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TESTS FOR SEPARABILITY IN NONPARAMETRIC COVARIANCE
OPERATORS OF RANDOM SURFACES

BY JOHN A. D. ASTON1, DAVIDE PIGOLI AND SHAHIN TAVAKOLI

University of Cambridge

The assumption of separability of the covariance operator for a random
image or hypersurface can be of substantial use in applications, especially
in situations where the accurate estimation of the full covariance structure is
unfeasible, either for computational reasons, or due to a small sample size.
However, inferential tools to verify this assumption are somewhat lacking
in high-dimensional or functional data analysis settings, where this assump-
tion is most relevant. We propose here to test separability by focusing on
K-dimensional projections of the difference between the covariance operator
and a nonparametric separable approximation. The subspace we project onto
is one generated by the eigenfunctions of the covariance operator estimated
under the separability hypothesis, negating the need to ever estimate the full
nonseparable covariance. We show that the rescaled difference of the sample
covariance operator with its separable approximation is asymptotically Gaus-
sian. As a by-product of this result, we derive asymptotically pivotal tests un-
der Gaussian assumptions, and propose bootstrap methods for approximating
the distribution of the test statistics. We probe the finite sample performance
through simulations studies, and present an application to log-spectrogram
images from a phonetic linguistics dataset.

1. Introduction. Many applications involve hypersurface data, data that is
both functional [as in functional data analysis, see, e.g., Ferraty and Vieu (2006),
Horváth and Kokoszka (2012), Ramsay and Silverman (2005), Wang, Chiou and
Mueller (2016)] and multidimensional. Examples abound and include images from
medical devices such as MRI [Lindquist (2008)] or PET [Worsley et al. (1996)],
spectrograms derived from audio signals [Rabiner and Schafer (1978), and as in
the application we consider in Section 4] or geolocalized data [see, e.g., Secchi,
Vantini and Vitelli (2015)]. In these kinds of problem, the number of available ob-
servations (hypersurfaces) is often small relative to the high-dimensional nature of
the individual observation, and not usually large enough to estimate a full multi-
variate covariance function.

It is usually, therefore, necessary to make some simplifying assumptions about
the data or their covariance structure. If the covariance structure is of interest, such
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as for PCA or network modeling, for instance, it is usually assumed to have some
kind of lower dimensional structure. Traditionally, this translates into a sparsity
assumption: one assumes that most entries of the covariance matrix or function are
zero. Though being relevant for a number of applications [Tibshirani (2014)], this
traditional definition of sparsity may not be appropriate in some cases, such as in
imaging, as this can give rise to artefacts in the analysis (e.g., holes in an image). In
such problems, where the data is multidimensional, a natural assumption that can
be made is that the covariance is separable. This assumption greatly simplifies both
the estimation and the computational cost in dealing with multivariate covariance
functions, while still allowing for a positive definite covariance to be specified. In
the context of space-time data X(s, t), for instance, where s ∈ [−S,S]d , S > 0, de-
notes the location in space, and t ∈ [0, T ], T > 0, is the time index, the assumption
of separability translates into

(1.1) c
(
s, t, s′, t ′

) = c1
(
s, s′)c2

(
t, t ′

)
, s, s′ ∈ [−S,S]d; t, t ′ ∈ [0, T ],

where c, c1 and c2, are respectively the full covariance function, the space covari-
ance function and the time covariance function. In words, this means that the full
covariance function factorises as a product of the spatial covariance function with
the time covariance function.

The separability assumption [see, e.g., Genton (2007), Gneiting, Genton and
Guttorp (2007)] simplifies the covariance structure of the process and makes it far
easier to estimate; in some sense, the separability assumption results in a estimator
of the covariance which has less variance, at the expense of a possible bias. As an
illustrative example, consider that we observe a discretized version of the process
through measurements on a two-dimensional grid (without loss of generality, as
the same arguments apply for any dimension greater than 2) being a q × p ma-
trix (of course, the functional data analysis approach taken here does not assume
that the replications of the process are observed on same grid, nor that they are
observed on a grid). Since we are not assuming a parametric form for the covari-
ance, the degrees of freedom in the full covariance are qp(qp + 1)/2, while the
separability assumption reduces them to q(q + 1)/2 + p(p + 1)/2. This reflects a
dramatic reduction in the dimension of the problem even for moderate value of q,p

and overcomes both computational and estimation problems due to the relatively
small sample sizes available in applications. For example, for q = p = 10, we have
qp(qp + 1)/2 = 5050 degrees of freedom, however, if the separability holds, then
we have only q(q + 1) + p(p + 1) = 110 degrees of freedom. Of course, this is
only one example, and our approach is not restricted to data on a grid, but this
illustrates the computational savings that such assumptions can possess.

Three related computational classes of problem can be identified. In the first
case, the full covariance structure can be computed and stored. In the second one,
it is still possible, although burdensome, to compute the full covariance matrix but
it cannot be stored, while the last class includes problems where even computa-
tion of the full covariance is infeasible. The values of q,p that set the boundaries
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FIG. 1. Memory required to store the full covariance and the separable covariance of p × p ma-
trix data, as a function of p. Several types of data related to Neuroimaging (structural and functional
Magnetic Resonance Imaging) are used as exemplars of data sizes, as they naturally have multidi-
mensional structure.

for these classes depend of course on the available hardware and they are rapidly
changing. At the present time, however, for widely available systems, storage is
feasible up to q,p ≈ 100 while computation becomes unfeasible when q,p get
close to 1000 (see Figure 1). On the contrary, a separable covariance structure can
be usually both computed and stored without effort even for these sizes of prob-
lem. We would like to stress however that the constraints coming from the need
for statistical accuracy are usually tighter. The estimation of the full covariance
structure even for q,p = 100 presents about 5 × 107 unknown parameters, when
typical sample sizes are in the order of hundreds at most. If we are able to assume
separability, we can rely on far more accurate estimates.

While the separability assumption can be very useful, and is indeed often
implicitly made in many higher dimensional applications when using isotropic
smoothing [Lindquist (2008), Worsley et al. (1996)], very little has been done to
develop tools to assess its validity on a case by case basis. In the classical multi-
variate setup, some tests for the separability assumption are available. These have
been mainly developed in the field of spatial statistics [see Fuentes (2006), Lu
and Zimmerman (2005) and references therein], where the discussion of separa-
ble covariance functions is well established, or for applications involving repeated
measures [Mitchell, Genton and Gumpertz (2005)]. These methods, however, rely
on the estimation of the full multidimensional covariance structure, which can be
troublesome. It is sometimes possible to circumvent this problem by considering
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a parametric model for the full covariance structure [Liu (2014), Simpson (2010),
Simpson et al. (2014)]. On the contrary, when the covariance is being nonpara-
metrically specified, as will be the case in this paper, estimation of the full covari-
ance is at best computationally complex with large estimation errors, and in many
cases simply computationally infeasible. Indeed, we highlight that, while the fo-
cus of this paper is on checking the viability of a separable structure for the co-
variance, this is done without any parametric assumption on the form of c1(s, s

′)
and c2(t, t

′), thus allowing for the maximum flexibility. This is opposed to as-
suming a parametric separable form with only few unknown parameters, which is
usually too restrictive in many applications, something that has led to separability
being rightly criticised and viewed with suspicion in the spatio-temporal statis-
tics literature [Gneiting (2002), Gneiting, Genton and Guttorp (2007)]. Moreover,
the methods we develop here are aimed to applications typical of functional data,
where replicates from the underlying random process are available. This is dif-
ferent from the spatio-temporal setting, where usually only one realization of the
process is observed. See also Constantinou, Kokoszka and Reimherr (2015) for
another approach to test for separability in functional data.

It is important to notice that a separable covariance structure (or equivalently,
a separable correlation structure) is not necessarily connected with the original data
being separable. Furthermore, sums or differences of separable hypersurfaces are
not necessarily separable. On the other hand, the error structure may be separable
even if the mean is not. Given that in many applications of functional data analy-
sis, the estimation of the covariance is the first step in the analysis, we concentrate
on covariance separability. Indeed, covariance separability is an extremely useful
assumption as it implies separability of the eigenfunctions, allowing computation-
ally efficient estimation of the eigenfunctions (and principal components). Even if
separability is misspecified, separable eigenfunctions can still form a basis repre-
sentation for the data, they simply no longer carry optimal efficiency guarantees in
this case [Aston and Kirch (2012)], but can often have near-optimality under the
appropriate assumptions [Chen, Delicado and Müller (2016)].

In this paper, we propose a test to verify if the data at hand are in agree-
ment with a separability assumption. Our test does not require the estimation
of the full covariance structure, but only the estimation of the separable struc-
ture (1.1), thus avoiding both the computational issues and the diminished accu-
racy involved in the former. To do this, we rely on a strategy from Functional
Data Analysis [Ferraty and Vieu (2006), Horváth and Kokoszka (2012), Ramsay,
Graves and Hooker (2009), Ramsay and Silverman (2002, 2005)], which con-
sists in projecting the observations onto a carefully chosen low-dimensional sub-
space. The key fact for the success of our approach is that, under the null hy-
pothesis, it is possible to determine this subspace using only the marginal covari-
ance functions. While the optimal choice for the dimension of this subspace is
a nontrivial problem, some insight can be obtained through our extensive simu-
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lation studies (Section 4.1). Ultimately, the proposed test checks the separabil-
ity in the chosen subspace, which will often be the focus of following analy-
ses.

