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INFERENCE ON THE MODE OF WEAK DIRECTIONAL SIGNALS:
A LE CAM PERSPECTIVE ON HYPOTHESIS TESTING NEAR

SINGULARITIES

BY DAVY PAINDAVEINE1 AND THOMAS VERDEBOUT

Université libre de Bruxelles

We revisit, in an original and challenging perspective, the problem of
testing the null hypothesis that the mode of a directional signal is equal to
a given value. Motivated by a real data example where the signal is weak,
we consider this problem under asymptotic scenarios for which the signal
strength goes to zero at an arbitrary rate ηn. Both under the null and the alter-
native, we focus on rotationally symmetric distributions. We show that, while
they are asymptotically equivalent under fixed signal strength, the classical
Wald and Watson tests exhibit very different (null and nonnull) behaviours
when the signal becomes arbitrarily weak. To fully characterize how chal-
lenging the problem is as a function of ηn, we adopt a Le Cam, convergence-
of-statistical-experiments, point of view and show that the resulting limiting
experiments crucially depend on ηn. In the light of these results, the Watson
test is shown to be adaptively rate-consistent and essentially adaptively Le
Cam optimal. Throughout, our theoretical findings are illustrated via Monte-
Carlo simulations. The practical relevance of our results is also shown on the
real data example that motivated the present work.

1. Introduction. In applications involving multivariate data, it is not uncom-
mon that practitioners observe directions only, rather than both directions and
magnitudes. Such data are said to be directional and are viewed as realizations
of a random vector X with a distribution P that only charges the unit sphere
Sp−1 := {x ∈ R

p : ‖x‖2 = x′x = 1} of R
p . Common examples include data re-

lated to wind, earth magnetic field or cosmology. In most applications, the primary
focus is on location functionals, such as the spherical mean EP[X]/‖EP[X]‖ or the
mode of P (that is, the maximizer of the density of P with respect to an appropri-
ate dominating measure on the unit sphere). In this Introduction, we focus without
loss of generality on the spherical mean, θ(= θ(P)) say, since in the rest of the
paper, distributional assumptions will ensure that the mode and the spherical mean
do coincide.
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Inference on θ has been considered in many papers. Asymptotic score tests for
the null hypothesis H0 : θ = θ0 have been studied in Watson (1983), page 140
and Paindaveine and Verdebout (2015), while Wald tests were considered in
Hayakawa and Puri (1985), Hayakawa (1990) and Larsen and Jupp (2003). Ro-
bust M-estimation of θ has been tackled in Chang and Rivest (2001) and rank-
based procedures were proposed in Tsai and Sen (2007), Ley et al. (2013) and
Paindaveine and Verdebout (2015). The score test for H0 : θ = θ0 has recently
been shown to be robust to high-dimensionality in Ley, Paindaveine and Verde-
bout (2015).

Clearly, performing inference on θ is a semiparametric problem whose difficulty
depends on the underlying distribution P: if P is much concentrated about θ , then
it is in principle easy to, for example, identify small confidence zones for θ . On
the contrary, if P is close to the uniform distribution P0 over the unit sphere, then
performing inference on θ is much more delicate and the corresponding confidence
zones will be very broad. In line with this, the Fisher information for θ obtained
in Proposition 2.2 of Ley et al. (2013) (in the context of rotationally symmetric
distributions) explicitly depends on P and goes to the zero matrix as P converges
weakly to P0. This singularity, of course, is intimately related to the fact that θ is
not identifiable at P0. More generally, performing inference on θ is expected to be
nonstandard and difficult when λ = λ(P) = ‖EP[X]‖ is close to the zero value that
makes θ = EP[X]/λ(P) undefined.

So far, asymptotic inference on θ has been conducted under the assumption
that observations are randomly sampled from a distribution P that does not depend
on the sample size n. If, however, the directional signal is weak, meaning that P is
close to P0 (or that the corresponding λ value is close to zero), then such a standard
asymptotic scenario may be inappropriate for conducting inference on the signal
direction θ , in the sense that the resulting asymptotic distribution of some statistic
of interest may fail, even if n is large, to provide satisfactory approximations of the
corresponding fixed-n distribution. One of the goals of this paper is to show that
this may indeed be the case and that it may have dramatic implications on standard
inference procedures. Such considerations are relevant as soon as the directional
signal is weak, as it is the case for instance for the cosmic ray data set we will
consider in Section 6.

As a reaction, we consider in this paper asymptotic scenarios associated with
triangular arrays of observations where, for each positive integer n, Xn1, . . . ,Xnn

are randomly sampled from a distribution Pn over the unit sphere. We will allow
the strength of the signal, λn = λ(Pn) say, to go to zero at an arbitrary rate ηn.
In the semiparametric model that we will actually adopt [whose validity could be
tested a priori in the spirit of Preuss, Vetter and Dette (2013) or Boente, Rodriguez
and González Manteiga (2014)], this is equivalent to allowing the underlying dis-
tribution Pn to converge to the uniform distribution P0 at an arbitrary rate. In this
context, we will mainly focus on the problem of testing H(n)

0 : θn = θ0 against
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H(n)
1 : θn �= θ0, where θn = θ(Pn) is the parameter of interest and θ0(∈ Sp−1) is

fixed. We first consider the two most famous tests for this problem, namely the
score test of Watson (1983) [see also Ley, Paindaveine and Verdebout (2015) and
Paindaveine and Verdebout (2015)] and the traditional Wald test based on the sam-
ple spherical mean [see Hayakawa and Puri (1985), Hayakawa (1990) and Larsen
and Jupp (2003)]. We show that these tests exhibit very different asymptotic null
behaviours in the vicinity of uniformity: while the null behaviour of the Watson
test [see (3.2)] is robust to the possible convergence of Pn to P0, the null behaviour
of the Wald test [see (3.3)] is not and crucially depends on the rate ηn. This is in
sharp contrast with what happens away from uniformity, that is for Pn ≡ P, where
the Wald and Watson tests have been shown to be asymptotically equivalent under
the null; see Hayakawa (1990) in a specific parametric setup, or Theorem 3.1(i)
below in the broader semiparametric framework considered in the present paper.
In view of this asymptotic equivalence, practitioners might be tempted to use indif-
ferently the Wald or Watson tests in the vicinity of uniformity as well. However,
our results show that, for data sets such as the cosmological one considered in
Section 6, this might have dramatic consequences for inference.

Of course, robustness of the null behaviour in the vicinity of uniformity should
not be obtained at the expense of efficiency. To investigate whether this is the case
or not, we also study, as the signal strength goes to zero, the asymptotic distribution
of the Watson test under appropriate local alternatives. We show that the weaker
the signal (more precisely, the faster the rate ηn at which the signal strength goes to
zero), the less severe the alternatives that can be detected by the Watson test (more
precisely, the poorer its consistency rate), which is of course reasonable. Moreover,
if the rate at which the signal vanishes exceeds some threshold, then the Watson
test, like the Wald test, is blind to all alternatives, as severe as they may be. We
show that this threshold rate, that is, the fastest rate ηn for which some alternatives
can be detected by the Watson test, is the slowest rate for which the corresponding
distributions Pn form a sequence of probability measures that is contiguous to the
sequence associated with P0. Contiguity will therefore play an important role when
quantifying what we call “vicinity of uniformity.”

Finally, while it is of course nice to identify the alternatives that can be detected
by the Watson test for any possible rate ηn, some important questions remain:
(i) for a given rate ηn, does there exist a test that can see less severe alternatives
than those detected by the Watson test? (ii) If not, does the Watson test maximize
the asymptotic power against the least severe alternatives it can detect? To an-
swer these questions, we adopt Le Cam’s convergence-of-statistical-experiments
approach and derive, for any given rate ηn, the corresponding limiting experi-
ments. Interestingly, these limiting experiments are locally asymptotically normal
for any ηn yet depend crucially on ηn. Our results reveal that (i) the Watson test
is rate-adaptive, in the sense that, irrespective of ηn, no tests can show nontriv-
ial asymptotic powers against less severe alternatives than those detected by the
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Watson test. We also show that (ii) the Watson test is essentially adaptively Le
Cam optimal: it is uniformly (in the underlying distribution) optimal whenever the
underlying sequences of distributions Pn is not contiguous to P0 and uniformly
(in the underlying distribution) locally optimal under contiguity (see Section 5 for
details).

The problem we consider is characterized by the fact that the parameter of inter-
est θ becomes unidentified/undefined when a nuisance parameter takes some given
value (here, e.g., when λ = 0). Such situations have been considered in the liter-
ature in various frameworks and it has been recognized that performing inference
on θ when the nuisance is close to this particular value is challenging. This is par-
ticularly true in the field of econometrics; we refer to, for example, Dufour (1997),
Pötscher (2002), Forchini and Hillier (2003), Dufour (2006) or Forchini (2009). To
the best of our knowledge, the results of this paper are the first to discuss asymp-
totic optimality issues (through fine Le Cam-type results) in such close-to-singular
cases. Incidentally, another setup that is of a similar nature is the one associated
with Gaussian mixtures of the form (1 − λn)N (0,1) + λnN (θn,1). Many works
considered the problem of testing H(n)

0 : λn = 0 against alternatives under which
λn goes to zero and θn diverges to infinity in an appropriate way; see Cai, Jin and
Low (2007) and the references therein. If the null is rejected, then it becomes of
interest to identify the signal, that is, to perform inference on θn, which is close to
being unidentified in the setup considered where λn is close to zero. Our investiga-
tion brings precise results in a framework that is very similar to those considered
in these econometric and Gaussian-mixtures contexts.

The outline of the paper is as follows. In Section 2, we introduce the semipara-
metric model we will focus on and define the sequences of hypotheses converging
to the uniform on the unit sphere we will consider. In Section 3, we recall the
Wald and Watson tests and study their asymptotic null behaviour in the vicinity of
uniformity. We derive the corresponding local asymptotic powers in Section 4. In
Section 5, we show that, irrespective of the rate ηn at which convergence to the
uniform takes place, the resulting sequences of statistical experiments converge to
some limiting experiments (that depend on ηn). There, we also exploit these re-
sults to make precise what are the (Le Cam) optimality properties of the Watson
test (the lack of robustness of the Wald test, which will follow from the results
of Sections 3–4, justifies that we restrict to the Watson test when discussing op-
timality issues). Throughout, our theoretical findings are confirmed by simulation
exercises. In Section 6, we show the practical relevance of our results on a cosmic
ray data set. Finally, Section 7 summarizes the results and an Appendix collects
technical proofs.

