [0,1]s for i = 1, . . . , n be its nested uniform
scramble. We then map it to xi ∈ X 1:s using recursive splits in base b.

Using ideas from [15], we have

Var(μ̂) = ∑
|u|>0

∑
κ|u

Var

(
1

n

n∑
i=1

νuκ(xi )

)
,

where

(15) νuκ(x) = ∑
τ |u,κ

∑
γ |u

〈f,ψuκτγ 〉ψuκτγ (x),

with ν∅,() = μ. Note that the function νuκ is constant within regions of the form∏
j∈u

Xj,(kj ,tj ,cj )

∏
j /∈u

X (j),
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for 0 ≤ tj < bkj and 0 ≤ cj < b. Further, define

σ 2
uκ :=

∫
X 1:s

ν2
uκ(x) dx.

Now using the multiresolution-based ANOVA decomposition, we have

σ 2 =
∫
X 1:s

(
f (x) − μ

)2
dx = ∑

|u|>0

∑
κ|u

σ 2
uκ .(16)

If we assume that a1, . . . ,an is a (t,m, s)-net in base b, then its equidistribution
property determines the contribution of each νuκ to Var(μ̂). Let ai = (ai1, . . . , ais)

and define

ϒi,i′,j,k := 1

b − 1
(b1�bk+1aij �=�bk+1ai′j � − 1�bkaij �=�bkai′j �).

Furthermore, for each |u| > 0 and κ ∈ N|u| define the gain coefficients as

(17) �u,κ := 1

n

n∑
i=1

n∑
i′=1

∏
j∈u

ϒi,i′,j,kj
.

Now, using Theorem 2 of [15], we have

(18) Var(μ̂) = 1

n

∑
|u|>0

∑
κ|u

�u,κσ 2
uκ .

In usual Monte Carlo sampling, Var(μ̂) = σ 2/n, which corresponds to all �u,κ =
1. The �u,κ are called gain coefficients since they portray the relative gain com-
pared to usual Monte Carlo. If the point sets ai are carefully selected, then the
gain coefficients can be reduced and we can get a substantial improvement over
the usual Monte Carlo. The upper bound on �u,κ is obtained in [17]. Assuming
a1, . . . ,an being a (t,m, s)-net and using the upper bound on gain coefficients, the
authors in [7] show that for certain smooth functions f on X 1:s

Var(μ̂) ≤ C
(logn)s−1

n1+2/d
.

6. Proof of Theorem 1. The proof of the theorem is organized as follows.
First, we state a sequence of lemmas essential for the construction of the proof.
Thereafter, assuming the validity of these lemmas, we complete the proof of The-
orem 1. The proofs of these lemmas are deferred to the Appendices. Finally, we
note that the constants appearing in the proof of this theorem are generic and are
allowed to change from one line to other without compromising the validity of the
arguments. Throughout our proofs, f (x) = O(g(x)) implies |f (x)| ≤ M|g(x)| for
all x ≥ x0 and some positive constant M .
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6.1. Supporting lemmas. We begin with a sequence of lemmas. The first
lemma gives a lower bound on the gain coefficients �u,κ as defined in (17).

LEMMA 1. Let b ≥ max(s,2). Under the above notation,

�u,κ ≥
(

b

b − 1

)min(m,s−2)(
1 − min(m, s − 2)

b − 1

)
=: cg,

if |κ| > m − |u|, and �u,κ = 0 otherwise.

We refer to Appendix A [3] for the proof of Lemma 1. The proofs of the re-
maining sequence of lemmas are presented in Appendix B.2 [3].

LEMMA 2. Let f : X → R such that ‖∇f (x) − ∇f (x∗)‖ ≤ B‖x − x∗‖β for
some finite B ≥ 0 and β ∈ (0,1] for all x,x∗ ∈ X . Then

f (x) = f
(
x∗) + 〈∇f

(
x∗),x − x∗〉 + C

∥∥x − x∗∥∥1+β
,

where |C| ≤ B(1 + β)−1 ≤ B and ‖·‖ is the Euclidean norm.

