
The Annals of Statistics
2017, Vol. 45, No. 4, 1638–1663
DOI: 10.1214/16-AOS1503
© Institute of Mathematical Statistics, 2017

ROBUST DISCRIMINATION DESIGNS OVER
HELLINGER NEIGHBOURHOODS1

BY RUI HU AND DOUGLAS P. WIENS

MacEwan University and University of Alberta

To aid in the discrimination between two, possibly nonlinear, regres-
sion models, we study the construction of experimental designs. Considering
that each of these two models might be only approximately specified, robust
“maximin” designs are proposed. The rough idea is as follows. We impose
neighbourhood structures on each regression response, to describe the un-
certainty in the specifications of the true underlying models. We determine
the least favourable—in terms of Kullback–Leibler divergence—members of
these neighbourhoods. Optimal designs are those maximizing this minimum
divergence. Sequential, adaptive approaches to this maximization are studied.
Asymptotic optimality is established.

1. Introduction. Much of the experimental work in scientific disciplines—
physics, chemistry, engineering, etc.—is concerned with the elucidation of a func-
tional relationship between a response variable y and various covariates x. How-
ever, in practice it is often the case that the investigator will not know the correct
functional form, but instead will have several plausible models in mind. A first aim
of the investigator is therefore to design an experiment distinguishing among these
rival models. In this article, we assume that two rival models are available. Under
the first model, the data arise from a population with density f0(y|x,ϕ0) while
under the other model the density is f1(y|x,ϕ1); the conditional means are

(1.1) μj(x) =
∫

yfj (y|x,ϕj ) dy, j = 0,1.

Here, ϕ0 and ϕ1 represent nuisance parameters and will not be explicitly men-
tioned if there is no possibility of confusion. Given a design space S = {xi}Ni=1,
suppose that yil, l = 1, . . . , ni ≥ 0, are observations made at the covariate xi . Usu-
ally, the model discrimination problem is cast as a problem of hypothesis testing
[Atkinson and Fedorov (1975a, 1975b), Fedorov (1975)]:

H0 : f0
(
y|x,μ0(x)

)
versus H1 : f1

(
y|x,μ1(x)

)
, x ∈S.
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The Neyman–Pearson test then can be used to compare these two hypotheses.
Define R =∑

i,l R(yil) with

R(yil) = 2 log
{
f1(yil|xi ,μ1(xi ))

f0(yil|xi ,μ0(xi ))

}
.

The test rejects H0 for large values of R. We shall assume that the experimenter
models μj(x) parametrically as ηj (x|θ j ), with the form of ηj (x|θ j ) specified but
the parameters θ j unknown.

When only two rival models are available, the design of experiments for dis-
crimination has been investigated by numerous authors, among them Fedorov
(1975), Hill (1978), Dette and Titoff (2009). Extensions to discrimination between
several models are also explored in Atkinson and Fedorov (1975b), Dette (1994),
Dette and Haller (1998).

Sequential and static designs are the two most well-studied strategies. Hunter
and Reiner (1965) proposed a sequential design assuming that both densities were
Gaussian, namely, fj (y|x,μj , σ ) = σ−1φ((y −μj(x))/σ ), j = 0,1. Fedorov and
Pazman (1968) extended the method to heteroscedastic models. Static, that is, non-
sequential, design strategies were constructed under the normality assumption by
Atkinson and Fedorov (1975a, 1975b). López-Fidalgo, Tommasi and Trandafir
(2007) extended static design to nonnormal models.

The criteria to be optimized in the articles cited above are, or are equivalent to,
the integrated Kullback–Leibler (KL) divergence D:

(1.2) D(f0, f1, ξ |μ0,μ1) =
∫
S
I
{
f0, f1|x,μ0(x),μ1(x)

}
ξ(dx),

with ξ being the design measure placing mass ξi = ni/n at xi , and

(1.3) I
{
f0, f1|x,μ0(x),μ1(x)

}=
∫ ∞
−∞

f1
(
y|x,μ1(x)

)
log
{
f1(y|x,μ1(x))

f0(y|x,μ0(x))

}
dy

being the Kullback–Leibler divergence measuring the information lost when
f0(y|x,μ0(x)) is used to approximate f1(y|x,μ1(x)).

In the references above, one of fj (y|x,μj ), j = 0,1, is assumed to correctly
represent the true physical mechanism. However, it is dangerous to apply a method
that is highly dependent on a specific form [Box and Draper (1959), Huber (1981),
Ford, Titterington and Kitsos (1989)]. From a viewpoint of robustness, it is more
sensible to suppose only that the correct model lies in a neighbourhood of a speci-
fied density. Wiens (2009a) allowed for the means (but not the fj ) to be specified
erroneously, and imposed the neighbourhood structure

(1.4) μj(x) = ηj (x|θ j ) + ψj(x)

for specified ηj (x|·). The vectors ψj = (ψj (x1), . . . ,ψj (xN))′ were allowed to
range over classes �j , resulting in the neighbourhoods:

Fj = {
fj (·|x,μj )|μj(xi ) = ηj (x|θ j ) + ψj(x),ψj ∈ �j

}
, j = 0,1.
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Under this setting, robust Kullback–Leibler optimal designs were obtained in
Wiens (2009a) by maximizing the minimum asymptotic power of the Neyman–
Pearson test statistic R over F0 and F1. The asymptotic properties of R
were derived in Wiens (2009b) for two rival models with common densities
fj (y|x,μj (x)) = f (y|x,μj (x)).

Our work is a natural sequel to Wiens (2009a). Model misspecification is still
the problem we would like to address, but under a more general scenario which
we now describe. The two rival models are fj (y|x,μj (x)), j = 0,1, with μj(x)

determined by (1.1) and assumed to be of the form ηj (x|θ j ) for some θ j , that
is, ψj ≡ 0. Define Fj to be neighbourhoods of fj (y|x,μj (x)) used to describe
inaccuracies in the specifications of the true underlying densities. The true model
lies in one of Fj , j = 0,1. It is our purpose in this paper to propose methods of
discrimination design which are robust against the possible model misspecification
mentioned above.

We entertain the following two scenarios, but for the most part will concentrate
on the first.

Case I: Under the null hypothesis, the density function f0(y|x,μ0(x)) of the
response variable is fixed and its mean μ0 is as defined in (1.1); under the alter-
native hypothesis the density function varies over a Hellinger neighbourhood of
a nominal density f1(y|x,μ1(x)). Recall that the Hellinger distance dh(f, g) be-
tween densities f,g is defined by

d2
h(f, g) = 1

2

∫ (
f 1/2(y) − g1/2(y)

)2
dy = 1 −

∫ √
f (y)g(y) dy.

Here, the two classes are F0 = {f0(y|x,μ0(x)} and F1 is a Hellinger neighbour-
hood defined as

(1.5) F1(ε1) =
{
f (y|x)

∣∣max
x∈S dh

(
f (y|x), f1

(
y|x,μ1(x)

))≤ ε1

}
for some ε1 > 0. The members of F1 may differ from f1 because of differences in
the functional form of the density, or in their mean structures, or both.