2. Rotational symmetry and shrinking neighbourhoods of uniformity. As
announced in the Introduction, we will restrict to a specific, semiparametric, class
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of distributions on the unit sphere Sp−1. More precisely, we will consider abso-
lutely continuous distributions over Sp−1 (with respect to the surface area mea-
sure) that admit densities of the form

(2.1) x �→ cp,κ,f �(
p−1

2 )

2π(p−1)/2 f
(
κx′θ

)
,

where θ ∈ Sp−1, κ > 0 and f belongs to the collection F of functions from
R to R

+ that are monotone increasing, twice differentiable at 0, and satisfy
f (0) = f ′(0) = 1. Throughout, the distribution with density (2.1) will be said to
be rotationally symmetric about θ and will be denoted as R(θ , κ, f ). The restric-
tions on κ and f above, under which θ is both the unique mode and the spheri-
cal mean of the distribution, ensure identifiability of θ , κ and f . Clearly, κ mea-
sures the strength of the directional signal or its “concentration” (the larger κ ,
the more concentrated the probability mass is about θ ). If X has density (2.1),
then X′θ has density cp,κ,f (1 − t2)(p−3)/2f (t) over [−1,1] [see, e.g., Watson
(1983), page 136], which shows that the normalization constant in (2.1) is given
by cp,κ,f = 1/

∫ 1
−1(1 − t2)(p−3)/2f (t) dt . It is important to note that, for any p,

the boundary case κ = 0, irrespective of f , corresponds to the uniform distribu-
tion over Sp−1. The celebrated Fisher–von Mises–Langevin (FvML) distributions
correspond to the particular case t �→ f (t) = exp(t).

As explained in the Introduction, our main focus will be on sequences of hy-
potheses that are in the vicinity of the uniform distribution. In the present setup,
the corresponding “shrinking neighbourhoods” of uniformity require considering
triangular arrays of observations of the form

Xni, i = 1, . . . , n, n = 1,2, . . . ,

where, for any n, Xn1, . . . ,Xnn form a random sample from R(θn, κn, f ); the
resulting sequence of hypotheses will be denoted as P(n)

θn,κn,f . Here, (θn) is a se-

quence in Sp−1, (κn) is a sequence in R
+
0 , and f ∈ F is fixed. The sequence

of hypotheses under which, for any n, Xn1, . . . ,Xnn form a random sample from
the uniform over Sp−1 will be denoted as P(n)

0 (for convenience, we will also put

P(n)
θ,0,f := P(n)

0 for any θ , f ). Since κ = 0 corresponds to the uniform distribution

over Sp−1, it is natural to adopt the following definition, that allows P(n)
θn,κn,f to

converge to P(n)
0 at an arbitrary rate.

DEFINITION 2.1. Fix a sequence (θn) in Sp−1, f ∈ F , ξ > 0 and a sequence
(ηn) in R

+ that is o(1) as → ∞. Then the sequence of hypotheses P(n)
θn,κn,f is

in an ηn-neighbourhood of uniformity, with locality parameter ξ , if and only if
κn = √

pηnξ + o(ηn) as n → ∞.

The presence of
√

p in the expression κn = √
pηnξ + o(ηn) may be unexpected

at first and will be explained below Definition 2.2. To widen the scope of our
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results as much as possible, we will often consider more general rotationally sym-
metric distributions. We will say that the random p-vector X, with values in Sp−1,
is rotationally symmetric about location θ(∈ Sp−1) if OX is equal in distribution
to X for any orthogonal p × p matrix O satisfying Oθ = θ . Such general rotation-
ally symmetric distributions, that do not need be absolutely continuous nor have a
concentration that is governed by a parameter κ , are characterized by the location
parameter θ and the cumulative distribution function F of X′θ . The corresponding
distribution will be denoted by R(θ ,F ). Parallel as above, P(n)

θn,Fn
will then refer

to triangular arrays of observations for which Xn1, . . . ,Xnn form a random sam-
ple from R(θn,Fn), where (θn) is still a sequence in Sp−1 and where (Fn) is a
sequence of cumulative distribution functions on [−1,1].

Of course, it is desirable to identify conditions that make sequences of hy-
potheses P(n)

θn,Fn
be in ηn-neighbourhoods of uniformity. It actually follows from

(5.2)–(5.3) in Cutting, Paindaveine and Verdebout (2016a) that, under P(n)
θn,κn,f ,

with κn = √
pηnξ + o(ηn) [where ηn = o(1)], one has

(2.2) en1 := E
[
X′

n1θn

] = ηnξ√
p

+ o(ηn) and ẽn2 := Var
[
X′

n1θn

] = 1

p
+ o(1)

as n → ∞, which is to be compared with the values en1 = 0 and ẽn2 = 1/p ob-
tained under P(n)

0 . This motivates the following definition.

DEFINITION 2.2. Fix a sequence (θn) in Sp−1, a sequence (Fn) of cumulative
distribution functions on [−1,1], ξ > 0, and a sequence (ηn) in R

+ that is o(1)

as → ∞. Then the sequence of hypotheses P(n)
θn,Fn

is in an ηn-neighbourhood of
uniformity, with locality parameter ξ , if and only if

en1 = ηnξ√
p

+ o(ηn) and ẽn2 = 1

p
+ o(1)

as n → ∞, where en1 = E[X′
n1θn] and ẽn2 = Var[X′

n1θn] are evaluated under

P(n)
θn,Fn

.

In the present “low-dimensional” (fixed-p) setup, it might have been more nat-
ural to define ηn-neighbourhoods of uniformity with locality parameter ξ through
κn = ηnξ + o(ηn) in Definition 2.1 [which would then translate into en1 = κn =
(ηnξ)/p + o(ηn) in Definition 2.2]. Of course, appropriate reparametrization of
ξ into p±1/2ξ makes the definitions we adopted above and these possible alter-
native ones perfectly equivalent. The reason why we favour Definitions 2.1–2.2
is that they would make easier possible future comparisons between the low- and
high-dimensional cases.

Throughout, it will be of interest to compare the results obtained in the vicinity
of uniformity to the standard ones obtained away from uniformity. In the frame-
work of Definition 2.1, we will say that the sequence of hypotheses P(n)

θn,κn,f stays
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away from uniformity if and only if κn → κ (> 0) as n → ∞. This corresponds
to sequences of hypotheses P(n)

θn,Fn
for which en1 and ẽn2 converge to positive con-

stants (say e1 and ẽ2, resp.), with the important difference that ẽ2 here does not
need be equal to 1/p. For instance, in the FvML case with concentration κn con-
verging to κ (> 0), one has

(2.3) e1 = Ip/2(κ)

Ip/2−1(κ)
and ẽ2 = −p − 1

κ

Ip/2(κ)

Ip/2−1(κ)
+ 1 −

( Ip/2(κ)

Ip/2−1(κ)

)2
,

where Ir (·) denotes the order-r modified Bessel function of the first kind; see, for
instance, Lemma S.2.1 in Cutting, Paindaveine and Verdebout (2016b). To present
the results in a setup that is closely related to the one we adopted above for neigh-
bourhoods of uniformity, we then have the following definition (that should be
compared to Definition 2.2).

DEFINITION 2.3. Fix a sequence (θn) in Sp−1, a sequence (Fn) of cumulative
distribution functions over [−1,1], and ξ, ẽ2 > 0. Then the sequence of hypotheses
P(n)

θn,Fn
stays away from uniformity (or is in a 1-neighbourhood of uniformity), with

locality parameters ξ and ẽ2, if and only if

en1 = ξ√
p

+ o(1) and ẽn2 = ẽ2 + o(1)

as n → ∞, where en1 = E[X′
n1θn] and ẽn2 = Var[X′

n1θn] are evaluated under

P(n)
θn,Fn

.

As discussed in the Introduction, the closer to uniformity the distribution is,
the more challenging it should be to perform inference about θ . While we will
mostly focus on hypothesis testing in the sequel, we present here the following
point estimation result, that describes how the performance of the most natural
estimator for θ , namely the (sample) spherical mean, which is the MLE for θ in
the FvML parametric submodel, deteriorates when the underlying distribution gets

closer to uniformity (throughout,
D→ denotes weak convergence).

THEOREM 2.1. Let (ηn) be either the sequence ηn ≡ 1 or a sequence in R
+

that is o(1). Assume that P(n)
θ,Fn

is in an ηn-neighbourhood of uniformity, with lo-
cality parameters ξ and ẽ2 if ηn ≡ 1 and with locality parameter ξ otherwise. Let
θ̂n = X̄n/‖X̄n‖, with X̄n := 1

n

∑n
i=1 Xni . Then we have the following as n → ∞

under P(n)
θ,Fn

:

(i) if ηn ≡ 1, then

√
n(θ̂n − θ)

D→ N
(

0,
1 − ξ2/p − ẽ2

ξ2(1 − 1/p)

(
Ip − θθ ′));
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(ii) if ηn = o(1) with
√

nηn → ∞, then

√
nηn(θ̂n − θ)

D→ N
(

0,
1

ξ2

(
Ip − θθ ′));

(iii) if
√

nηn → 1, then

θ̂n
D→ Z

‖Z‖ with Z ∼N (ξθ , Ip);

(iv) if
√

nηn → 0, then θ̂n
D→ Unif(Sp−1), the uniform distribution over Sp−1.

Part (i) of the result states that standard root-n consistency is obtained away
from uniformity. The faster the underlying distribution converges to the uniform
in (ii), the poorer the resulting consistency rate of θ̂n, that may become arbitrarily
slow. In case (iii), θ̂n fails to be consistent, but its asymptotic distribution still de-
pends on the true value of θ . Finally, in case (iv), we are so close to the uniform
case that θ̂n behaves like uniform noise on the sphere, hence does not bear any
information on θ . This result therefore confirms that the performance of θ̂n deteri-
orates (monotonically) as the speed at which the underlying distribution converges
to the uniform increases.