LEMMA 3. Let f be as in Lemma 2. Then

bk+1
∫
X(k,t,c)

f (x) dx − bk
∫
X(k,t)

f (x) dx

= 〈
nktc − wkt ,∇f (wkt )

〉 + O
(
b−k(1+β)/d),

where nktc,wkt denotes the center of X(k,t,c),X(k,t), respectively.

The following lemma about the smoothness properties of the ANOVA compo-
nents of f will be crucial in our analysis of asymptotic properties of W .

LEMMA 4. Let u ⊆ 1 : s and let fu denotes the ANOVA component of f as
defined in (10). If f is smooth on X 1:s , then fu is also smooth.

To state the next lemma, we begin by introducing some notation. Let u ⊆
{1, . . . , s}. Let κ , τ , and γ be |u|-tuples with components kj ∈ N, tj ∈ Z

b
kj and

cj ∈ Zb, respectively, for j ∈ u. Let ψuκτγ be the multiresolution basis function
defined in (14). To simplify notation, let us define a set of multi-indices η of length
|u| as Su := {1, . . . , d}|u|. Further, for any η ∈ Su define the mixed partial ∂ηf as

∂ηf (x) = ∂ |u|f (x)∏
j∈u ∂xj,ηj

.
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LEMMA 5. Let f ∈ Fs . Under the above notation,

〈f,ψuκτγ 〉 = b−(|κ|+|u|)/2
∑
η∈Su

(∏
j∈u

(ncj
− wj )ηj

)
∂ηfu(w)

+ O
(
b−|κ|

2 (1+ 2
d
)− k̃β

d
)
,

where ncj
,wj defined in (5), k̃ = minj∈u kj and w = {wj : j ∈ u}.

LEMMA 6. Let f ∈ Fs . Under the above notation,

σ 2
u,κ = b−(|κ|+|u|) ∑

τ

(∇ufu(wτ )
)T

Ãu∇ufu(wτ ) + O
(
b−2|κ|/d−k̃β/d),

where Ãu = ⊗
j∈u Aj and Aj is defined in (6).

6.2. Completing proof of Theorem 1. The main idea of the proof of the lower
bound is along the following lines. Following Lemma 1 and using (18), we have

Var(μ̂) ≥ cg

n

∑
|u|>0

∑
|κ|>m−|u|

σ 2
u,κ .(19)

Note that from Lemma 6 we see

σ 2
u,κ = b−(|κ|+|u|) ∑

τ

(∇ufu(wτ )
)T

Ãu∇ufu(wτ ) + O
(
b−2|κ|/d−k̃β/d).(20)

Since λ1(Aj ) ≥ c̃b−2kj /d for all j = 1, . . . , s, we get λ1(Ãu) ≥ c̃|u|b−2|κ|/d for
all u. Using this, we have

b−(|κ|+|u|) ∑
τ

(∇ufu(wτ )
)T

Ãu∇ufu(wτ )

≥ b−(|κ|+|u|) ∑
τ

∥∥∇ufu(wτ )
∥∥2

λ1(Au)

≥ cb−|κ| ∑
τ

b−2|κ|/d∥∥∇ufu(wτ )
∥∥2

.

Then, by Riemann integrability, there exists a K := K(f ) such that for all |κ| ≥ K ,

∑
τ

b−|κ|∥∥∇ufu(wτ )
∥∥2 ≥ 1

2

∫
X u

∥∥∇ufu(xu)
∥∥2

dxu.