Case II: Under the null hypothesis, the response variable has density f (y|x)

varying over a Hellinger neighbourhood of a nominal density f0(y|x,μ0(x)). The
members of F0 may differ from f0 because of differences in the functional form of
the density, or in their mean structures, or both. Under the alternative hypothesis,
the density function is f1(y|x,μ1(x)) with the mean μ1 defined in (1.1). In this
case, the two classes F0(ε0) and F1 are defined as

F0(ε0) =
{
f (y|x)

∣∣max
x∈S dh

(
f (y|x), f0

(
y|x,μ0(x)

))≤ ε0

}
,

for some ε0 > 0, and F1 = {f1(y|x,μ1(x))}, respectively.
Thus, Case I fixes the null model and allows the alternate to vary over a

Hellinger class; in Case II these are reversed. In this paper, we will primarily focus
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on Case I. In the next section, we will show that the Neyman–Pearson test for dis-
criminating between any pair in F0 × F1 is related to the KL-divergence defined
in (1.2) between the pair of densities. These results are also applicable to Case II.

All derivations, and longer mathematical arguments, are in the Appendix or in
the supplementary document [Hu and Wiens (2017)]. Some omitted details may
be found in Hu (2016).

2. Asymptotic properties of the test statistic R. In the asymptotics liter-
ature, one finds numerous results about the asymptotic distribution of R, the
test statistic for the discrimination between a pair of models f0(y|x,μ0(x)) and
f1(y|x,μ1(x)), under various conditions. Wiens (2009b) proved the asymptotic
normality of R under standard regularity conditions for likelihood estimation. In
Oosterhoff and van Zwet (2012), similar results are proved under certain contiguity
assumptions. In the Appendix, we derive the asymptotic distribution of R under
conditions tailored to our problem. The proof follows that in Oosterhoff and van
Zwet (2012). It is rather long, and depends on a number of preliminary lemmas,
and so is given in the supplementary document Hu and Wiens (2017).

THEOREM 2.1. Given a design space S = {xi}Ni=1, assume that the experiment
has ni replicates at each covariate xi , with

∑N
i=1 ni = n. Define D as in (1.2) and

for any two densities f0, f1 define

r(y|xi;f0, f1) = f1(y|xi ,μ1(xi ))

f0(y|xi ,μ0(xi ))
.

Assume that the densities f0, f1 satisfy:

(a) for the KL-divergence,

(2.1) nD = O(1),

(b) for all δ > 0

lim
n−→∞

N∑
i=1

ni

∫
{| log r(y|xi;f0,f1)|≥δ}

f0
(
y|xi ,μ0(x)

)
(2.2)

× (√
r(y|xi;f0, f1) − 1

)2
dy = 0,

(c) there is a τ > 0 such that

(2.3) lim
n−→∞

N∑
i=1

ni

∫
{log r(y|xi ;f0,f1)≥τ }

f1
(
y|xi ,μ1(x)

)
log r(y|xi;f0, f1) dy = 0.

Then R = 2
∑N

i=1
∑ni

l=1 log r(y|xi;f0, f1) and:
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(i) under the null hypothesis,

R+ 2nD√
8nD

L→ N(0,1),

(ii) under the alternative hypothesis,

R− 2nD√
8nD

L→ N(0,1).

REMARK 1. As is also shown in the supplementary document [Hu and Wiens
(2017)], conditions (2.1)–(2.3) in Theorem 2.1 hold in particular when the two den-
sities fj (y|x,μj (x), σ ) = φ((y − μj(x))/σ )/σ , j = 0,1, have means which sat-
isfy μ1(x) = μ0(x)+n−1/2
(x) for a bounded function 
. In particular, condition
(2.3) holds for every τ > 0. The same conclusion holds for log-normal densities
fj (y|x,μj (x), v2

j ) with μ1(x) = μ0(x) + n−1/2
(x) and homogeneous variances

v2
j = v2.

REMARK 2. Denote by F a distribution function whose density is f . To guar-
antee that the KL divergence between two densities f0 and f1 is finite, F1 should
be absolutely continuous with respect to F0. Moreover, it is natural to assume that
the two rival models are close to each other in some sense. Therefore, in the fol-
lowing we let f0(y|x,μ0(x)) and f1(y|x,μ1(x)) have the same support set �x,
and its complement set is

�c
x = {

y : f1
(
y|x,μ1(x)

)= f0
(
y|x,μ0(x)

)= 0
}
.

Then to make sure that condition (2.1) is reasonable, F1 should be absolutely con-
tinuous with respect to F0. Therefore, we only consider f (y|x) ∈ F1(ε1) such that
f (y|x) = 0 on �c

x. For simplicity, we assume that the densities we consider in this
paper are continuous in the interiors of their support sets.

If the radii εj of the Hellinger neighbourhoods F0(ε0) of f0(·|x,μ0(x)) and
F1(ε1) of f1(·|x,μ1(x)) shrink at a rate o(n−1/2), then the results in Theorem 2.1
also hold for any pair of densities in F0(ε0) × F1(ε1). This is guaranteed by the
result in the following corollary.

COROLLARY 1. Assume that the central densities f0(y|x,μ0(x)) and f1(y|x,

μ1(x)) satisfy conditions (2.1)–(2.3) in Theorem 2.1 and that ε0 = o(n−1/2), ε1 =
o(n−1/2). Then for any pair (f (0)(y|x), f (1)(y|x)) ∈ F0(ε0) × F1(ε1) satisfying
(2.3) we have that f (0)(y|x) and f (1)(y|x) also satisfy conditions (2.1) and (2.2).

The main results in Theorem 2.1 and Corollary 1 show the asymptotic normality
of the statistic

R
(
f (0), f (1))= 2

N∑
i=1

ni∑
l=1

log r
(
y|xi;f (0), f (1)),



ROBUST DISCRIMINATION DESIGNS 1643

under f (0)(y|x) ∈ F0(ε0) or f (1)(y|x) ∈ F1(ε1), that is, the density of the obser-
vation variable Y is f (0)(y|x) or f (1)(y|x). In practice, we are more interested in
the asymptotic normality of the test statistic R := R(f0, f1) for the discrimination
of the two nominal models f0(y|x,μ0(x)) and f1(y|x,μ1(x)), when, however, the
true model is in F0(ε0) or F1(ε1). In Theorem 2.2, we show that the asymptotic
normality of R still holds under any density f ∈ F0(ε0) ∪F1(ε1).

THEOREM 2.2. Assume that the two models f1(y|x,μ1(x)) and f0(y|x,

μ0(x)) satisfy conditions (2.1)–(2.3) in Theorem 2.1. Then:

(i) under f ∈ F1(ε1),

R− 2nD(f0, f )√
8nD(f0, f )

L→ N(0,1);

(ii) under f ∈ F0(ε0),

R+ 2nD(f, f1)√
8nD(f, f1)

L→ N(0,1).

The following theorem is immediate from Theorem 2.2, but summarizes the
results in the context of the asymptotic power of the test against a density f ∈ F0

or f ∈F1.

THEOREM 2.3. The asymptotic power against a density f ∈ F0 or F1 is

π(f ) := Pf

(
R(f0, f1) > c

)= 

(−c + γ (f,f0, f1)

2
√|γ (f,f0, f1)|

)
+ o(1),

where Pf (·) means that the calculations are to be made assuming that f is the
density of Y , and where

γ (f,f0, f1) =
{−2nD(f, f1), if f ∈ F0,

2nD(f0, f ), if f ∈ F1.