Theorem 2.1 also hints that the rate ηn ∼ 1/
√

n will play a special role in
this paper. This rate is actually the slowest one for which P(n)

0 and P(n)
θn,κn,f , with

κn = √
pηnξ + o(ηn), are mutually contiguous [this is a corollary of Theorem 3.1

in Cutting, Paindaveine and Verdebout (2016a), that states that, for any fixed
f ∈ F , the sequence of (concentration) parametric models {P(n)

θn,κ,f : κ ≥ 0} is lo-

cally and asymptotically normal (LAN) at κ = 0, with contiguity rate 1/
√

n]. In
line with Theorem 2.1, most results in the sequel will discriminate between the
following regimes: away from uniformity (ηn ≡ 1), beyond contiguity [ηn = o(1)

with
√

nηn → ∞], under contiguity (ηn ∼ 1/
√

n) and under strict contiguity
(
√

nηn → 0).

3. Contiguity-robust testing. In the most general rotationally symmetric
setup introduced in the previous section, we consider the problem of testing the
null hypothesis that the modal location θ is equal to some given location θ0, under
unspecified cumulative distribution function F . More precisely, using the notation
introduced in Section 2, we consider the testing problem

(3.1) H(n)
0 : ∪F

{
P(n)

θ0,F

}
against H(n)

1 : ⋃
θ �=θ0

∪F

{
P(n)

θ,F

}
,

where θ0(∈ Sp−1) is fixed and the unions in F are over the collection of cumula-
tive distribution functions on [−1,1]. In this section, we investigate whether or not
the two most classical tests for this problem remain valid (in the sense that they
still meet asymptotically the nominal level constraint) in the vicinity of uniformity.
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These classical tests are based on the sample average X̄n := 1
n

∑n
i=1 Xni of the

observations Xni , i = 1, . . . , n at hand, and take the following form:

(i) the Watson score test φW
n [Watson (1983), page 140] rejects the null H(n)

0
at asymptotic level α whenever

(3.2) Wn := n(p − 1)X̄′
n(Ip − θ0θ

′
0)X̄n

1 − 1
n

∑n
i=1(X

′
niθ0)2

> χ2
p−1,1−α,

where Ip denotes the p-dimensional identity matrix and χ2
�,1−α stands for the α-

upper quantile of the χ2
� distribution.

(ii) The Wald test φS
n [Hayakawa (1990), Hayakawa and Puri (1985)] rejects

the null H(n)
0 at asymptotic level α if

(3.3) Sn := n(p − 1)(X̄′
nθ0)

2θ̂
′
n(Ip − θ0θ

′
0)θ̂n

1 − 1
n

∑n
i=1(X

′
niθ0)2

> χ2
p−1,1−α,

where θ̂n = X̄n/‖X̄n‖ is the estimator of θn considered in Theorem 2.1.

The test statistics Wn and Sn are known to be asymptotically equivalent in prob-
ability away from uniformity, which is confirmed in part (i) of Theorem 3.1 below.
The main goal of this theorem, however, is to describe the asymptotic null be-
haviour of these test statistics in the vicinity of uniformity (see the Appendix for a
proof).

THEOREM 3.1. Let (ηn) be either the sequence ηn ≡ 1 or a sequence in R
+

that is o(1). Assume that P(n)
θn,Fn

is in an ηn-neighbourhood of uniformity, with
locality parameters ξ and ẽ2 if ηn ≡ 1 and with locality parameter ξ otherwise,
for some ξ, ẽ2 > 0. Then we have the following as n → ∞ under P(n)

θ0,Fn
: (i) if

ηn ≡ 1 or (ii) if ηn = o(1) with
√

nηn → ∞, then

Wn
D→ χ2

p−1 and Sn
D→ χ2

p−1

[and one actually then has Sn = Wn + oP(1)]; (iii) if
√

nηn → 1, then

Wn
D→ χ2

p−1 and Sn
D→

(
1 + Q

(Z + ξ)2

)−1
Q,

where Z ∼N (0,1) and Q ∼ χ2
p−1 are independent; (iv) if

√
nηn → 0, then

Wn
D→ χ2

p−1 and Sn
D→

(
1 + Q

Z2

)−1
Q,

still where Z ∼N (0,1) and Q ∼ χ2
p−1 are independent.
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FIG. 1. Rejection frequencies of the Watson (green) and Wald (red) tests for H(n)
0 : θn =

θ0(= (0,0,1)′), when performed, at nominal level α = 5%, on M = 10,000 independent random
samples of size n = 100 (left) and size n = 1000 (right) from the FvML distribution on S2 with modal

location θ0 and a concentration κ� such that e
(�)
n1 = E[X(�)′

ni θ0] = n−�/6/
√

p, for (i) � = 0 (away
from uniformity), (ii) � = 1,2 (beyond contiguity), (iii) � = 3 (under contiguity) and (iv) � = 4,5
(under strict contiguity).

This result shows that the asymptotic equivalence in probability between the
Watson and Wald test statistics survives beyond contiguity [case (ii)], but does not
under (strict) contiguity. Also, we see that the Watson test φW

n remains asymptot-
ically valid in the vicinity of uniformity, irrespective of the rate ηn at which the
convergence to the uniform takes place. In contrast, the Wald test φS

n fails to be
asymptotically valid under (strict) contiguity, hence is not robust. In the contigu-
ous case [case (iii)], the asymptotic null distribution of the Wald statistic depends
on the locality parameter ξ , which, even in the unrealistic case in which it would
be known that the contiguous regime is the “true” one, would jeopardise imple-
mentation of the Wald test.

To illustrate Theorem 3.1 numerically, we generated, for each value of � =
0,1, . . . ,5, a collection of M = 10,000 random samples X(�)

n1 , . . . ,X(�)
nn from the

FvML distribution on S2 with modal location θ0 = (0,0,1)′ and a concentra-
tion κ� that is such that e

(�)
n1 = E[X(�)′

ni θ0] = n−�/6/
√

p; this yields, for � > 0,
n−�/6-neighbourhoods of uniformity with locality parameter ξ = 1, and, for � = 0,
1-neighbourhoods of uniformity with locality parameters ξ = 1 and ẽ2 = ẽ2(κ�)

from (2.3). The various values of � clearly allow us to consider all regimes con-
sidered in Theorem 3.1: (i) away from uniformity (� = 0), (ii) beyond contiguity
(� = 1,2), (iii) under contiguity (� = 3) and (iv) under strict contiguity (� = 4,5).
Figure 1 reports, for sample sizes n = 100 and n = 1000, the resulting empirical
rejection frequencies of the Watson and Wald tests for H(n)

0 : θn = θ0(= (0,0,1)′),
performed at nominal level 5%. Clearly, this confirms the robustness of the Wat-
son test and reveals that the Wald test becomes extremely conservative close to
uniformity.
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4. Local asymptotic powers. Theorem 3.1 above shows that the classical
Watson test φW

n remains valid in the vicinity of uniformity. But of course, it is
desirable that this validity-robustness is not obtained at the expense of efficiency,
that is, it is desirable that the Watson test still exhibits high local asymptotic pow-
ers in the vicinity of uniformity. We now investigate whether this is the case or
not.

Consider a local perturbation θ0 +νnτn of the null value θ0, where the sequence
(τn) in R

p converges to τ (�= 0), so that the severity, in terms of rate, of such
local alternatives is measured by the sequence νn. Of course, it is assumed that
θ0 + νnτn ∈ Sp−1 for any n, which imposes that 1 = (θ0 + νnτn)

′(θ0 + νnτn) =
1 + 2νnθ

′
0τn + ν2

n‖τn‖2, or equivalently, that

(4.1) θ ′
0τn = −1

2
νn‖τn‖2(= O(νn)

)
.

If νn = o(1), then this leads to θ ′
0τ = 0. If νn ≡ 1, then we must rather have θ ′

0τ =
−‖τ‖2/2. The following result derives the asymptotic distributions of the Watson
and Wald test statistics under appropriate alternatives of this form.

THEOREM 4.1. Let (ηn) be either the sequence ηn ≡ 1 or a sequence in R
+

that is o(1). Let (τn) be a sequence in R
p converging to τ (�= 0) and that is such

that θ0 +νnτn ∈ Sp−1 for any n, where νn = 1/(
√

nηn) if
√

nηn → ∞ (away from
uniformity or beyond contiguity) and νn ≡ 1 if

√
nηn = O(1) (under contiguity

or under strict contiguity). Assume that P(n)
θ0+νnτn,Fn

is in an ηn-neighbourhood of
uniformity, with locality parameters ξ and ẽ2 if ηn ≡ 1 and with locality parameter
ξ otherwise, for some ξ, ẽ2 > 0. Then we have the following as n → ∞ under
P(n)

θ0+νnτn,Fn
: (i) if ηn ≡ 1, then

Wn
D→ χ2

p−1

(
1 − 1/p

1 − ξ2/p − ẽ2
ξ2‖τ‖2

)
and

Sn
D→ χ2

p−1

(
1 − 1/p

1 − ξ2/p − ẽ2
ξ2‖τ‖2

)

[and one actually then has Sn = Wn + oP(1)]; (ii) if ηn = o(1) with
√

nηn → ∞,
then

Wn
D→ χ2

p−1
(
ξ2‖τ‖2) and Sn

D→ χ2
p−1

(
ξ2‖τ‖2)

[and one then still has Sn = Wn + oP(1)]; (iii) if
√

nηn → 1, then

Wn
D→ χ2

p−1

(
1

4
ξ2‖τ‖2(4 − ‖τ‖2)) and

Sn
D→

(
1 + Qξ,τ

(Z + ξ − ξ‖τ‖2/2)2

)−1
Qξ,τ ,
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where Z ∼ N (0,1) and Qξ,τ ∼ χ2
p−1(ξ

2‖τ‖2) are independent; (iv) if
√

nηn → 0,
then

Wn
D→ χ2

p−1 and Sn
D→

(
1 + Q

Z2

)−1
Q,

where Z ∼ N (0,1) and Q ∼ χ2
p−1 are independent.

This result shows that the asymptotic equivalence in probability, away from uni-
formity and beyond contiguity, between the Watson and Wald tests not only holds
under the null but also extends to the local alternatives considered. Both tests there
exhibit nontrivial asymptotic powers against alternatives that are increasingly se-
vere when the rate ηn at which the underlying distribution converges to the uniform
gets faster; note that, in line with Theorem 2.1, the consistency rate goes from the
standard νn = 1/

√
n rate away from uniformity to rates that are arbitrarily slow

close to contiguity. Under contiguity, the Watson test detects alternatives at a con-
stant rate νn ≡ 1, yet fails to be consistent there, irrespective of the fixed alternative
θn ≡ θ0 + τ (∈ Sp−1) considered. Finally, under strict contiguity, both the Watson
and Wald tests are blind to such fixed alternatives, hence cannot show nontrivial
asymptotic powers against any alternative there.

