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MINIMAX THEORY OF ESTIMATION OF LINEAR FUNCTIONALS
OF THE DECONVOLUTION DENSITY WITH OR

WITHOUT SPARSITY

BY MARIANNA PENSKY1

University of Central Florida

The present paper considers the problem of estimating a linear functional
� = ∫∞−∞ ϕ(x)f (x) dx of an unknown deconvolution density f on the basis
of n i.i.d. observations, Y1, . . . , Yn of Y = θ + ξ , where ξ has a known pdf
g, and f is the pdf of θ . The objective of the present paper is to develop
the a general minimax theory of estimating �, and to relate this problem to
estimation of functionals �n = n−1∑n

i=1 ϕ(θi) in indirect observations. In
particular, we offer a general, Fourier transform based approach to estimation
of � (and �n) and derive upper and minimax lower bounds for the risk for
an arbitrary square integrable function ϕ. Furthermore, using technique of
inversion formulas, we extend the theory to a number of situations when the
Fourier transform of ϕ does not exist, but � can be presented as a functional
of the Fourier transform of f and its derivatives. The latter enables us to
construct minimax estimators of the functionals that have never been handled
before such as the odd absolute moments and the generalized moments of
the deconvolution density. Finally, we generalize our results to the situation
when the vector θ is sparse and the objective is estimating � (or �n) over the
nonzero components only. As a direct application of the proposed theory, we
automatically recover multiple recent results and obtain a variety of new ones
such as, for example, estimation of the mixing probability density function
with classical and Berkson errors and estimation of the (2M + 1)-th absolute
moment of the deconvolution density.

1. Introduction. In the present paper, we consider the problem of estimating
a linear functional

(1.1) � =
∫ ∞
−∞

ϕ(x)f (x) dx

of an unknown deconvolution density f on the basis of observations

(1.2) Yi = θi + ξi, i = 1, . . . , n.

Here, θi are i.i.d. random variables with unknown pdf f , and ξi are i.i.d. random
errors with a known pdf g. The density f is sometimes referred to as the mixing
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density. The vector θ = (θ1, . . . , θn) in (1.2) may be sparse in the sense that, on the
average, it has only nμn nonzero elements where μn → 0 as n → ∞.

Note that the problem of estimating � in (1.1) appears in many contexts. If
ϕ(x) = δ(x − x0), then � is the value of the unknown deconvolution density f

at the point x0. If ϕ(x) = I(x < x0), where I(�) denotes the indicator of a set �,
then problem (1.1) reduces to estimation of the mixing distribution function � =
F(x0) at x0, examined by Dattner, Goldenshluger and Juditsky (2011). If ϕ(x) =
eiω0x , then � = f̂ (ω0), the characteristic function of the mixing distribution at
ω = ω0. If ϕ(x) = fη(x − x0), where fη is a known pdf, then � = �(x0) is itself
a convolution density at a point x0, as considered by Delaigle (2007). Finally,
if ϕ(x) = xk or ϕ(x) = |x|2M+1, then � is, respectively, the kth moment or the
(2M + 1)-th absolute moment of f .

In addition, the problem of estimating � in (1.1) can be related to estimating of
functionals in indirect observations

(1.3) �n = 1

n

n∑
i=1

ϕ(θi).

Indeed, if θi , i = 1, . . . , n are i.i.d. with the pdf f and E|ϕ(θ)| < ∞, then �n

in (1.3) can be viewed as an “estimator” of � = Eϕ(θ) in (1.1) on the basis of
“observations” θi . Moreover, as long as E|ϕ(θ)|2 < ∞, one has E(�n − �)2 ≤
n−1E|ϕ(θ)|2. Hence, the minimax risks for estimating �n and � are equivalent
up to the Cn−1 additive term. Therefore, the upper bounds and the minimax lower
bounds for the risks of both estimators will coincide up to, at most, a constant
factor.

In the case when the vector θ is nonrandom and sparse, so that it has only kn

nonzero components, observations (1.2) can be viewed as heterogeneous sparse
mixture, which was studied by a number of authors [see, e.g., Donoho and Jin
(2004), Cai, Jin and Low (2007), Hall and Jin (2010) among others]. If the signal
is present (kn > 0) and kn is known, the problem of interest is to estimate some
characteristics of nonzero elements of θ . The latter problem can be summarized as
the problem of estimating

(1.4) �kn = 1

kn

n∑
i=1

ϕ(θi)I(θi �= 0).

Cai and Low (2011) considered estimation of (1.4) when ϕ(x) = |x|, the errors
are Gaussian and kn = Cnν , 0 < ν < 1. They concluded that consistent estimation
is impossible if ν ≤ 1/2. A question of interest is whether the same will happen
in general, or whether this phenomenon is due to the type of the functional (the
first absolute moment) or the type of errors (Gaussian) studied in the paper. Note
that, in the case when components of θ are i.i.d. with the pdf f , then the random
number of nonzero components kn is Binomial(n,μn) and f can be written as
f (x) = μnf0(x) + (1 − μn)δ(x), where f0(θ) is pdf of the nonzero entries of θ
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and μn = nν−1. If n is large enough, then with high probability kn is close to nμn

and �kn in (1.4) corresponds to

(1.5) �μ =
∫ ∞
−∞

ϕ(x)f0(x) dx.

We propose a general procedure designed for estimating functionals (1.4) and (1.5)
in the sparse case for any function ϕ(x) and any kind of error density g. We dis-
cover that when nμn = nν , then convergence rates are determined by the “effec-
tive” sample size nμn

2 = n2ν−1. The latter proves that if θi are i.i.d, then the con-
clusion of Cai and Low (2011) that consistent estimation is impossible whenever
ν ≤ 1/2 applies not only to their particular case [ϕ(x) = |x|, Gaussian errors] but
to any functional and any distribution of errors.

In spite of its great importance, surprisingly, the general problem of estimation
of a linear functional of the deconvolution density has not been thoroughly inves-
tigated. In the nonsparse case, the problem of estimation of the linear functional
(1.1) of the mixing density with a square integrable function ϕ has been addressed
by Butucea and Comte (2009) who derived the upper bounds for the mean squared
risk for a variety of estimation scenarios, and constructed adaptive estimators that
attain them (up to, at most, a logarithmic factor). However, minimax lower risk
bounds have been derived only in the case when ϕ(x) = δ(x −x0) due to technical
difficulties. Moreover, the general study of Butucea and Comte (2009) does not
allow one to apply the theory when the Fourier transform of ϕ(θ) does not exist.
Furthermore, as far as we know, there has never been a study of estimation of a
linear functional of the deconvolution density in the sparse setting.

The purpose of the present paper is to fill in the existing gaps and to advance
the theory of estimation of linear functionals of the deconvolution density. In par-
ticular, the paper accomplishes several key goals: (a) derivation of minimax lower
bound for the risk of an estimator of a general linear functional of the deconvolu-
tion density; (b) estimation of linear functionals (1.1) when function ϕ is not nec-
essarily integrable or square integrable using inversion formulas; (c) application of
those methodologies to estimation of functionals of the form (1.3); (d) estimation
of functionals of the form (1.5) [or (1.4)] in the case when deconvolution density f

(or vector θ ) is sparse.
The rest of the paper is organized as follows. In Section 2, we study the case

when the Fourier transform of function ϕ(x) in (1.1) exists. We refer to this situa-
tion as the standard case in comparison with the situations considered in Section 3
where � is represented as a linear functional of Fourier transform f ∗ of f using
some inversion formula. We establish the minimax lower bounds for the risk for
a general function ϕ(x) and compare them with the upper bounds for the risk in
the case when f belongs to a Sobolev ball, thus, completing the theory of Butucea
and Comte (2009). In Section 3, we expand our approach to incorporate estimation
of functionals of the form (1.1) where ϕ(x) does not have the Fourier transform
but functional � can be represented via the Fourier transform of the deconvolution
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density or its derivatives, using technique of inversion formulas. Section 4 deals
with the situation where θ or the deconvolution density f is sparse. Section 5 con-
tains a brief description of a finite sample simulation study of estimation of the
first absolute moment of the mixing density. The complete report of the simulation
study can be found in Section 7.1 of the supplementary material [Pensky (2017)].
Section 5 contains some supplementary statements and some essential proofs. The
rest of the proofs have been placed into the supplementary material.

2. The minimax upper and lower bounds for the risk: The standard case.
In Section 2, we assume that the functional � in (1.1) can be represented as

(2.1) � = 1

2π

∫ ∞
−∞

f ∗(ω)ϕ∗(−ω)dω = 1

2π

∫ ∞
−∞

q∗(ω)

g∗(ω)
ϕ∗(−ω)dω,

where the integral is absolutely convergent. This happens if, for example, a > 1 in
(2.5), so that |ϕ∗| and |ϕ| are square integrable, however, this is true for a wider
variety of functions ϕ [e.g., ϕ(x) = δ(x − x0) considered in Butucea and Comte
(2009)]. We refer to this situation as the standard case in comparison with the
situations considered in Section 3 where � cannot be represented in the form (2.1).

2.1. Notation and assumptions. For a function t (x), we denote its Fourier
transform by

t∗(ω) =
∫ ∞
−∞

eiωxt (x) dx.

