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CONFIDENCE INTERVALS FOR HIGH-DIMENSIONAL LINEAR
REGRESSION: MINIMAX RATES AND ADAPTIVITY'

BY T. TONY CAI AND ZIJTAN GUO
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Confidence sets play a fundamental role in statistical inference. In this
paper, we consider confidence intervals for high-dimensional linear regres-
sion with random design. We first establish the convergence rates of the min-
imax expected length for confidence intervals in the oracle setting where the
sparsity parameter is given. The focus is then on the problem of adaptation to
sparsity for the construction of confidence intervals. Ideally, an adaptive con-
fidence interval should have its length automatically adjusted to the sparsity
of the unknown regression vector, while maintaining a pre-specified coverage
probability. It is shown that such a goal is in general not attainable, except
when the sparsity parameter is restricted to a small region over which the
confidence intervals have the optimal length of the usual parametric rate. It is
further demonstrated that the lack of adaptivity is not due to the conservative-
ness of the minimax framework, but is fundamentally caused by the difficulty
of learning the bias accurately.

1. Introduction. Driven by a wide range of applications, high-dimensional
linear regression, where the dimension p can be much larger than the sample size
n, has received significant recent attention. The linear model is

(1.1) y=XB+e, e~ N(0,0%),

where y e R", X € R"*? and 8 € R?. Several penalized/constrained £ minimiza-
tion methods, including Lasso [24], Dantzig Selector [12], square-root Lasso [2],
and scaled Lasso [23] have been proposed and studied. Under regularity condi-
tions on the design matrix X, these methods with a suitable choice of the tuning
parameter have been shown to achieve the optimal rate of convergence klo% under
the squared error loss over the set of k-sparse regression coefficient vectors with
k < ciZ— where ¢ > 0 is a constant. That is, there exists some constant C > 0 such

logp
that

~ lo
(12) sup P(Ilﬂ BPTER Ckﬁ) —o(l),
I1Bllo<k n
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where ||8|lo denotes the number of the nonzero coordinates of a vector 8 € R”;
see, for example, [3, 12, 23, 26]. A key feature of the estimation problem is that
the optimal rate can be achieved adaptively with respect to the sparsity parameter k.

Confidence sets play a fundamental role in statistical inference and confidence
intervals for high-dimensional linear regression have been actively studied recently
with a focus on inference for individual coordinates. But, compared to point esti-
mation, there is still a paucity of methods and fundamental theoretical results on
confidence intervals for high-dimensional regression. Zhang and Zhang [27] was
the first to introduce the idea of de-biasing for constructing a valid confidence
interval for a single coordinate B;. The confidence interval is centered at a low-
dimensional projection estimator obtained through bias correction via score vector
using the scaled Lasso as the initial estimator. [16, 17, 25] also used de-biasing for
the construction of confidence intervals and [25] established asymptotic efficiency
for the proposed estimator. All the aforementioned papers [16, 17, 25, 27] have fo-
cused on the ultra-sparse case where the sparsity k < lg/ﬁ

a sparsity condition, the expected length of the confidence intervals constructed in
[16, 25, 27] is at the parametric rate ﬁ and the procedures do not depend on the

1s assumed. Under such

specific value of k.
Compared to point estimation where the sparsity condition k < @ is suffi-

N

cient for estimation consistency [see equation (1.2)], the condition k < Tog p
valid confidence intervals is much stronger. There are several natural questions:

for

What happens in the region where 13?,; <kS @ ? Is it still possible to construct
a valid confidence interval for B; in this case? Can one construct an adaptive honest
confidence interval not depending on k?