The noncentrality parameter in the asymptotic distribution of Wn in Theo-
rem 4.1(iii) may seem puzzling at first sight, compared to the more standard ones
in (i)–(ii). Note that the Watson test essentially rejects the null for large values of
‖(Ip − θ0θ

′
0)X̄n‖, that is, for large values of the norm of the projection of X̄n onto

the orthogonal complement to θ0. It therefore makes sense that the noncentrality
parameter in Theorem 4.1(iii) (resp., the corresponding asymptotic power of the
Watson test) increases from its minimum value zero (resp., its minimum value α)
to its maximum value when ‖τ‖ increases from 0 (θ is equal to the “north pole”
θ0) to

√
2 (θ belongs to the “equator” with respect to θ0) and decreases from its

maximum value to its minimum value zero (resp., its minimum value α) when ‖τ‖
increases from

√
2 (θ belongs to the equator) to 2 (θ is equal to the “south pole”

−θ0).
We performed the following simulation exercise to see how well the finite-

sample behaviours of the Watson and Wald tests actually reflect the theoretical
results of Theorem 4.1. For each combination of � = 0,1,2,3 and r = 0,1, . . . ,6,
we generated M = 10,000 independent FvML random samples X(�,r)

n1 , . . . ,X(�,r)
nn

of size n = 200 on S2 with a modal location θ (�)
r given in (4.2) below and a concen-

tration κ� that is such that e
(�,r)
n1 = E[X(�)′

ni θ (�)
r ] = n−�/4/

√
p. The integer � allows

us to consider the various asymptotic regimes, namely (i) away from uniformity
(� = 0), (ii) beyond contiguity (� = 1), under contiguity (� = 2), and under strict
contiguity (� = 3). Alternatives were chosen according to the rates in Theorem 4.1,
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and are associated with

(4.2) θ (�)
r :=

⎧⎪⎪⎨
⎪⎪⎩

θ0 + n
�
4 − 1

2 ( r
6τmax)

‖θ0 + n
�
4 − 1

2 ( r
6τmax)‖

, for � = 0,1,

θ0 + τ r = vr , for � = 2,3,

with θ0 = (0,0,1)′, τmax = (2,0,0)′, r = 0,1, . . . ,6, and vr = (sin(rπ/6),0,

cos(rπ/6))′; clearly, irrespective of �, the value r = 0 corresponds to the null hy-
pothesis, whereas r = 1,2, . . . ,6 provide increasingly severe alternatives.

The resulting rejection frequencies of the following tests for H(n)
0 : θn = θ0, all

performed at nominal level 5%, are plotted in Figure 2: (1) the Watson test φW
n in

(3.2), (2) the Wald test φS
n in (3.3), (3) the “contiguity-Wald” test φS

n,ξ ;C (Wald-C)

[resp., (4) the “strict-contiguity-Wald” test φS
n;SC (Wald-C)] rejecting the null when

the Wald test statistic Sn exceeds the upper-α quantile of the asymptotic null dis-
tribution in Theorem 3.1(iii) [resp., in Theorem 3.1(iv)]. For (3)–(4), these critical
values were estimated from a random sample of size 106 drawn from the corre-
sponding asymptotic null distribution (note that, for φS

n,ξ ;C, estimating the critical
value, hence conducting this test, not only requires assuming that we are in the
contiguous regime, but further requires knowing the true value of the correspond-
ing locality parameter ξ , which is of course unrealistic). In none of the asymptotic
regimes are all four tests considered. Asymptotic powers of the Watson test are
also plotted (for � = 0,1 and for � = 3, these asymptotic powers coincide with
those of the Wald test and of the “strict-contiguity-Wald test,” resp.).

Results are in a very good agreement with Theorem 4.1. While the Watson and
Wald tests provide essentially the same empirical powers away from uniformity
(� = 0), they show opposite nonnull behaviours under contiguity (� = 2). There,
the Watson test detects alternatives of the form θn = θ0 + τ [with the nonmono-
tonic power pattern described when commenting on the noncentrality parameter
in Theorem 4.1(iii) above], while the Wald test basically never rejects such alter-
natives. Interestingly, the contiguity-Wald test φS

n,ξ ;C behaves very poorly as well,
since its empirical rejection frequencies, in line with the corresponding asymp-
totic powers, are uniformly smaller than the nominal level α. Finally, under strict
contiguity, the Watson and “strict-contiguity-Wald” tests, in accordance with The-
orems 3.1–4.1, provide empirical rejection frequencies virtually equal to the nom-
inal level, while the standard Wald test basically never rejects the null there.

5. Adaptive Le Cam optimality. Away from uniformity (i.e., for ηn ≡ 1), the
Watson test shows nontrivial asymptotic powers against alternatives of the form
θn = θ0 + n−1/2τn, where the sequence τn is O(1) but not o(1) and is such that
θ0 + n−1/2τn ∈ Sp−1 for any n. No tests can improve on this consistency rate,
which is a consequence of the local asymptotic normality (LAN) result derived in
Paindaveine and Verdebout (2015). Better: the same LAN result shows that, in the
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FIG. 2. Rejection frequencies of various tests for H(n)
0 : θn = θ0(= (0,0,1)′), when performed,

at nominal level α = 5%, on M = 10,000 independent random samples of size n = 200 from

the FvML distribution on S2 with modal location θ
(�)
r in (4.2) and a concentration κ� such that

e
(�,r)
n1 = E[X(�,r)′

ni θ
(�)
r ] = n−�/4/

√
p, for (i) � = 0 (away from uniformity), (ii) � = 1 (beyond conti-

guity), (iii) � = 2 (under contiguity) and (iv) � = 3 (under strict contiguity). In each case, the value
r = 0 corresponds to the null hypothesis, whereas r = 1,2, . . . ,6 provide increasingly severe alter-
natives. Some asymptotic power curves are plotted in dashed lines.

FvML case, the Watson test is locally asymptotically maximin, hence provides, in
the Le Cam maximin sense, the best asymptotic powers that can be achieved in the
FvML case. However, from the results in Paindaveine and Verdebout (2015), it is
easy to conclude that, still away from uniformity, the optimality of the Watson test
does not extend beyond the FvML setup.
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This raises natural questions in the vicinity of uniformity: in the corresponding
regimes (beyond contiguity, under contiguity, under strict contiguity), is the Wat-
son test still rate-optimal? If it is, does it still enjoy optimality properties that are
parallel to those stated above? To answer these questions, we derive the following
LAN result (see the Appendix for a proof).

THEOREM 5.1. Consider the sequence of parametric models P(n)
ηn,ξ,f =

{P(n)
θ,κn,f : θ ∈ Sp−1}, with κn = √

pηnξ + o(ηn) as n → ∞, where (ηn) is a se-

quence in R
+ that is o(1), ξ > 0 is fixed, and f :R→R

+ is monotone increasing,
twice differentiable at 0, and satisfies f (0) = f ′(0) = 1. If

√
nηn → ∞ (beyond

contiguity), let

νn = 1√
nηn

, �
(n)
θ ,ξ := ξ

√
np

(
Ip − θθ ′)X̄n and �θ ,ξ := ξ2(Ip − θθ ′);

if
√

nηn → 1 (under contiguity), let

νn ≡ 1, �
(n)
θ ,ξ := ξ

√
npX̄n − ξ2θ and �θ ,ξ := ξ2Ip;

if
√

nηn = o(1) (under strict contiguity), let

νn ≡ 1, �
(n)
θ ,ξ := 0 and �θ ,ξ := 0.

Let further (τn) be a bounded sequence in R
p that is not o(1) and that is such

that θ + νnτn ∈ Sp−1 for any n. Then, for any θ ∈ Sp−1, we have that, as n → ∞
under P(n)

θ,κn,f ,

log
dP(n)

θ+νnτn,κn,f

dP(n)
θ,κn,f

= τ ′
n�

(n)
θ,ξ − 1

2
τ ′

n�θ ,ξτn + oP(1) and �
(n)
θ ,ξ

D→ Np(0,�θ ,ξ ).

In other words, P(n)
ηn,ξ,f is locally asymptotically normal, with central sequence

�
(n)
θ ,ξ , Fisher information matrix �θ,ξ , and contiguity rate νn.

Beyond contiguity, a locally asymptotically maximin test for H(n)
0 : θn = θ0 is

therefore rejecting the null at asymptotic level α whenever

Q
(n)
BC := (

�
(n)
θ0,ξ

)′
�−

θ0,ξ
�

(n)
θ0,ξ

= npX̄′
n

(
Ip − θ0θ

′
0
)
X̄n > χ2

p−1,1−α,

where A− denotes the Moore–Penrose pseudoinverse of A. Under P(n)
θ0,κn,f , with

κn = √
pηnξ + o(ηn), where ηn = o(1) and

√
nηn → ∞, we have E[(X′

n1θ0)
2] =

1/p + o(1); see (2.2). Lemma A.1 (see the Appendix) thus implies that

Wn = Q
(n)
BC + oP(1)
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as n → ∞ under the same sequence of hypotheses—hence also, from contiguity,
under sequences of local alternatives of the form P(n)

θ0+τn/(
√

nηn),κn,f
. We conclude

that, beyond contiguity, the Watson test remains locally asymptotically maximin.
Actually, this optimality property, quite remarkably, holds at virtually any f (i.e.,
at any f meeting the conditions of Theorem 5.1), which is in contrast with the fact
that, away from uniformity, the Watson test is locally asymptotically maximin at
the FvML only. Now, by applying the Le Cam third lemma, the LAN result above
allows us to derive the asymptotic distribution of the Watson test statistic under
the sequences of local alternatives P(n)

θ0+τn/(
√

nηn),κn,f
; doing so actually confirms,

in the present absolutely continuous setup, the nonnull result obtained for Wn in
Theorem 4.1(ii).