The critical value is

c = −2nD(f0, f1) + uα

√
8nD(f0, f1),

determined by

α = Pf0

(
R(f0, f1) > c

)
,

with uα being the (1 − α)-quantile of the standard normal distribution.
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Design criteria for Case I. In Case I, where F1(ε1) is a neighbourhood of
f1, the design problem is to find a design to maximize the “worst” power with
controlled Type I error. In particular, a robust maximin design ξ∗ is constructed
which maximizes the minimum power, with significance level α, over F1(ε1), that
is,

ξ∗ = arg max
ξ

min
f1∈F1(ε1)

Pf1(R > c) subject to α = Pf0(R > c),

where c is the critical value defining the rejection region {R > c}. According to
Theorem 2.3, asymptotically, the robust design is the solution to the optimality
problem

ξ∗ = arg max min
f ∈F1(ε1)

π(f ),

and the minimum asymptotic power is

(2.4) min
f ∈F1(ε1)



(−c + 2nD(f0, f )

2
√

2nD(f0, f )

)
,

where c is defined in Theorem 2.3. Under certain condition, we can solve the
minimization problem by minimizing the integrated KL-divergence D(f0, f ), as
shown in the following proposition.

PROPOSITION 1. Define

(2.5) f1∗ = arg min
f ∈F1(ε1)

D(f0, f ).

If

(2.6) D(f0, f1∗) ≥ −c,

then also f1∗ minimizes π(f ) in F1(ε1), and so is the desired minimizer in (2.4).

REMARK 3. If c ≥ 0, then (2.6) is automatic. Otherwise, we check it numeri-
cally.

The problem now is to find f1∗ as at (2.5), and then

(2.7) ξ∗ = arg max min
f ∈F1(ε1)

π(f ) = arg maxD(f0, f1∗).

For Case II, we view the null hypothesis as composite, in the sense that f0 is
the representative of the whole neighbourhood and the nominal size of the test is
evaluated at f0, and is to be α. We should accept the null if it appears that the
f generating the data is anything in F0(ε0). Then, if f ∈ F0(ε0) is generating
the data we make an error if we reject the null hypothesis, and we would like
to minimize the (maximum) probability of this. A robust maximin design ξ∗ is
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then constructed which minimizes the maximum probability of such an error, with
significance level α, over F0(ε0). This case will be investigated in future work.

As an illustration, we consider two models f0(y|x,μ0(x)) and f1(y|x,μ1(x))

with μ0(x) = η0(x|θ0) and μ1(x) = η1(x|θ1). The design obtained from the crite-
rion (2.7) is robust for testing the hypotheses

H0 : f0
(
y|x,μ0(x)

)
vs. H1 : f1

(
y|x,μ1(x)

)
,

when the true model is in a small neighbourhood of one of the hypothesized mod-
els.

Of course, the values of the regression parameters are unknown. To address
this problem, Atkinson and Fedorov (1975a) [see also López-Fidalgo, Tommasi
and Trandafir (2007)] assumes a range of plausible values for the parameters. The
worst possible values of the parameters, that is, those that minimize D, are obtained
within their respective ranges and the maximin optimal design that maximizes this
minimum value is constructed. This method leads to static design strategies. In this
paper, we proceed sequentially and adaptively, with the parameters θ j replaced by
updated least squares (LS) estimates θ̂ j before proceeding to the next stage. The
next observation then will be made at the point xnew optimizing the discrepancy
function [e.g., the KL divergence (1.3)] evaluated at the θ̂ j . This is repeated until
sufficiently many design points and observations are obtained. See Hunter and
Reiner (1965) and Fedorov and Pazman (1968) for background material.

In Section 3, the minimization problem is solved analytically at each fixed
x ∈ S . The maximization leading to optimal designs is done numerically. In Sec-
tion 4 a sequential strategy is proposed, with the unknown parameters in ηj (x|θ j )

updated as described above. To see how the test performs with our robust designs,
we simulate the sizes and powers of the model discrimination test to discriminate
between two models f0(y|x,μ0(x)) and f1(y|x,μ1(x)) when the true model may
merely be close to the nominal model f1(y|x,μ1(x)).

3. Minimization of the discrepancy function. Assume that

(3.1) ε1 < min
x∈S dh

(
f0
(
y|x,μ0(x)

)
, f1

(
y|x,μ1(x)

));
this ensures that F0 and F1(ε1) are disjoint—otherwise, the minimum power of
the test is zero. That ε1 is sufficiently small will be checked numerically in each
example.

For the first step, we minimize D over the neighbourhood F1(ε1). Equivalently,
we consider the optimization problem

(3.2) min
f

D(f0, f, ξ |μ0) = min
f

N∑
i=1

ξi

∫
f (y|xi ) log

(
f (y|xi )

f0(y|xi ,μ0(xi ))

)
dy,

under the constraints (1.5) and
∫

f (y|x) dy = 1. (The requirement that f be non-
negative turns out to be satisfied automatically and need not be prescribed.)
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It is sufficient to find, for each x, the minimizer f1∗(y|x) of

(3.3) I
{
f0, f |x,μ0(x)

}=
∫

f (y|x) log
(

f (y|x)

f0(y|x,μ0(x))

)
dy,

subject to (i′)
∫ √

f (y|x)f1(y|x,μ1(x)) dy ≥ 1−ε2
1 and (ii′)

∫
f (y|x) dy = 1. That

is, we consider the optimality problem at each x.
To solve this minimization problem, we adopt the Lagrange multiplier method

and obtain the following result. For each x, this gives a value f1∗(y|x,μ1∗(x)) of
the least favourable density, with mean μ1∗(x) given by (1.1).

PROPOSITION 2. For x ∈ S , consider the system

log
f (y|x)

f0(y|x,μ0(x))
+ 1 + 1

2
λ1f

1/2
1

(
y|x,μ1(x)

)
f −1/2(y|x) + λ2 = 0,(3.4) ∫

�x

f (y|x) dy = 1,(3.5) ∫
�x

√
f (y|x)f1

(
y|x,μ1(x)

)
dy = 1 − ε2

1.(3.6)

Define f1∗(y|x,μ1∗(x)) as follows: For y ∈ �c
x, f1∗(y|x,μ1∗(x)) ≡ 0 and for y ∈

�x, f1∗(y|x,μ1∗(x)) is a solution to (3.4)–(3.6) with λ1(x) < 0 and λ2(x) ∈ R.
Then f1∗(y|x,μ1∗(x)) is the minimizer of (3.3).

As examples, in Figure 1 we plot, for fixed values of x, the densities
f0(y|x,μ0(x)) and f1(y|x,μ1(x)) and the least favourable density f1∗(y|x,

μ1∗(x)). In Figure 1(a), both f0 and f1 are normal; in Figure 1(b), both are log-
normal. In both cases, the shape of the least favourable density obtained from
Proposition 2 is, as one would expect, close to the nominal density f1(y|x,μ1(x)).

Based on results in Proposition 2, the answer to the optimality problem (3.2) is
given in following theorem.

THEOREM 3.1. For a design ξ placing a fraction ξi of the observations at xi ,
the minimum divergence D over F1 is

N∑
i=1

ξiI
{
f0, f1∗|xi ,μ0(xi ),μ1(xi )

}
,

where f1∗ is as given in Proposition 2.

4. Sequential, adaptive discrimination designs. We construct sequential
adaptive designs, in which at each stage the choice of the next design point is in-
formed by data gathered previously. The designs we propose are robust against the
assumption that the hypotheses are correctly specified. To demonstrate this in finite
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FIG. 1. Dotted line representsf0(y|x,μ0) and solid line is f1(y|x,μ1) at x = 2.89. (a) f0 and
f1 are normal densities (see Example 1 in Section 4.1). (b) f0 and f1 are lognormal densities (see
Example 2 in Section 4.2). Here f0 and f1 have mean functions μ0(x) and μ1(x) being given by
(4.1) and (4.2), respectively, with V = K = 1. The two nominal densities have the same variance 0.1.
Dashed line represents least favourable density in F1(0.045).

samples, we shall simulate the sizes and minimum powers of the model discrimi-
nation tests based on our robust designs and those based on “classically optimal”
designs—those which entertain no neighbourhood structure on the models, that is,
ε0 = ε1 = 0. On this basis, we will compare the methods.