The goal of the present paper is to address these and other related questions
on confidence intervals for high-dimensional linear regression with random de-
sign. More specifically, we consider construction of confidence intervals for a

linear functional T(8) = £T8, where the loading vector & € R? is given and
max; esupp(£) |§il
min; esupp(e) 1i
focus on two specific regimes: the sparse loading regime where ||£]g < Ck, with
C > 0 being a constant; the dense loading regime where || & || satisfying (2.7) in
Section 2. It will be seen later that for confidence intervals, T(8) = B; is a pro-
totypical case for the general functional T(8) = £Tg with a sparse loading &, and
T(B) = Zle Bi is a representative case for T(8) = €T with a dense loading &.
To illustrate the main idea, let us first focus on the two specific functionals
T(B) =6 and T(B) = le Bi. We establish the convergence rate of the minimax
expected length for confidence intervals in the oracle setting where the sparsity
parameter k is given. It is shown that in this case the minimax expected length is

of order ﬁ + kloip for confidence intervals of 8;. An honest confidence interval,

which depends on the sparsity k, is constructed and is shown to be minimax rate
optimal. To the best of our knowledge, this is the first construction of confidence

< ¢ with ¢ > 1 being a constant. Based on the sparsity of &, we
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i
intervals in the moderate-sparse region gy K k< oes Og I

the ultra-sparse region k < lgg_p the constructed confidence interval is similar to
the confidence intervals constructed in [16, 25, 27]. On the other hand, the con-

vergence rate of the minimax expected length of honest confidence intervals for

. If the sparsity k falls into

le:l Bi in the oracle setting is shown to be &,/ k’%. A rate-optimal confidence in-
terval that also depends on k is constructed. It should be noted that this confidence
interval is not based on the de-biased estimator.

One drawback of the constructed confidence intervals mentioned above is that
they require a prior knowledge of the sparsity k. Such knowledge of sparsity is
usually unavailable in applications. A natural question is: Without knowing the
sparsity k, is it possible to construct a confidence interval as good as when the
sparsity k is known? This is a question about adaptive inference, which has been
a major goal in nonparametric and high-dimensional statistics. Ideally, an adap-
tive confidence interval should have its length automatically adjusted to the true
sparsity of the unknown regression vector, while maintaining a pre-specified cov-
erage probability. We show that, in marked contrast to point estimation, such a
goal is in general not attainable for confidence intervals. In the case of confidence
intervals for §;, it is impossible to adapt between different sparsity levels, except

over which
f’ which

does not depend on k. In the case of confidence intervals for Zi:l Bi, it is shown
that adaptation to the sparsity is not possible at all, even in the ultra-sparse region

kS p

Minimax theory is often criticized as being too conservative as it focuses on
the worst case performance over a large parameter space. For confidence intervals
for high-dimensional linear regression, we establish strong non-adaptivity results
which demonstrate that the lack of adaptivity is not due to the conservativeness of
the minimax framework. It shows that for any confidence interval with guaranteed
coverage probability over the set of k sparse vectors, its expected length at any
given point in a large subset of the parameter space must be at least of the same
order as the minimax expected length. So the confidence interval must be long at
a large subset of points in the parameter space, not just at a small number of “un-
lucky” points. This leads directly to the impossibility of adaptation over different
sparsity levels. Fundamentally, the lack of adaptivity is caused by the difficulty in
accurately learning the bias of any estimator for high-dimensional linear regres-
sion.

We now turn to confidence intervals for general linear functionals. For a lin-
ear functional £T§ in the sparse loading regime, the rate of the minimax expected

length is ||"§||2(ﬁ + kl(’%), where ||£]|2 is the vector £2 norm of &. For a lin-

when the sparsity k is restricted to the ultra-sparse region k < == gp

the confidence intervals have the optimal length of the parametric rate

ear functional £78 in the dense loading regime, the rate of the minimax expected
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length is ||£ ||coky/ loip , where ||£]|o is the vector £, norm of £. Regarding adap-
tivity, the phenomena observed in confidence intervals for the two special linear
functionals T(B8) = B; and T(8) = le:l Bi extend to the general linear function-
als. The case of confidence intervals for T(8) = Zle & B; with a sparse loading
& is similar to that of confidence intervals for 8; in the sense that rate-optimal

adaptation is impossible except when the sparsity k is restricted to the ultra-sparse
< N

~ logp
of confidence intervals for Zf’zl Bi: adaptation to the sparsity k is not possible at

NG

all, even in the ultra-sparse region k < o

In addition to the more typical setting in practice where the covariance matrix X
of random design and the noise level o of the linear model are unknown, we also
consider the case with the prior knowledge of ¥ =1 and o = oy. It turns out that
this case is strikingly different. The minimax rate for the expected length in the
sparse loading regime is reduced from ||& ||2(ﬁ + klo%) to % and in particular

region k . On the other hand, the case for a dense loading & is similar to that

it does not depend on the sparsity k. Furthermore, in marked contrast to the case of
unknown % and o, adaptation to sparsity is possible over the full range k < ; ng.
On the other hand, for linear functionals £T8 with a dense loading &, the mini-
max rates and impossibility for adaptive confidence intervals do not change even
with the prior knowledge of ¥ =1 and o = 0. However, the cost of adaptation is
reduced with the prior knowledge.