The story is different under contiguity. Proceeding as above, it may be tempting
there to consider the test rejecting the null H(n)

0 : θn = θ0 at asymptotic level α

whenever

(5.1) Q
(n)
C;oracle := �

(n)
θ0,ξ

(�θ0,ξ )
−�

(n)
θ0,ξ

= ‖√npX̄n − ξθ0‖2 > χ2
p,1−α,

based on the central sequence and information matrix obtained under contiguity
(see Theorem 5.1). This test, however, is much less satisfactory than the optimal
test we just considered beyond contiguity. The reason is two-fold. First, as hinted
by the notation in (5.1), this test is an oracle test, in the sense that it requires
knowing the underlying value of the locality parameter ξ . Second, the optimality
properties of this test (if any) are unclear, due to the nonstandard nature of the
limiting experiment at hand.

To comment on the latter point, note that the LAN result above, under contigu-
ity, leads, for any fixed θ , to a limiting experiment of the form(

R
p,Bp,Pθ,ξ = {

PNp(ξ2τ ,ξ2Ip) : τ ∈ R
p such that θ + τ ∈ Sp−1})

(5.2)
= (

R
p,Bp,Pθ,ξ = {

PNp(ξ2τ ,ξ2Ip) : τ ∈ −θ + Sp−1}).
The problem of testing H(n)

0 : θn = θ0 against H(n)
1 : θn �= θ0 translates, in the

corresponding θ0-limiting experiment, into the testing problem

(5.3)

{
H0 : τ = 0,

H1 : τ ∈ (−θ0 + Sp−1) \ {0},
based on a single observation � from the p-variate normal distribution with mean
ξ2τ and covariance matrix ξ2Ip . While the limiting experiment in (5.2) is, as al-
ways in the LAN framework, a Gaussian shift experiment, the nonlinear constraint
τ ∈ −θ0 +Sp−1 on its location parameter makes this limiting experiment nonstan-
dard. And to the best of our knowledge, no globally optimal test is known for the
problem (5.3), irrespective of the optimality concept considered (leading to most
powerful tests, maximin tests, most stringent tests, etc.). This prevents the con-
struction of locally asymptotically optimal tests in the corresponding sequence of
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experiments P(n)
ηn,ξ,f and makes unclear whether or not the test in (5.1) is optimal

in some sense.
However, it is easy to show that the test rejecting the null of (5.3) whenever

1

ξ2 �′(Ip − θ0θ
′
0
)
� > χ2

p−1,1−α

is locally maximin at level α for the testing problem (5.3). As a corollary, under
contiguity, the test rejecting the null H(n)

0 : θn = θ0 at asymptotic level α whenever

Q
(n)
C := 1

ξ2 �
(n)′
θ0,ξ

(
Ip − θ0θ

′
0
)
�

(n)
θ0,ξ

= npX̄′
n

(
Ip − θ0θ

′
0
)
X̄n > χ2

p−1,1−α

is bilocally asymptotically maximin, where the term “bilocally” refers to local-
in-θ and local-in-τ optimality (standard locally asymptotically optimal tests are
associated with local-in-θ optimality only). Since Lemma A.1 still ensures that,
under contiguity, Wn = Q

(n)
C + oP(1) under the null (hence also under sequences

of contiguous local alternatives), the Watson test also enjoys this bilocal asymp-
totic optimality property. Interestingly, the oracle test in (5.1) does not enjoy the
same optimality property, which is easily seen by comparing, as ‖τ‖ → 0, the
asymptotic powers of the Watson test [resulting from Theorem 4.1(iii)] with those
of the oracle test (obtained from the fact that, in view of the Le Cam third lemma,

(5.4) Q
(n)
C;oracle

D→ χ2
p

(
ξ2‖τ‖2)

under alternatives of the form P(n)
θ0+τ ,κn,f , with κn = √

p/nξ + o(n−1/2)). Of
course, the oracle test might still outperform the Watson test for more severe al-
ternatives, that is, for larger values of ‖τ‖. This is actually the case, as we show
in Figure 3 by comparing the corresponding asymptotic powers as well as the re-
spective empirical rejection frequencies, obtained in a simulation exercise similar
to the one in the upper-right panel of Figure 2 (see the caption of Figure 3 for
details).

Beyond these Le Cam optimality issues, the LAN result in Theorem 5.1 guaran-
tees that the Watson test is at least rate-optimal under contiguity: in the contiguous
regime, the Watson test shows nontrivial asymptotic powers against θ -fixed alter-
natives of the form P(n)

θ0+τ ,κn,f , with κn = √
p/nξ + o(n−1/2) [Theorem 4.1(iii)],

and no tests can detect less severe local alternatives of the form P(n)
θ0+νnτn,κn,f , with

νn = o(1), (τn) bounded, and κn = √
p/nξ + o(n−1/2). Moreover, it is still so

that, under contiguity, the local asymptotic powers of the Watson test in Theo-
rem 4.1(iii) can be obtained by applying the Le Cam third lemma with the central
sequence and Fisher information matrix from (the contiguous-regime part of) The-
orem 5.1 above (under contiguity, the same result can actually also be obtained by
applying the third lemma to the LAN result in Theorem 3.1 of Cutting, Paindav-
eine and Verdebout (2016a), which is quite remarkable since this LAN result is
with respect to κ , unlike the one in Theorem 5.1 that is with respect to θ ).
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FIG. 3. Rejection frequencies of the Watson test in (3.2) and of the oracle test in (5.1) when testing

H(n)
0 : θn = θ0(= (0,0,1)′), at nominal level α = 5%, in M = 10,000 independent random samples

of size n = 200 from the FvML distribution on S2 with modal location θ r = θ0 + vr [see (4.2)] and
a concentration κ such that en1 = E[X′

niθ r ] = 1/
√

np (corresponding to the contiguous regime), for
r = 0 (null hypothesis) and r = 1,2, . . . ,6 (increasingly severe alternatives). The distributional setup
is therefore the same as in the upper-right panel of Figure 2. The dashed lines are the corresponding
asymptotic power curves.

Finally, under strict contiguity, Theorem 5.1 implies that no asymptotic α-level
tests can detect even the most severe alternatives of the form θn = θ0 + τ , so that
the Watson test may be considered optimal in this case, too. Of course, the opti-
mality here is somewhat degenerate since the trivial α-test, that randomly rejects
the null with probability α, is also optimal under strict contiguity.

6. Real data example. In this section, we illustrate the practical relevance of
our results on a cosmic ray data set. This data set, that was first used in Toyoda
et al. (1965) to study primary cosmic rays in certain energy regions, has also been
analysed, among others, in Fisher, Lewis and Embleton (1987), page 102 and Ley,
Sabbah and Verdebout (2014). When applied to the n = 148 arrival directions of
cosmic rays at hand, the classical Rayleigh test of uniformity over S2 rejects the
null at asymptotic level 5%; yet visual inspection of the left panel of Figure 4
below suggests that concentration is quite moderate, so that inference on the modal
location θ may be delicate. We will compare, in the light of the results derived in
the previous sections, the confidence zones for θ obtained by inverting the Watson
and Wald tests.
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FIG. 4. (Left:) The n = 148 measurements of cosmic ray directions from Toyoda et al. (1965).
(Middle:) the asymptotic 95%-confidence zone CW

n;0.95 obtained by inverting the Watson test. (Right:)

the corresponding confidence zone, CS
n;0.95, obtained from the Wald test. Both for the Watson and the

Wald confidence zones, the symmetric component containing the point estimate θ̂n is shown with
lighter colors (light green and orange, resp.).

Letting again θ̂n = X̄n/‖X̄n‖, the Watson and Wald tests lead to the confidence
zones (at asymptotic confidence level 1 − α)

(6.1) CW
n;1−α :=

{
θ ∈ Sp−1 : Wn(θ) := n(p − 1)X̄′

n(Ip − θθ ′)X̄n

1 − 1
n

∑n
i=1(X

′
niθ)2

≤ χ2
p−1,1−α

}

and

CS
n;1−α

(6.2)

:=
{
θ ∈ Sp−1 : Sn(θ) := n(p − 1)(X̄′

nθ)2θ̂
′
n(Ip − θθ ′)θ̂n

1 − 1
n

∑n
i=1(X

′
niθ)2

≤ χ2
p−1,1−α

}
,

respectively. Note that Wn(θ) and Sn(θ) are respectively obtained from (3.2) and
(3.3) by substituting θ for θ0, hence are the Watson and Wald test statistics to be
used when testing that the modal location is equal to θ .

Since p is small for the cosmic ray data set, it is computationally feasi-
ble to evaluate these confidence zones by simply considering a sufficiently fine
grid over Sp−1. The resulting confidence zones (at asymptotic confidence level
1 − α = 95%) are plotted in Figure 4. Clearly, the Wald confidence zone is much
larger than the Watson one. This arguably results from the fact that the Wald test
is overly conservative in the vicinity of uniformity. In contrast, the Watson test,
that was proved to be robust to arbitrarily mild departures from uniformity, pro-
vides more accurate confidence zones. We conclude that, in the present example
showing little deviation from uniformity, the Watson and Wald procedures behave
in perfect agreement with our asymptotic results in Theorem 3.1 and with their
finite-sample illustration in Figure 1.

Two further comments are in order:
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(i) The bipolar nature of the Watson/Wald confidence zones may be puzzling
at first. However, the invariance of Wn(θ) and Sn(θ) under reflections of θ about
the centre of Sp−1 directly implies that the confidence zones in (6.1)–(6.2) are
always symmetric with respect to this centre. In practice, of course, the “symmetric
components” of these confidence zones do play very different roles and it is natural
to favour the one containing the spherical mean θ̂n (which is plotted in light colors
in Figure 4), even though this symmetric component alone is not a 95%-confidence
zone for θ .

(ii) The symmetric component of the Watson confidence zone containing the
point estimate θ̂n, namely the intersection between CW

n;0.95 and the hemisphere with

pole θ̂n, is made of a well-behaved connected region. In contrast, the correspond-
ing Wald symmetric component is not connected but rather is the union of a zone
containing θ̂n and a zone containing the great circle orthogonal to θ̂n. Inspection
of (6.2) makes it clear that this great circle will always be part of the Wald confi-
dence zone, which is of course undesirable (incidentally, this is also at the origin
of the uniformly biased “contiguity-Wald” power curve in the upper-right panel of
Figure 2).