Denote the pdf of Yi by q(y), so that q∗(ω) = f ∗(ω)g∗(ω). We assume that the
mixing density belongs to the Sobolev ball f ∈ �s(B) where

(2.2) �s(B) =
{
t∗ :

∫ ∞
−∞
∣∣t∗(ω)

∣∣2(ω2 + 1
)s

dω ≤ B2
}
, s ≥ 0.

We introduce the following assumptions on the known functions g and ϕ.

A1. There exist nonnegative constants Cg1, Cg2, α, β and γ such that∣∣g∗(ω)
∣∣≥ Cg1

(
ω2 + 1

)−α/2 exp
(−γ |ω|β),(2.3) ∣∣g∗(ω)

∣∣≤ Cg2
(
ω2 + 1

)−α/2 exp
(−γ |ω|β),(2.4)

where α > 0 and β = 0 if and only if γ = 0.
A2. There exist nonnegative constants Cϕ1, Cϕ2, a, b and d such that∣∣ϕ∗(ω)

∣∣≥ Cϕ1
(
ω2 + 1

)−a/2 exp
(−d|ω|b),(2.5) ∣∣ϕ∗(ω)

∣∣≤ Cϕ2
(
ω2 + 1

)−a/2 exp
(−d|ω|b),(2.6)

where b = 0 if and only if d = 0.
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In what follows, we use the symbol C for a generic positive constant, which
takes different values at different places and is independent of n. Also, for any
positive functions a(n) and b(n), we write a(n) 	 b(n) if the ratio a(n)/b(n) is
bounded above and below by finite positive constants independent of n.

2.2. The lower bounds for the risk. We start with the derivation of the minimax
lower bounds for the risk of a general linear functional which, to the best of our
knowledge, have not been obtained so far. In our derivation we follow Tsybakov
(2009). Butucea and Comte (2009) derived those lower bounds only in the simple
case when |ϕ∗(ω)| = 1. Denote

(2.7) Rlow
n = Rn

(
�s(B)

)= inf
�̃

sup
f ∈�s(B)

E(�̃ − �)2,

where �̃ is any estimator of � based on observations Y1, . . . , Yn. Then the follow-
ing theorem is true.

THEOREM 1. Let g be bounded above and such that g∗ is differentiable and

(2.8)
|(g∗)′(ω)|
|g∗(ω)| ≤ Cg

(
1 + |ω|)τ , τ ≥ 0, with τ = 0 if γ = 0.

Let there exist ω0 ∈ (0,∞) such that, for |ω| > ω0, ρ(ω) = arg(ϕ∗(ω)) is twice
continuously differentiable with |ρ(j)(ω)| ≤ ρ < ∞, j = 0,1,2. Then, under As-
sumptions A1 and A2 [inequalities (2.4) and (2.5) only], one has the lower bounds
for the risk given in Table 1 with U1 = 2a + 2s(1 − d/γ ) − 2dα/γ + 8β − (Uτ +
1)d/γ − 1, U2 = 2a + 2s + 8b − 1 and Uτ = min(7β − 2τ − 1,5β + 1).

Since any estimator �̃n of �n defined in (1.3) can be viewed as an estimator of
�, due to inequality

E(�̃n − �n)
2 ≥ 0.5E(�̃n − �)2 − 2n−1‖ϕ‖2∞,

Theorem 1 immediately provides the lower bounds for the risk of any estimator
�̃n of �n based on Y1, . . . , Yn.

COROLLARY 1. Let θi , i = 1, . . . , n, in (1.2) be i.i.d. with pdf f . If ϕ(θ) is
uniformly bounded |ϕ(θ)| ≤ ‖ϕ‖∞ < ∞, then under assumptions of Theorem 1,
for sufficiently large n, one has

(2.9) Rn

(
�n,�s(B)

)= inf
�̃n

sup
f ∈�s(B)

E(�̃n − �n)
2 ≥ CRn

(
�s(B)

)
,

where Rn(�s(B)) is given in Theorem 1.
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TABLE 1
Asymptotic expressions for the minimax lower bounds Rlow

n and the upper bounds for the risks R
up
n

of nonadaptive and R̂
up
n of adaptive estimators

Cases Bounds for the risk

1 b > β Rlow
n 	 R

up
n 	 R̂

up
n 	 n−1

2 b = β,d > γ > 0 Rlow
n 	 R

up
n 	 R̂

up
n 	 n−1

3 b = β,d = γ, a > α + 1/2 Rlow
n 	 R

up
n 	 R̂

up
n 	 n−1

4 b = β > 0, d = γ > 0, a = α + 1/2 Rlow
n 	 n−1, R

up
n 	 R̂

up
n 	 Rlow

n · log logn

5 b = β = 0, d = γ = 0, a = α + 1/2 Rlow
n 	 n−1, R

up
n 	 R̂

up
n 	 Rlow

n · logn

6 b = β > 0, d = γ > 0, a < α + 1/2 Rlow
n 	 n−1, R

up
n 	 R̂

up
n 	 Rlow

n · (logn)
2α−2a+1

β

7 b = β = 0, d = γ = 0, a < α + 1/2 Rlow
n 	 R

up
n 	 n

− 2s+2a−1
2s+2α , R̂

up
n 	 Rlow

n · logn

8 b = β > 0, γ > d > 0 Rlow
n 	 (logn)

− U1
β n−d/γ , R

up
n 	 Rlow

n · (logn)
U1−U3

β

R̂
up
n 	 R

up
n · (logn)

�U3
β

9 β > b > 0, d > 0, γ > 0 Rlow
n 	 (logn)

− U2
β exp(−2d[ logn

2γ
]b/β),

R
up
n 	 Rlow

n · (logn)
U2−U4

β , R̂
up
n 	 R

up
n · (logn)

�U4
β

10 b = d = 0, β > 0, γ > 0 Rlow
n 	 R

up
n 	 R̂

up
n 	 (logn)

− 2s+2a−1
β

2.3. Estimation and the upper bounds for the risk. Following Butucea and
Comte (2009), we estimate � in (2.1) by

(2.10) �̂h = 1

2π

∫ ∞
−∞

q̂∗(ω)

g∗(ω)
ϕ∗(−ω)I

(|ω| ≤ h−1)dω,

where

(2.11) q̂∗(ω) = n−1
n∑

j=1

eiωYj

is the unbiased estimator of q∗(ω) and h = 0 if function |ϕ∗(ω)|/|g∗(ω)| has finite
L2-norm. In particular, the upper bound for the risk of the estimator �̂h over the
Sobolev class �s(B)

Rn

(
�̂h,�s(B)

)= sup
f ∈�s(B)

E(�̂h − �)2

is given by the following inequality:

Rn

(
�̂h,�s(B)

)≤ ‖g‖∞
2πn

∫ h−1

−h−1

|ϕ∗(ω)|2
|g∗(ω)|2 dω

(2.12)

+ B2

4π2

∫ ∞
−∞

|ϕ∗(ω)|2
(ω2 + 1)s

I
(|ω| > h−1)dω,

where ‖g‖∞ = supx g(x).
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THEOREM 2. If g is bounded above, then under Assumptions A1 and A2 [in-
equalities (2.3) and (2.6) only], one derives the upper bounds for the risk R

up
n =

Rn(�̂hn,�s(B)) provided in Table 1, where Uτ = min(7β − 2τ − 1,5β + 1),
U1 = 2a +2s(1−d/γ )−2dα/γ +8β − (Uτ +1)d/γ −1, U2 = 2a +2s +8b−1,
U3 = (2s + 2a + b − 1) − d(2α + 2s)/γ and U4 = 2s + 2a + b − 1. The corre-
sponding values of h = hn are hn = 0 for cases 1, 2 and 3; hn = n−1 for case 5;

hn = n− 1
2s+2α for case 7; hn = {[logn − (t/β) log logn]/(2γ )}− 1

β with t = 0 for
cases 4 and 6; t = 2s + 2α for case 8, t = 2s + 2α + b − β for case 9 and

hn = [logn/(3γ )]− 1
β for case 10.

Theorem 2 allows us to derive upper bounds for the risk of �̂
h̃n

when it is used
as an estimator of the functional �n defined in (1.3).

COROLLARY 2. Let θi , i = 1, . . . , n, in (1.2) be i.i.d. with the pdf f . If ϕ(θ)

is uniformly bounded |ϕ(θ)| ≤ ‖ϕ‖∞ < ∞, then under assumptions of Theorem 2,
one has Rn(�̂h̃n

,�n,�s(B)) = supf ∈�s(B)E(�̂
h̃n

− �n)
2 ≤ 2Rn(�̂h̃n

,�s(B)) +
2n−1‖ϕ‖2∞ ≤ CRn(�̂h̃n

,�s(B)), where Rn(�̂h̃n
,�s(B)) is provided in Theo-

rem 2.