The method requires the experimenter to employ an initial design, of size ninit,
and to first draw a sample of this size. In our simulations, we have chosen a param-
eter vector θ0true and then simulated the initial, and subsequent, data from either
f0(y|η0(x|θ0true)) or from the least favourable member of F1(ε1). We simulate
from f0 when investigating the sizes of the tests associated with the robust and
classically optimal designs. To investigate the minimum powers, we simulate from
f1∗(y|x,μ1∗(x)).

The experiment proceeds as follows:

Step 1: Choose an initial design ξ0 = {ξ0i}Ni=1 of size ninit =∑N
i=1 ni,init, where

ninit < n and ξ0i = ni,init/ninit.
Step 2: Draw ni,init observations at each covariate xi .
Carry out steps 3–5, starting with m = 0, until an n-point design is obtained.
Step 3: Estimate both parameter vectors θ0, θ1. In each case, estimation of

θ j is done assuming that μj(x) = ηj (x|θ j ). We denote these estimates by θ̂m =
(̂θ0m, θ̂1m).

Step 4: The next design point in the classical design is

x(c)
new = arg max

x∈S I
{
f0, f1|x,μ0(x) = η0(x|̂θ0m),μ1(x) = η1(x|̂θ1m)

}
.

The next design point in the robust design is

x(r)
new = arg max

x∈S I
{
f0, f1∗|x,μ0(x) = η0(x|̂θ0m),μ1(x) = η1(x|̂θ1m)

}
.
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We note, but for ease of presentation do not emphasize, that the estimates θ̂m will
depend on the designs used up to this point.

Step 5: Draw ynew at the design point xnew.

These steps are illustrated in detail in the examples that follow. Before doing
this, we state the related result that, under appropriate conditions, the designs
so obtained are asymptotically optimal. We entertain two sequences of models
f0n(y|x,μ0(x)), f1n(y|x,μ1(x)) indexed by the sample size n. We assume that∣∣η0(x|θ0n) − η1(x|θ1n)

∣∣= O
(
n−1/2).

This guarantees, as in Remark 1, that if f0n(y|x,μ0(x)) and f1n(y|x,μ1(x))

are both normal or both lognormal densities with μ0(x) = η0(x|θ0n), μ1(x) =
η1(x|θ1n) and the same nuisance parameters, then conditions (2.1)–(2.3) in The-
orem 2.1 hold. It is also needed for (i) of Theorem 4.1, which is based on Theo-
rem 3.1 in Sinha and Wiens (2003). By this, the LSEs θ̂ jn updated in each iteration
are consistent for sequences θ jn of parameters defined as

θ jn = arg min
θ

[ N∑
i=1

{
E[Yn|xi] − ηj (xi |θ)

}2
]
.

In fact, θ̂ jn − θ jn
a.s.→ 0 as shown in Sinha and Wiens (2003). With this consistency,

we then can obtain that the designs {ξn} constructed as in Steps 1–5 above are
asymptotically optimal. We require assumptions (B1)–(B5) and A3′ as stated in
Sinha and Wiens (2003). Moreover, we have two additional assumptions:

(B6) For each fixed x, the KL-divergence in Proposition 2, given by I{f0,

f1∗|x,μ0(x) = η0(x|θ0),μ1(x) = η1(x|θ1)}, is Lipschitz continuous with respect
to (θ0, θ1).

(B7) The size of the initial sample ninit satisfies limninit→∞ ninit/n = 0.

Sequential, adaptive optimality has been treated elsewhere in the literature. In
particular, Wynn (1970) proposed a sequential, but not adaptive, method converg-
ing to a D-optimal design in linear models. Wiens and Li (2014) gave a sequen-
tial, adaptive estimation method yielding both consistent variance estimates and an
asymptotically V-optimal design. Chaudhuri and Mykland (1993) study adaptive
designs for nonlinear models and likelihood estimation. Our proof of the following
theorem closely parallels those in Wynn (1970) and Wiens and Li (2014).

THEOREM 4.1. Under assumptions (B1)–(B7) and (A3′), as ninit → ∞, there
are sequences {θ jn} for which:

(i) the LS estimates θ̂ jn − θ jn
a.s.→ 0, j = 0,1, and

(ii) D(ξn, θ̂n) − maxξ∈P D(ξ , θn)
pr→ 0 with θ̂n = (̂θ0n, θ̂1n) and θn = (θ0n,

θ1n).



ROBUST DISCRIMINATION DESIGNS 1649

Here, D(ξ , θ) is the KL-divergence between f0(y|x,μ0(x)) and the least
favourable density f1∗(y|x,μ1∗(x)):

D(ξ , θ) =
N∑

i=1

ξiI
{
f0, f1∗|xi ,μ0(x) = η0(x|θ0),μ1(x) = η1(x|θ1)

}
,

and P is the set of all possible n-point designs.

In the following, we consider several examples in a 51-point design space
S ={1,1.1, . . . ,4.9,5}, dividing [1,5] into 50 equal subintervals. Increasing the
number of points in the design space may affect the speed of the algorithm (which
is slow, due to the onerous computations called for by Proposition 2). But the the-
ory supporting its asymptotic optimality is independent of the number of points in
the design space.

4.1. Example 1. Assume that both f0 and f1 are normal densities with mean
ηj (x|θ j ), j = 0,1, and common variance σ 2 = 0.1. We consider the Michaelis–
Menten and exponential response models

η0(x|θ0) = V0x

K0 + x
,(4.1)

η1(x|θ1) = V1
(
1 − exp{−K1x}),(4.2)

where θ0 = (V0,K0)
′, θ1 = (V1,K1)

′.
Following steps 1–5 as described above, we obtain robust (or classical) sequen-

tial designs with sample size 20. Figure 2 shows a robust design and a classical
design obtained in this example.

After a robust (or classical) design, that is, a design measure ξ = (ξ1, . . . , ξN),
is obtained, observations at the design points will be simulated from the “null”

FIG. 2. In Example 1, (a) classical design with sample size 20 (b) robust design with sample size
20 for ε1 = 0.17.
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TABLE 1
Simulated sizes and minimum powers (standard errors in parentheses) for Example 1

ε

0.058 0.063 0.1 0.17

Classical
Size 0.049 (0.0068) 0.044 (0.0065) 0.054 (0.0071) 0.054 (0.0071)
Min-power 0.684 (0.0147) 0.703 (0.0144) 0.681 (0.0147) 0.670 (0.0149)

Robust
Size 0.055 (0.0072) 0.043 (0.0064) 0.052 (0.0070) 0.052 (0.0070)
Min-power 0.730 (0.0140) 0.711 (0.0143) 0.707 (0.0144) 0.699 (0.0145)

model or the “alternative” model. To investigate the sizes of the tests, we simulate
from the “null” model f0(y|η0(x|θ0true)). We have used θ0true = (1,1)T in this
and the following example. To investigate the minimum powers we simulate from
the “alternate” model, the least favourable density f1∗(y|x,μ1∗(x)). Then the ob-
servations are substituted into the test statistic R and a model discrimination test
is performed for the hypotheses

H0 : f0
(
y|η0(x|θ0)

)
vs. H1 : f1

(
y|η1(x|θ1)

)
.