Now using (10) and the Leibniz integral rule we have

∇ufu(xu) =
∫
X−u

∇uf (x) dx−u.
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Denoting ∇uf (x) = (v1(x), . . . , vd |u|(x)), we have by the Cauchy–Schwarz in-
equality and the definition of Fs ,

∫
X u

∥∥∥∥
∫
X−u

∇uf (x) dx−u

∥∥∥∥2
dxu =

∫
X u

d |u|∑
j=1

(∫
X−u

vj (x) dx−u

)2
dxu

≥
d |u|∑
j=1

(∫
X u

∫
X−u

vj (x) dx−uxu

)2

=
∥∥∥∥
∫
X 1:s

∇uf (x) dx
∥∥∥∥2

> 0.

Hence, we get

b−(|κ|+|u|) ∑
τ

(∇ufu(wτ )
)T

Ãu∇ufu(wτ ) ≥ cb−2|κ|/d .(21)

Now let {am} be a diverging sequence (to be decided later) such that k̃ ≥ am.
Since m → ∞, for large enough m and |κ| > m−|u|, using (20) and (21), we have
σ 2

u,κ ≥ cb−2|κ|/d . Therefore, using (19), we have

Var(μ̂) ≥ c

n

∑
|u|>0

∑
|κ|>m−|u|

k̃≥am

σ 2
u,κ ≥ c

n

∑
|u|>0

∑
|κ|>m−|u|

k̃≥am

b−2|κ|/d .

Since we are interested in the limit as m → ∞, we can assume that m ≥ s. For
such large m, we have

∑
|κ|>m−|u|

k̃≥am

b−2|κ|/d =
∞∑

r=m−|u|+1

b−2r/d

(
r − am|u| + |u| − 1

|u| − 1

)
,

where the binomial coefficient is the number of |u|-vectors κ of nonnegative in-
tegers that sum to r and individually are greater than or equal to am. Making the
substitution l = r − m + |u|, we have∑

|κ|>m−|u|
k̃≥am

b−2|κ|/d

= b−2(m−|u|)/d
∞∑
l=1

b−2l/d

(
l + m − am|u| − 1

|u| − 1

)

≥ b−2(m−|u|)/d

(|u| − 1)!
∞∑
l=1

b−2l/d(l + m − am|u| − |u| + 1
)|u|−1
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= b−2(m−|u|)/d

(|u| − 1)!
∞∑
l=1

b−2l/d
|u|−1∑
j=0

(|u| − 1

j

)
lj
(
m − am|u| − |u| + 1

)|u|−1−j

= b−2(m−|u|)/d
|u|−1∑
j=0

(m − am|u| − |u| + 1)|u|−1−j

j !(|u| − 1 − j)!
∞∑
l=1

b−2l/d lj

≥ b−2(m−|u|)/d (m − am|u| − |u| + 1)|u|−1

(|u| − 1)!
∞∑
l=1

b−2l/d

≥ c

n2/d

(
m − am|u|)|u|−1

.

Now m = logb(n) and |u| ≤ s. Choosing am to be diverging slowly enough to
guarantee that m − ams ≥ m/2, we have

Var(μ̂) ≥ c

n1+2/d

∑
|u|>0

m|u|−1 ≥ c
ms−1

n1+2/d
.

This completes the proof of Theorem 1.

7. Specific domains. In this section, we show that the conditions of Theo-
rem 1 hold when the domain is a triangle or the unit interval. We further show that
if we choose a different class of functions defined on X = T 2 and s = 1, the same
lower bound (7) holds.

7.1. Proof of Corollary 1. To prove the result for a triangle, we show the ex-
plicit form of the matrix Aj defined in (6) by using the fact that X = T 2. Using
the notation from Figure 5, we have

ncj
− wj

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−rj /6,−rj /6), for cj = 0,

(rj /3,−rj /6), for cj = 1,

(−rj /6, rj /3), for cj = 2,

(0,0), for cj = 3,

for tj such that Xj,(kj ,tj ) is upright,

ncj
− wj

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(rj /6, rj /6), for cj = 0,

(−rj /3, rj /6), for cj = 1,

(rj /6,−rj /3), for cj = 2,

(0,0), for cj = 3,

for tj such that Xj,(kj ,tj ) is inverted,
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where r2
j = 2b−kj . Using this we get

Aj = r2
j

6

[
1 −1/2

−1/2 1

]
= b−kj

6

[
2 −1

−1 2

]
.