The paper proceeds as follows. In Section 2, we examine the ideas behind sep-
arability, propose a separable approximation of a covariance operator, and study
the asymptotics of the difference between the sample covariance operator and its
separable approximation. This difference will be the building block of the testing
procedures introduced in Section 3, and whose distribution we propose to approxi-
mate by bootstrap techniques. In Section 4, we investigate by means of simulation
studies the finite sample behaviour of our testing procedures and apply our meth-
ods to acoustic phonetic data. A conclusion, given in Section 5, summarizes the
main contributions of this paper. Proofs are collected in Appendices A, B and C,
while implementation details, theoretical background and additional figures can
be found in the supplementary material [Aston, Pigoli and Tavakoli (2016)]. All
the tests introduced in the paper are available as an R package covsep [Tavakoli
(2016)], available on CRAN.

For notational simplicity, the proposed method will be described for two dimen-
sional functional data (e.g., random surfaces), hence a four-dimensional covariance
structure (i.e., the covariance of a random surface), but the generalization to higher
dimensional cases is straightforward. The methodology is developed in general for
data that take values in a Hilbert space, but the case of square integrable surfaces—
being relevant for the case of acoustic phonetic data—is used throughout the paper
as a demonstration. We recall that the proposed approach is not restricted to data
observed on a regular grid, although for simplicity of exposition we consider here
the case where data are observed densely and a pre-processing smoothing step
allows us to consider the smooth surfaces as our observations, as happens, for ex-
ample, the case of the acoustic phonetic data described in Section 4. If data are
observed sparsely, the proposed approach can still be applied but there may be
the need to use more appropriate estimators for the marginal covariance functions
[see, e.g., Yao, Müller and Wang (2005)] and these need to satisfy the properties
described in Section 2.

2. Separable covariances: Definitions, estimators and asymptotic results.
While the general idea of the factorization of a multidimensional covariance struc-
ture as the product of lower dimensional covariances is easy to describe, the de-
velopment of a testing procedure asks for a rigorous mathematical definition and
the introduction of some technical results. In this section, we propose a defini-
tion of separability for covariance operators, show how it is possible to estimate
a separable version of a covariance operator and evaluate the difference between
the empirical covariance operator and its separable version. Moreover, we derive
some asymptotic results for these estimators. To do this, we first set the problem
in the framework of random elements in Hilbert spaces and their covariance op-
erators. The benefit in doing this is twofold. First, our results become applicable



1436 J. A. D. ASTON, D. PIGOLI AND S. TAVAKOLI

in more general settings (e.g., multidimensional functional data, data on multidi-
mensional grids, fixed size rectangular random matrices) and do not depend on
a specific choice of smoothness of the data (which is implicitly assumed when
modeling the data as, for example, square integrable surfaces). They only rely on
the Hilbert space structure of the space in which the data lie. Second, it highlights
the importance of the partial trace operator in the estimation of the separable co-
variance structure, and how the properties of the partial trace (Appendix C) play a
crucial role in the asymptotic behavior of the proposed test statistics. However, to
ease explanation, we use the case of the Hilbert space of square integrable surfaces
(which shall be used in our linguistic application, see Section 4) as an illustration
of our testing procedure.

2.1. Notation. Let us first introduce some definitions and notation about op-
erators in a Hilbert space [see, e.g., Gohberg, Goldberg and Kaashoek (1990),
Kadison and Ringrose (1997), Ringrose (1971)]. Let H be a real separable
Hilbert space (i.e., a Hilbert space with a countable orthonormal basis), whose
inner product and norm are denoted by 〈·, ·〉 and ‖·‖, respectively. The space of
bounded (linear) operators on H is denoted by S∞(H), and its norm is |||T |||∞ =
supx 	=0 ‖T x‖/‖x‖. The space of Hilbert–Schmidt operators on H is denoted by
S2(H), and is a Hilbert space with the inner-product 〈S,T 〉S2 = ∑

i≥1〈Sei, T ei〉
and induced norm ||| · |||2, where (ei)i≥1 ⊂ H is an orthonormal basis of H . The
space of trace-class operator on H is denoted by S1(H), and consists of all
compact operators T with finite trace-norm, that is, |||T |||1 = ∑

n≥1 sn(T ) < ∞,
where sn(T ) ≥ 0 denotes the nth singular value of T . For any trace-class operator
T ∈ S1(H), we define its trace by Tr(T ) = ∑

i≥1〈T ei, ei〉, where (ei)i≥1 ⊂ H is
an orthonormal basis, and the sum is independent of the choice of the orthonormal
basis.

If H1,H2 are real separable Hilbert spaces, we denote by H = H1 ⊗ H2 their
tensor product Hilbert space, which is obtained by the completion of all finite
sums

∑N
i,j=1 ui ⊗ vj , ui ∈ H1, vj ∈ H2, under the inner-product 〈u ⊗ v, z ⊗ w〉 =

〈u, z〉〈v,w〉, u, z ∈ H1, z,w ∈ H2 [see, e.g., Kadison and Ringrose (1997)]. If C1 ∈
S∞(H1), C2 ∈ S∞(H2), we denote by C1 ⊗̃C2 the unique linear operator on H1 ⊗
H2 satisfying

(2.1) (C1 ⊗̃ C2)(u ⊗ v) = C1u ⊗ C2v, for all u ∈ H1, v ∈ H2.

It is a bounded operator on H , with |||C1 ⊗̃ C2|||∞ = |||C1|||∞|||C2|||∞. Furthermore,
if C1 ∈ S1(H1) and C2 ∈ S1(H2), then C1 ⊗̃C2 ∈ S1(H1 ⊗H2) and |||C1 ⊗̃ C2|||1 =
|||C1|||1|||C2|||1. We denote by Tr1 : S1(H1 ⊗ H2) → S1(H2) the partial trace with
respect to H1. It is the unique bounded linear operator satisfying Tr1(A⊗̃B) =
Tr(A)B , for all A ∈ S1(H1),B ∈ S1(H2). Tr2 : S1(H1 ⊗ H2) → S1(H1) is defined
symmetrically (see Appendix C for more details).

If X ∈ H is a random element with E‖X‖ < ∞, then μ = EX ∈ H , the mean
of X, is well defined. Furthermore, if E‖X‖2 < ∞, then C = E[(X − μ) ⊗2 (X −
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μ)] defines the covariance operator of X, where f ⊗2 g is the operator on H

defined by (f ⊗2 g)h = 〈h,g〉f , for f,g,h ∈ H . The covariance operator C is a
trace-class hermitian operator on H , and encodes all the second-order fluctuations
of X around its mean.

Using this nomenclature, we are going to deal with random variables be-
longing to a tensor product Hilbert space. This framework encompasses the
situation where X is a random surface, for example, a space–time indexed
data, that is, X = X(s, t), s ∈ [−S,S]d, t ∈ [0, T ], S,T > 0, by setting H =
L2([−S,S]d × [0, T ],R), for instance (notice however that additional smooth-
ness assumptions on X would lead to assume that X belongs to some other
Hilbert space). In this case, the covariance operator of the random element X ∈
L2([−S,S]d × [0, T ],R) satisfies

Cf (s, t) =
∫
[−S,S]d

∫ T

0
c
(
s, t, s′, t ′

)
f

(
s′, t ′

)
ds′ dt ′, s ∈ [−S,S]d, t ∈ [0, T ],

f ∈ L2([−S,S]d × [0, T ],R), where c(s, t, s ′, t ′) = cov[X(s, t),X(s′, t ′)] is the
covariance function of X. The space of square integrable surfaces,

L2([−S,S]d × [0, T ],R)
,

is a tensor product Hilbert space because it can be identified with

L2([−S,S]d,R
) ⊗ L2([0, T ],R)

.

2.2. Separability. We recall now that we want to define separability so that
the covariance function can be written as c(s, t, s′, t ′) = c1(s, s

′)c2(t, t
′), for some

c1 ∈ L2([−S,S]d × [−S,S]d,R) and c2 ∈ L2([0, T ] × [0, T ],R). This can be ex-
tended to the covariance operator of a random elements X ∈ H = H1 ⊗ H2, where
H1,H2 are arbitrary separable real Hilbert spaces. We call its covariance operator
C separable if

(2.2) C = C1 ⊗̃ C2,

where C1, respectively C2, are trace-class operators on H1, respectively on H2,
and C1 ⊗̃ C2 is defined in (2.1). Notice that though the decomposition (2.2) is
not unique, since C1 ⊗̃ C2 = (αC1) ⊗̃ (α−1C2) for any α 	= 0, this will not cause
any problem at a later stage since we will ultimately be dealing with the product
C1⊗̃C2, which is identifiable.