When the underlying distribution does not deviate much from uniformity, Wat-
son confidence zones therefore outperform their Wald counterparts on all counts.
It is remarkable that these two procedures that so far have been perceived as per-
fectly interchangeable (due to their asymptotic equivalence away from uniformity)
behave so differently in the vicinity of uniformity.

7. Summary. In the spherical location problem, the classical Watson test, un-
like the Wald test based on the spherical mean, is robust to asymptotic scenarios
in which the underlying distribution converges to the uniform distribution. Irre-
spective of the rate of this convergence (leading to the beyond contiguity, under
contiguity, and under strict contiguity regimes), the Watson test exhibits the same
asymptotic (χ2

p−1) distribution as under distributions that are fixed away from uni-
formity. The Watson test is also rate-adaptive, in the sense that, irrespective of
the regime considered, no tests can show nontrivial asymptotic powers against less
severe alternatives than those detected by the Watson test.

This test further enjoys excellent, Le Cam-type, optimality properties that can
be summarized as follows: (i) for distributions that are fixed away from uniformity,
the Watson test is optimal under FvML densities. (ii) Beyond contiguity, the Wat-
son test is optimal under virtually any distribution, which is of course a stronger
optimality property. (iii) Under contiguity, the Watson test is, uniformly in the un-
derlying distribution, locally-in-τ optimal. (iv) Finally, under strict contiguity, the
Watson test is optimal, but in a degenerate way, since, so close to uniformity, the
trivial α-test is also optimal. We conclude that, interestingly, the Watson test shows
a “nonmonotonic” optimality pattern as one gets closer to uniformity.
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Throughout, Monte-Carlo studies showed that, irrespective of the regime con-
sidered, our asymptotic results actually provide very accurate descriptions of the
finite-sample behaviours of the Watson and Wald tests, even for moderate sample
sizes (of the order of 100 or 200). Finally, the practical relevance of our results was
illustrated on a real data set that shows little deviation from uniformity.

APPENDIX: PROOFS

Most proofs in this technical appendix are based on the so-called tangent-
normal decomposition of Xni , that is, on the expression Xni = uniθn + vniSni ,
where

uni := X′
niθn, vni :=

√
1 − u2

ni and

Sni :=
⎧⎪⎨
⎪⎩

Xni − (X′
niθn)θn

‖Xni − (X′
niθn)θn‖ , if Xni �= ±θθθn,

0, otherwise.

We start with the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. Fix a sequence of hypotheses P(n)
θ ,Fn

such that

en1 = ηnξ√
p

+ o(ηn) and ẽn2 = ẽ2 + o(1),

with ξ, ẽ2 > 0. This covers all cases considered in the statement of the theorem [if
ηn = o(1), then we work with ẽ2 = 1/p]. Letting en1 = ηnξn/

√
p, where (ξn) →

ξ , write

√
nX̄n −

√
nηnξn√

p
θ = 1√

n

n∑
i=1

(uni − en1)θ + 1√
n

n∑
i=1

vniSni =: Vn1 + Vn2,

say. The Lindeberg CLT for triangular arrays yields

(
Vn1
Vn2

)
D→ N

⎛
⎝(

0
0

)
,

⎛
⎝ẽ2θθ ′ 0

0
d

p

(
Ip − θθ ′)

⎞
⎠
⎞
⎠ ,

where we let

(A.1) d := 1 − e2

1 − 1/p
with e2 := ẽ2 +

(
lim

n→∞ en1

)2
.

Consequently,

(A.2) Yξ,η
n := √

nηn

(
η−1

n

√
pX̄n − ξnθ

) D→ N
(
0,pẽ2θθ ′ + d

(
Ip − θθ ′)).

Parts (iii)–(iv) of the result directly follow (note that we have ẽ2 = e2 = 1/p in
these cases), and we may thus focus on parts (i)–(ii). Applying the uniform delta
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method [see Theorem 3.8 in van der Vaart (1998)] to (A.2), with the mapping
x �→ x/‖x‖, then yields

√
nηn(θ̂n − θ) = √

nηnξ
−1(Ip − θθ ′)(η−1

n

√
pX̄n − ξnθ

)+ oP(1)
(A.3)

= ξ−1(Ip − θθ ′)Yξ,η
n + oP(1),

which, by using (A.2) again, establishes the result. �

LEMMA A.1. Let (θn) be an arbitrary sequence in Sp−1 and (Fn) be an arbi-
trary sequence of cumulative distribution functions on [−1,1]. Then 1

n

∑n
i=1 u2

ni =
E[(X′

n1θn)
2] + oP(1) as n → ∞ under P(n)

θn,Fn
(where the expectation is evaluated

under P(n)
θn,Fn

).

PROOF. Since supn E[|uni |2] ≤ 1, the result readily follows from the weak law
of large numbers for triangular arrays. �

PROOF OF THEOREM 3.1. Fix a sequence of hypotheses P(n)
θ0,Fn

such that

en1 = ηnξ√
p

+ o(ηn) and ẽn2 = ẽ2 + o(1),

with ξ, ẽ2 > 0. As in the proof of Theorem 2.1, we restrict to ẽ2 = 1/p whenever
ηn = o(1). Write then en1 = ηnξn/

√
p, where (ξn) → ξ . All derivations in the

proof of Theorem 2.1 then hold, with θ replaced with θ0 everywhere. In particular,
(A.2) yields

(A.4)

(
θ ′

0Yξ,η
n(

Ip − θ0θ
′
0
)
Yξ,η

n

)
D→ N

((
0
0

)
,

(
pẽ2 0

0 d
(
Ip − θ0θ

′
0
))) ,

where d is as in (A.1), still with e2 := ẽ2 + (limn→∞ en1)
2. Note then that the

Watson statistic satisfies

Wn = (p − 1)(Yξ,η
n )′(Ip − θ0θ

′
0)Y

ξ,η
n

p(1 − 1
n

∑n
i=1 u2

ni)
(A.5)

= 1

d

(
Yξ,η

n

)′(Ip − θ0θ
′
0
)
Yξ,η

n + oP(1),

where we used Lemma A.1. It follows that Wn
D→ χ2

p−1 in all four cases (i)–(iv).
We then turn to the Wald statistic Sn and consider first the cases (i)–(ii). Note

that (A.3) entails

nη2
nθ̂

′
n

(
Ip − θ0θ

′
0
)
θ̂n = nη2

n(θ̂n − θ0)
′(Ip − θ0θ

′
0
)
(θ̂n − θ0)

= ξ−2(Yξ,η
n

)′(Ip − θ0θ
′
0
)
Yξ,η

n + oP(1).
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This leads to

Sn = n(p − 1)(X̄′
nθ0)

2

1 − 1
n

∑n
i=1 u2

ni

1

nη2
nξ

2

(
Yξ,η

n

)′(Ip − θ0θ
′
0
)
Yξ,η

n + oP(1)

= 1

nη2
nξ

2

(√
npX̄′

nθ0
)2

Wn + oP(1) = 1

nη2
nξ

2

(
θ ′

0Yξ,η
n + √

nηnξn

)2
Wn + oP(1),

which shows that Sn = Wn + oP(1), hence proves (i)–(ii) for Sn.

Turning to cases (iii)–(iv), note that (A.2) rewrites
√

npX̄
D→ N (λξθ0, Ip), with

λξ = ξ and λξ = 0 in case (iii) and in case (iv), respectively (recall that ẽ2 = e2 =
1/p in these cases). Hence,

Sn = (p − 1)(
√

npθ ′
0X̄n)

2

p(1 − 1
n

∑n
i=1 u2

ni)
θ̂

′
n

(
Ip − θ0θ

′
0
)
θ̂n

= (√
npθ ′

0X̄n

)2 [√npX̄n]′(Ip − θ0θ
′
0)[√npX̄n]

‖√npX̄n‖2
+ oP(1)

= (√
npθ ′

0X̄n

)2 ‖√np(Ip − θ0θ
′
0)X̄n‖2

‖(√npθ ′
0X̄n)θ0 + √

np(Ip − θ0θ
′
0)X̄n‖2

+ oP(1)

= (
√

npθ ′
0X̄n)

2‖√np(Ip − θ0θ
′
0)X̄n‖2

(
√

npθ ′
0X̄n)2 + ‖√np(Ip − θ0θ

′
0)X̄n‖2

+ oP(1).

By combining (A.5) and (A.2), we then obtain

(A.6) Sn = (
√

npθ ′
0X̄n)

2Wn

(
√

npθ ′
0X̄n)2 + Wn

+ oP(1) = (θ ′
0Yξ,η

n + √
nηnξn)

2Wn

(θ ′
0Yξ,η

n + √
nηnξn)2 + Wn

+ oP(1).

From (A.4)–(A.5), it is seen that Zn := θ ′
0Yξ,η

n is asymptotically standard normal,
Wn is asymptotically χ2

p−1, and that Zn and Wn are asymptotically mutually inde-
pendent. This provides

Sn = (Zn + λξ )
2

(Zn + λξ )2 + Wn

Wn + oP(1) =
(

1 + Wn

(Zn + λξ )2

)−1
Wn + oP(1),

which establishes the result. �

PROOF OF THEOREM 4.1. Fix a sequence of hypotheses P(n)
θn,Fn

such that

en1 = ηnξ√
p

+ o(ηn) and ẽn2 = ẽ2 + o(1),

with ξ, ẽ2 > 0 and θn := θ0 + νnτn, where (νn) is as in the statement of The-
orem 4.1 [we still restrict to ẽ2 = 1/p whenever ηn = o(1)]. Letting en1 =
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ηnξn/
√

p, where (ξn) → ξ , and proceeding as in the proof of Theorem 2.1, we
can write

√
nX̄n −

√
nηnξn√

p
θn = 1√

n

n∑
i=1

(uni − en1)θn + 1√
n

n∑
i=1

vniSni =: Wn1 + Wn2,

say, where Sni is now based on θn. Under P(n)
θn,Fn

,

(
Wn1
Wn2

)
D→N

⎛
⎝(

0
0

)
,

⎛
⎝ẽ2θ0αθ ′

0α 0

0
d

p

(
Ip − θ0αθ ′

0α

)
⎞
⎠
⎞
⎠ ,

where we let θ0α := θ0 + δτ , with δ := 1 if νn ≡ 1 (under contiguity or under strict
contiguity) and δ := 0 otherwise (away from contiguity or beyond contiguity).
Parallel to (A.2), we obtain

Yξ,η
n := √

nηn

(
η−1

n

√
pX̄ − ξnθ0

)
(A.7)

D→ N
(
λξτ ,pẽ2θ0αθ ′

0α + d
(
Ip − θ0αθ ′

0α

))
,

where λξ is as in the proof of Theorem 3.1. Letting τθ := (Ip − θ0θ
′
0)τ = τ −

δ(θ ′
0τ )θ0, this provides

(A.8)

(
θ ′

0Yξ,η
n(

Ip − θ0θ
′
0
)
Yξ,η

n

)
D→ N

(
λξ

(
θ ′

0τ
τθ

)
,�

)
,

with

� :=
(
d + (pẽ2 − d)

(
1 + δθ ′

0τ
)2 0

0 d
(
Ip − θ0θ

′
0
)+ (pẽ2 − d)δτ θτ

′
θ

)
.