2.4. Adaptive estimation. Note that in the expressions for the optimal value of
bandwidth h̃n in Theorem 2, parameters a,α, b, d,β and γ are known; the only
unknown parameters are s and B . Hence, the only cases for which one needs an
adaptive choice of bandwidth are the cases where h̃n depends on s. This occurs
only in cases 7, 8 and 9. In cases 8 and 9, one can easily provide an alternative value
h = ĥn that introduces an additional logarithmic factor of n into the expression of
the risk. In case 7, one can use the Lepskii method for construction of ĥn [see,
e.g., Lepskiı̆ (1991), Lepski, Mammen and Spokoiny (1997)]. In order to apply the
method, consider the set of bandwidths

(2.13) H = {
hj = n− 1

2α 2−j , j = 0, . . . , J
}

with 2J ≤ (logn)−1n
2α−1

2α ,

where J is the largest positive integer satisfying inequality above. Denote

(2.14) ĵ = min
{
j : 0 ≤ j ≤ J ; |�̂hj

− �̂hk
| ≤ C�

√
logn√

nh2α−2a+1
k

,∀k, j ≤ k ≤ J

}
,

where C� is such that

(2.15) C� ≥ 4 max
{

Cϕ2

π
√

logn
; Cϕ2

Cg1

(
16

3π
+ 2

√‖g‖∞√
π

)}
and constants Cϕ2 and Cg1 appear in (2.6) and (2.3), respectively. The following
statement provides the minimax upper bounds for the risk when the bandwidth
h = ĥn is chosen adaptively, without the knowledge of the parameters B and s.
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THEOREM 3. If g is bounded above, then under Assumptions A1 and
A2 [inequalities (2.3) and (2.6) only], one obtains the expressions for R̂

up
n ≡

Rn(�̂ĥ,�s(B)) provided in Table 1 with �U3 = 2s(γ − d)/γ and �U4 =
2(s − s0)+. The corresponding values of h = ĥn are ĥn = 0 for cases 1, 2 and 3;
ĥn = n−1 for case 5; ĥn = hĵ with ĵ defined in (2.14) with C� given in (2.15) for

case 7; ĥn = {[logn − t
β

log logn]/(2γ )}− 1
β with t = 0 for cases 4 and 6; t = 2α

for case 8, t = 2s0 + 2α + b − β for case 9 and and ĥn = [logn/(3γ )]− 1
β for

case 10.

REMARK 1 [Comparison with Butucea and Comte (2009)]. Note that Butucea
and Comte (2009) derived lower bounds for the risk only in the case when ϕ(x) =
δ(x − x0) which corresponds to a = b = d = 0 in Table 1, hence, comparison
of the lower bounds is impossible. On the other hand, they considered a much
wider variety of cases, since they assumed that f is such that

∫∞
−∞ |f ∗(ω)|2(ω2 +

1)s exp{2s1|ω|s2}dω ≤ B2, while we consider only the case of s1 = s2 = 0. If s1 =
s2 = 0, our upper bounds R

up
n exactly coincide with theirs, and R̂

up
n coincide with

theirs up to some logarithmic factors in cases 5, 6 and 7 and coincide exactly in
all other cases. In addition, we examined the nonspecific term vn used in Butucea
and Comte (2009) and obtain exact results for the rates of convergence in cases 8
and 9.

As an example of application of the theory above, we solve the problem of point-
wise estimation of the mixing density with classical and Berkson errors studied by
Delaigle (2007).

2.5. Pointwise estimation of the deconvolution density with classical and Berk-
son errors. Consider the situation where one is interested in estimating the pdf
fζ of the random variable ζ = θ + η where θ and η are independent, the pdf fη of
η is known and one has measurements Y1, . . . , Yn of random variable Y = θ + ξ

of the form of (1.2) where the pdf g of ξ is known. The model was originally in-
troduced by Berkson (1950) in the regression context and subsequently studied by
Delaigle (2007) who obtained the upper bounds for the integrated mean squared
risk. In particular, if the pdf q(y) of Y is k times continuously differentiable and
is such that q and q(k+1) are square integrable and q(k+1) is bounded, Delaigle
(2007) derived an estimator f̂ζ of fζ such that for |ω| → ∞

E‖f̂ζ −fζ‖2 ≤
{
Cn−min[1,2k/(2k+1+2b)], if |f ∗

η (ω)/g∗(ω)| 	 |ω|b,
C(logn)−2k/β, if |f ∗

η (ω)/g∗(ω)| 	 |ω|b exp
(
γ |ω|β),

where ‖ · ‖ denotes the L2-norm with respect to the Lebesgue measure and the
constant C depends on the density f of each θ .
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The theory developed in this paper allows one to construct an estimator of the
pdf fζ at a point x0 with no additional effort. Let, as before, f , g and q be the pdfs
of θ , ξ and Y , respectively. Then f ∗

ζ = f ∗f ∗
η = q∗f ∗

η /g∗ and

fζ (x0) = 1

2π

∫ ∞
−∞

e−ix0ω
q∗(ω)f ∗

η (ω)

g∗(ω)
dω.

Therefore, ϕ∗(ω) = eix0ωf ∗
η (−ω), so that |ϕ∗(ω)| = |f ∗

η (ω)|. The estimator of
fζ (x0) is of the form (2.10) and Theorems 1 and 2 give the upper and the minimax
lower bounds for the risk of estimating fζ at a point x0. In addition, Theorem 3
provides an adaptive estimator of fζ (x0) that, to the best of our knowledge, has
not been derived so far.

Note that we obtain a wider variety of convergence rates here than Delaigle
(2007) who recovered only parametric, polynomial (with d = 0) and logarithmic
convergence rates. The latter is due to the fact that we impose assumptions on
g∗ and f ∗

η separately while Delaigle (2007) considers only the cases when the
absolute value of the ratio |f ∗

η /g∗| grows polynomially or exponentially as |ω| →
∞.

3. Estimation of linear functionals by using inversion formulas.

3.1. Formulation and some inversion formulas. Estimation of the linear func-
tional � in (1.1) relies on the fact that ϕ ∈ L2(−∞,∞), so its Fourier transform
exists. It is easy to see that this condition, however, is not necessary for consistent
estimation of �. Consider, for example, estimation of �m = ∫∞

−∞ θmf (θ) dθ , the
mth moment of f (θ). Note that if ψm(y) is a solution of the equation

(3.1)
∫ ∞
−∞

g(y − θ)ψm(y) dy = θm

then �m = ∫∞
−∞ ψm(y)q(y) dy = E[ψm(Y )]. In order to construct ψm(y) satisfy-

ing equation (3.1), denote

(3.2) μk =
∫ ∞
−∞

θkg(θ) dθ, νk =
∫ ∞
−∞

θkf (θ) dθ.

Assume that μ2m < ∞ and ν2m < ∞. Let cm = 1 and ck , k = 0, . . . ,m − 1, be
solutions of the system of linear equations

m∑
k=j

μk−j ck = 0, j = 0,1, . . . ,m − 1.

Then it is easy to check that ψm(y) = ym +∑m−1
k=0 cky

k , and under the assumption
that μ2m < ∞ and ν2m < ∞, �m can be estimated by �̂m = n−1∑n

l=1 ψm(Yl),
where E�̂m = �m, Var[�̂m] ≤ Cmn−1 and constant Cm depends only on m, μ2m

and ν2m.
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Note that although we did not use Fourier transform for estimation of �m and
Fourier transform of xm does not exist in the usual sense, it does exist in a sense
of generalized functions and is equal to (−1)mδ(m)(ω) where δ(m)(ω) is the mth
derivative of the Dirac delta function [see, e.g., Zayed (1996)]. However, using the
Fourier transform of ϕ as a generalized function would require f to belong to a
so-called test-function space. Those spaces are usually very restrictive, like, for
example, commonly used for the Fourier transforms of generalized functions, the
space of the Schwartz distributions which consists of all infinitely differentiable
functions that vanish outside some compact set [see, e.g., Zayed (1996)]. One, of
course, cannot expect the unknown density f to belong to such space and, more-
over, this will make any minimax estimation totally irrelevant. For this reason,
instead of using the theory of generalized functions, we shall use inversion formu-
las that mimic generalized functions but do not require restrictive assumptions on
the unknown pdf f . Our goal is to represent the functionals of interest as integrals
of the Fourier transform of f ∗ and its derivatives. Dattner, Goldenshluger and Ju-
ditsky (2011) used inversion formula of Gil-Pelaez (1951) for estimation of the
cumulative distribution function at a point; nevertheless, there are many more pos-
sible applications of this technique which is based on the following lemma proved
in Section A.2.

LEMMA 1. If u(θ) is absolutely integrable, then

(3.3)
∫ ∞
−∞

sign(θ − t)u(θ) dθ = 2

π

∫ ∞
0

1

ω

[∫ ∞
−∞

sin
(
(θ − t)ω

)
u(θ) dθ

]
dω.

Below we consider several examples of applications of Lemma 1.

EXAMPLE 1 (Pointwise estimation of the deconvolution cumulative distribution
function). Denote the real and the imaginary part of z by �[z] and �[z], respec-
tively. Then due to the relation I(θ ≤ t) = 1/2 − 1/2 sign(θ − t) and Lemma 1, the
cdf F(t) can be represented as F(t) = 0.5 − 0.5�(t) where

�(t) =
∫ ∞
−∞

sign(θ − t)f (θ) dθ = 2

π

∫ ∞
0

1

ω

[∫ ∞
−∞

sin
(
(θ − t)ω

)
f (θ) dθ

]
dω

= 2

π

∫ ∞
0

cos(tω)

ω
�[f ∗(ω)

]
dω − 2

π

∫ ∞
0

sin(tω)

ω
�[f ∗(ω)

]
dω.