In practice, neither C nor C1 ⊗̃ C2 are known. If X1, . . . ,XN
i.i.d.∼ X and (2.2)

holds, the sample covariance operator ĈN is not necessarily separable in finite
samples. However, we can estimate a separable approximation of it by

(2.3) Ĉ1,N ⊗̃ Ĉ2,N ,
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where Ĉ1,N = Tr2(ĈN)/

√
Tr(ĈN), Ĉ2,N = Tr1(ĈN)/

√
Tr(ĈN). The intuition be-

hind (2.3) is that

Tr(T )T = Tr2(T ) ⊗̃ Tr1(T ),

for all T ∈ S1(H1 ⊗ H2) of the form T = A ⊗̃ B , A ∈ S1(H1),B ∈ S1(H2), with
Tr(T ) 	= 0.

Let us consider again what this means when X is a random element of
L2([−S,S]d × [0, T ],R)—that is, the realization of a space–time process—of
which we observe N i.i.d. replications X1, . . . ,XN ∼ X. In this case, Proposi-
tion C.2 tells us that if the covariance function is continuous, the operators Ĉ1,N

and Ĉ2,N are defined by

Ĉ1,Nf (s) =
∫
[−S,S]d

ĉ1,N

(
s, s′)f (s) ds, f ∈ L2([−S,S]d,R

)
,

Ĉ2,Ng(t) =
∫ T

0
ĉ2,N

(
t, t ′

)
g(t) dt, g ∈ L2([0, T ],R)

,

where

ĉ1,N

(
s, s′) = c̃1,N (s, s′)√∫

[−S,S]d c̃1,N (s, s) ds
,

ĉ2,N

(
t, t ′

) = c̃2,N (t, t ′)√∫ T
0 c̃2,N (t, t) dt

,

and

c̃1,N

(
s, s′) = 1

N

N∑
i=1

∫ T

0

(
Xi(s, t) − X(s, t)

)(
Xi

(
s′, t

) − X
(
s′, t

))
dt

=
∫ T

0
cN

(
s, t, s′, t

)
dt,

c̃2,N

(
t, t ′

) = 1

N

N∑
i=1

∫
[−S,S]d

(
Xi(s, t) − X(s, t)

)(
Xi

(
s, t ′

) − X
(
s, t ′

))
ds

=
∫
[−S,S]d

cN

(
s, t, s, t ′

)
ds,

X(s, t) = 1

N

N∑
i=1

Xi(s, t), ĉN

(
s, t, s′, t ′

)

= 1

N

N∑
i=1

(
Xi(s, t) − X(s, t)

)(
Xi

(
s′, t ′

) − X
(
s′, t ′

))
,
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for all s, s′ ∈ [−S,S]d, t, t ′ ∈ [0, T ]. The assumption of separability here means
that the estimated covariance is written as a product of a purely spatial compo-
nent and a purely temporal component, thus making both modeling and estimation
easier in many practical applications.

We stress again that we aim to develop a test statistic that solely relies on the
estimation of the separable components C1 and C2, and does not require the es-
timation of the full covariance C. We can expect that under the null hypothesis
H0 : C = C1⊗̃C2, the difference DN = ĈN − Ĉ1,N ⊗̃ Ĉ2,N between the sample
covariance operator and its separable approximation should take small values. We
propose therefore to construct our test statistic by projecting DN onto the first
eigenfunctions of C, since these encode the directions along which X has the most
variability. If we denote by C1 = ∑

i≥1 λiui ⊗2 ui and C2 = ∑
j≥1 γjvj ⊗2 vj the

Mercer decompositions of C1 and C2, we have

C = C1 ⊗̃ C2 = ∑
i,j≥1

λiγj (ui ⊗ vj ) ⊗2 (ui ⊗ vj ),

where we have used results from Section 1.1 of the supplementary material
[Aston, Pigoli and Tavakoli (2016)]. The eigenfunctions of C are therefore of
the form ur ⊗ vs , where ur ∈ H1 is the r th eigenfunction of C1 and vs ∈ H2

is the sth eigenfunction of C2. We define a test statistic based on the projec-
tion

(2.4) TN(r, s) = √
N

〈
DN(ûr ⊗ v̂s), ûr ⊗ v̂s

〉
, r, s ≥ 1 fixed,

where we have replaced the eigenfunctions of C1 and C2 by their empirical
counterpart, that is, the Mercer decompositions of Ĉ1,N , respectively Ĉ2,N , are
given by Ĉ1,N = ∑

i≥1 λ̂i ûi ⊗ ûi , respectively Ĉ2,N = ∑
j≥1 γ̂j v̂j ⊗ v̂j . Notice

that though the eigenfunctions of Ĉ1,N and Ĉ2,N are defined up to a multi-
plicative constant α = ±1, our test statistic is well defined. The key fact for
the practical implementation of the method is that TN(r, s) can be computed
without the need to estimate (and store in memory) the operator DN , since
TN(r, s) = √

N( 1
N

∑N
k=1〈Xk − XN, v̂i ⊗ ûj 〉2 − λ̂r γ̂s). In particular, the computa-

tion of TN(r, s) does not require an estimation of the full covariance operator C,
but only the estimation of the marginal covariance operators C1 and C2, and their
eigenstructure.

2.3. Asymptotics. The theoretical justification for using a projection of DN to
define a test procedure is that, under the null hypothesis H0 : C = C1 ⊗̃ C2, we

have |||DN |||1 p−→ 0 as N → ∞, that is, DN convergences in probability to zero
with respect to the trace norm. In fact, we will show in Theorem 2.3 that

√
NDN

is asymptotically Gaussian under the following regularity conditions.
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CONDITION 2.1. X is a random element of the real separable Hilbert space
H satisfying

(2.5)
∞∑

j=1

(
E

[〈X,ej 〉4])1/4
< ∞,

for some orthonormal basis (ej )j≥1 of H .

The implications of this condition can be better understood in light of the fol-
lowing remark.

REMARK 2.2 [Mas (2006)]. 1. Condition 2.1 implies that E‖X‖4 < ∞.

2. If E‖X‖4 < ∞, then
√

N(CN − C) converges in distribution to a Gaussian
random element of S2(H) for N → ∞, with respect to the Hilbert–Schmidt topol-
ogy. Under Condition 2.1, a stronger form of convergence holds:

√
N(CN − C)

converges in distribution to a random element of S1(H) for N → ∞, with respect
to the trace-norm topology.

3. If X is Gaussian and (λj )j≥1 is the sequence of eigenvalues of its covariance
operator, a sufficient condition for (2.5) is

∑
j≥1

√
λj < ∞.

Condition 2.1 requires fourth-order moments rather than the usual second order
moments often assumed in functional data, as in this case we are interested in in-
vestigating the variation of the second moment, and hence require assumptions on
the fourth-order structure. Recall that ĈN = 1

N

∑N
j=1(Xi −X)⊗2 (Xi −X), where

X = N−1 ∑N
k=1 Xk . The following result establishes the asymptotic distribution of

DN = ĈN − Tr2(ĈN )⊗̃Tr1(ĈN )

Tr(ĈN )
.

THEOREM 2.3. Let H1,H2 be separable real Hilbert spaces, X1, . . . ,XN ∼
X be i.i.d. random elements on H1 ⊗ H2 with covariance operator C, and TrC 	=
0.

If X satisfies Condition 2.1 (with H = H1 ⊗ H2), then under the null hypothe-
sis

H0 : C = C1 ⊗̃ C2, C1 ∈ S1(H1),C2 ∈ S1(H2),

we have

(2.6)
√

N

(
ĈN − Tr2(ĈN) ⊗̃ Tr1(ĈN)

Tr(ĈN)

)
d−→ Z as N → ∞,

where Z is a Gaussian random element of S1(H1 ⊗ H2) with mean zero, whose
covariance structure is given in Lemma A.1.
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Condition 2.1 is used here because we need
√

N(ĈN − C) to converge in dis-
tribution in the topology of the space S1(H1 ⊗ H2); it could be replaced by any
(weaker) condition ensuring such convergence. The assumption TrC 	= 0 is equiv-
alent to assuming that X is not almost surely constant.