The rest of the paper is organized as follows: After basic notation is introduced,
Section 2 presents a precise formulation for the adaptive confidence interval prob-
lem. Section 3 establishes the minimaxity and adaptivity results for a general linear
functional £T S with a sparse loading &. Section 4 focuses on confidence intervals
for a general linear functional £T8 with a dense loading £. Section 5 considers
the case when there is prior knowledge of covariance matrix of the random design
and the noise level of the linear model. Section 6 discusses connections to other
work and further research directions. The proofs of the main results are given in
Section 7. More discussion and proofs are presented in the Supplementary Mate-
rial [6].

2. Formulation for adaptive confidence interval problem. We present in
this section the framework for studying the adaptivity of confidence intervals. We
begin with the notation that will be used throughout the paper.

2.1. Notation. For a matrix X e R"*?, X;., X_;, and X; ; denote respectively
the ith row, jth column and (7, j) entry of the matrix X, X; _; denotes the ith row
of X excluding the jth coordinate, and X _; denotes the submatrix of X exclud-
ing the jth column. Let [p] = {1, 2, ..., p}. For a subset J C [p], X denotes the
submatrix of X consisting of columns X.; with j € J and for a vector x € R?,
xy is the subvector of x with indices in J and x_j is the subvector with indices
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in J¢. For a set S, |S| denotes the cardinality of S. For a vector x € R?, supp(x)

denotes the support of x and the £, norm of x is defined as ||x||; = (Z — X |q)q
for g > 0 with ||x|jo = | supp(x)] and lxlloc = maxj<;<p|x;|. We use ¢; to de-
note the ith standard basis vector in R”. For a € R, a = max{a, 0}. We use )_ §;
as a shorthand for Zp 1 Bi» max || X.;||2 as a shorthand for max;<;<, | X.;|> and
min || X.;||2 as a shorthand for minj<;<, || X.;|2. For a matrix A and 1 < ¢ < o0,

IAllg = supy,y, =1 I Ax[lg is the matrix £, operator norm. In particular, [|All> is
the spectral norm. For a symmetric matrix A, Apin(A) and Amax (A) denote respec-
tively the smallest and largest eigenvalue of A. We use ¢ and C to denote generic
positive constants that may vary from place to place. For two positive sequences
a, and by, ay, Nb means a, < Cb,, forall n and a, 2 b, if b, < a, and a,, < b, if
ay < by and b, < ay, and a, K by, if lim SUP, s o0 o — 0 and a, > by if b, K ay,.

2.2. Framework for adaptivity of confidence intervals. We shall focus in this
paper on the high-dimensional linear model with the Gaussian design,

(2.1 yn><1=Xn><pﬁp><1+5n><1, SNNn(O,O'ZI),

where the rows of X satisfy X;. Hid "Np(0,%),i=1,...,n, and are independent
of . Both ¥ and the noise level o are unknown LetQ = 2_1 denote the precision
matrix. The parameter 6 = (8, 2, o) consists of the signal g, the precision matrix
2 for the random design, and the noise level o. The target of interest is the linear
functional of g, T(8) = &78, where & € R? is a pre-specified loading vector. The
data that we observe is Z = (Zy, ..., Z,)7, where Z; = (y;, X;) € RPH for i =
1,...,n.

For 0 < @ < 1 and a given parameter space ® and the linear functional T(8),
denote by 7, (®, T) the set of all (1 — «) level confidence intervals for T(8) over
the parameter space ®,

7,(0,T) = {Cla(T, 7)
2.2)
= [1(2).u(D)]: jnf By(1(2) <T(B) <u(Z)) 2 1 — af.