We simulate 1000 robust and classical designs and do the hypothesis tests of size
α = 0.05. The number of rejections is counted and the ratio of number of rejections
to number of tests is the estimate of the size (if the data are simulated from the null
model) or the minimum power (if the data are simulated from the alternate model).
The radii of the neighbourhoods F1(ε1) were ε1 = 0.058,0.063,0.1,0.17. The
simulated results are recorded in Table 1.

According to Table 1, the sizes of model discrimination tests for both classical
and robust designs are close to the test size α = 0.05. The minimum powers for
robust designs are higher than those of classical designs. As the neighbourhood
F1(ε1) is enlarged with respect to ε1, the minimum powers decrease because the
least favourable densities are found in a bigger neighbourhood.

4.2. Example 2. Suppose that under each model the observations are log-
normal, that is, logY is normally distributed. Assume that the logarithm of the
observation logY has mean αj (x) and variance σ 2

j (x), so that the density of Y

is

fj

(
y|x,μj (x)

)= 1

yσj (x)
φ

(
logy − αj (x)

σj (x)

)
I (y > 0),

with

Emodel j [Y |x] = μj(x) = exp
(
σ 2

j (x)/2 + αj (x)
)
,

varmodel j [Y |x] = v2
j (x) = μ2

j (x)
{
exp

(
σ 2

j (x)
)− 1

}
.
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FIG. 3. In Example 2, (a) classical design with sample size 20 (b) robust design with sample size
20 for ε1 = 0.17.

In the following, we assume homoscedastic models and specify the variance
function v2

j (x) ≡ v2 = 0.1.
Let f0 and f1 be log-normal densities with means η0(x|θ0) and η1(x|θ1). Here,

ηj (x|θ j ), j = 0,1, are the Michaelis–Menten and exponential response models
defined in (4.1) and (4.2), respectively. The robust designs and classical optimal
designs can be obtained by following steps 1–5. As an example a robust design
and a classical design are illustrated in Figure 3.

To investigate the sizes of the tests, we simulate from the null model f0(y|η0(x|
θ0true)). To assess the minimum powers, we simulate from f1∗(y|x,μ1∗(x)), the
least favourable density in F1(ε1) (we use the same values of ε1 as in Example 1).
As described in Example 1, we simulate 1000 robust and classical designs and
perform model discrimination tests with size α = 0.05. The estimates of type-I
error and minimum powers are given in Table 2.

The numerical results lead to the same conclusions as in Example 1.

TABLE 2
Simulated sizes and minimum powers (standard errors in parentheses) for Example 2

ε

0.01 0.032 0.17 0.2

Classical
Size 0.052 (0.0070) 0.053 (0.0071) 0.0610 (0.0076) 0.043 (0.0064)
Min-power 0.602 (0.0155) 0.641 (0.0152) 0.601 (0.0155) 0.593 (0.0155)

Robust
Size 0.049 (0.0068) 0.054 (0.0071) 0.050 (0.0069) 0.053 (0.0071)
Min-power 0.649 (0.0151) 0.675 (0.0148) 0.630 (0.0153) 0.623 (0.0153)
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5. Summarizing remarks. We have considered the construction of robust
model discrimination designs, to aid in the choice of regression models. In the
existing literature on discrimination designs, the construction has generally been
based on the assumption that the true model is one of the nominal models. Our
method instead assumes that the two models range over Hellinger neighbourhoods
of the nominal models. The model discrimination problem can be cast as a prob-
lem of hypothesis testing. In particular, we have considered the case that under the
null hypothesis the “neighbourhood” is a singleton—a fixed density function—and
under the alternative hypothesis the density lies in a Hellinger neighbourhood of
the hypothesized density. We aimed at constructing experimental designs by max-
imizing the minimum power, over the Hellinger neighbourhood, of the Neyman–
Pearson test. We derived the asymptotic properties of the Neyman–Pearson test
statistic and proved that the power of the Neyman–Pearson test is a monotonic
function of the Kullback–Leibler divergence between the two rival models under
certain conditions. Therefore, we have proposed designs that maximize the mini-
mum KL divergence in the neighbourhood.

The minimization part of this procedure has been carried out analytically; the
optimal designs are obtained by maximizing the minimized discrepancy function
sequentially and adaptively, with the parameters reestimated after each design
point is chosen and implemented. Examples and small samples simulations have
given empirical support for the validity of our asymptotic theory.

In the examples, we have assessed the sizes and powers of the post-design hy-
pothesis tests by simulating observations from a “true” model which might differ
from both nominal models. To illustrate that our designs are robust against slight
deviation from the nominal model, we compared the minimum powers of model
discrimination tests based on robust designs and classical designs. This was done
for a range of values of ε1, determining the size of the alternate neighbourhood.
Subject to condition (3.1), necessary in order that the hypotheses be separated, we
have used several values of ε1 small enough that the hypothesis are widely sep-
arated, and several values large enough that the alternate neighbourhood is quite
large. As seen from the results in Tables 1 and 2, the size of the test is quite stable
under changes in ε1, and the (minimum) power is quite robust, relative to that of
the test based on nonrobust, “classical” design principles.

APPENDIX: DERIVATIONS

A.1. Proof of Corollary 1. We first show that (2.2) holds, under the condi-
tions in the statement of the Corollary. For arbitrary (f (0), f (1)) and any δ > 0,
denote

� = {
y : ∣∣log r

(
y|xi;f (0), f (1))∣∣≥ δ

}
.
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Then ∫
�

f (0)(y|xi )
(√

r
(
y|xi;f (0), f (1)

)− 1
)2

dy

=
∫
�

⎛⎜⎜⎜⎜⎝
[√

f (0)(y|xi ) −
√

f0
(
y|xi ,μ0(xi )

)]
+ [√f0

(
y|xi ,μ0(xi )

)−√f1
(
y|xi ,μ1(xi )

)]
+ [√f1

(
y|xi ,μ0(xi )

)−√
f (1)(y|xi )

]

⎞⎟⎟⎟⎟⎠
2

dy

(A.1)
≤ 3

∑
j=0,1

∫
�

(√
f (j)(y|xi ) −

√
fj

(
y|xi ,μj (xi )

))2
dy

+ 3
∫
�

(√
f0
(
y|xi ,μ0(xi )

)−√f1
(
y|xi ,μ1(xi )

))2
dy.

We show that each term in (A.1) is o(n−1). Since ε0 = o(n−1/2), ε1 = o(n−1/2),
the first term is o(n−1) for each j , and

(A.2) lim
n−→∞

N∑
i=1

ni

∫
�

(√
f (j)(y|xi ) −

√
fj

(
y|xi ,μj (xi )

))2
dy = 0, j = 0,1.

With

�1 =
{∣∣log r

(
y|xi;f (0), f (1))∣∣≥ δ and

∣∣log r(y|xi;f0, f1)
∣∣≥ δ

n

}
,

�2 =
{∣∣log r

(
y|xi;f (0), f (1))∣∣≥ δ and

∣∣log r(y|xi;f0, f1)
∣∣< δ

n

}
,

the second term in (A.1) can be divided into two terms:∫
�

(√
f0
(
y|xi ,μ0(xi )

)−√f1
(
y|xi ,μ1(xi )

))2
dy

=
∫
�1

(√
f0
(
y|xi ,μ0(xi )

)−√
f1
(
y|xi ,μ1(xi )

))2
dy(A.3)

+
∫
�2

(√
f0
(
y|xi ,μ0(xi )

)−√f1
(
y|xi ,μ1(xi )

))2
dy.