PROOF OF THEOREM 2.3. First, notice that C = C1 ⊗̃ C2 = Tr2(C)⊗̃Tr1(C)
Tr(C)

un-
der H0. Therefore, using the linearity of the partial trace, we get

√
N

(
ĈN − Tr2(ĈN) ⊗̃ Tr1(ĈN)

Tr(ĈN)

)
= √

N(ĈN − C)

+ √
N

(
Tr2(C) ⊗̃ Tr1(C)

Tr(C)
+ Tr2(ĈN)⊗̃Tr1(ĈN)

Tr(ĈN)

)

= √
N(ĈN − C) + Tr(

√
N(ĈN − C))C

Tr(ĈN)

− Tr2(
√

N(ĈN − C)) ⊗̃ Tr1(C)

Tr(ĈN)

− Tr2(ĈN) ⊗̃ Tr1(
√

N(ĈN − C))

Tr(ĈN)

= �
(√

N(ĈN − C), ĈN

)
,

where

�(T ,S) = T + Tr(T )C

Tr(S)
− Tr2(T ) ⊗̃ Tr1(C)

Tr(S)
− Tr2(S) ⊗̃ Tr1(T )

Tr(S)
,

T , S ∈ S1(H1 ⊗H2). Notice that the function � : S1(H1 ⊗H2)×S1(H1 ⊗H2) →
S1(H1 ⊗ H2) is continuous at (T , S) ∈ S1(H1 ⊗ H2) × S1(H1 ⊗ H2) in each co-
ordinate, with respect to the trace norm, provided Tr(S) 	= 0. Since

√
N(ĈN − C)

converges in distribution—under Condition 2.1—to a Gaussian random element
Y ∈ S1(H1 ⊗ H2), with respect to the trace norm ||| · |||1 [see Mas (2006), Proposi-
tion 5], �(

√
N(ĈN − C), ĈN) converges in distribution to

(2.7) �(Y,C) = Y + Tr(Y )C

Tr(C)
− Tr2(Y ) ⊗̃ Tr1(C)

Tr(C)
− Tr2(C) ⊗̃ Tr1(Y )

Tr(C)

by the continuous mapping theorem in metric spaces [Billingsley (1999)]. �(Y,C)

is Gaussian because each of the summands of (2.7) are Gaussian. Indeed, the first
and second summands are obviously Gaussian, and the last two summands are
Gaussian by Proposition C.3, and Proposition 1.2 in the supplementary material
[Aston, Pigoli and Tavakoli (2016)]. �
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We can now give the asymptotic distribution of TN(r, s), defined in (2.4) as
the (scaled) projection of DN in a direction given by the tensor product of the
empirical eigenfunctions ûr and v̂s . The proof of the following result is given in
Appendix B.

COROLLARY 2.4. Under the conditions of Theorem 2.3, if I ⊂ {(i, j) : i, j ≥
1} is a finite set of indices such that λrγs > 0 for each (r, s) ∈ I , then(

TN(r, s)
)
(r,s)∈I

d−→ N(0,�) as N → ∞.

This means that the vector (TN(r, s))(r,s)∈I is asymptotically multivariate Gaus-
sian, with asymptotic variance-covariance matrix � = (�(r,s),(r ′,s′))(r,s),(r ′,s′)∈I is
given by

�(r,s),(r ′,s′) = β̃rsr ′s′ + αrsβ̃r ′s′·· + αr ′s β̃r··s′ + αrs′ β̃r ′··s + αr ′s′ β̃rs··
Tr(C)

+ αrsαr ′s′ β̃····
Tr(C)2 + λrλr ′ β̃·s·s′

Tr(C1)2 + γsγs′ β̃r·r ′·
Tr(C2)2

− λr β̃r ′s′·s + λr ′ β̃rs·s′

Tr(C1)
− γsβ̃r ′s′r· + γs′ β̃rsr ′·

Tr(C2)

− αrs

Tr(C)

(
γs′ β̃r ′···
Tr(C2)

+ λr ′ β̃·s′··
Tr(C1)

)

− αr ′s′

Tr(C)

(
γsβ̃r···
Tr(C2)

+ λr β̃·s··
Tr(C1)

)
,

where μ = E[X], αrs = λrγs ,

β̃ijkl = E
[〈X − μ,ui ⊗ vj 〉2〈X − μ,uk ⊗ vl〉2]

,

and “·” denotes summation over the corresponding index, that is, β̃r·jk =∑
i≥1 β̃rijk .

We note that the asymptotic variance-covariance of (TN(r, s))(r,s)∈I depends
on the second- and fourth-order moments of X, which is not surprising since it is
based on estimators of the covariance of X. Under the additional assumption that X

is Gaussian, the asymptotic variance-covariance of (TN(r, s))(r,s)∈I can be entirely
expressed in terms of the covariance operator C. The proof of the following result
is given in Appendix B.

COROLLARY 2.5. Assume the conditions of Theorem 2.3 hold, and that X is
Gaussian. If I ⊂ {(i, j) : i, j ≥ 1} is a finite set of indices such that λrγs > 0 for
each (r, s) ∈ I , then(

TN(r, s)
)
(r,s)∈I

d−→ N(0,�) as N → ∞,
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where

�(r,s),(r ′,s′) = 2λrλr ′γsγs′

Tr(C)2

(
δrr ′ Tr(C1)

2 + |||C1|||22 − (λr + λr ′)Tr(C1)
)

× (
δss′ Tr(C2)

2 + |||C2|||22 − (γs + γs′)Tr(C2)
)
,

and δij = 1 if i = j , and zero otherwise. In particular, notice that � itself is sepa-
rable.

It will be seen in the next section that even in the case where we use a boot-
strap test, knowledge of the asymptotic distribution can be very useful to establish
a pivotal bootstrap test, which will be seen to have very good performance in sim-
ulation.

3. Separability tests and bootstrap approximations. In this section, we use
the estimation procedures and the theoretical results presented in Section 2 to de-
velop a test for H0 : C = C1 ⊗̃ C2, against the alternative that C cannot be written
as a tensor product.

First, it is straightforward to define a testing procedure when X is Gaussian.
Indeed, if we let

(3.1) GN(r, s) = T 2
N(r, s) = N

(
1

N

N∑
k=1

〈Xk − X, ûr ⊗ v̂s〉2 − λ̂r γ̂s

)2

and

σ̂ 2(r, s) = (
Tr(Ĉ1,N )2 Tr(Ĉ2,N )2)−12λ̂2

r γ̂
2
s

× (
Tr(Ĉ1,N )2 + |||Ĉ1,N |||22 − 2λ̂r Tr(Ĉ1,N )

)
(3.2)

× (
Tr(Ĉ2,N )2 + |||Ĉ2,N |||22 − 2γ̂s Tr(Ĉ2,N )

)
,

then σ̂−2(r, s)GN(r, s) is asymptotically χ2
1 distributed, and {G2

N(r, s) > σ̂ 2(r,

s)χ2
1 (1 − α)}, where χ2

1 (1 − α) is the 1 − α quantile of the χ2
1 distribution, would

be a rejection region of level approximately α, for α ∈ [0,1] and N large.
Apart for the distributional assumption for X to be Gaussian, this approach

suffers also the important limitation that it only tests the separability assumption
along one eigendirection. It is possible to extend this approach to take into account
several eigendirections. For simplicity, let us consider the case I = {1, . . . , p} ×
{1, . . . , q}. Denote by TN(I) the p × q matrix with entries (TN(I))ij = TN(i, j),
and let

(3.3) G̃N(I) = ∣∣�̂−1/2
L,I TN(I)�̂

−T/2
R,I

∣∣2,
where |A|2 denotes the sum of squared entries of a matrix A, A−1/2 denotes
the inverse of (any) square root of the matrix A, A−T/2 = (A−1/2)T, and the
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matrices �̂L,I , respectively �̂R,I , which are estimators of the row, respec-
tively column, asymptotic covariances of TN(I), are defined in Section 2 of
the supplementary material [Aston, Pigoli and Tavakoli (2016)]. Then G̃N(I) is
asymptotically χ2

pq distributed. In the simulation studies (Section 4.1), we con-
sider also an approximate version of this Studentized test statistics, G̃a

N(I) =∑
(r,s)∈I T 2

N(r, s)/σ̂ 2(r, s), which are obtained simply by standardizing marginally
each entry T 2

N(r, s), thus ignoring the dependence between the test statistics asso-
ciated with different directions. In order to assess the advantage of Studentization,
we also consider the non-Studentized test statistic

GN(I) = ∑
(r,s)∈I

T 2
N(r, s).

The computation details for G̃N , TN , σ̂ 2(r, s), �̂L,I and �̂R,I are described in
Section 2 of the supplementary material [Aston, Pigoli and Tavakoli (2016)].

REMARK 3.1. Notice that the only test whose asymptotic distribution is
parameter-free is G̃N(I), under Gaussian assumptions. It would in principle be
possible to construct an analogous test without the Gaussian assumptions (using
Corollary 2.4). However, due to the large number of parameters that would need
to be estimated in this case, we expect the asymptotics to come into force only
for very large sample sizes (this is actually the case under Gaussian assumptions,
specially if the set of projections I is large, as can be seen in Figure S5 of the
supplementary material [Aston, Pigoli and Tavakoli (2016)]). For these reasons,
we shall investigate bootstrap approximations to the test statistics.

The choice of the number of eigenfunctions K (the number of elements in I)
onto which one should project is not trivial. The popular choice of including
enough eigenfunctions to explain a fixed percentage of the variability in the dataset
may seem inappropriate in this context, because under the alternative hypothesis
there is no guarantee that the separable eigenfunctions explain that percentage of
variation.