For any confidence interval Cl, (T, Z) € Z,(®, T), the maximum expected length
over a parameter space © is defined as
L(CI4(T, Z2),0,T) = sup Eg L(CI4 (T, Z)),
0e®

where for confidence interval Cl, (T, Z) = [[(Z),u(Z)], L(CI4(T, Z2)) = u(Z) —
[(Z) denotes its length. For two parameter spaces ®; C ®, we define the bench-
mark L}(®1,®,T) as the infimum of the maximum expected length over ®;
among all (1 — «)-level confidence intervals over O,

2. L T) = inf L(CIy(T, 2), ©1, T).
(2.3) «(©1,0,T) Y (Clu(T, 2), ©1,T)
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We will write L},(®,T) for L} (©, ®, T), which is the minimax expected length
of confidence intervals over ©.

We should emphasize that L% (©1, ®, T) is an important quantity that measures
the degree of adaptivity over the nested spaces ®; C ®. A confidence interval
Cl, (T, Z) that is (rate-optimally) adaptive over ®; and ® should have the optimal
expected length performance simultaneously over both ®; and ® while maintain-
ing a given coverage probability over ®, that is, Cl, (T, Z) € Z,(®, T) such that

L(Cly(T,Z),0,,T) < L*(®,,T) and L(Cl,(T,Z),0,T) = L:(©,T).

Note that in this case L(Cly(T, Z), ®1,T) > L}(®, ®,T). So for two parame-
ter spaces ©1 C O, if L% (©1,®,T) > L% (01, T), then rate-optimal adaptation
between ®; and © is impossible to achieve.

We consider the following collection of parameter spaces:

Ok)=10=(B,2,0):Bllo <k,
2.4) .
ﬁ < Amin(2) < Amax () <M;,0 <0 < M2}a
1
where M| > 1 and M, > 0 are positive constants. Basically, ® (k) is the set of all
k-sparse regression vectors. MLI < Amin(2) < Amax(2) < Mj and 0 < o < M; are
two mild regularity conditions on the design and the noise level.
The main goal of this paper is to address the following two questions:

1. What is the minimax length L}, (©(k), T) in the oracle setting where the spar-
sity level k is known?

2. Is it possible to achieve rate-optimal adaptation over different sparsity lev-
els?

More specifically, for k1 < k, is it possible to construct a confidence interval
Cl, (T, Z) that is adaptive over ® (k1) and ®(k) in the sense that CI,(T, Z) €
T4(©(k), T) and

L(CIy(T, Z),®(k1), T) < L} (©(k1), T),

(2.5)
L(CI(T, Z), O(k),T) < L(®(k), T)?

We will answer these questions by analyzing the two benchmark quantities
L}(®(k),T) and L} (®(k1), ®(k), T). Both lower and upper bounds will be es-
tablished. If (2.5) can be achieved, it means that the confidence interval CI, (T, Z)
can automatically adjust its length to the sparsity level of the true regression vector
B. On the other hand, if L} (®(k1), ®(k), T) > L% (®(k1), T), then such a goal is
not attainable.

For ease of presentation, we calibrate the sparsity level

k=< pY forsomeO§y<%,
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and restrict the loading £ to the set

max ;esupp(e) I§51 _ -}
minjesupp(e) 161 ’

SeE(q,a:{seRP:nsno:q,#Oand

where ¢ > 1 is a constant. The minimax rate and adaptivity of confidence intervals
for the general linear functional €78 also depends on the sparsity of £. We are
particularly interested in the following two regimes:

1. The sparse loading regime: £ € E(g, ¢) with
(2.6) q < Ck.
2. The dense loading regime: & € E(q, ¢) with
2.7 q =cp¥ with 2y <y, < 1.

The behavior of the problem is significantly different in these two regimes. We will
consider separately the sparse loading regime in Section 3 and the dense loading
regime in Section 4.

3. Minimax rate and adaptivity of confidence intervals for sparse loading
linear functionals. In this section, we establish the rates of convergence for the
minimax expected length of confidence intervals for €TS8 with a sparse loading &
in the oracle setting where the sparsity parameter k of the regression vector S is
given. Both minimax upper and lower bounds are given. Confidence intervals for
£TB are constructed and shown to be minimax rate-optimal in the sparse loading
regime. Finally, we establish the possibility of adaptivity for the linear functional
£TB with a sparse loading &.