EXAMPLE 2 (Estimation of generalized moments). Consider estimation of
functionals of the form (1.1) where ϕ(θ) = θmu(θ) with u(θ) such that u(θ) ∈
L2(−∞,∞) but θmu(θ) /∈ L2(−∞,∞). Note that, since u(θ) ∈ L2(−∞,∞)

implies that u(θ)I(θ > θ0) ∈ L2(−∞,∞) and u(θ) sign(θ − θ0) ∈ L2(−∞,∞)

for any θ0, we are automatically including all square integrable discontinuous
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functions u(θ). In order to derive an inversion formula for this functional, de-
note fm(θ) = θmf (θ) and observe that f ∗

m(ω) = i−m dm

dωm [f ∗(ω)]. Therefore, if
fm(θ) ∈ L1(−∞,∞), one has

(3.4) �u =
∫ ∞
−∞

θmu(θ)f (θ) dθ = i−m

2π

∫ ∞
−∞

u∗(−ω)
dmf ∗(ω)

dωm
dω.

EXAMPLE 3 (Estimation of the (2M + 1)-th absolute moment of the deconvo-
lution density). Consider estimation of a functional of the form

(3.5) �2M+1 =
∫ ∞
−∞

|θ |2M+1f (θ) dθ

under assumption that �2M+1 < ∞. Since |θ |2M+1 = θ2M+1 sign(θ), using
Lemma 1, rewrite �2M+1 as

�2M+1 = 2

π

∫ ∞
0

1

ω

∫ ∞
−∞

sin(ωθ)θ2M+1f (θ) dθ dω

= 2

i2M+1π

∫ ∞
0

1

ω

∫ ∞
−∞

�
[

d2M+1

dω2M+1

∫ ∞
−∞

eiωθf (θ) dθ

]
dω.

Therefore,

(3.6) �2M+1 = (−1)M+1 2

π

∫ ∞
0

1

ω

d2M+1�[f ∗(ω)]
dω2M+1 dω.

3.2. Construction of the estimators and evaluation of their risks. Observe that
in all three examples above, the linear functionals � can be presented as a combi-
nation of two integrals

(3.7) � =
∫ ∞

0
ψ∗

m1(ω)
dm�[f ∗(ω)]

dωm
dω +

∫ ∞
0

ψ∗
m2(ω)

dm�[f ∗(ω)]
dωm

dω,

where we assume that f satisfies conditions [that, of course, depend on the par-
ticular forms of ψ∗

m1(ω) and ψ∗
m2(ω)] which guarantee absolute convergence of

the integrals in (3.7). In particular, we assume that both f ∗(ω) and g∗(ω) are
m times differentiable. Note that the regular case corresponds to m = 0 and
ψ∗

m1(ω) = ψ∗
m2(ω) = ϕ∗(−ω)/π .

In order to construct an estimator of the functional � in (3.7), we partition
the area of integration into A1 = [0;1] and A2 = (1,∞) and rewrite � as � =
�1 + �2 where

�k =
∫
Ak

ψ∗
m1(ω)�

[
dmf ∗(ω)

dωm

]
dω

(3.8)

+
∫
Ak

ψ∗
m2(ω)�

[
dmf ∗(ω)

dωm

]
dω, k = 1,2.
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Since in the majority of situations the error density g is symmetric about zero, we
assume that g is an even function, so that its Fourier transform g∗(ω) is real-valued.
Otherwise, 1/g∗(ω) = G1(ω) − iG2(ω) where G1(ω) = �[g∗(ω)/|g∗(ω)|2] is an
even and G2(ω) = �[g∗(ω)/|g∗(ω)|2] is an odd function of ω and all subsequent
calculations can be rewritten accordingly.

If g is an even function, then using the formula 0.42 of Gradshtein and Ryzhik
(1980), �1 in (3.8) can be rewritten as

�1 =
m∑

j=0

(
m

j

)∫ 1

0

d(m−j)

dω(m−j)

[
1

g∗(ω)

]
(3.9)

× [
ψ∗

m1(ω)uj1(ω) + ψ∗
m2(ω)uj2(ω)

]
dω,

where

(3.10) uj1(ω) = �
[
djq∗(ω)

dωj

]
, uj2(ω) = �

[
djq∗(ω)

dωj

]
.

Denote

vj1(ω) =
∫ ∞
−∞

yjq(y) cos(ωy)dy, vj2(ω) =
∫ ∞
−∞

yjq(y) sin(ωy)dy

and construct their respective unbiased estimators as

(3.11) v̂j1(ω) = n−1
n∑

l=1

Y
j
l cos(ωYl), v̂j2(ω) = n−1

n∑
l=1

Y
j
l sin(ωYl).

By taking derivatives of q∗(ω) under the integral sign, it is easy to check that the
unbiased estimators of uj1(ω) and uj2(ω) are, respectively, given by

ûj1(ω) =
{
(−1)j/2v̂j1(ω), if j is even,

(−1)(j+1)/2v̂j2(ω), if j is odd,
(3.12)

ûj2(ω) =
{
(−1)j/2v̂j2(ω), if j is even,

(−1)(j−1)/2v̂j1(ω), if j is odd.
(3.13)

Combination of formulae (3.9)–(3.13) imply that �1 can be estimated by

�̂1 =
m∑

j=0

(
m

j

)∫ 1

0

d(m−j)

dω(m−j)

[
1

g∗(ω)

]
(3.14)

× [
ψ∗

m1(ω)ûj1(ω) + ψ∗
m2(ω)ûj2(ω)

]
dω.

Denote

(3.15) σ 2
j1(ω) = nVar

[
ûj1(ω)

]
, σ 2

j2(ω) = nVar
[
ûj2(ω)

]
and introduce the following assumption:
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A3. There exists an absolute constant Cσ such that for any j = 0, . . . ,m, and
k = 1,2, one has

(3.16)
∫ 1

0

[
dm−j

dωm−j

(
1

g∗(ω)

)]2∣∣ψ∗
mk(ω)

∣∣2σ 2
jk(ω)dω ≤ Cσ .

If functions f and g are such that μ2m < ∞, ν2m < ∞, where μk and νk are
defined in (3.2), then under Assumption A3, the values of ûj1(ω) and ûj2(ω) are
uniformly bounded, and hence all integrals in (3.14) are absolutely convergent.

In order to estimate �2, using integration by parts, partition �2 in (3.8) as �2 =
Fm(1) + �20, where

Fm(ω) =
m∑

k=1

(−1)k
[
dk−1ψ∗

m1(ω)

dωk−1

dm−k[�(f ∗(ω)]
dωm−k

+ dk−1ψ∗
m2(ω)

dωk−1

dm−k[�(f ∗(ω)]
dωm−k

]
,

�20 = (−1)m
∫ ∞

1

(
dmψ∗

m1(ω)

dωm
�[f ∗(ω)

]+ dmψ∗
m2(ω)

dωm
�[f ∗(ω)

])
dω.

Again, taking into account that f ∗(ω) = q∗(ω)/g∗(ω) and using the formula 0.42
of Gradshtein and Ryzhik (1980), rewrite Fm(1) and �20 as

Fm(1) =
m∑

k=1

m−k∑
j=0

(−1)k

(
m − k

j

)[
Am,j,k,1(1)uj1(1) + Am,j,k,2(1)uj2(1)

]
,

�20 = (−1)m
∫ ∞

1

[
dmψ∗

m1(ω)

dωm
u01(ω) + dmψ∗

m2(ω)

dωm
u02(ω)

]
1

g∗(ω)
dω,

where uj1(ω) and uj2(ω) are defined in (3.10) and for l = 1,2

Am,j,k,l(ω) = dk−1ψ∗
lm(ω)

dωk−1 Am−k−j (ω)

(3.17)

with At (ω) = dt

dωt

(
1

g∗(ω)

)
.

Therefore, we can estimate �2 by �̂2h = F̂m(1) + �̂20h where

F̂m(1) =
m∑

k=1

m−k∑
j=0

(−1)k

(
m − k

j

)

× [
Am,j,k,1(1)ûj1(1) + Am,j,k,2(1)ûj2(1)

]
,

(3.18)

�̂20h = (−1)m
∫ 1/h

1

[
dmψ∗

m1(ω)

dωm
û01(ω) + dmψ∗

m2(ω)

dωm
û02(ω)

]
× 1

g∗(ω)
dω,

(3.19)
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and ûj1(ω) and ûj2(ω) are defined by (3.12) and (3.13). Finally, we estimate �

in (3.7) by �̂h = �̂1 + F̂m(1) + �̂20h where �̂1, F̂m(1) and �̂20h are evaluated
according to (3.14) and (3.18), respectively.

In order to construct an upper bound for the risk of the estimator �̂h, we con-
sider a class of pdfs

(3.20) �s(B) =
{
f : sup

ω

[∣∣f ∗(ω)
∣∣(|ω|s + 1

)]≤ B2

}
Then the risk of the estimator �̂h is given by the following statement.

THEOREM 4. Assume that f and g are such that μ2m < ∞, ν2m < ∞, where
μk and νk are defined in (3.2), and that Assumption A3 holds. Let also function g∗
be real-valued, satisfy Assumption A1, be m times differentiable and such that, for
some Cg > 0 and j = 0, . . . ,m,

(3.21)
∣∣∣∣ 1

g∗(ω)

djg∗(ω)

dωj

∣∣∣∣≤ Cg

(|ω| + 1
)jτ

, τ ≥ 0, where τ = 0 if γ = 0.