For fixed K , notice that the test at least guarantees the separability in the sub-
space of the respective K eigenfunctions, which is where the following analysis
will be often focused. On the other hand, since our test statistic looks at an estima-
tor of the nonseparable component

D = C − Tr2(C) ⊗̃ Tr1(C)

Tr(C)
,

restricted to the subspace spanned by the eigenfunctions ur ⊗ vs , the test takes
small values (and thus lacks power) when〈

D(ur ⊗ vs), ur ⊗ vs

〉 = 〈
D,(ur ⊗2 ur) ⊗̃ (vs ⊗2 vs)

〉
S2

= 0,
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that is when the nonseparable component D is orthogonal to

(ur ⊗2 ur) ⊗̃ (vs ⊗2 vs)

with respect to the Hilbert–Schmidt inner product. Thus, the proposed test statistic
GN(I) is powerful when D is not orthogonal to the subspace

VI = span
{
(ui ⊗2 ui)⊗̃(vj ⊗2 vj ), (i, j) ∈ I

}
,

and in general the power of the test for finite sample size depends on the properly
rescaled norm of the projection of D onto VI .

In practice, it seems reasonable to use the subset of eigenfunctions that it is pos-
sible to estimate accurately given the available sample sizes. The accuracy of the
estimates for the eigendirections can be in turn evaluated with bootstrap methods;
see, for example, Hall and Hosseini-Nasab (2006) for the case of functional data. A
good strategy may also be to consider more than one subset of eigenfunctions and
then summarize the response obtained from the different tests using a Bonferroni
correction.

As an alternative to these test statistics (based on projections of DN = CN −
C1,N ⊗̃ C2,N ), we consider also a test based on the squared Hilbert–Schmidt norm
of DN , that is, |||DN |||22, whose null distribution will be approximated by a bootstrap
procedure (this test will be referred to as Hilbert–Schmidt test hereafter). Though
it seems that such tests would require one to store the full sample covariance of the
data (which could be infeasible), we describe in Section 2 of the supplementary
material [Aston, Pigoli and Tavakoli (2016)] a way of circumventing such prob-
lem, although the computation of each entry of the full covariance is still needed.
Therefore, this could be used only for applications in which the dimension of the
discretized covariance matrix is not too large.

In the following, we propose also a bootstrap approach to approximate the dis-
tribution of the test statistics G̃N(I), G̃a

N(I) and GN(I), with the aim to improve
the finite sample properties of the procedure and to relax the distributional assump-
tion on X.

3.1. Parametric bootstrap. If we assume we know the distribution of X up to
its mean μ and its covariance operator C, that is, X ∼ F(μ;C), we can approxi-
mate the distribution of G̃N(I), G̃a

N(I), GN(I) and |||DN |||22 under the separabil-
ity hypothesis via a parametric bootstrap procedure. Since C1,N ⊗̃ C2,N , respec-
tively X, is an estimate of C, respectively μ, we simulate B bootstrap samples

Xb
1, . . . ,Xb

N

i.i.d.∼ F(X,C1,N ⊗̃ C2,N ), for b = 1, . . . ,B . For each sample, we com-
pute Hb

N = HN(Xb
1, . . . ,Xb

N), where HN = GN(I), HN = G̃N(I), HN = G̃a
N(I),

respectively HN = |||DN |||22, if we wish to use the non-Studentized projection
test, the Studentized projection test, the approximated Studentized version or the
Hilbert–Schmidt test, respectively. A formal description of the algorithm for ob-
taining the p-value of the test based on the statistic HN = HN(X1, . . . ,XN) with
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the parametric bootstrap can be found in Section 2 of the supplementary material
[Aston, Pigoli and Tavakoli (2016)], along with the details for the computation of
HN . We highlight that this procedure does not ask for the estimation of the full
covariance structure, but only of its separable approximation, with the exception
of the Hilbert–Schmidt test (and even in this case, it is possible to avoid the storage
of the full covariance).

3.2. Empirical bootstrap. In many applications, it is not possible to assume
a distribution for the random element X, and a nonparametric approach is there-
fore needed. In this setting, we can use the empirical bootstrap to estimate the
distribution of the test statistic GN(I), G̃N(I) or |||DN |||22 under the null hy-
pothesis H0 : C = C1 ⊗̃ C2. Let HN denote the test statistic whose distribution
is of interest. Based on an i.i.d. sample X1, . . . ,XN ∼ X, we wish to approx-
imate the distribution of HN with the distribution of some test statistic �∗

N =
�N(X∗

1, . . . ,X∗
N), where X∗

1, . . . ,X∗
N is obtained by drawing with replacement

from the set {X1, . . . ,XN }. Though it is tempting to use �∗
N = HN(X∗

1, . . . ,X∗
N),

this is not an appropriate choice. Indeed, let us look at the case HN = GN(i, j).
Notice that the true covariance of X is

(3.4) C = Tr2(C) ⊗̃ Tr1(C)

Tr(C)
+ D,

where D is a possibly nonzero operator, and that

H ∗
N = GN

(
i, j |X∗

1, . . . ,X∗
N

) = N
〈(
C∗

N − C∗
1,N ⊗̃ C∗

2,N

)
(ûi ⊗ v̂j ), ûi ⊗ v̂j

〉2
,

where C∗
N = CN(X∗

1, . . . ,X∗
N),C∗

1,N = C1,N (X∗
1, . . . ,X∗

N), and C∗
2,N = C2,N (X∗

1,

. . . ,X∗
N). Since (C∗

N − C∗
1,N ⊗̃ C∗

2,N ) ≈ (CN − C1,N ⊗̃ C2,N ) ≈ D, the statis-
tic H ∗

N would approximate the distribution of HN under the hypothesis (3.4),
which is not what we want. We therefore propose the following choices of
�∗

N = �n(X
∗
1, . . . ,X∗

N ;X1, . . . ,XN), depending on the choice of HN :

1. HN = GN(I), �∗
N = ∑

(i,j)∈I(T ∗
N(i, j) − TN(i, j))2.

2. HN = G̃N(I), �∗
N = |(�̂∗

L,I)−1/2(T∗
N(I) − TN(I))(�̂∗

R,I)−T/2|2,

where �̂∗
L,I = �̂L,I(X∗

1, . . . ,X∗
N), and �̂∗

R,I = �̂R,I(X∗
1, . . . ,X∗

N) are the row,
respectively column, covariances estimated from the bootstrap sample.

3. HN = G̃a
N(I), �∗

N = ∑
(i,j)∈I(T ∗

N(i, j) − TN(i, j))2/σ̂ 2∗ (i, j), where σ̂ 2∗ (i,

j) = σ̂ 2(i, j |X∗
1, . . . ,X∗

N).
4. HN = |||DN |||22, �∗

N = |||D∗
N − DN |||22, where D∗

N = DN(X∗
1, . . . ,X∗

N).

The algorithm to approximate the p-value of HN by the empirical bootstrap
is described in detail in the supplementary material [Aston, Pigoli and Tavakoli
(2016)]. The basic idea consists of generating B bootstrap samples, computing �∗

N

for each bootstrap sample and looking at the proportion of bootstrap samples for
which �∗

N is larger than the test statistic HN computed from the original sample.
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FIG. 2. Covariance functions c1 (left) and c2 (right) used in the simulation study.

4. Empirical demonstrations of the method.

4.1. Simulation studies. We investigated the finite sample behavior of our test-
ing procedures through an intensive reproducible simulation study (its running
time is equivalent to approximately 401 days on a single CPU computer). We
compared the test based on the asymptotic distribution of (3.1), as well as the tests
based on GN(I), G̃N(I), G̃a

N(I) and |||DN |||22, with the p-values obtained via the
parametric bootstrap or the empirical bootstrap.

We generated discretized functional data X1, . . . ,XN ∈ R
32×7 under two sce-

narios. In the first scenario (Gaussian scenario), the data were generated from a
multivariate Gaussian distribution N (0,C). In the second scenario (non-Gaussian
scenario), the data were generated from a centered multivariate t distribution with
6 degrees of freedom. In the Gaussian scenario, we set C = C(γ ), where

C(γ )(i1, j1, i2, j2) = (1 − γ )c1(i1, i2)c2(j1, j2)
(4.1)

+ γ
1

(j1 − j2)2 + 1
exp

{
− (i1 − i2)

2

(j1 − j2)2 + 1

}
,

γ ∈ [0,1]; i1, i2 = 1, . . . ,32; j1, j2 = 1, . . . ,7. The covariances c1 and c2 used in
the simulations can be seen in Figure 2. For the non-Gaussian scenario, we chose
a multivariate t distribution with the correlation structure implied by C(γ ). The
parameter γ ∈ [0,1] controls the departure from the separability of the covariance
C(γ ): γ = 0 yields a separable covariance, whereas γ = 1 yields a complete non-
separable covariance structure [Cressie and Huang (1999)]. All the simulations
have been performed using the R package covsep [Tavakoli (2016)], available
on CRAN, which implements the tests presented in the paper.

For each value of γ ∈ {0,0.01,0.02, . . . ,0.1} and N ∈ {10,25,50,100}, we
performed 1000 replications for each of the above simulations, and estimated the
power of the tests based on the asymptotic distribution of (3.1).