3.1. Minimax length of confidence intervals for ETf in the sparse loading
regime. In this section, we focus on the sparse loading regime defined in (2.6).
The following theorem establishes the minimax rates for the expected length of
confidence intervals for £7 8 in the sparse loading regime.

n
" log p
stants ¢ > 0 and 0 <y < % If & belongs to the sparse loading regime (2.6), the
minimax expected length for (1 — a) level confidence intervals of ETB over © (k)

satisfies

THEOREM 1. Suppose that 0 < a < % and k < cmin{p? } for some con-

1 1
3.1) LE(© k). £TB) = ||§||2<ﬁ+k °§p).

Theorem 1 is established in two separate steps.
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1. Minimax upper bound: we construct a confidence interval Clg (7B, Z) such
that Clg (E78,72) € 1,(©(k), ETB) and for some constant C > 0

1
(3.2) L(CIS(£7B, Z), ©(k), £TB) < Cnsnz(T e )

2. Minimax lower bound: we show that for some constant ¢ > 0

(3.3) LE(O©®), ) > CII‘;‘IIz(— e L )
NG

The minimax lower bound is implied by the adaptivity result given in Theorem 2.

We now detail the construction of a confidence interval CIg (7B, Z) achieving the

minimax rate (3.1) in the sparse loading regime. The interval Clg (78, Z) is cen-

tered at a de-biased scaled Lasso estimator, which generalizes the ideas used in

[16, 25, 27]. The construction of the (random) length is different from the afore-

mentioned papers as the asymptotic normality result is not valid once k 2 k‘)gp
Let { ,3, 0} be the scaled Lasso estimator with Ag = 2.05’10gp ,
P _ X X.jll2
G4 (F61= agmin b —XPl o, xog vl
Define
(3.5) i =argmin{uTSu: | Zu — &|loo < An},
ueR?

where & = 1X7X and 1, = 12 &2 M? k’%. The confidence interval CIS (£,
Z) is centered at the following de-biased estimator:

o~ 1 -~
(3.6) ﬁZSTﬂ+74\T;XT(y—X,3),

where E is the scaled Lasso estimator given in (3.4) and u is defined in (3.5).
Before specifying the length of the confidence interval, we review the following
definition of restricted eigenvalue introduced in [3]:

(3.7) k(X,k,00) = min min | X0l
JoC{l,.... p), NS Bll2”

0
Wol=k  11d,¢ ||1<Oto||5/0||1

Define

TN
p1(0) = 12 min] 101 | 20z, 4 € (. kP

1 klogp
W(ﬁ* " >}’
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where z4/7 is the a/2 upper quantile of the standard normal distribution and

n 912max || X.;||3
(3.9) cl(x,k):7000M12.L maxnﬁzf 2 }
min || X ;]2 nk2(X, k, 405(—51))

min || X_ ;]2

max{l.ZS,

Define the event

(3.10) A ={6 <logp}.

The confidence interval Clg (§7B, Z) for £T8 is defined as

[ —p1(k), i+ p1(K)]  on A,
{0} on A€,

It will be shown in Section 7 that the confidence interval CIg (7B, Z) has the
desired coverage property and achieves the minimax length in (3.1).

(3.11) CI (7B, 2) = {

REMARK 1. In the special case of £ = ¢y, the confidence interval defined in
(3.11) is similar to the ones based on the de-biased estimators introduced in [16, 25,
27]. The second term ZZT%X T(y — X B) in (3.6) is incorporated to reduce the bias

of the scaled Lasso estimator E . The constrained estimator % defined in (3.5) is a
score vector u such that the variance term uT Xu is minimized and one component
of the bias term || Xu — & ||« is constrained by the tuning parameter A,. The tuning

parameter A, is chosen as 12||& ||, M 12 Ing such that u = Q£ lies in the constraint

set || Su— &lloo < Ay in (3.5) with overwhelmlng probability. For C (X, k) defined
in (3.9), it will be shown that it is upper bounded by a constant with overwhelming
probability.