Let ψ∗
m1(ω) and ψ∗

m2(ω) be such that for some positive Cψ and nonnegative d, am

and b, for any j = 0, . . . ,m, one has for |ω| ≥ 1:

(3.22)
∣∣∣∣djψ∗

mk(ω)

dωj

∣∣∣∣≤ Cψ

(
ω2 + 1

)−am(j+1)/2 exp
(−d|ω|b), k = 1,2.

Let �̂h = �̂1 + F̂m(1) + �̂20h where �̂1, F̂m(1) and �̂20h are defined in (3.14)
and (3.18), respectively. Then

E(�̂h − �)2 ≤ C

[
h2A exp

(
−2d

hb

)
(3.23)

+
∫ h−1

1

(ω2 + 1)A0

n
exp

(−2dωb + 2γωβ)dω

]
,

where A0 = α − (m + 1)am, A = (m + 1)am + s + b − 1 if f ∈ �s(B) and A =
(m + 1)am + s + (b − 1)/2 if f ∈ �s(B). Here, �s(B) and �s(B) are defined by
(2.2) and (3.20), respectively.

Using Lemma 2 in Section A.1, one can obtain convergence rates and optimal
bandwidth values h̃ for each combination of parameters b, d,β, γ, s,m and am.
Moreover, application of an equivalent of Theorem 3 allows one to obtain an
adaptive estimator of �. Note, however, that one cannot automatically derive the
lower bounds for the risk from Theorem 1. Indeed, in addition to f ∈ �s(B) or
f ∈ �s(B), Assumption A3 imposes additional restrictions on f ∗ that depend, in
a nontrivial way, on the shapes of functions ψ∗

mk , k = 1,2, thus, modifying the
class of functions f . For this reason, one has to derive lower bounds for the min-
imax risk on a case-by-case basis. As an example of how this can be done, in the
next section, we consider estimation of �2M+1 given by (3.5).
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3.3. Estimation of the (2M + 1)-th absolute moment of the deconvolution
density. According to (3.6), �2M+1 can be written in the form (3.7) with
ψ∗

2M+1,1(ω) = 2(−1)M+1(πω)−1 and ψ∗
2M+1,2(ω) = 0. Similar to (3.8), rewrite

�2M+1 as �2M+1 = �2M+1,1 + �2M+1,2 where �2M+1,1 and �2M+1,2 are the
portions of �2M+1 evaluated over intervals [0,1] and (1,∞). Here,

�2M+1,1 = (−1)M+1 2

π

2M+1∑
j=0

(
2M + 1

j

)∫ 1

0

1

ω
A2M+1−j (ω)uj1(ω)dω,

where uj1(ω) and At (ω) are defined in (3.10) and (3.17), respectively. Taking into
account relations (3.12) and partitioning the sum above into the portions with the
even and the odd indices, we obtain the following estimator of �2M+1,1:

�̂2M+1,1 = 2

π

M∑
k=0

(−1)M+k

{(
2M + 1

2k + 1

)∫ 1

0

v̂2k+1,2(ω)

ω
A2(M−k)(ω)dω

(3.24)

−
(

2M + 1

2k

)∫ 1

0

v̂2k,1(ω)

ω
A2(M−k)+1(ω)dω

}
.

Note that for σ 2
j1(ω) defined in (3.15), one has σ 2

2j,1(ω) 	 Var[Y 2j cos(ωY )] ≤∫∞
−∞ y4j q(y) dy and σ 2

2j+1,2(ω) 	 Var[Y 2j+1 sin(ωY )], so that σ 2
2j+1,2(ω) ≤

min[∫∞
−∞ y4j+2q(y) dy,ω2 ∫∞

−∞ y4j+4q(y) dy]. Hence, condition (3.16) is guar-
anteed by μ4M+4 < ∞ and ν4M+4 < ∞ where μk and νk are defined in
(3.2). Consider now �̂2M+1,2. Taking into account that, for any j = 0,1,2, . . .
djψ∗

2M+1,1(ω)

dωj = 2
π

(−1)M+1+j j !
ωj+1 , apply (3.18) for this particular case to obtain

�̂2M+1,2,h = − 2

π

{∫ 1/h

1
v̂01(ω)ω−(2M+2)[g∗(ω)

]−1
dω

− (−1)M
2M+1∑
k=1

2M+1−k∑
j=0

(
2M + 1 − k

j

)
(3.25)

× (k − 1)!A2M+1−k−j (1)ûj1(1)

}
,

where At is defined in (3.10). Finally, �2M+1 can be estimated as �̂2M+1,h =
�̂2M+1,1 + �̂2M+1,2,h where �̂2M+1,1 and �̂2M+1,2,h are given by (3.24) and
(3.25), respectively. Note that condition (3.22) holds with m = 2M + 1, am = 1
and b = d = 0.

In particular, if M = 0, formulae (3.24) and (3.25) yield estimator for the first
absolute moment of f of the form �̂1,h = �̂1,1 + �̂1,2,h where

�̂1,1 = 2

π

∫ 1

0

(
v̂01(ω)(g∗)′(ω)

ω(g∗(ω))2 + v̂12(ω)

ωg∗(ω)

)
dω,(3.26)
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�̂1,2,h = 2

π

v̂01(1)

g∗(1)
− 2

π

∫ 1/h

1

1

ω2

v̂01(ω)

g∗(ω)
dω.(3.27)

In order to derive upper and lower bounds for the minimax risk of the estimator
�̂2M+1,h, we introduce the following sets of functions:

�s(B1,B2) =
{
f :
∫ ∞
−∞

θ4M+4f (θ) dθ ≤ B1,

(3.28)

sup
ω

[∣∣f ∗(ω)
∣∣(|ω|s + 1

)]≤ B2

}
The theorem below provides upper and lower bounds for the minimax risk of an
estimator of �2M+1 in (3.5) while Corollary 3 produces similar results for the
discrete version of the functional �2M+1,n = n−1∑n

i=1 |θi |2M+1.

THEOREM 5. Let μ4M+4 ≤ Bg < ∞ for some positive constant Bg , where μk

is defined in (3.2). Let g∗ satisfy condition (3.21) and also be such that

(3.29) sup
|ω|≤1

∣∣∣∣ 1ω d2k+1

dω2k+1

(
1

g∗(ω)

)∣∣∣∣≤ CgM, 0 ≤ k ≤ M.

If inequality (2.3) in Assumptions A1 holds, then for h = h̃n, we obtain

(3.30) R�
n ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Cn−1, h̃n = 0, if 2α − 4M < 3, γ = 0,

Cn−1 logn, h̃n = n− 1
4M+2 , if 2α − 4M = 3, γ = 0,

Cn− 4M+2s+2
2s+2α−1 , h̃n = n− 1

2s+2α−1 , if 2α − 4M > 3, γ = 0,

C(logn)
− 4M+2s+2

β , ĥn = h̃∗
n, if β > 0, γ > 0,

where h̃∗
n = [logn/(3γ )]− 1

β . If inequality (2.4) in Assumption A1 holds, then

(3.31) R�
n ≥

⎧⎪⎪⎨⎪⎪⎩
Cn−1, if 2α − 4M ≤ 3, β = γ = 0,

Cn− 4M+2s+2
2s+2α−1 , if 2α − 4M > 3, β = γ = 0,

C(logn)
− 4M+2s+2

β , if β > 0, γ > 0.

Here, R�
n = Rn(�̂2M+1,h̃n

,�s(B1,B2)) = supf ∈�s(B1,B2)
E(�̂2M+1,h̃n

−�2M+1)
2

and R
�
n = Rn(�s(B1,B2)) = inf�̃ supf ∈�s(B1,B2)

E(�̃ − �2M+1)
2.

Note that the values of h̃n are independent of unknown parameters s, B1 and
B2 if 2α − 4M ≤ 3 and β = γ = 0 or if β > 0 and γ > 0. If 2α − 4M > 3 and
β = γ = 0, one can find the value of ĥn using the Lepskii method similar to the
regular case with the price of an extra logn in the convergence rates.
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COROLLARY 3. Let θi , i = 1, . . . , n, in (1.2) be i.i.d. with pdf f . If �2M+1,n

is defined by formula (1.3) with ϕ(θ) = |θ |2M+1, then under assumptions of Theo-
rem 5, for sufficiently large n, one has

sup
f ∈�s(B)

E(�̂2M+1,h̃n
− �2M+1,n)

2 	 Rn

(
�̂2M+1,h̃n

,�s(B1,B2)
)
,

inf
�̃n

sup
f ∈�s(B)

E(�̃n − �2M+1,n)
2 	 Rn

(
�s(B1,B2)

)
,

where Rn(�̂2M+1,h̃n
,�s(B1,B2)) and Rn(�s(B1,B2)) are given by (3.30) and

(3.31), respectively.

REMARK 2 (The choice of the class of functions). Observe that we derived
the lower and the upper bounds for the risk not for the subset of the Sobolev ball
�s(B2) but rather for the subset �s(B1,B2) of �s(B2). This is motivated by our
intention to compare our estimator for the first absolute moment with the respective
estimator of Cai and Low (2011). One can easily obtain upper and lower bounds
for the minimax risk over the set �s(B1,B2)) in a very similar manner.