We first also estimated the power of the tests G̃N(1,1), GN(1,1) and |||DN |||2,
with distributions approximated by a Gaussian parametric bootstrap, and the em-
pirical bootstrap, with B = 1000. The results are shown in Figure 3. In the Gaus-
sian scenario [Figure 3, panel (a)], the empirical size of all the proposed tests gets
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FIG. 3. Empirical power of the testing procedures in the Gaussian scenario [panel (a)] and non–
Gaussian scenario [panel (b)], for N = 10,25,50,100 and I = I1. The results shown correspond
to the test (3.1) based on its asymptotic distribution (· · · + · · · ), the Gaussian parametric bootstrap
projection tests G̃N (I1)(– · –◦– · –), and GN(I1) (—◦—) the empirical bootstrap projection tests
G̃N (I1) (– · –�– · –), and GN(I1) (—�—), the Gaussian parametric Hilbert–Schmidt test (— ·
—•— · —) and the empirical Hilbert–Schmidt test (— · —�— · —). The horizontal dotted line indi-
cates the nominal level (5%) of the test. Note that the points have been horizontally jittered for better
visibility.
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closer to the nominal level (5%) as N increases (see also Table S1 in the sup-
plementary material [Aston, Pigoli and Tavakoli (2016)]). Nevertheless, the non-
Studentized tests GN(1,1), for both parametric and empirical bootstrap, seem to
have a slower convergence with respect to the Studentized version, and even for
N = 100 the level of these tests appear still higher than the nominal one (and a
CLT-based 95% confidence interval for the true level does not contain the nom-
inal level in both cases). The empirical bootstrap version of the Hilbert–Schmidt
test also fails to respect the nominal level at N = 100, but its parametric bootstrap
counterpart respects the level, even for N = 25. For N = 25,50,100, the most
powerful tests (amongst those who respect the nominal level) are the parametric
and empirical bootstrap versions of G̃N(1,1), and they seem to have equal power.
The power of the Hilbert–Schmidt test based on the parametric bootstrap seems to
be competitive only for N = 100 and γ = 0.1, and is much lower for other values
of the parameters. The test based on the asymptotic distribution does not respect
the nominal level for small N but it does when N increases. Indeed, the conver-
gence to the nominal level seems remarkably fast and its power is comparable with
those of the parametric and empirical bootstrap tests based on G̃N(1,1). Despite
being based on an asymptotic result, its performance is quite good also in finite
samples, and it is less computationally demanding than the bootstrap tests.

In the non-Gaussian scenario [Figure 3, panel (b)], only the empirical boot-
strap version of G̃N(1,1) and of the Hilbert–Schmidt test seem to respect the level
for N = 10 (see also Table S1 in the supplementary material [Aston, Pigoli and
Tavakoli (2016)]). Amongst these tests, the most powerful one is clearly the empir-
ical bootstrap test based on G̃N(1,1). Although the Gaussian parametric bootstrap
test has higher empirical power, it does not have the correct level (as expected),
and thus cannot be used in a non-Gaussian scenario. Notice also that the test based
on the asymptotic distribution of G̃N(1,1) (under Gaussian assumptions) does not
respects the level of the test even for N = 100. The same holds for the Gaussian
bootstrap version of the Hilbert–Schmidt test. Finally, though the empirical boot-
strap version of the Hilbert–Schmidt test respects the level for N = 10,25,50,100,
it has virtually no power for N = 10,25,50, and has very low power for N = 100
(at most 0.3 for γ = 0.1).

As mentioned previously, there is no guarantee that a violation in the separabil-
ity of C is mostly reflected in the first separable eigensubspace. Therefore, we con-
sider also a larger subspace for the test. Figure S4 in the supplementary material
[Aston, Pigoli and Tavakoli (2016)] shows the empirical power for the asymp-
totic test, the parametric and empirical bootstrap tests based on the test statis-
tic G̃N(I2), as well as parametric and bootstrap tests based on the test statistics
GN(I2), G̃a

N(I2) where I2 = {(i, j) : i, j = 1,2}. In the Gaussian scenario, the
asymptotic test is much slower in converging to the correct level compared to its
univariate version based on G̃N(1,1). For larger N , its power is comparable to that
of the parametric and empirical bootstrap based on the Studentized test statistics
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FIG. 4. Empirical power of the empirical bootstrap version of G̃N (Il ), for l = 1 (—•—), l = 2
(– –•– –) and l = 3 (– · –•– · –), in the Gaussian scenario. The horizontal dotted line indicates the
nominal level (5%) of the test. Note that the points have been horizontally jittered for better visibility.

G̃N(I2), which in addition respects the nominal level, even for N = 10. It is in-
teresting to note that the approximated Studentized bootstrap tests G̃a

N(I2) have a
performance which is better than the non-Studentized bootstrap tests GN(I2) but
far worse than that of the Studentized tests G̃N(I2). The Hilbert–Schmidt test is
again outperformed by all the other tests, with the exception of the non-Studentized
bootstrap test when N = 10,25. The results are similar for the non-Gaussian sce-
nario, apart for the fact that the asymptotic test does not respect the nominal level
(as expected, since it asks for X to be Gaussian).

To investigate the difference between projecting on one or several eigensub-
spaces, we also compare the power of the empirical bootstrap version of the
tests G̃N(I) for increasing projection subspaces, that is, for I = Il , l = 1,2,3,
where I1 = {(1,1)},I2 = {(i, j) : i, j = 1,2} and I3 = {(i, j) : i = 1, . . . ,4; j =
1, . . . ,10}. The results are shown in Figure 4 for the Gaussian scenario and Fig-
ure S1 in the supplementary material [Aston, Pigoli and Tavakoli (2016)] for the
non-Gaussian scenario. In the Gaussian scenario, for N = 10, the most power-
ful test is G̃N(I2). In this case, projecting onto a larger eigensubspace decreases
the power of the test dramatically. However, for N ≥ 25 the power of the test is
the largest for G̃N(I3), albeit only significantly larger than that of G̃N(I2) when
γ = 0.01. Our interpretation is that when the sample size is too small, including
too many eigendirection is bound to add only noise that degrades the performance
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FIG. 5. Empirical size (left) and power (right) of the separability test as functions of the projec-
tion set I . The test used is G̃N (I), with distribution approximated by the empirical bootstrap with
B = 1000. The left plot, respectively the right plot, was simulated from the Gaussian scenario with
γ = 0, respectively γ = 0.005, and N = 25. Each (r, s) rectangle represents the level/power of the
test based on the projection set I = {(i, j) : 1 ≤ i ≤ r,1 ≤ j ≤ s}.

of the test. However, as long as the separable eigenfunctions are estimated accu-
rately, projecting in a larger eigenspace improves the performance of test. See also
Figure S5 in the supplementary material [Aston, Pigoli and Tavakoli (2016)] for
the complete simulation results of the projection set I3.

This prompts us to investigate how the power of the test varies across all pro-
jection subsets

Ir,s = {
(i, j) : 1 ≤ i ≤ r,1 ≤ j ≤ s

}
,

r = 1, . . . ,32, s = 1, . . . ,7. The test used is G̃N(I), with distribution approxi-
mated by the empirical bootstrap with B = 1000. Figure 5 shows the empirical
size and power of the separability test in the Gaussian scenario for sample size
N = 25, and Figure S2, respectively Figure S3, of the supplementary material
[Aston, Pigoli and Tavakoli (2016)] shows the power for different sample sizes in
the Gaussian scenario, respectively the non-Gaussian scenario.

4.1.1. Discussion of simulation studies. The simulation studies above illus-
trate how the empirical bootstrap test based on the test statistics G̃N(I) usually
outperforms its competitors, albeit it is also much more computationally expen-
sive than the asymptotic test, whose performance are comparable in the Gaussian
scenario for large enough number of observations.

The choice of the best set of eigendirections to use in the definition of the test
statistics is difficult. It seems that K should be ideally chosen to be increasing
with N . This is reasonable, because larger values of N increase the accuracy of the
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estimation of the eigenfunctions and, therefore, we will be able to detect departures
from the separability in more eigendirections, including ones not only associated
with the largest eigenvalues. However, the optimal rate at which K should increase
with N is still an open problem, and will certainly depend in a complex way on
the eigenstructure of the true underlying covariance operator C.

This is confirmed by the results reported in Figure 5 and Figures S2 and S3
of the supplementary material [Aston, Pigoli and Tavakoli (2016)]. These indeed
show that taking into account too few eigendirections can result in smaller power,
while including too many of them can also decrease the power.

As an alternative to tests based on projections of DN , the tests based on the
squared Hilbert–Schmidt norm of DN , that is, |||DN |||22, could potentially detect
any departure from the separability hypothesis—as opposed to the tests G̃N(I).
But as the simulation study illustrates, they might be far less powerful in practice,
particularly in situations where the departure from separability is reflected in only
in a few eigendirections. Moreover, this approach still requires the computation of
the full covariance operator (although not its storage) and is therefore not feasible
for all applications.

4.2. Application to acoustic phonetic data. An interesting case where the pro-
posed methods can be useful are phonetic spectrograms. These data arise in the
analysis of speech records, since relevant features of recorded sounds can be better
explored in a two-dimensional time-frequency domain.