Notice that �1 ⊆ �3 = {| log r(y|xi;f0, f1)| ≥ δ
n
}. Then the first term in (A.3)

satisfies ∫
�1

(√
f0
(
y|xi ,μ0(xi )

)−√
f1
(
y|xi ,μ1(xi )

))2
dy

≤
∫
�3

(√
f0
(
y|xi ,μ0(xi )

)−√f1
(
y|xi ,μ1(xi )

))2
dy.
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Moreover, since f0(y|xi ,μ0(xi )) and f1(y|xi ,μ1(xi )) satisfy (2.2), we have

lim
n−→∞

N∑
i=1

ni

∫
�1

(√
f0
(
y|xi ,μ0(xi )

)−√
f1
(
y|xi ,μ1(xi )

))2
dy

(A.4)

≤ lim
n−→∞

N∑
i=1

ni

∫
�3

(√
f0
(
y|xi ,μ0(xi )

)−√f1
(
y|xi ,μ1(xi )

))2
dy = 0.

For the second term in (A.3), noticing that∣∣log r(y|xi;f0, f1)
∣∣< δ

n
⇔ e−δ/n ≤ r(y|xi;f0, f1) ≤ eδ/n,

we have ∫
�2

(√
f0
(
y|xi ,μ0(xi )

)−√f1
(
y|xi ,μ1(xi )

))2
dy

≤ max
{(

1 − e−δ/2n)2, (1 − eδ/2n)2}= o
(
n−1),

and then

(A.5) lim
n−→∞

N∑
i=1

ni

∫
�2

(√
f0
(
y|xi ,μ0(xi )

)−√f1
(
y|xi ,μ1(xi )

))2
dy = 0.

Therefore, combining (A.2), (A.4) and (A.5) we have that

lim
n−→∞

N∑
i=1

ni

∫
�

f (0)(y|xi )
(
r
(
y|xi;f (0), f (1))− 1

)2
dy = 0,

that is, f (0)(y|x) and f (1)(y|x) satisfy (2.2).
To prove that f (0)(y|x) and f (1)(y|x) satisfy (2.1), first write

nD =
N∑

i=1

ni

∫
�

f (1)(y|xi ) log r
(
y|xi;f (0), f (1))dy

(A.6)

+
N∑

i=1

ni

∫
�c

f (1)(y|xi ) log r
(
y|xi;f (0), f (1))dy.

We will prove that the limit of the first term in (A.6) is 0 as n → ∞ and the limit
of the second term is finite. By the triangle inequality for the Hellinger distance,
we have

d2
h

(
f (0)(y|xi ), f

(1)(y|xi )
)≤ ε2

0 + ε2
1 + d2

h

(
f0
(
y|xi ,μ0(xi )

)
, f1

(
y|xi ,μ1(xi )

))
(A.7)

≤ O
(
n−1).
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According to Oosterhoff and van Zwet (2012), (A.7) and condition (2.2) im-
ply that {�N

i=1(F
(0)
i )ni } and {�N

i=1(F
(1)
i )ni } are contiguous with respect to each

other, where F
(0)
i and F

(1)
i are the distributions corresponding to f (0)(y|xi ) and

f (1)(y|xi ), respectively. Therefore, we conclude that for all δ > 0,

lim
n−→∞

N∑
i=1

niF
(1)
i

(∣∣log r
(
y|xi;f (0), f (1))∣∣≥ δ

)= 0,

(A.8)

lim
n−→∞

N∑
i=1

niF
(0)
i

(∣∣log r−1(y|xi;f (0), f (1))∣∣≥ δ
)= 0.

Moreover, according to the contiguity of {�N
i=1(F

(0)
i )ni } and {�N

i=1(F
(1)
i )ni }, we

have

(A.9) lim
n−→∞

N∑
i=1

niF
(0)
i

(∣∣log r
(
y|xi;f (0), f (1))∣∣≥ δ

)= 0.

Then by similar analysis as in the proof of Theorem 2.1 and using condition
(2.3), the limit of the first term in (A.6) is 0. To prove that the second term in (A.6)
has a finite limit, we expand log r(y|xi ) [as in the proof of Lemma 2.5 in Hu and
Wiens (2017)] and obtain∣∣∣∣ N∑

i=1

ni

∫
�c

f (1)(y|xi ) log r
(
y|xi;f (0), f (1))dy

∣∣∣∣

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
N∑

i=1

ni

∫
�c

(√
f (1)(y|xi ) −

√
f (0)(y|xi )

)2
dy

+
∣∣∣∣ N∑
i=1

ni

∫
�c

(
f (0)(y|xi ) − f (1)(y|xi )

)
dy

∣∣∣∣
+
∣∣∣∣ N∑
i=1

ni

∫
�c

ρ1iδ

(√
f (1)(y|xi ) −

√
f (0)(y|xi )

)2
dy

∣∣∣∣

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A.10)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
N∑

i=1

nid
2
h

(
f (0)(y|xi ), f

(1)(y|xi )
)

+
∣∣∣∣ N∑
i=1

ni

∫
�c

(
f (0)(y|xi ) − f (1)(y|xi )

)
dy

∣∣∣∣
+ 3δ

N∑
i=1

nid
2
h

(
f (0)(y|xi ), f

(1)(y|xi )
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= O(1).
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Here, the second term in (A.10) satisfies∣∣∣∣ N∑
i=1

ni

∫
�c

(
f (0)(y|xi ) − f (1)(y|xi )

)
dy

∣∣∣∣
(A.11)

=
∣∣∣∣ N∑
i=1

ni

∫
�

(
f (1)(y|xi ) − f (0)(y|xi )

)
dy

∣∣∣∣→ 0

due to (A.8) and (A.9). Combining (A.10) and (A.11), we can conclude that
f (0)(y|x) and f (1)(y|x) satisfy (2.1).

A.2. Proof of Theorem 2.2. We prove only (i); (ii) can be proved in a similar
manner. According to Theorem 2.1, if f (y|x) ∈ F1(ε1) is the true model, the test
statistic

R(f0, f ) = 2
N∑

i=1

ni∑
l=1

log
{

f (yil|xi )

f0(yil|xi ,μ0(xi ))

}

is normally distributed with mean −2nD(f0, f ) and standard deviation√
8nD(f0, f ). Recall that

R := R(f0, f1) = 2
N∑

i=1

ni∑
l=1

log
{
f1(yil|xi ,μ1(xi ))

f0(yil|xi ,μ0(xi ))

}
.

Notice that

R =R(f0, f )−2zn

with

zn =∑
i,l

log
{

f (yil|xi )

f1(yil|xi ,μ1(xi ))

}
,

and nD(f0, f ) = O(1) according to Corollary 1. Therefore, if we can prove that
when f (y|x) ∈ F1(ε1) is the true model

(A.12) zn = op(1),

then the asymptotic normality of R is proved. With the notation in Theorem 2.1,
to prove (A.12) under f (y|x), we need to show that for any ε > 0,

(A.13) lim
n→∞F (n)

(∣∣∣∣∑
i,l

log
{

f (Yil|xi )

f1(Yil|xi ,μ1(xi ))

}∣∣∣∣> ε

)
= 0.
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Notice that

F (n)

(∣∣∣∣∑
i,l

log
{

f (Yil|xi )

f1(Yil|xi ,μ1(xi ))

}∣∣∣∣> ε

)

≤ F (n)

(∑
i,l

∣∣∣∣log
{

f (Yil|xi )

f1(Yil|xi ,μ1(xi ))

}∣∣∣∣> ε

)
(A.14)

≤ F (n)

(
max
i,l

∣∣∣∣log
{

f (Yil|xi )

f1(Yil|xi ,μ1(xi ))

}∣∣∣∣> ε

n

)
.