Note that the Watson statistic still satisfies Wn = T′
nTn + oP(1) [see (A.5)],

where Tn := d−1/2(Ip −θ0θ
′
0)Y

ξ,η
n . We then readily obtain Wn

D→ χ2
p−1(λ

2
ξ‖τθ‖2/

d), where the asymptotic distribution rewrites χ2
p−1(ξ

2‖τ‖2/d), χ2
p−1(ξ

2‖τ‖2),

χ2
p−1(ξ

2‖τθ‖2) and χ2
p−1, in cases (i), (ii), (iii) and (iv), respectively. Since a direct

computation shows that ξ2‖τθ‖2 coincides with the noncentrality parameter in part
(ii) of the result, this completes the proof for the Watson test.

Turning to the Wald test statistic Sn. For cases (i)–(ii), the exact same reasoning
as in the proof of Theorem 3.1, this time applied to (A.7), yields that Sn = Wn +
oP(1) under the sequence of hypotheses considered, which yields the result. Now,
in cases (iii)–(iv), the result in (A.6), or equivalently,

Sn =
(

1 + Wn

(θ ′
0Yξ,η

n + λξ )2

)−1
Wn + oP(1),
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still holds under the sequence of hypotheses considered. The results in cases
(iii)–(iv) then directly follow from (A.8)—in case (iii), recall indeed that θ ′

0τ =
−‖τ‖2/2.

�

PROOF OF THEOREM 5.1. (Under contiguity). Note that, in the contiguous
regime, κn = √

p/nξ + o(n−1/2) as n → ∞. Writing �
(n)
θ := √

npX̄′
nθ , Theo-

rem 3.1 in Cutting, Paindaveine and Verdebout (2016a) then implies that, for any
sequence (θn) in Sp−1,

log
dP(n)

θn,κn,f

dP(n)
0

= ξ�
(n)
θn

− ξ2

2
+ oP(1),

as n → ∞ under P(n)
0 . Using (4.1), it then readily follows that

log
dP(n)

θ+τn,κn,f

dP(n)
θ ,κn,f

= log
dP(n)

θ+τn,κn,f

dP(n)
0

− log
dP(n)

θ ,κn,f

dP(n)
0

= ξ
(
�

(n)
θ+τn

− �
(n)
θ

)+ oP(1) = ξ
√

npX̄′
nτn + oP(1)

= τ ′
n�

(n)
θ ,ξ + ξ2τ ′

nθ + oP(1) = τ ′
n�

(n)
θ ,ξ − 1

2
τ ′

n�θ ,ξτn + oP(1)

as n → ∞ under P(n)
0 , hence, from contiguity, also under P(n)

θ,κn,f . Now, (5.2)–(5.3)

in Cutting, Paindaveine and Verdebout (2016a) show that, under P(n)
θn,κn,f , with

κn = √
pηnξ + o(ηn) [where ηn = o(1)], one has

en1 = ηnξ√
p

+ o(ηn) and ẽn2 = 1

p
+ o(1).

Consequently, (A.2) applies and provides
√

npX̄ − ξθ
D→ N (0, Ip) as n → ∞

under P(n)
θ,κn,f . This establishes the result in the contiguous regime.

(Under strict contiguity). From (A.7) in Cutting, Paindaveine and Verdebout
(2016a), we learn that, for any sequence (θθθn) in Sp−1,

E
[(

log
dP(n)

θn,κn,f

dP(n)
0

)2]
= O

(
n2κ4

n

)+ O
(
nκ2

n

)

as n → ∞ under P(n)
0 . In the strictly contiguous case, this readily provides

log
dP(n)

θ+τn,κn,f

dP(n)
θ,κn,f

= log
dP(n)

θ+τn,κn,f

dP(n)
0

− log
dP(n)

θ ,κn,f

dP(n)
0

= oP(1)

as n → ∞ under P(n)
0 . The result then follows from the mutual contiguity of P(n)

0

and P(n)
θ,κn,f .



INFERENCE ON THE MODE OF WEAK DIRECTIONAL SIGNALS 825

(Beyond contiguity). Write

log
dP(n)

θ+νnτn,κn,f

dP(n)
θ,κn,f

=
n∑

i=1

(
logf

(
κnuni + κnνnτ

′
nXni

)− logf (κnuni)
)

= Ln1 + Ln2 + Ln3,

with

Ln1 := nκnνnτ
′
nX̄n, Ln2 := κnνnτ

′
n

n∑
i=1

(
ϕf (κnuni) − 1

)
Xni

and

Ln3 :=
n∑

i=1

(
logf

(
κnuni + κnνnτ

′
nXni

)− logf (κnuni) − κnνnϕf (κnuni)τ
′
nXni

)
,

where we let ϕ(z) := f ′(z)/f (z). The result then follows from the following
lemma. �

LEMMA A.2. Let the assumptions of Theorem 5.1 hold and restrict to the
case where

√
nηn → ∞. Then, as n → ∞ under P(n)

θ,κn,f , (i) Ln1 = τ ′
n�

(n)
θ ,ξ −

1
2τ ′

n�θ ,ξτn + oP(1), where �
(n)
θ,ξ

D→ N (0,�θ ,ξ ); (ii) Ln2 = − ξ2

2 ϕ′
f (0)‖τn‖2 +

oP(1); (iii) Ln3 = ξ2

2 ϕ′
f (0)‖τn‖2 + oP(1).

PROOF. Throughout this proof, we write κn = √
pηnξn, where ξn → ξ . All ex-

pectations, variances and stochastic convergence statements will be under P(n)
θ,κn,f .

(i) Since ηn is o(1), we still have that en1 = κn/p + o(κn) and ẽn2 = 1/p + o(1)

under P(n)
θ,κn,f . Consequently, (A.2) applies and provides

√
npX̄n − √

nηnξnθ
D→

N (0, Ip), which implies that

(A.9)
√

n(X̄n − en1θ)
D→ N

(
0,

1

p
Ip

)
.

Jointly with the fact that τ ′
nθ = o(1) in the present setup [see (4.1)], this implies

that

τ ′
n

[
�

(n)
θ ,ξ − ξn

√
np(X̄n − en1θ)

] = −ξn
√

npθ ′(X̄n − en1θ)
(
τ ′

nθ
)+ oP(1) = oP(1).

Using (4.1), this readily yields

Ln1 = nκnνnτ
′
n(X̄n − en1θ) + nκnen1νnτ

′
nθ

= nκnνnτ
′
n(X̄n − en1θ) − 1

2
nκnen1ν

2
n‖τn‖2

= τ ′
n

[
ξn

√
np(X̄n − en1θ)

]− 1

2
nκ2

nν2
n

(
1

p
+ o(1)

)
‖τn‖2

= τ ′
n�

(n)
θ ,ξ − 1

2
τ ′

n�θ ,ξτn + oP(1).
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Finally, the asymptotic normality result for �
(n)
θ ,ξ readily follows by pre-multiplying

(A.9) with ξ
√

p(Ip − θθ ′).
(ii) Using the tangent-normal decomposition of Xni , split Ln2 into

Ln2 = κnνn

n∑
i=1

(
ϕf (κnuni) − 1

)
uni

(
τ ′

nθ
)+ τ ′

n

(
κnνn

n∑
i=1

(
ϕf (κnuni) − 1

)
vniSni

)

=: Ln2a + τ ′
nLn2b,

say. Since

E[Ln2a] = nκnνnE
[(

ϕf (κnun1) − 1
)
un1

](
τ ′

nθ
)

= −1

2
nκnν

2
n‖τn‖2cp,κn,f

∫ 1

−1

(
1 − s2)(p−3)/2(

ϕf (κns) − 1
)
sf (κns) ds,

we obtain

E[Ln2a] = −1

2
nκ2

nν2
n‖τn‖2

(
ϕ′

f (0)cp

∫ 1

−1

(
1 − s2)(p−3)/2

s2 ds + o(1)

)

= − 1

2p
nκ2

nν2
nϕ′

f (0)‖τn‖2 + o
(
nκ2

nν2
n

)
(A.10)

= −ξ2

2
ϕ′

f (0)‖τn‖2 + o(1).

Now,

Var[Ln2a] = nκ2
nν2

nVar
[(

ϕf (κnun1) − 1
)
un1

](
τ ′

nθ
)2

≤ nκ2
nν2

nE
[(

ϕf (κnun1) − 1
)2

u2
n1
](

τ ′
nθ

)2

≤ 1

4
nκ2

nν4
n‖τn‖4E

[(
ϕf (κnun1) − 1

)2]
,

where

E
[(

ϕf (κnun1) − 1
)2]

= κ2
ncp,κn,f

∫ 1

−1

(
1 − s2)(p−3)/2

(
ϕf (κns) − 1

κns

)2
s2f (κns) ds

(A.11)

= κ2
n

(
ϕ′

f (0)
)2

cp

∫ 1

−1

(
1 − s2)(p−3)/2

s2 ds + o
(
κ2
n

)

= κ2
n

p

(
ϕ′

f (0)
)2 + o

(
κ2
n

) = O
(
κ2
n

)
.

Thus, Var[Ln2a] = O(nκ4
nν4

n) = O(n−1), which, jointly with (A.10), implies that

(A.12) Ln2a = −ξ2

2
ϕ′

f (0)‖τn‖2 + oP(1).
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Now, using (A.11) again, we obtain

E
[‖Ln2b‖2] = nκ2

nν2
nE

[(
ϕf (κnun1) − 1

)2
v2
n1
]

≤ nκ2
nν2

nE
[(

ϕf (κnun1) − 1
)2] = O

(
nκ4

nν2
n

) = o(1).