Thus, λ1(Aj ) = b−kj /6. Hence, the lower bound follows from Theorem 1. The
upper bound follows from [7].

7.2. Proof of Corollary 2. Following the proof for T 2, it is now easy to see
that if X = [0,1], then

Aj = b−2kj

(
b2 − 1

12b

)
.

Now using the same argument as in Corollary 1 we get the desired result.

7.3. Alternative approach for s = 1,X = T 2. Here, we give a different proof
for (7) assuming X = T 2. Since s = 1, τ, κ and γ are one-dimensional quantities
which we denote it by t, k and c, respectively. We consider a different class of
functions G as follows.

DEFINITION 11. Let G be the collection of functions f : T 2 → R such that
∂1:2f is continuous and for some c̃ > 0 either ∂{1}f (x) > c̃ or ∂{2}f (x) > c̃ for all
x ∈ T 2.

Now we prove the required lower bound on Var(μ̂) for f ∈ G.

PROPOSITION 3. Let f ∈ G. Then under the above notation

Var(μ̂) ≥ c

n2

for some c > 0.

PROOF. Crucial to the proof of Proposition 3 is the following lemma, proof of
which can be found in Appendix C [3].

LEMMA 7. Under the above notation, we have

σ 2
k =

bk−1∑
t=0

b−1∑
�=1

bk+1

�(� + 1)

[
�∑

i=1

(∫
X(k,t,i−1)

f (x) dx −
∫
X(k,t,�)

f (x) dx

)]2

.(22)

Assuming the validity of Lemma 7, we continue the proof of Proposition 3.
Note that the constants appearing in the proof of this proposition are generic and
are allowed to change from one line to other, without compromising the validity
of the arguments.
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FIG. 6. The labeling of each cell X(k,t,c) for a level k triangulation of T 2. Subfigure (a) and (b)
denotes the upright and inverted cases of X(k,t), respectively.

Consider the splitting of the triangle in base b = 4 introduced in [5] to give an
explicit form to X(k,t,c). To give a lower bound on σ 2

k , we need to consider Ii , for
i = 1,2,3, where

I1 :=
(∫

X(k,t,0)

f (x) dx −
∫
X(k,t,1)

f (x) dx
)2

,

I2 :=
(∫

X(k,t,0)

f (x) dx +
∫
X(k,t,1)

f (x) dx − 2
∫
X(k,t,2)

f (x) dx
)2

,

I3 :=
(∫

X(k,t,0)

f (x) dx +
∫
X(k,t,1)

f (x) dx +
∫
X(k,t,2)

f (x) dx − 3
∫
X(k,t,3)

f (x) dx
)2

.

Fix any k and t and consider the splitting of T 2 as given in Figure 6. At the
level k triangulation, denote the length of the orthogonal sides of cell t by r .
It is easy to see that r = √

2b−k/2. If t denotes an upright subtriangle, its co-
ordinates can be written as (αr,βr), ((α + 1)r, βr) and (αr, (β + 1)r), where
α,β ∈ {0,1, . . . ,2k − 1}. Similarly, if t denotes an inverted triangle, then follow-
ing the figure, the coordinates can be written as (αr, (β +1)r), ((α+1)r, (β +1)r)
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and ((α + 1)r, βr). Note that since we only need X(k,t,c) we zoom into X(k,t) to
identify X(k,t,c).