Then if we can prove that

(A.15)
∑
i,l

F (n)

(∣∣∣∣log
{

f (Yil|xi )

f1(Yil|xi ,μ1(xi ))

}∣∣∣∣> ε

n

)
→ 0,

according to (A.14), (A.13) holds.
Notice that the Hellinger distance between f1(y|xi ,μ1(xi )) and f (y|xi ) is at

most ε1 = o(n−1/2). Then
N∑

i=1

ni

∫ (√
f (y|xi ) −

√
f1
(
y|xi ,μ1(xi )

))2
dy = o(1).

Based on (1.5) in Oosterhoff and van Zwet (2012), we have that F
(n)
1 and F (n) are

mutually contiguous.
Because of the contiguity, according to the proof of Theorem 2 in Oosterhoff

and van Zwet (2012), to prove (A.15), it is equivalent to prove that for any ε > 0

lim
n−→∞

N∑
i=1

ni

∫
{| log r(y|xi;f,f1)|≥ ε

n
}
(√

f (y|xi ) −
√

f1
(
y|xi ,μ1(xi )

))2
dy = 0.

This follows, since

lim
n−→∞

N∑
i=1

ni

∫
{| log r(y|xi;f,f1)|≥ ε

n
}
(√

f (y|xi ) −
√

f1
(
y|xi ,μ1(xi )

))2
dy

≤ lim
n−→∞ 2nε2

1 = 0.

This completes the proof of (i).

A.3. Proof of Proposition 1. For an arbitrary f ∈ F1(ε1) set t = D(f0, f ),
and define t0 = D(f0, f1∗), so that, by definition and assumption,

(A.16) t ≥ t0 ≥ −c.

In this notation, we are to show that (
−c+t0
2
√

t0
) ≤ (−c+t

2
√

t
), that is, that

−c + t0√
t0

≤ −c + t√
t

for t ≥ t0.
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After a rearrangement, this condition becomes

−c ≤ √
t0

√
t .

This is obvious if c ≥ 0, otherwise it follows from (A.16).

A.4. Proof of Proposition 2. In the following, we write f (y), f0(y|μ0),
f1(y|μ1) for f (y|x), f0(y|x,μ0(x)), f1(y|x,μ1(x)). Define

L
(
f (y), λ1, λ2

)
= f (y) log

f (y)

f0(y|μ0)
+ λ1

√
f (y)f1(y|μ1) + λ2f (y) for y ∈ �x.

For each fixed y ∈ �x, the function L(f (y), λ1, λ2) is convex with respect to
f (y) > 0. It follows that the critical point which is a solution to (3.4) is a min-
imizer of L(f (y), λ1, λ2). Then the solution to (3.4)–(3.6) is also the solution to
the optimality problem (3.3), as we now show. Assume that (f1∗(y|μ1∗), λ1, λ2)

is a solution to the equation system. For any f (y) such that f (y) vanishes on �c
x

and satisfies the constraints of the optimization problem (3.3), it is clear that

L
(
f (y), λ1, λ2

)≥ L
(
f1∗(y), λ1, λ2

)
,

that is,

f (y) log
(

f (y)

f0(y|μ0)

)
+ λ1

√
f (y)f1(y|μ1) + λ2f (y)

≥ f1∗(y|μ1∗) log
(

f1∗(y|μ1∗)
f0(y|μ0)

)
+ λ1

√
f1∗(y|μ1∗)f1(y|μ1)

+ λ2f1∗(y|μ1∗),

and then

I{f0, f |μ0} ≥
∫
�x

f1∗(y|μ1∗) log
(

f1∗(y|μ1∗)
f0(y|μ0)

)
dy

+ λ1

∫
�x

(√
f1∗(y|μ1∗)f1(y|μ1) −

√
f (y)f1(y|μ1)

)
dy

= I{f0, f1∗|μ0,μ1∗}
+ λ1

∫
�x

(√
f1∗(y|μ1∗)f1(y|μ1) −

√
f (y)f1(y|μ1)

)
dy

≥ I{f0, f1∗|μ0,μ1∗},
since

λ1

∫
�x

(√
f1∗(y|μ1∗)f1(y|μ1) −

√
f (y)f1(y|μ1)

)
dy ≥ 0.
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Therefore, the solution to equations (3.4), (3.5) and (3.6) is the minimizer of the
optimality problem (3.3).

The multiplier λ1 is strictly negative. For, if λ1 = 0 then according to (3.4) we
have f1∗(y|μ1∗) = f0(y|μ0) exp{−1−λ2}. However, constraint (3.5) then implies
λ2 = −1 and f1∗(y|μ1∗) = f0(y|μ0). But then constraint (3.6) cannot be satisfied,
since minx∈S dh(f0, f1|x) > ε1. Therefore, λ1 < 0.

Finally, by using the constraints (3.5) and (3.6), the minimum of the optimality
problem (3.3) can be simplified:

I{f0, f1∗|μ0,μ1∗} = −1 − 1

2
λ1
(
1 − ε2

1
)− λ2.

A.5. Proof of Theorem 4.1. (i) The consistency of the LS estimates is a direct
result of Theorem 3.1 in Sinha and Wiens (2003).

(ii) We prove that D(ξ (n), θ̂n) − maxξ∈P D(ξ , θn)
pr→ 0 by verifying that

(E1) maxξ∈P D(ξ , θ̂n) − maxξ∈P D(ξ , θn)
pr→ 0 as ninit → ∞,

(E2) D(ξ (n), θ̂n) − maxξ∈P D(ξ , θ̂n)
pr→ 0 as ninit → ∞.

We first prove (E1). Let ξ∗
n be a design such that D(ξ∗

n, θ̂n) = maxξ∈P D(ξ , θ̂n)

and let ξn0 be the design such that D(ξn0, θn) = maxξ∈P D(ξ , θn). Then

Ln := D(ξ0n, θ̂n) −D(ξ0n, θn) ≤ D
(
ξ∗

n, θ̂n

)−D(ξ0n, θn)

≤ D
(
ξ∗

n, θ̂n

)−D
(
ξ∗

n, θn

)=: Un.

Recall that

D(ξ , θ) =
N∑

i=1

ξiI
{
f0, f1∗|xi , η0(xi |θ0), η1(xi |θ1)

}
.

According to condition (B6), the integrand I{f0, f1∗|x, η0(x|θ0), η1(x|θ1)} is Lip-
schitz continuous with respect to θ = (θ0, θ1). Via the consistency of θ̂n, and the
linearity of D(ξ , θ) with respect to ξ we have that for any design ξ ,∣∣D(ξ , θ̂n) −D(ξ , θn)

∣∣
(A.17)

≤ max
i=1,...,N

∣∣∣∣∣ I
{
f0, f1∗|xi , η0(xi |̂θ0n), η1(xi |̂θ1n)

}
− I

{
f0, f1|xi , η0(xi |θ0n), η1(xi |θ1n)

} ∣∣∣∣∣ a.s.→ 0.

Therefore, Ln,Un
a.s.→ 0 and (E1) follows.