REMARK 3 [Relation to Cai and Low (2011)]. Cai and Low (2011) studied
estimation of �n of the form (1.3) with ϕ(θ) = |θ | based on data generated by
model (1.2) where the errors ξi are i.i.d. N (0, σ 2) and there are no probabilistic
assumptions on vector θ . They showed that

inf
�̃

sup
�n(M0)

E(�̃n − �)2 	 M2
0

(
log logn

logn

)2
, inf

�̃
sup

�n(∞)

E(�̃n − �)2 	 1

logn
,

where �n(M0) = {θ : ‖θ‖∞ ≤ M0}. By employing a rather complex procedure
based on Chebyshev and Hermite polynomials, they constructed adaptive estima-
tors that attain these convergence rates. With the assumption that θi are generated
independently from pdf f , the problem reduces to estimation of �1 in (3.5), the
first absolute moment of the mixing density. Using formulae (3.26) and (3.27), one
can construct an estimator �̂1 of �1.

Note that, since in the case of Gaussian errors, one has α = 0, β = 2 and γ =
σ 2/2, the estimators (3.26) and (3.27) are adaptive if h = ĥn = [logn/σ 2]−1/2,
and Corollary 3 implies that

Rn

(
�̂ĥn

,�n,�s(B1,B2)
)	 Rn

(
�n,�s(B1,B2)

)	 (logn)−(s+1),

where �s(B1,B2) is defined in (3.28). Since f is a pdf, it is absolutely integrable,
so that s ≥ 0. In our setting, the convergence rates of Cai and Low (2011) corre-
spond to “the worst case scenario” where s = 0 and f is a combination of delta
functions. Since Cai and Low (2011) do not impose any probabilistic assumptions
on θi , their estimator addresses this ”worst-case scenario” but is unable to adapt to
a more favorable situation where |f ∗(ω)| → 0 as |ω| → ∞. In addition, our esti-
mator can be used for any type of error density g. On the other hand, our estimator
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requires θi , i = 1, . . . , n, to be i.i.d. random variables which is not necessary in the
setup of Cai and Low (2011).

4. The sparse case.

4.1. Estimation procedure and the upper bounds for the risk. The objective of
this section is to estimate the functional �μ = ∫∞

−∞ ϕ(x)f0(x) dx defined by (1.5).
Here, f0(θ) is the pdf of the nonzero entries of θ and

(4.1) f (x) = μnf0(x) + (1 − μn)δ(x),

where μn = nν−1, 0 < ν < 1, is known. Due to (4.1), one has � = μn�μ + (1 −
μn)ϕ(0), so that the value of �μ can be recovered as

(4.2) �μ = μn
−1� − μn

−1(1 − μn)ϕ(0).

Therefore, we estimate �μ by

�̂μ,h = �̂h

μn

− 1 − μn

μn

[
ϕ(0) − δh

]
(4.3)

with δh = 1
2π

∫∞
−∞ ϕ∗(−ω)I

(|ω| > h−1)dω,

where �̂h is defined in (2.10) and the correction term δh is a completely known
nonrandom quantity. In order to justify the estimator (4.3), we derive expressions
for its variance and bias. Since the second term in (4.3) is nonrandom, Var(�̂μ,h) =
μn

−2 Var(�̂h) where Var(�̂h) is bounded by

Var(�̂μ,h) ≤ ‖g‖∞
2πnμn

2

∫ ∞
−∞

|ϕ∗(ω)|2
|g∗(ω)|2 I

(|ω| ≤ h−1)dω.

Since f ∗(ω) = μnf
∗
0 (ω) + (1 − μn), the bias term of �̂μ,h is of the form

E�̂μ,h − �μ = 1

2π

∫ ∞
−∞

ϕ∗(−ω)f ∗
0 (ω)I

(|ω| > h−1)dω + 1 − μn

2πμn

�(h),

where �(h) = 1
2π

∫∞
−∞ ϕ∗(−ω)I(|ω| ≤ h−1) dω − ϕ(0) + δh = 0. Therefore, for

any f0 ∈ �s(B), where �s(B) is defined in (2.2), one derives

(E�̂μ,h − �μ)2 ≤ B2

4π2

∫ ∞
−∞

|ϕ∗(ω)|2
(ω2 + 1)s

I
(|ω| > h−1)dω.

Hence,

(4.4) E(�̂μ,h − �μ)2 ≤ ‖g‖∞
2πnμn

2

∫ h−1

−h−1

|ϕ∗(ω)|2
|g∗(ω)|2 dω + B2

2π2

∫ ∞
h−1

|ϕ∗(ω)|2
(ω2 + 1)s

dω.

Let nμ = nμn
2 = n2ν−1 be the new, ”effective” sample size. Then, comparing

(4.4) with (2.12), one immediately observes that the upper bounds for the risk of
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the estimator �̂μ,h of �μ would coincide with the upper bounds for the risk of the
estimator �̂h of � in the nonsparse case if the sample size n were replaced by the
effective sample size nμ. Denote

(4.5) Rn,μn

(
�̂μ,h,�s(B)

)= sup
f0∈�s(B)

E(�̂μ,h − �μ)2,

where �s(B) is defined in (2.2). If ν > 1/2, then nμ = n2ν−1 → ∞, so that com-
bination of Theorem 2 and formula (4.4) immediately yields the upper bounds for
the risk.

THEOREM 6. Let g be bounded above and observations be given by model
(1.2) where f is of the form (4.1) with the known μn = nν−1, ν > 1/2. Then, un-
der Assumptions A1 and A2 [inequalities (2.3) and (2.6) only], the expressions
for the upper bounds for the risks R

up
n,μn ≡ Rn,μn(�̂μ,hn,�s(B)) and R̂

up
n,μn ≡

Rn,μn(�̂μ,ĥn
,�s(B)) of, respectively, the estimator �̂μ,hn and of its adaptive ver-

sion are provided in Table 2 where U3 = (2s + 2a + b − 1) − d(2α + 2s)/γ ,
�U3 = 2s(γ −d)/γ , U4 = 2s +2a +b−1, �U4 = 2(s − s0)+ where s0 is defined
in Theorem 3, U5 = 2a+2s(1−d/γ ) −2dα/γ +4β(ς0 +1)−(Uτ,ς0 +1)d/γ −1,
U6 = 4b(ς0 + 1)+ 2a + 2s − 1 and Uτ,ς0 = min(β(4ς0 + 3)− 2τς0 − 1, β(2ς0 +
3) + 2ς0 − 1).

The corresponding values of h are h = hn for the nonadaptive estimator and
h = ĥn for the adaptive estimator, where hn = ĥn = 0 for cases 1, 2 and 3; hn =
ĥn = n1−2ν for case 5; hn = n

1−2ν
2s+2α and ĥn = ĵ where ĵ is defined in (2.14) with

C� given by (2.15) and n replaced by n2ν−1 for case 7; hn = Hn(t) and ĥn = Hn(t̂)

where Hn(x) = {(2ν − 1)[logn − (t/β) log logn]/(2γ )}− 1
β , where t = t̂ = 0 for

cases 4 and 6; t = 2s + 2α and t̂ = 2α for case 8; t = 2s + 2α + b − β and

t̂ = 2s0 +2α+b−β for case 9 and hn = ĥn = [(2ν−1) logn/(3γ )]− 1
β for case 10.

4.2. The lower bounds for the risk. The upper bounds for the risk in formula
(4.4) suggest that, for 0 ≤ ν ≤ 1/2, one has nμ = nμn

2 = n2ν−1 ≤ 1 and construc-
tion of a consistent estimator is impossible for any functional of the form (1.5).
The next proposition shows that this indeed is true in a wide variety of situations.
In particular, under mild assumptions, the risk of no estimator can converge to zero
at a faster rate than n−1

μ .

THEOREM 7. Let f (x) be given by (4.1) and �μ be defined by (1.5). If, for
some CI > 0, there exist two pdf’s, f1(θ) and f2(θ), such that

(4.6) Ik =
∫ ∞
−∞

g−1(x)

[∫ ∞
−∞

g(x − θ)fk(θ) dθ

]2
dx ≤ CI < ∞, k = 1,2,
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TABLE 2
Asymptotic expressions for the minimax lower bounds Rlow

n,μn
and the risks of adaptive

estimators R̂
up
n,μn

Cases Bounds for the risk

1 b > β Rlow
n,μn

	 R
up
n,μn

	 R̂
up
n,μn

	 n−(2ν−1)

2 b = β,d > γ > 0 Rlow
n,μn

	 R
up
n,μn

	 R̂
up
n,μn

	 n−(2ν−1)

3 b = β,d = γ, a > α + 1/2 Rlow
n,μn

	 R
up
n,μn

	 R̂
up
n,μn

	 n−(2ν−1)

4 b = β > 0, d = γ > 0, Rlow
n,μn

	 n−(2ν−1),
a = α + 1/2 R

up
n,μn

	 R̂
up
n,μn

	 Rlow
n,μn

· log logn

5 b = β = 0, d = γ = 0, Rlow
n,μn

	 n−(2ν−1)

a = α + 1/2 R
up
n,μn

	 R̂
up
n,μn

	 Rlow
n,μn

· logn

6 b = β > 0, d = γ > 0, Rlow
n,μn

	 n−(2ν−1)

a < α + 1/2 R
up
n,μn

	 R̂
up
n,μn

	 Rlow
n,μn

· (logn)
2α−2a+1

β

7 b = β = 0, d = γ = 0, Rlow
n,μn

	 R
up
n,μn

	 n
− (2ν−1)(2s+2a−1)