We now give a lower bound to σ 2
k for f ∈ G. Without the loss of generality, we

assume ∂{1}f (x) > c̃ for all x ∈ T 2. Using (22), we have

σ 2
k =

bk−1∑
t=0

b−1∑
�=1

bk+1

�(� + 1)

[
�∑

i=1

(∫
X(k,t,i−1)

f (x) dx −
∫
X(k,t,�)

f (x) dx

)]2

= bk+1
bk−1∑
t=0

(
I1

2
+ I2

6
+ I3

12

)
(23)

≥ bk+1

2

bk−1∑
t=0

I1 = bk+1

2

[ ∑
t :X(k,t)is upright

I1 + ∑
t :X(k,t)is inverted

I1

]

≥ bk+1

2

2k−1∑
α=0

2k−1−α∑
β=0

I
upright
1 ,

where the last line follows by keeping the terms corresponding to X(k,t) being

upright. Now it is enough to give a lower bound on I
upright
1 . Fix any ε > 0 and let

P 0
ε be a partition of X(k,t,0). By congruency, there exists a partition P 1

ε on X(k,t,1)

such that if C ∈ P 0
ε then C + r/2 ∈ P 1

ε . Using the notation from Figure 6, we have∫
X(k,t,0)

f (x) dx ≤ ∑
Ci∈P 0

ε

|Ci |f (x1i , x2i ) + ε,

∫
X(k,t,1)

f (x) dx ≥ ∑
Ci∈P 0

ε

|Ci |f (x1i + r/2, x2i ) − ε.

Combining the above equations and using mean value theorem, we have, for all
ε > 0, ∫

X(k,t,1)

f (x) dx −
∫
X(k,t,0)

f (x) dx

≥ ∑
Ci∈P 0

ε

|Ci |(f (x1i + r/2, x2i ) − f (x1i , x2i)
) − 2ε

= ∑
Ci∈P 0

ε

|Ci |
(

r

2

∂f

∂x1

(
ξ(x1i ), x2i

)) − 2ε

≥ c̃
r3

16
− 2ε,
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where ξ(x1i ) ∈ (x1i , x1i + r/2). Therefore, we get for some c > 0∫
X(k,t,1)

f (x) dx −
∫
X(k,t,0)

f (x) dx ≥ cr3.

Thus, we have

σ 2
k ≥ bk+1

2

2k−1∑
α=0

2k−1−α∑
β=0

I
upright
1 ≥ cb2kr6 ≥ cb−k.

The proof now follows from (19). �

8. Stein’s method and sketch of proof of Theorem 2. Our proof closely
follows the proof of Theorem 3 in Loh [12] obtained for [0,1]s . However, for
the sake of completeness, we briefly describe the proof for X s by appropriately
changing the arguments. In particular, the technique relies on Stein’s method of
exchangeable pairs for proving asymptotic normality of a sequence of random
variables. The idea of Stein’s method can be described as follows.

To demonstrate asymptotic normality for the sequence {Tm}m≥1, it is enough
to show that for Z ∼ N(0,1), supg∈G |E(g(Tm)) − E(g(Z))| → 0 as m → ∞
for a suitable class of test functions G. Stein’s method relies on obtaining suit-
able bounds on this quantity by using the characteristics of a standard normal
distribution. In particular, a random variable is Z has a standard normal distri-
bution if E(h′(Z) − Zh(Z)) = 0 for a large enough class of “nice” functions h,
where h′ denotes the derivative of h. Therefore, if the distribution of a random
variable Tm is asymptotically close to standard normal, then one expects that for
large enough m, |E(h′(Tm) − Tmh(Tm))| to be small for suitable class of func-
tions h. This motivates defining the Stein’s equation, namely g(w) − E(g(Z)) =
h′(w) − wh(w). Consequently, since any solution hg to this equation satisfies
|E(g(Tm)) − E(g(Z))| = |E(h′

g(Tm) − Tmhg(Tm))|, one has supg∈G |E(g(Tm)) −
E(g(Z))| ≤ suph∈H |E(h′(Tm) − Tmh(Tm))| for any H ⊇ {hg : g ∈ G}. In partic-
ular, obtaining Berry–Esseen type bounds on the convergence of Tm to normality
requires G = {gt (·) := 1(· ≤ t) : t ∈ R} where 1(·) is the indicator function, and the
following lemma [2, 22] is crucial in bounding suph∈H |E(h′

gt
(Tm) − Tmhgt (Tm))|

for each t ∈ R.