To prove (E2), we first write

D
(
ξ (n), θ̂n

)− max
ξ∈P

D(ξ , θ̂n)

= (
D
(
ξ (n), θ̂n

)−D
(
ξ (n), θ̂ninit

))+ (D(ξ (n), θ̂ninit

)− max
ξ∈P

D(ξ , θ̂ninit)
)

(A.18)

+
(
max
ξ∈P

D(ξ , θ̂ninit) − max
ξ∈P

D(ξ , θ̂n)
)
.
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The first and last terms in (A.18) converge to 0 in probability as ninit → ∞, due to
(A.17) and (E1). Then it suffices to prove that, for any ε > 0,

(A.19) Pr
(
D
(
ξ (n), θ̂ninit

)− max
ξ∈P

D(ξ , θ̂ninit) ≥ −ε
)

→ 1.

Recall that given the (n − 1)th design ξ (n−1) and the estimates θ̂n, the next design
point is

xnew = arg max
i=1,...,N

I
{
f0, f1∗|xi , η0(xi |̂θ0n), η1(xi |̂θ1n)

}
.

Then the nth design is

ξ (n) = n − 1

n
ξ (n−1) + 1

n
δn(x),

where δn(x) = I (x = xnew). Therefore, the KL-divergence for the nth design is

D
(
ξ (n), θ̂ninit

)= n − 1

n
D
(
ξ (n−1), θ̂ninit

)+ 1

n
D
(
δn(x), θ̂ninit

)
,

and the difference between the KL-divergence with the nth design and that with
(n − 1)th design is

(A.20) D
(
ξ (n), θ̂ninit

)−D
(
ξ (n−1), θ̂ninit

)= D(δn(x), θ̂ninit) −D(ξ (n), θ̂ninit)

n − 1
.

Now to establish (A.19), denote ξ∗
init = arg maxξ∈P D(ξ , θ̂ninit). For any ε > 0,

divide the sequence {ξ (n)} into two disjoint subsequences S1(ε) and S2(ε) such
that

S1(ε) := {
ξ (n) : D(ξ (n), θ̂ninit

)≥ D
(
ξ∗

init, θ̂ninit

)− ε/2
}
,

S2(ε) := {
ξ (n) : D(ξ (n), θ̂ninit

)
< D

(
ξ∗

init, θ̂ninit

)− ε/2
}
.

We first show that S1(ε) is nonempty for each ε > 0. If not, there must exist an ε

such that for any n we have

D
(
ξ (n), θ̂ninit

)
< D

(
ξ∗

init, θ̂ninit

)− ε/2.

Then according to (A.20), and with z1n = (D(δn(x); θ̂ninit) − D(δn(x); θ̂n)) +
(D(ξ∗

init; θ̂n) −D(ξ∗
init; θ̂ninit)), we have that

D
(
ξ (n), θ̂ninit

)−D
(
ξ (n−1), θ̂ninit

)
>

D(δn(x), θ̂ninit) −D(ξ∗
init, θ̂ninit) + ε/2

n − 1(A.21)

= ε

2(n − 1)
+ z1n

n − 1
+ D(ξ∗

init, θ̂n) −D(ξ∗
init, θ̂ninit)

n − 1

≥ ε

2(n − 1)
+ z1n

n − 1
,

since D(δn(x), θ̂n) ≥ D(ξ∗
Init, θ̂n) by the definition of δn(x).
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We can prove z1n
a.s.→ 0 by applying (A.17). According to the proof of The-

orem 3.1(i) in Sinha and Wiens (2003), there exists small enough q (>0) such
that limn→∞ nq (̂θn − θn) < ∞ almost surely. Then because of condition (B6) [or
(B6′)], we also have limn→∞ nqz1n < ∞ almost surely. Moreover, since z1n is
bounded by the maximum KL-divergence, we have

(A.22)
∞∑

m=1

z1m

m
< ∞ a.s.

Since ninit/n → 0 as ninit → ∞, we have

D
(
ξ (n), θ̂ninit

)= D
(
ξ (ninit), θ̂ninit

)+ n∑
m=nInit+1

(
D
(
ξ (m), θ̂ninit

)−D
(
ξ (m−1), θ̂ninit

))

> D
(
ξ (ninit), θ̂ninit

)+ n∑
m=nInit+1

(
ε

2(m − 1)
+ z1m

m

)
a.s.→ ∞

as ninit → ∞, a contradiction to the assumption that the maximum KL-divergence
is finite. Therefore, for any ε > 0, S1(ε) is nonempty and we can find a sequence
{ξ (nl)}∞l=1 ⊂ S1(ε), that is, D(ξ (nl), θ̂ninit) arbitrarily close to D(ξ∗

init, θ̂ninit). By
(A.20), we have

D
(
ξ (nl+1), θ̂ninit

)
= D

(
ξ (nl), θ̂ninit

)+ D(δnl+1(x), θ̂ninit) −D(ξ (nl+1), θ̂ninit)

nl

= D
(
ξ (nl), θ̂ninit

)+ D(δnl+1(x), θ̂nl+1) −D(ξ (nl+1), θ̂nl+1)

nl

+ D(δnl+1(x), θ̂ninit) −D(δnl+1(x), θ̂nl+1)

nl

+ D(ξ (nl+1), θ̂nl+1) −D(ξ (nl+1), θ̂ninit)

nl

= D
(
ξ (nl), θ̂ninit

)+ D(δnl+1(x), θ̂nl+1) −D(ξ (nl+1), θ̂nl+1)

nl

+ z2nl

nl

≥ D
(
ξ∗

init, θ̂ninit

)− ε

2
+ z2nl

nl

,

for ξ (nl+1) ∈ S1(ε) or S2(ε), where

z2n = (
D
(
δnl+1(x), θ̂ninit

)−D
(
δnl+1(x), θ̂nl+1

))
+ (D(ξ (nl+1), θ̂nl+1

)−D
(
ξ (nl+1), θ̂ninit

))
and, similar to z1n, we also have z2n → 0 a.s.



1662 R. HU AND D. P. WIENS

In summary, as in (A.21), for all ξ (nk) ∈ S2(ε) we have

D
(
ξ (nk), θ̂ninit

)
> D

(
ξ (nk−1), θ̂ninit

)+ ε

2(nk − 1)
+ z1nk

nk

> D
(
ξ (nk−1), θ̂ninit

)+ z1nk

nk

;
iterating this gives

D
(
ξ (nk), θ̂ninit

)
> D

(
ξ (nl+1), θ̂ninit

)+ nk∑
m=nl+2

z1m

m

> D
(
ξ∗

init, θ̂ninit

)− ε

2
+ z2nl

nl

+
nk∑

m=nl+2

z1m

m

= D
(
ξ∗

init, θ̂ninit

)− ε

2
+ Ynk

,

with

Yn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z2nl

nl

, if n = nl + 1,

z2nl

nl

+
nk∑

m=nl+2

z1m

m
, if n �= nl + 1.

Notice that Yn
pr→ 0 by (A.22). Therefore, for any ε > 0,

Pr
(
D
(
ξ (nl+1), θ̂ninit

)−D
(
ξ∗

init, θ̂ninit

)≥ −ε
)→ 1

as ninit → ∞. Then we have proved (A.19) holds which implies (E2).
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SUPPLEMENTARY MATERIAL

Supplement to “Robust discrimination designs over Hellinger neighbour-
hoods” (DOI: 10.1214/16-AOS1503SUPP; .pdf). There we give the rather lengthy
proof of Theorem 2.1, which depends on a number of preliminary lemmas. We also
show that the conditions of this theorem apply to normal and log-normal densities.
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