Consequently, Ln2b = oP(1), which, jointly with (A.12), establishes part (ii) of the
result.

(iii) Decomposing Ln3 into
∑n

i=1 Tni , write

E[Tn1] = E
[
logf

(
κnun1 + κnνn

(
τ ′

nθun1 + τ ′
nSn1vn1

))− logf (κnun1)

− κnνnϕf (κnuni)
(
τ ′

nθun1 + τ ′
nSn1vn1

)]
= cp,κn,f

μp

∫ 1

−1

∫
S⊥

θ

(
1 − s2)(p−3)/2

f (κns)

× {
logf

(
κns + κnνn

(
τ ′

nθs + τ ′
nu

√
1 − s2

))
− logf (κns) − κnνnϕf (κns)

(
τ ′

nθs + τ ′
nu

√
1 − s2

)}
dσ(u) ds,

where σ(·) stands for the surface area measure on S⊥
θ := {x ∈ Sp−1 : x′θ = 0} and

μp := σ(S⊥
θ ). Letting t = κns then provides

E[Tn1] = cp,κn,f

μpκn

∫ κn

−κn

∫
S⊥

θ

(
1 −

(
t

κn

)2)(p−3)/2
f (t)

×
{

logf

(
t + κnνn

(
τ ′

nθ

(
t

κn

)
+ τ ′

nu

√
1 −

(
t

κn

)2))

− logf (t) − κnνnϕf (t)

(
τ ′

nθ

(
t

κn

)
+ τ ′

nu

√
1 −

(
t

κn

)2)}
dσ(u) dt

= cp,κn,f κnν
2
n

2μp

∫ κn

−κn

∫
S⊥

θ

(
1 −

(
t

κn

)2)(p−3)/2

×
(
τ ′

nθ

(
t

κn

)
+ τ ′

nu

√
1 −

(
t

κn

)2)2
gn(t,u)f (t) dσ (u) dt,

where

gn(t,u) :=
(

logf

(
t + κnνn

(
τ ′

nθ

(
t

κn

)
+ τ ′

nu

√
1 −

(
t

κn

)2))

− logf (t) − κnνnϕf (t)

(
τ ′

nθ

(
t

κn

)
+ τ ′

nu

√
1 −

(
t

κn

)2))

/(
1

2
κ2
nν2

n

(
τ ′

nθ

(
t

κn

)
+ τ ′

nu

√
1 −

(
t

κn

)2)2)
.
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Hence,

E[Tn1] = cp,κn,f κnν
2
n

2μp

(
τ ′

nθ
)2

×
∫
S⊥

θ

(∫ κn

−κn

(
t

κn

)2(
1 −

(
t

κn

)2)(p−3)/2
gn(t,u)f (t) dt

)
dσ(u)

+ cp,κn,f κnν
2
n

2μp

τ ′
n

×
(∫

S⊥
θ

(∫ κn

−κn

(
1 −

(
t

κn

)2)(p−1)/2
gn(t,u)f (t) dt

)
uu′ dσ(u)

)
τn

+ cp,κn,f κnν
2
n

μp

(
τ ′

nθ
)
τ ′

n

×
∫
S⊥

θ

(∫ κn

−κn

(
t

κn

)(
1 −

(
t

κn

)2)(p−2)/2
gn(t,u)f (t) dt

)
udσ(u).

By using the identities∫ κn

−κn

(
t

κn

)2(
1 −

(
t

κn

)2)(p−3)/2
dt = κn

cp

cp

∫ 1

−1
s2(1 − s2)(p−3)/2

ds = κn

cpp
,

∫ κn

−κn

(
1 −

(
t

κn

)2)(p−1)/2
dt = κn

∫ 1

−1

(
1 − s2)(p+2−3)/2

ds

= κn

cp+2
= κn(p − 1)

cpp

and ∫ κn

−κn

∣∣∣∣ t

κn

∣∣∣∣
(

1 −
(

t

κn

)2)(p−2)/2
dt = κn

∫ 1

−1
|s|(1 − s2)(p−2)/2

ds = 2κn

p
,

we obtain

E[Tn1] = cp,κn,f κ2
nν2

n

2cppμp

(
τ ′

nθ
)2
∫
S⊥

θ

(∫ κn

−κn

hn(t)gn(t,u)f (t) dt

)
dσ(u)

+ cp,κn,f (p − 1)κ2
nν2

n

2cppμp

τ ′
n

×
(∫

S⊥
θ

(∫ κn

−κn

kn(t)gn(t,u)f (t) dt

)
uu′ dσ(u)

)
τn

+ 2cp,κn,f κ2
nν2

n

pμp

(
τ ′

nθ
)
τ ′

n

∫
S⊥

θ

(∫ κn

−κn

�n(t)gn(t,u)f (t) dt

)
uy(u),
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where we let

hn(t) := ( t
κn

)2(1 − ( t
κn

)2)(p−3)/2∫ κn−κn
( t
κn

)2(1 − ( t
κn

)2)(p−3)/2 dt
,

kn(t) := (1 − ( t
κn

)2)(p−1)/2∫ κn−κn
(1 − ( t

κn
)2)(p−1)/2 dt

and

�n(t) :=
t
κn

(1 − ( t
κn

)2)(p−2)/2∫ κn−κn
| t
κn

|(1 − ( t
κn

)2)(p−2)/2 dt
.

Splitting the third term of E[Tn1] according to
∫ 0
−κn

+ ∫ κn

0 , we then obtain

E[Tn1] = cp,κn,f κ2
nν2

n

2cpp

(
τ ′

nθ
)2
(

1

μp

∫
S⊥

θ

(
(logf )′′(0) + o(1)

)
dσ(u)

)

+ cp,κn,f (p − 1)κ2
nν2

n

2cpp
τ ′

n

(
1

μp

∫
S⊥

θ

(
(logf )′′(0) + o(1)

)
uu′ dσ(u)

)
τn

− cp,κn,f κ2
nν2

n

cpp

(
τ ′

nθ
)
τ ′

n

(
1

μp

∫
S⊥

θ

(
(logf )′′(0) + o(1)

)
udσ(u)

)

+ cp,κn,f κ2
nν2

n

cpp

(
τ ′

nθ
)
τ ′

n

(
1

μp

∫
S⊥

θ

(
(logf )′′(0) + o(1)

)
udσ(u)

)
.

Since the four o(1)’s in this expression are uniform in u and S⊥
θ is compact, it

follows [by using (4.1)] that

E[Tn1] = O
(
κ2
nν4

n

)+ (1 + o(1))(p − 1)κ2
nν2

n

2p
ϕ′

f (0)τ ′
n

[
1

p − 1

(
Ip − θθ ′)]τn

+ o
(
κ2
nν3

n

)
= κ2

nν2
n

2p
ϕ′

f (0)‖τn‖2 + o
(
κ2
nν2

n

) = ξ2

2n
ϕ′

f (0)‖τn‖2 + o
(
n−1).

Therefore,

E[Ln3] = ξ2

2
ϕ′

f (0)‖τn‖2 + o(1).

Thus, it only remains to show that Var[Ln3] = o(1).
To do so, write

Var[Tn1] ≤ E
[(

logf
(
κnun1 + κnνn

(
τ ′

nθun1 + τ ′
nSn1vn1

))− logf (κnun1)

− κnνnϕf (κnuni)
(
τ ′

nθun1 + τ ′
nSn1vn1

))2]
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= cp,κn,f

μp

∫ 1

−1

∫
S⊥

θ

(
1 − s2)(p−3)/2

f (κns)

× {
logf

(
κns + κnνn

(
τ ′

nθs + τ ′
nu

√
1 − s2

))
− logf (κns) − κnνnϕf (κns)

(
τ ′

nθs + τ ′
nu

√
1 − s2

)}2
dσ(u) ds.

Letting again t = κns yields

Var[Tn1] ≤ cp,κn,f

μpκn

∫ κn

−κn

∫
S⊥

θ

(
1 −

(
t

κn

)2)(p−3)/2
f (t)

×
{

logf

(
t + κnνn

(
τ ′

nθ

(
t

κn

)
+ τ ′

nu

√
1 −

(
t

κn

)2))

− logf (t) − κnνnϕf (t)

(
τ ′

nθ

(
t

κn

)
+ τ ′

nu

√
1 −

(
t

κn

)2)}2
dσ(u) dt.

Proceeding as for the expectation, we may then write

Var[Tn1] ≤ cp,κn,f κ3
nν4

n

4μp

∫ κn

−κn

∫
S⊥

θ

(
1 −

(
t

κn

)3)(p−3)/2

×
(
τ ′

nθ

(
t

κn

)
+ τ ′

nu

√
1 −

(
t

κn

)2)4(
gn(t,u)

)2
f (t) dσ (u) dt

≤ C
cp,κn,f κ3

nν4
n

μp

∫ κn

−κn

∫
S⊥

θ

(
1 −

(
t

κn

)2)(p−3)/2(
gn(t,u)

)2
f (t) dσ (u) dt

≤ C
cp,κn,f κ4

nν4
n

cpμp

∫ κn

−κn

∫
S⊥

θ

mn(t)
(
gn(t,u)

)2
f (t) dσ (u) dt,

where C is some positive constant and

mn(t) := (1 − ( t
κn

)2)(p−3)/2∫ κn−κn
(1 − ( t

κn
)2)(p−3)/2 dt

= cp

κn

(
1 −

(
t

κn

)2)(p−3)/2
.

Hence, along the same lines as above, we obtain

Var[Tn1] ≤ C
cp,κn,f κ4

nν4
n

cpμp

∫
S⊥

θ

∫ κn

−κn

mn(t)
(
gn(t,u)

)2
f (t) dt dσ (u)

= C
cp,κn,f κ4

nν4
n

cp

(
1

μp

∫
S⊥

θ

((
(logf )′′(0)

)2 + o(1)
)
dσ(u)

)

= Cκ4
nν4

n

(
ϕ′

f (0)
)2 + o

(
κ4
nν4

n

) = O
(
κ4
nν4

n

) = O
(
n−2).

Therefore, Var[Ln3] = nVar[Tn1] = o(1), as was to be shown. �
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