LEMMA 8. Let � and φ denote the cumulative distribution function and prob-
ability density function of the standard normal distribution, respectively. For every
t ∈R, the unique bounded solution ht :R→R of the differential equation

h′(w) − wh(w) = 1(w ≤ t) − �(t) ∀w ∈ R

is given by

ht (w) =
{
�(w)

(
1 − �(t)

)
/φ(w), if w ≤ t,

�(t)
(
1 − �(w)

)
/φ(w), if w > t.

Furthermore, 0 ≤ ht (w) ≤ 1 and |h′
t (w)| ≤ 1 for all w ∈ R.
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According to the above result, one has by an application of Slutsky’s lemma,
that to show W is asymptotically normal as m → ∞, it is enough for us to uni-
formly bound |E(h′

t (W̃ ) − W̃ht (W̃ ))| for ht as in Lemma 8 and any W̃ satisfying
W − W̃ → 0 in probability for W defined in (4). One such convenient W̃ can be
introduced as follows. Rewriting W by using the multiresolution analysis as in
introduced in Section 5.2, we note that

W = μ̂ − μ

σsgn
= 1

nσsgn

n∑
i=1

(
f (xi ) − μ

) = 1

nσsgn

n∑
i=1

∑
|u|>0

∑
κ|u

νuκ(xi ),

where νuκ(·) is defined in (15). Note that u chooses a subset of {1, . . . , s} and κ is
an |u|-dimensional vector containing the levels of partitions. To make the notation
simpler, we introduce k̃ as a s-dimensional vector where k̃u = κ and k̃−u = 0.
Now suppose that if a,b ∈ Rs then:

(i) a � b if and only if aj ≤ bj for all 1 ≤ j ≤ s;
(ii) a ≺ b if and only if aj ≤ bj for all 1 ≤ j ≤ s with at least one strict inequal-

ity.

Using this notation we get

W = 1

nσsgn

n∑
i=1

∑
k̃:0≺k̃

νk̃(xi ) = 1

nσsgn

n∑
i=1

∑
k̃�0,|k̃|≥m+1

νk̃(xi ),(24)

where the last equality follows from a consequence of the ANOVA decomposition
and the definition of a (0,m, s)-scrambled geometric net. Finally, we define

W̃ = 1

nσsgn

n∑
i=1

∑
k̃�m̃1,|k̃|≥m+1

νk̃(xi ),(25)

for m̃ = �2s logb m�. The next lemma guarantees W − W̃ → 0 in probability and
can be proved along the lines of Proposition 1 in Loh [12].

LEMMA 9. Let b ≥ max{s, d,2} and f ∈ Fs . Then E(W − W̃ )2 = O(m̃/m),
where W and W̃ are as in (24) and (25), respectively.

Therefore, it suffices to show that, under the assumptions of Theorem 2,

sup
{∣∣P(W̃ ≤ w) − �(w)

∣∣ : −∞ < w < ∞} = O

((
logb(m)

m

)1/2)
,

which as argued earlier can be achieved by suitably bounding |E(h′
t (W̃ ) −

W̃ht (W̃ ))| for ht as in Lemma 8. The necessary control over |E(h′
t (W̃ ) −

W̃ht (W̃ ))| will be obtained by the exchangeable pair technique of Stein’s method.
This is done as follows.
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Pick (I, J ) uniformly from {1, . . . , n} × {1, . . . , s}. Furthermore, let{
π∗

j •, π
∗
j • a1

, . . . , π∗
j • a1a2,...,ak

, . . . : 1 ≤ j ≤ s,0 ≤ ak ≤ b − 1, k = 1,2, . . .
}

be an independent replication of the array of π ’s as introduced in Section 4. In
particular, these draws of I, J,π∗’s are made independently of each other as well
as of all previously defined random variable. Now for 1 ≤ i ≤ n,1 ≤ j ≤ s, define