In particular, we consider here the dataset of 23 speakers from five different Ro-
mance languages that has been first described in Pigoli et al. (2014). The speakers
were recorded while pronouncing the words corresponding to the numbers from
one to ten in their language and the recordings are converted to a sampling rate of
16,000 samples per second. Since not all these words are available for all the speak-
ers, we have a total of 219 speech records. We focus on the spectrum that speakers
produce in each speech recording xL

ik(t), where L is the language, i = 1, . . . ,10
the pronounced word and k = 1, . . . , nLi the speaker, nLi being the number of
speakers available for language L and word i. We then use a short-time Fourier
transform to obtain a two-dimensional log-spectrogram: we use a Gaussian win-
dow function w(·) with a window size of 10 milliseconds and we compute the
short-time Fourier transform as

XL
ik(ω, t) =

∫ +∞
−∞

xL
ik(τ )w(τ − t)e−jωτ dτ.

The spectrogram is defined as the magnitude of the Fourier transform and the log-
spectrogram (in decibel) is therefore

SL
ik(ω, t) = 10 log10

(∣∣XL
ik(ω, t)

∣∣2)
.

The raw log-spectrograms SL
ik are then smoothed [with the robust spline smooth-

ing method proposed in Garcia (2010)] and aligned in time using an adaptation to
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2-D of the procedure in Tang and Müller (2008), the resulting log-spectrogram is
denoted SL

ik . The alignment is needed because a phase distortion can be present in
acoustic signals, due to difference in speech velocity between speakers. Since the
different words of each language have different mean log-spectrograms, the focus
of the linguistic analysis—which is the study cross-linguistics changes—is on the
residual log-spectrograms

RL
ik(ω, t) = SL

ik(ω, t) − 1

nLi

nLi∑
k=1

SL
ik(ω, t).

Assuming that all the words within the language have the same covariance struc-
ture, we disregard hereafter the information about the pronounced words that
generated the residual log-spectrogram, and use the surface data RL

j (ω, t), j =
1, . . . ,NL, that is, the set of observations for the language L including all speakers
and words, for the separability test. These observations are measured on an equi-
spaced grid with 81 points in the frequency direction and 100 points in the time
direction. This translate on a full covariance structure with about 33 × 106 degrees
of freedom. Thus, although the discretized covariance matrix is in principle com-
putable, its storage is a problem. More importantly, the accuracy of its estimate is
poor, since we have at most 50 observations within each language. For these rea-
sons, we would like to investigate if a separable approximation of each covariance
is appropriate.

We thus apply the Studentized version of the empirical bootstrap test for sepa-
rability to the residual log-spectrograms for each language individually. Here, we
take into consideration different choices for set of eigendirections to be used in the
definition of the test statistic G̃N(I), namely I = I1 = {(1,1)}, I = I2 = {(r, s) :
1 ≤ r ≤ 2,1 ≤ s ≤ 3}, I = I3 = {(r, s) : 1 ≤ r ≤ 8,1 ≤ s ≤ 10}. For all cases, we
use B = 1000 bootstrap replicates.

The resulting p-values for each language and for each set of indices can be
found in Table 1. Taking into account the multiple testings with a Bonferroni cor-
rection, we can conclude that the separability assumption does not appear to hold.
We can also see that the departure from separability is caught mainly on the first

TABLE 1
P -values for the test for the separability of the covariance operators of the residual

log-spectrograms of the five Romance languages, using the Studentized version of the empirical
bootstrap

I French Italian Portuguese American Spanish Iberian Spanish

I1 0.65 <0.001 <0.001 <0.001 <0.001
I2 0.078 0.197 0.022 0.36 0.013
I3 0.001 0.002 0.001 0.001 <0.001
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component for the two Spanish varieties. In conclusion, a separable covariance
structure is not a good fit for these languages, and thus, when practitioners use this
approximation for computational or modeling reasons, they should bear in mind
that relevant aspects of the covariance structure may be missed in the analysis.

5. Discussion and conclusions. We presented tests to verify the separabil-
ity assumption for the covariance operators of random surfaces (or hypersur-
faces) through hypothesis testing. These tests are based on the difference between
the sample covariance operator and its separable approximation—which we have
shown to be asymptotically Gaussian—projected onto subspaces spanned by the
eigenfunctions of the covariance of the data. While the optimal choice for this
subspace is still an open problem and may depend on the eigenstructure of the
full covariance operator, it is possible to give some advice on how to choose I in
practice:

• In many cases, a dimension reduction based on the separable eigenfunctions is
needed also for the follow up analysis. It is then recommended to use the same
subspace for the test procedure as well, so that it is clear whether the projection
of the covariance structure onto the subspace that will be used for the analysis
is separable or not, as shown in Section 3.

• As mentioned in Section 3, it is usually better to focus on the subset of eigen-
functions that it is possible to estimate accurately with the available data. These
can be again identified with bootstrap methods such as the one described in Hall
and Hosseini-Nasab (2006) or considering the dimension of the sample size. As
highlighted by the results of the simulation studies in Figure 5 and in Figures S2
and S3 of the supplementary material [Aston, Pigoli and Tavakoli (2016)], the
empirical power of the test starts to decline when eigendirections that cannot be
reasonably estimated with the available sample size are included.

• When in doubt, it is also possible to apply the test to more than one subset of
eigenfunctions and then summarize the response using a Bonferroni correction.
We follow this approach in the data application described in Section 4.2.

Though an asymptotic distribution is available in some cases, we also propose
to approximate the distribution of our test statistics using either a parametric boot-
strap (in case the distribution of the data is known) or an empirical bootstrap.
A simulation study suggests that the Studentized version of the empirical bootstrap
test gives the highest power in non-Gaussian settings, and has power comparable
to its parametric bootstrap counterpart and to the asymptotic test in the Gaussian
setting. We therefore use the Studentized empirical bootstrap for the application to
linguistic data, since it is not easy to assess the distribution of the data generating
process. The bootstrap test leads to the conclusion that the covariance structure is
indeed not separable.

Our present approach implicitly assumed that the functional observations (e.g.,
the hypersurfaces) were densely observed. Though this approach is not restricted
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to data observed on a grid, it leaves aside the important class of functional data
that are sparsely observed [e.g., Yao, Müller and Wang (2005)]. However, the ex-
tension of our methodology to the case of sparsely observed functional data is
also possible, as long as the estimator used for the full covariance is consistent
and satisfies a central limit theorem. While we have only detailed the methods for
2-dimensional surfaces, the extension to higher-order multidimensional functions
(such as 3-dimensional volumetric images from applications such as magnetic res-
onance imaging) is straightforward.

APPENDIX A: THE ASYMPTOTIC COVARIANCE STRUCTURE

LEMMA A.1. The covariance operator of the random operator Z, de-
fined in Theorem 2.3, is characterized by the following equality, in which � =
E[(X ⊗ X − C)⊗̃(X ⊗ X − C)]:

E
[
Tr

[
(A1 ⊗̃ A2)Z

]
Tr

[
(B1 ⊗̃ B2)Z

]]
= Tr

[
(A⊗̃B)�

] + Tr[BC]
Tr(C)

Tr
[
(A⊗̃IdH)�

]
− Tr[B2C2]

Tr[C2] Tr
[(

A⊗̃(B1 ⊗̃ IdH2)
)
�

]
− Tr[B1C1]

Tr[C1] Tr
[(

A⊗̃(IdH1 ⊗̃ B2)
)
�

]
+ Tr[AC]

Tr[C]
{

Tr
[
(IdH ⊗̃B)�

] + Tr[BC]
Tr[C] Tr[�]

− Tr[B2C2]
Tr[C2] Tr

[(
IdH ⊗̃(B1 ⊗̃ IdH2)

)
�

]
− Tr[B1C1]

Tr[C1] Tr
[(

IdH ⊗̃(IdH1 ⊗̃ B2)
)
�

]}
− Tr[A2C2]

Tr[C2]
{

Tr
[(

(A1 ⊗̃ IdH2)⊗̃B
)
�

]
(A.1)

+ Tr[BC]
Tr[C] Tr

[(
(A1⊗̃IdH2)⊗̃IdH

)
�

]
− Tr[B2C2]

Tr[C2] Tr
[(

(A1⊗̃IdH2)⊗̃(B1 ⊗̃ IdH2)
)
�

]
− Tr[B1C1]

Tr[C1] Tr
[(

(A1⊗̃IdH2)⊗̃(IdH1 ⊗̃ B2)
)
�

]}
− Tr[A1C1]

Tr[C1]
{

Tr
[(

(IdH1 ⊗̃ A2)⊗̃B
)
�

]
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+ Tr[BC]
Tr[C] Tr

[(
(IdH1 ⊗̃ A2)⊗̃IdH

)
�

]
− Tr[B2C2]

Tr[C2] Tr
[(

(IdH1 ⊗̃ A2)⊗̃(B1 ⊗̃ IdH2)
)
�

]
− Tr[B1C1]

Tr[C1] Tr
[(

(IdH1 ⊗̃ A2)⊗̃(IdH1 ⊗̃ B2)
)
�

]}
,

where A1,B1 ∈ S∞(H1),A2,B2 ∈ S∞(H2), and A = A1 ⊗̃ A2, B = B1 ⊗̃ B2,
H = H1 ⊗ H2, and IdH denotes the identity operator on the Hilbert space H .