2s+2α ,
a < α + 1/2 R̂

up
n,μn

	 Rlow
n,μn

· logn

8 b = β > 0, γ > d > 0 Rlow
n,μn

	 (logn)
− U5

β n
− d(2ν−1)

γ

R
up
n,μn

	 Rlow
n,μn

· (logn)
U5−U3

β

R̂
up
n,μn

	 R
up
n,μn

· (logn)
�U3

β

9 β > b > 0, d > 0, γ > 0 Rlow
n,μn

	 (logn)
− U6

β exp(−2d[ (2ν−1) logn
2γ

]b/β),

R
up
n,μn

	 Rlow
n,μn

· (logn)
U6−U4

β ,

R̂
up
n,μn

	 R
up
n,μn

· (logn)
�U4

β

10 b = d = 0, β > 0, γ > 0 Rlow
n,μn

	 R
up
n,μn

	 R̂
up
n,μn

	 (logn)
− 2s+2a−1

β

and

(4.7) �12 =
∫ ∞
−∞

ϕ(θ)
[
f1(θ) − f2(θ)

]
dθ �= 0,

then for some positive constants C01, C02 and p0 independent of n, and any esti-
mator �̃μ of �μ based on observations Y1, . . . , Yn one has

(4.8) inf
�̃μ

sup
f1,f2

P
{
(�̃μ − �μ)2 ≥ C01 min

(
1, n−1

μ

)}≥ p0,

where nμ = nμn
2. In particular, g(x) = N (x|0, σ 2) is a Gaussian pdf and∫∞

−∞ |ϕ(x)|g(x) dx < ∞, then the lower bound (4.8) holds.

Theorem 7 implies that when sparsity level is high, that is, ν > 1/2, consistent
estimation of �μ is impossible for all pdfs g satisfying condition (4.6). Moreover,
Theorem 7 does not require function ϕ to be integrable or square integrable, so
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one can apply this theorem easily to a wide variety of functionals. The quantity
n−1

μ = (nμn
2)−1 acts as the parametric convergence rate that cannot be improved.

One would like to derive the lower bounds for the risk for any combination of
function ϕ(θ) and g(θ). Unfortunately, in some of the cases, we need an additional
assumption that g(θ) has polynomial descent as |θ | → ∞.

A4. Let g be bounded above and such that |g(θ)| ≥ Cg1(θ
2 + 1)−ς . Let func-

tion g∗ be ς0 times continuously differentiable, where ς0 is the closest integer no
less than ς , and satisfy the following condition:

|dlg∗(ω)|
dωl

≤ Cg2
∣∣g∗(ω)

∣∣(1 + |ω|)τ l
,

(4.9)
l = 1,2, . . . , ς0, where τ = 0 if γ = 0.

Let there exist ω0 ∈ (0,∞) such that function ρ(ω) = arg(ϕ∗(ω)) is ς0 times con-
tinuously differentiable for |ω| ≥ ω0, with |ρ(j)(ω)| ≤ ρ < ∞, j = 0,1,2, . . . , ς0.

Denote

(4.10) Rlow
n,μn

≡ Rn,μn

(
�s(B)

)= inf
�̃μ

sup
f0∈�s(B)

E(�̃μ − �μ)2,

where �̃μ is any estimator of �μ based on observations Y1, . . . , Yn and �s(B) is
defined in (2.2). Then the following theorem is true.

THEOREM 8. Let f (x) be given by (4.1) where μn = nν−1 with ν > 1/2 and
� be defined by (1.5). Let Assumptions A1 and A2 [inequalities (2.4) and (2.5)
only] hold. Then the lower bounds for the risks Rlow

n,μn
are provided in Table 2

above, where the lower bounds for the risk in cases 7, 8 and 9 are valid under
Assumption A4. Here, U5 = 2a + 2s(1 − d/γ ) −2dα/γ + 4β(ς0 + 1) − (Uτ,ς0 +
1)d/γ − 1, U6 = 4b(ς0 + 1)+ 2a + 2s − 1 and Uτ,ς0 = min(β(4ς0 + 3)− 2τς0 −
1, β(2ς0 + 3) + 2ς0 − 1).

4.3. Estimation of discrete functionals. Observe that for f (θ) given by for-
mula (4.1), there are two discrete functionals associated with �μ defined in (1.5)

(4.11) �nμn = 1

nμn

n∑
i=1

ϕ(θi)I(θi �= 0), �kn = 1

kn

n∑
i=1

ϕ(θi)I(θi �= 0),

where the last functional coincides with (1.4) that was considered by Cai and
Low (2011) in the case of nonrandom θi , i = 1, . . . , n. Note that since (nμn)

−1 =
n−(1−ν)(nμn

2)−1, one has

E(�̂μ,h − �nμn)
2 ≤ E(�̂μ,h − �μ)2 + 2n−(1−ν)

nμn
2

∫ ∞
−∞

ϕ2(θ)f0(θ) dθ,

(4.12)

E(�̂μ,h − �nμn)
2 ≥ E(�̂μ,h − �μ)2

2
− n−(1−ν)

nμn
2

∫ ∞
−∞

ϕ2(θ)f0(θ) dθ.
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Since n−(1−ν) → 0 as n → ∞, similar to Corollaries 1 and 2, the minimax lower
and the upper bounds for the risks of the estimators of �μ and �nμn are of the
same asymptotic order.

Not that in the case when θi are i.i.d. with the pdf f given by (4.1), kn is the Bi-
nomial (n,μn) random variable, so kn is close to nμn with high probability. There-
fore, estimators of �kn exhibit similar behavior to estimators of �μ and �nμn . In
particular, the following statement is true.

COROLLARY 4. Let θi , i = 1, . . . , n, in (1.2) be i.i.d. with pdf f defined in
(4.1) and nμn = nν . If g, ϕ and fj , j = 1,2, satisfy conditions of Theorem 7
where fj , j = 1,2, are such that

∫∞
−∞ ϕ2(θ)fj (θ) dθ < ∞ and n is large enough,

then for some positive constants C̃0 and p̃0 independent of n one has

inf
�̃kn

sup
f1,f2

P
{
(�̃kn − �kn)

2 ≥ C̃0 min
(
1,
(
nμn

2)−1)}≥ p̃0.

Here, �̃kn is any estimator of �kn based on Y1, . . . , Yn and kn.

Recall that, in the case of Gaussian errors, Cai and Low proved that consistent
estimation of �kn is impossible if ν ≤ 1/2 and ϕ(x) = x [Cai and Low (2004)]
or ϕ(x) = |x| [Cai and Low (2011)]. Note that the lower bounds for the risk in
the case when the values θ1, . . . , θn are unconstrained are higher than in the case
where θi , i = 1, . . . , n, are i.i.d., so it is logical to conclude that if the lower bounds
for the risk in the latter case are bounded above by a constant, the same is true
for the lower bounds in the situation where θ1, . . . , θn can be generated by any
mechanism. Therefore, Corollary 4 generalizes conclusions of Cai and Low (2004,
2011) to essentially any error distribution g and any function ϕ with the finite
second moment.

REMARK 4 [Relation to Collier, Comminges and Tsybakov (2015)]. Recently,
Collier, Comminges and Tsybakov (2015) considered estimation of functionals of
the form �̃n = ∑n

i=1 ϕ(θi) with ϕ(x) = x or ϕ(x) = x2 where θi , i = 1, . . . , n,
form an arbitrary sparse sequence, Yi = θi + σξi and ξi are i.i.d. standard normal
variables. The results of Collier, Comminges and Tsybakov (2015) are nonasymp-
totic. They are stated for the functional �̃kn but after division by kn they obvi-
ously apply to �kn . Therefore, they imply the same consequences for �kn as those
proved above when being considered as asymptotic.

5. Simulation study. In order to evaluate small sample properties of the esti-
mators presented in the paper, we carried out a limited simulation study. In particu-
lar, we compared our estimator �̂1,h = �̂1,1 + �̂1,2,h of the first absolute moment
of the mixing density �1, where �̂1,1 and �̂1,2,h are defined in (3.26) and (3.27),
respectively, with the estimator �̂CL of Cai and Low (2011) which is based on
approximation of the absolute value by combination of Chebyshev and Hermite
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polynomials:

(5.1) �̂CL =
K∗∑
k=1

G∗
2kM

1−2k
0 B2k.

Here, M0 is such that |θi | ≤ M0, i = 1, . . . , n, G∗
2k is the coefficient for θ2k in the

expansion of |θ | by Chebyshev polynomials and B2k = n−1∑n
i=1 H2k(yi), where

H2k(x) are Hermite polynomials [with respect to exp(−x2/2)] of degree 2k. We
considered three choices for the mixing density f : f is Gaussian N (mθ , σ

2
θ ), f is

uniform on the interval [a, b] and f is a is combination of delta functions

(5.2) f (x) =
K∑

k=1

bkδ(x − ak).