π̃j •ai,j,1,...,ai,j,kj −1

=

⎧⎪⎪⎨
⎪⎪⎩

π∗
j •ai,j,1,...,ai,j,kj −1

, if J = j, kj ≥ m̃ and

(aI,j,1, . . . , aI,j,m̃−1) = (ai,j,1, . . . , ai,j,m̃−1),

πj •ai,j,1,...,ai,j,kj −1 otherwise,

where ai,j,k’s are the corresponding bits for the (0,m, s)-net {ai : i = 1, . . . , n}.
Let x̃i be the scrambled geometric net created using ai and the permutations π̃ .
Similar to the definition in (25), we define

W̃ ∗ = 1

nσsgn

n∑
i=1

∑
k̃�m̃1,|k̃|≥m+1

νk̃(x̃i ),

where 1 denotes a vector of all ones of dimension s. It is easy to see by our choice
of (I, J,π∗), (W̃ , W̃ ∗) is an exchangeable pair of random variables. Now denote

S̃ = 1

nσsgn

n∑
i=1

∑
k̃�m̃1,|k̃|≥m+1

1(�i,I,J,m̃)νk̃(x̃i ),

S = 1

nσsgn

n∑
i=1

∑
k̃�m̃1,|k̃|≥m+1

1(�i,I,J,m̃)νk̃(xi ),

where �i,I,J,m̃ denotes the event that (aI,J,1, . . . , aI,J,m̃−1) = (ai,J,1, . . . ,

ai,J,m̃−1). Using this we write

W̃ ∗ − W̃ = S̃ − S,

V = W̃ − S.

Now, let t ∈ R and ht : R → R be the unique bounded solution of h′(w) −
wh(w) = 1(w ≤ t)−�(t). Using the fact that (W̃ , W̃ ∗) is exchangeable, we have,
by arguments similar to Loh [12],

0 = E
((

W̃ ∗ − W̃
)[

ht (W̃ ) + ht

(
W̃ ∗)])

= 2E
(
ht (W̃ )E

(
W̃ ∗ − W̃ |W)) +E

((
W̃ ∗ − W̃

)[
ht

(
W̃ ∗) − ht (W̃ )

])
,

where W denote the σ -algebra generated by the random variables{
πj •(ai,j,1),πj •ai,j,1(ai,j,2),πj •ai,j,1,ai,j,2(ai,j,3), . . . : 1 ≤ i ≤ n,1 ≤ j ≤ s

}
.
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Using arguments similar to Proposition 2 from [12] we have

E
(
W̃ht (W̃ )

) = bm̃−1

2
E
((

W̃ ∗ − W̃
)[

ht

(
W̃ ∗) − ht (W̃ )

])
(26)

= E

(∫
h′

t (V + w)K
W̃,W̃ ∗(w)dw

)
,

where, for all w ∈ R,

K
W̃,W̃ ∗(w) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

bm̃−1

2

(
W̃ ∗ − W̃

)
, if S < w ≤ S̃,

bm̃−1

2

(
W̃ − W̃ ∗), if S̃ < w ≤ S,

0, otherwise.

Now from Lemma 8 and (26) we have

P(W̃ ≤ t) − �(t) = E
(
h′

t (W̃ ) − W̃ht (W̃ )
)

= E

(∫ [
h′

t (W̃ ) − h′
t (V + w)

]
K

W̃,W̃ ∗(w)dw

)

+E
(
h′

t (W̃ )
)
E

(∫
K

W̃,W̃ ∗(w)dw

)

−E

(
h′

t (W̃ )

∫
K

W̃,W̃ ∗(w)dw

)

+E
(
h′

t (W̃ )
)(

1 −E

∫
K

W̃,W̃ ∗(w)dw

)
.