PROOF. By the linearity of the expectation and the trace, and by the properties
of the partial trace, the computation of (A.1) boils down to the computation of
expressions of the form

E
[
Tr

[(
A′

1 ⊗̃ A′
2
)
Y

]
Tr

[(
B ′

1 ⊗̃ B ′
2
)
Y

]]
,

for general A′
1,B

′
1 ∈ S∞(H1),A

′
2,B

′
2 ∈ S∞(H2). Since E|||Y |||21 < ∞, we have

E
(
Tr

[(
A′

1 ⊗̃ A′
2
)
Y

]
Tr

[(
B ′

1 ⊗̃ B ′
2
)
Y

])
= Tr

[((
A′

1⊗̃A′
2
)⊗̃(

B ′
1 ⊗̃ B ′

2
))
E(Y ⊗̃Y)

]
= Tr

[((
A′

1⊗̃A′
2
)⊗̃(

B ′
1 ⊗̃ B ′

2
))

�
]
,

where � = E[(X ⊗ X − C)⊗̃(X ⊗ X − C)]. The computation of (A.1) follows di-
rectly. �

APPENDIX B: PROOFS

PROOF OF COROLLARY 2.4. To alleviate the notation, we shall assume with-
out loss of generality that μ = EX = 0. Using the properties of the tensor prod-
uct (see Section 1.1 of the supplementary material [Aston, Pigoli and Tavakoli
(2016)]), we get that TN(r, s) = Tr[(Âr ⊗̃ B̂s)

√
NDN ], where Âr = (ûr ⊗2 ûr ),

B̂s = (v̂s ⊗2 v̂s). Now notice that though Ar = ur ⊗2 ur and Bs = vs ⊗2 vs are
not estimable separately (since C1 and C2 are not identifiable), their ⊗̃-product is
identifiable, and is consistently estimated by Âr ⊗̃ B̂s (in Trace norm). Slutsky’s
lemma, Theorem 2.3 and the continuous mapping theorem imply therefore that
(TN(r, s))(r,s)∈I has the same asymptotic distribution of (T̃N(r, s))(r,s)∈I , where
T̃N (r, s) = Tr[(Ar ⊗̃ Bs)

√
NDN ]. This implies that(

TN(r, s)
)
(r,s)∈I

d−→ Z′ = (
Tr

[
(Ar ⊗̃ Bs)Z

])
(r,s)∈I as N → ∞,

where Z is a mean zero Gaussian random element of S1(H1 ⊗ H2) whose co-
variance structure is given by Lemma A.1. Z′ is therefore also Gaussian random
element, with mean zero and covariances

�(r,s),(r ′,s′) = cov
(
Z′

(r,s),Z
′
(r ′,s′)

) = E
[
Tr

[
(Ar⊗̃Bs)Z

]
Tr

[
(Ar ′ ⊗̃ Bs′)Z

]]
.
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Using Lemma A.1, we see that the computation of �(r,s),(r ′,s′) depends on the
terms Tr[(Ar ⊗̃ Bs)C] = λrγs , Tr[ArC1] = λr , Tr[BsC2] = γs , as well as on the
value of

Tr
[((

A′
1 ⊗̃ B ′

1
)⊗̃(

A′
2 ⊗̃ B ′

2
))

�
]

for general A′
1,A

′
2 ∈ S∞(H1),B

′
1,B

′
2 ∈ S∞(H2). Using the Karhunen–Loève ex-

pansion X = ∑
i,i′≥1 ξii′ui ⊗ vi′ , where ξii′ = 〈X,ui ⊗ vi′ 〉, we get

� = E
(
(X ⊗2 X − C)⊗̃(X ⊗2 X − C)

)
= ∑

i,i′,j,j ′,k,k′,l,l′≥1

βii′jj ′kk′ll′(uij ⊗̃ vi′j ′)⊗̃(ukl ⊗̃ vk′l′)

− ∑
i,i′,j,j ′

αii′αjj ′(uii ⊗̃ vi′i′)⊗̃(ujj ⊗̃ vj ′j ′),

where we have written uij = ui ⊗2 uj ∈ S1(H1), vij = vi ⊗2 vj ∈ S1(H2),
βii′jj ′kk′ll′ = E[ξii′ξjj ′ξkk′ξll′ ], αij = λiγj and used the identity uij ⊗̃ vi′j ′ =
(ui ⊗ vi′) ⊗2 (uj ⊗ vj ′). Therefore,

Tr
[((

A′
1⊗̃A′

2
)⊗̃(

B ′
1 ⊗̃ B ′

2
))

�
]

= ∑
i,i′,j,j ′,k,k′,l,l′≥1

βii′jj ′kk′ll′ Tr
[
A′

1uij

]
Tr

[
A′

2vi′j ′
]
Tr

[
B ′

1ukl

]
Tr

[
B ′

2vk′l′
]

− ∑
i,i′,j,j ′

αii′αjj ′ Tr
[
A′

1uii

]
Tr

[
B ′

1ujj

]
Tr

[
A′

2vi′i′
]
Tr

[
B ′

2vj ′j ′
]
,

and the computation of the variance �(r,s),(r ′,s′) follows from a straightforward
(though tedious) calculation. �

PROOF OF COROLLARY 2.5. We only need to compute and substitute the val-
ues of the fourth-order moments terms β̃ijkl in the expression given by Corol-
lary 2.4. Since β̃ijkl = E[ξ2

ij ξ
2
kl] = 3α2

kl if (i, j) = (k, l), and β̃ijkl = αijαkl if
(i, j) 	= (k, l), straightforward calculations give

β̃rs·· = 2α2
rs + αrs Tr(C) = β̃r··s,

β̃···· = Tr(C)2 + 2|||C|||22,
β̃·s·s′ = γsγs′

(
Tr(C1)

2 + 2δss′ |||C1|||22
)
,

β̃r·r ′· = λrλr ′
(
Tr(C2)

2 + 2δrr ′ |||C2|||22
)
,

β̃rs·s′ = 2δss′α2
rs + αrsγs′ Tr(C1),

β̃rsr ′· = 2δrr ′α2
rs + αrsλr ′ Tr(C2),

β̃···s = 2γ 2
s |||C1|||22 + γs Tr(C1)

2 Tr(C2),

β̃r··· = 2λ2
r |||C2|||22 + λr Tr(C1)Tr(C2)

2,
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where δij = 1 if i = j , and zero otherwise. The proof is completed by direct cal-
culations. �

APPENDIX C: PARTIAL TRACES

Letting S1(H1 ⊗ H2) denote the space of trace-class operators on H1 ⊗ H2,
we define the partial trace with respect to H1 as the unique linear operator Tr1 :
S1(H1 ⊗ H2) → S1(H2) satisfying Tr1(A ⊗̃ B) = Tr(A)B for all A ∈ S1(H1),
B ∈ S1(H2).

PROPOSITION C.1. The operator Tr1 is well defined, linear, continuous and
satisfies

(C.1)
∣∣∣∣∣∣ Tr1(A)

∣∣∣∣∣∣
1 ≤ |||A|||1, A ∈ S1(H1 ⊗ H2).

Furthermore, we have the following characterization of the partial trace. If T ∈
S1(H1 ⊗ H2),

(C.2) Tr
(
S Tr1(T )

) = Tr
(
(Id1 ⊗̃ S)T

)
for all S ∈ S∞(H2),

where Id1 is the identity operator on H1.

This result is proved in Section 4 in the supplementary material [Aston, Pigoli
and Tavakoli (2016)]. We can also define Tr2 : S1(H1 ⊗ H2) → S1(H1) analo-
gously. The following result gives an explicit formula for the partial traces of inte-
gral operators with continuous kernels.

PROPOSITION C.2. Let Ds ⊂ R
p,Dt ⊂ R

q be compact subsets, H1 =
L2(Ds,R),H2 = L2(Dt ,R), and H = L2(Ds × Dt,R) = H1 ⊗ H2. If C ∈
S1(L

2(Ds × Dt,R)) is a positive definite operator with symmetric continuous
kernel c = c(s, t, s′, t ′), that is, c(s, t, s′, t ′) = c(s′, t ′, s, t) for all s, s′ ∈ Ds, t, t

′ ∈
Dt , and

Cf (s, t) =
∫∫

Ds×Dt

c
(
s, t, s′, t ′

)
f

(
s′, t ′

)
ds′ dt ′, f ∈ L2(Ds × Dt,R),

then Tr1(C) is the integral operator on L2(Dt ,R) with kernel k(t, t ′) = ∫
Ds

c(s, t,

s, t ′) ds. The analogous result also holds for Tr2(C).

This result is proved in Section 4 in the supplementary material [Aston, Pigoli
and Tavakoli (2016)]. The next result states that the partial trace of a Gaussian
random trace-class operator is also Gaussian.

PROPOSITION C.3. Let Z ∈ S1(H1 ⊗ H2) be a Gaussian random element.
Then Tr1(Z) ∈ S1(H2) is a Gaussian random element.

PROOF. The proof is completed by noticing that A ∈ S∞(H2), we have
Tr(ATr1(Z)) = Tr((Id⊗̃A)Z), where the right-hand side is obviously Gaussian.

�
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ies and additional proofs.
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