Note that, in the latter case, variable θ is discrete and does not have a pdf in a regu-
lar sense. Complete description of the simulation study can be found in Section 7.1
of the supplementary material.

Simulations confirm that, if one uses the exact value of M0 in (5.1), estimators
�̂ĥn

and �̂CL have very similar precisions: the difference between the average
errors of the two estimators is smaller than respective standard deviations. As it
was expected, estimator �̂CL performs better when θ is a discrete random vari-
able while the set up where θ is a continuous random variable benefits �̂ĥn

. Also,
though �̂ĥn

is designed to estimate � while �̂CL is intended to estimate �n, the
error �n turns out to be smaller for �̂ĥn

while �̂CL is somewhat more accurate
as an estimator of �. The latter confirms that, if θi are i.i.d. random variables, the
problems are equivalent up to a small additive error. However, the advantage of
�̂ĥn

is that it is adaptive in a finite sample setting: in all three cases, we use a date-

driven value ĥ of h. On the other hand, our simulations show that estimator �̂CL

is very sensitive to the choice of M0 and works only in asymptotic setting. Indeed,
the value M̂0 = √

2 logn suggested in Cai and Low (2011) requires n to be large
(e.g., n > 355,000 if M0 = 5). If M̂0 < M0, precision of the estimator deteriorates
very significantly. The latter demonstrated the advantage of the estimator �̂ĥn

in
comparison with �̂CL.

APPENDIX

A.1. Upper bounds for the risks: Supplementary lemma. Note that the up-
per bounds for the risks of the estimators in the paper can usually be bounded by
H(n,h) ≡ H(n,h;A1,A2, b, d,β, γ ) where

H(n,h) = h2A1 exp
(−2dh−b)

(A.1)

+ n−1
∫ 1/h

0

(
ω2 + 1

)A2 exp
(
2γωβ − 2dωb)dω.

The following statement (which is proved in Section 7.3 of the supplemental ma-
terial [Pensky (2017)]) provides upper bounds for expression (A.1).
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LEMMA 2. Let �n ≡ �n(A1,A2, b, d,β, γ ) = H(n, h̃n;A1,A2, b, d,β, γ )

and H(n,h) ≡ H(n,h;A1,A2, b, d,β, γ ).

Then, for h∗
n(t) = [ 1

2γ
(logn − (t/β) log logn)]− 1

β and V1 = 2A∗
1(d − γ ) +

d(2A2 + 1 − β) and V2 = 2 min(A1,A3) with A∗
1 ≤ A1 one has

(1) �n 	 n−1, h̃n = 0 if b > β,

(2) �n 	 n−1, h̃n = 0 if b = β,d > γ > 0,

(3) �n 	 n−1, h̃n = 0 if b = β,d = γ,A2 < −1/2,

(4) �n 	 n−1 log logn, h̃n = h∗
n(0) if b = β > 0, d = γ > 0,

A2 = −1/2,

(5) �n 	 n−1 logn, h̃n = n−1 if b = β = 0, d = γ = 0,

A2 = −1/2,

(6) �n 	 n−1(logn)
2A2+1

b , h̃n = h∗
n(0) if b = β > 0, d = γ > 0,

A2 > −1/2,

(7) �n 	 n
− 2A1

2A1+2A2+1 , h̃n = n
− 1

2A1+2A2+1 if b = β = 0, d = γ = 0,

A2 > −1/2,

(8) �n 	 (logn)
− V1

βγ n−d/γ , if b = β > 0, γ > d > 0,

h̃n = h∗
n

(
2A∗

1 + 2A2 + 1 − β
)

(9) �n 	 (logn)
−V2

β exp
(
− d

γ
[logn]b/β

)
, if β > b > 0, d > 0, γ > 0,

h̃n = h∗
n(2A3 + 2A2 + 1 − β)

(10) �n 	 (logn)
− 2A1

β , h̃n = [
logn/(3γ )

]−1/β if b = d = 0, β > 0, γ > 0.

PROOF OF THEOREM 2. Validity of this theorem follows immediately from
Lemma 2 with A1 = s + a − 1/2 + b/2I(d > 0) and A2 = α − a. �

A.2. Proofs of statements in Section 3.

PROOF OF LEMMA 1. The statement is based on formulas 3.721.1, 8.230 and
8.231 of Gradshtein and Ryzhik (1980) which imply that for any 0 ≤ λ1 ≤ λ2 < ∞
one has

(A.2)
2

π

∫ ∞
0

sin(ax)

x
dx = sign(a),

∣∣∣∣∫ λ2

λ1

sin(ax)

x
dx

∣∣∣∣≤ π,

where sign(a) is the sign of a. Therefore, for any u(θ), it follows from (A.2) and
the Lebesgue dominated convergence theorem that∫ ∞

−∞
sign(θ − t)u(θ) dθ = 2

π

∫ ∞
−∞

u(θ)

∫ ∞
0

sin((θ − t)ω)

ω
dωdθ

= 2

π
lim

λ1→0
λ2→∞

∫ ∞
−∞

u(θ)

∫ λ2

λ1

sin((θ − t)ω)

ω
dωdθ.
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Since in the last integral | sin((θ − t)ω)/ω| ≤ λ−1
1 , Fubini’s theorem yields∫ ∞

−∞
sign(θ − t)u(θ) dθ = 2

π
lim

λ1→0
λ2→∞

∫ λ2

λ1

1

ω

∫ ∞
−∞

sin
(
(θ − t)ω

)
u(θ) dθ dω,

which completes the proof. �

PROOF OF THEOREM 4. For derivation of (3.23), observe that E�̂1 = �1 and,
moreover, due to assumption A1 and conditions (3.21)–(3.16), one has Var(�̂1) ≤
Cn−1. For the same reason, the values of Am,j,k,l , l = 1,2, are uniformly bounded,

so that EF̂m(1) = Fm(1) and Var[F̂m(1)] ≤ Cn−1. Observe that under assumption
(3.22), one has

Var[�̂20h] 	 n−1
∫ h−1

1

(
ω2 + 1

)α−(m+1)am exp
(−2dωb + 2γωβ)dω

E�̂20h − �20 	
∫ ∞
h−1

(
ω2 + 1

)−(m+1)am exp
(−2dωb)∣∣f ∗(ω)

∣∣dω.

In order to complete the proof, note that E�̂h −� = E�̂20h −�20 and Var[�̂h] ≤
Var[�̂20h]+Cn−1 and use the Cauchy–Schwarz inequality if f ∈ �s(B) or upper
bounds for |f ∗| if f ∈ �s(B). �
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ment contains complete description of the simulation study (Section 7.1), as well
as Proofs of Theorem 1, Lemma 2, Theorem 3, Theorems 5–8 and Corollary 4.

REFERENCES

BERKSON, J. (1950). Are there two regression problems? J. Amer. Statist. Assoc. 45 164–180.
BUTUCEA, C. and COMTE, F. (2009). Adaptive estimation of linear functionals in the convolution

model and applications. Bernoulli 15 69–98. MR2546799
CAI, T. T., JIN, J. and LOW, M. G. (2007). Estimation and confidence sets for sparse normal mix-

tures. Ann. Statist. 35 2421–2449. MR2382653
CAI, T. T. and LOW, M. G. (2004). Minimax estimation of linear functionals over nonconvex pa-

rameter spaces. Ann. Statist. 32 552–576. MR2060169
CAI, T. T. and LOW, M. G. (2011). Testing composite hypotheses, Hermite polynomials and optimal

estimation of a nonsmooth functional. Ann. Statist. 39 1012–1041. MR2816346
COLLIER, O., COMMINGES, L. and TSYBAKOV, A. B. (2015). Minimax estimation of linear and

quadratic functionals on sparsity classes. Available at arXiv:1502.00665.

http://dx.doi.org/10.1214/16-AOS1498SUPP
http://www.ams.org/mathscinet-getitem?mr=2546799
http://www.ams.org/mathscinet-getitem?mr=2382653
http://www.ams.org/mathscinet-getitem?mr=2060169
http://www.ams.org/mathscinet-getitem?mr=2816346
http://arxiv.org/abs/arXiv:1502.00665


LINEAR FUNCTIONALS OF THE DECONVOLUTION DENSITY 1541

DATTNER, I., GOLDENSHLUGER, A. and JUDITSKY, A. (2011). On deconvolution of distribution
functions. Ann. Statist. 39 2477–2501. MR2906875

DELAIGLE, A. (2007). Nonparametric density estimation from data with a mixture of Berkson and
classical errors. Canad. J. Statist. 35 89–104. MR2345376

DONOHO, D. and JIN, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. Ann.
Statist. 32 962–994. MR2065195

GIL-PELAEZ, J. (1951). Note on the inversion theorem. Biometrika 38 481–482. MR0045992
GRADSHTEIN, I. S. and RYZHIK, I. M. (1980). Tables of Integrals, Series, and Products. Academic

Press, New York.
HALL, P. and JIN, J. (2010). Innovated higher criticism for detecting sparse signals in correlated

noise. Ann. Statist. 38 1686–1732. MR2662357
LEPSKI, O. V., MAMMEN, E. and SPOKOINY, V. G. (1997). Optimal spatial adaptation to inhomo-

geneous smoothness: An approach based on kernel estimates with variable bandwidth selectors.
Ann. Statist. 25 929–947. MR1447734
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