The proof follows by appropriately bounding the terms on the right-hand side of
the above equation. Propositions 3–5 of [12] give the appropriate bound for each of
the terms when underlying point set is a (0,m, s)-scrambled digital net. Following
the proofs in [12], it is can be seen that the properties of a scrambled net are used
to only prove Lemma 3, which is a supporting lemma to Proposition 5.

Hence, to carry over the argument to (0,m, s)-scrambled geometric nets we
prove a corresponding version of Lemma 3 of [12] as Lemma 3 in the Ap-
pendix B.1 [3]. Finally, using Lemma 3 and Propositions 3–5 in [12], we have
as m → ∞,

sup
{∣∣P(W̃ ≤ w) − �(w)

∣∣ : −∞ < w < ∞} = O

((
m̃

m

)1/2)
+ O

(
b−m̃/3)

= O

((
logb(m)

m

)1/2)
.

This completes the proof of Theorem 2.
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REMARK 5. Note that the above result does not provide a rate of convergence
to normality for W . As in [12], it only gives a rate of convergence for W̃ .

9. Discussion. Our results on lower bound on variance and, thereafter, proof
of asymptotic normality of scrambled geometric net quadrature, are obtained mod-
ulo certain smoothness assumptions on the function and properties of the domain
X . The properties of the domain enter crucially in suitably bounding the smallest
eigenvalue of a nonnegative definite matrix away from zero. It is an interesting
open question to understand whether one can characterize spaces for which such
a condition holds. In particular, the case when X is a disk, then the adaptive parti-
tioning scheme in base b = 2, as suggested by Basu and Owen [7], fails to satisfy
the lower bound on the eigenvalue. However, as we noted in the example provided
in Remark 3 following Theorem 1, the lower bound on the eigenvalue is not nec-
essary for the lower bound on σ 2

sgn to hold. Therefore, in order to prove a desired
lower bound on the variance, one needs to use the explicit spectral decomposition
of matrix Aj arising in Theorem 1 for the case of a disk before performing subse-
quent analysis. Although our simulation results show such a lower bound on σ 2

sgn
to be true, the exact theoretical analysis is cumbersome. On the other hand, the
parallel adaptive partitioning scheme for b = 4 does not satisfy the sphericity con-
dition used to prove the upper bound in [7]. Therefore, we do not proceed to prove
a lower bound in this case. This interesting dependence of the problem on the base
b used for the construction of the scrambled geometric net makes us believe that
the study of the disk deserves separate special attention.

Another example considered in Basu and Owen [7] is that of a spherical triangle.
For the spherical triangle, we believe at an intuitive level that the condition on the
eigenvalue, as required by Theorem 1, holds while using base b = 4. Indeed, it
is not too difficult to show that it is enough to have the condition on eigenvalue
in Theorem 1 to hold for sufficiently large kj for j = 1, . . . , s. However, when
kj is large enough, a split in the spherical triangle “resembles” a triangle in the
plane, and intuitively the required bound on the eigenvalues of the corresponding
matrix can be obtained by suitable perturbation bounds for matrix eigenvalues.
Apart from conditions on the domains considered, our smoothness assumptions
on the function f are not necessarily sharp. Bridging these gaps are goals of our
future research.

Acknowledgment. We would like to sincerely thank Professor Art Owen for
his support and discussions. We would also like to thank the anonymous referees
whose comments have improved the paper substantially.

SUPPLEMENTARY MATERIAL

Supplement to “Asymptotic normality of scrambled geometric net quadra-
ture” (DOI: 10.1214/16-AOS1508SUPP; .pdf). The supplementary material con-
tain the proofs of supporting lemmas.

http://dx.doi.org/10.1214/16-AOS1508SUPP
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