3.2. Adaptivity of confidence intervals for €78 in the sparse loading regime.
We have constructed a minimax rate-optimal confidence interval for £T 8 in the or-
acle setting where the sparsity k is assumed to be known. A major drawback of the
construction is that it requires prior knowledge of k, which is typically unavailable
in practice. An interesting question is whether it is possible to construct adaptive
confidence intervals that have the guaranteed coverage and automatically adjust its
length to k.

We now consider the adaptivity of the confidence intervals for £T 8. In light of
the minimax expected length given in Theorem 1, the following theorem provides
an answer to the adaptivity question (2.5) for the confidence intervals for £T8 in
the sparse loading regime.

THEOREM 2. Suppose that 0 < o < % and k1 < k < cmin{p? } for some

’ log
constants ¢ > 0and 0 <y < % If & belongs to the sparse loading regime (2.6),
then there is some constant ¢y > 0 such that

(3.12) Ly (©(k1), ©(k),£7B) >61IISII2(7 +k

10gp>
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1 k log p
Jn n
| | | | |
[ | | | |
0 k Jn/log p k n/log p
Adaptive Not Adaptive

FIG. 1. Illustration of adaptivity of confidence intervals for T B with a sparse loading & satisfy-
ing ||Ello < Ck. For adaptation between © (k1) and © (k) with k| < k, rate-optimal adaptation is

possible if k < lsgp and impossible otherwise.

Note that Theorem 2 implies the minimax lower bound in Theorem 1 by taking
k1 = k. Theorem 2 rules out the possibility of rate-optimal adaptive confidence
intervals beyond the ultra-sparse region. Consider the setting where k; < k and

Jn n .
fogp <k < Togp In this case,

1
LE(© k), ©(K), ETB) = LE(O(K), £TB) = ||s||zk$ > LE(O© (k). ETB).

So it is impossible to construct a confidence interval that is adaptive simultaneously
over © (k) and © (k) when \?p < k < & and k; < k. For sparse loading with

lo ~ logp
g < Ckp, the only possible region for adaptation is the ultra-sparse region k < % ,

over which the optimal expected length of confidence intervals is of order ﬁ

and in particular does not depend on the specific sparsity level. These facts are
illustrated in Figure 1.

So far the analysis is carried out within the minimax framework where the focus
is on the performance in the worst case over a large parameter space. The minimax
theory is often criticized as being too conservative. In the following, we establish
a stronger version of the nonadaptivity result which demonstrates that the lack of
adaptivity for confidence intervals is not due to the conservativeness of the mini-
max framework. The result shows that for any confidence interval Cl, (§78, Z),
under the coverage constraint that CI,(§78, Z) € Z,(®(k), £TB), its expected
length at any given 6* = (8*,1,0) € ®(k;) must be of order ||f;‘||2(ﬁ + klo%).
So the confidence interval must be long at a large subset of points in the parameter
space, not just at a small number of “unlucky” points.

’ logp
stants ¢ > 0and 0 <y < % Letk; <(1—¢p)k—1land g < %Okfor some constant

THEOREM 3. Suppose that 0 < a < % and k < cmin{p? } for some con-
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0 < ¢y < 1. Then for any 6* = (8*,1,0) € © (k1) and & € E(q, ¢), there is some
constant ¢1 > 0 such that

+—)o

N

Note that no supremum is taken over the parameter 6* in (3.13). Theorem 3
illustrates that if a confidence interval Cl, (§78, Z) is “superefficient” at any point
0* = (B*,1,0) € ©(ky) in the sense that

] 1
(3.13) inf Eg«L(CL, (7B, Z)) = 1 ||§||2(k PEP ) .

Cly(§7B.Z)ela (O (K),5T )

1 log p
E « L CI T ,Z <_ k ) ’
0-L(CLu(§78, Z)) < €2 ﬁ+ P
then the confidence interval Cly(£78, Z) cannot have the guaranteed coverage
over the parameter space © (k).

3.3. Minimax rate and adaptivity of confidence intervals for 1. We now turn
to the special case T(8) = B;, which has been the focus of several previous papers
[16, 17, 25, 27]. Without loss of generality, we consider B, the first coordinate
of B, in the following discussion and the results for any other coordinate g; are
the same. The linear functional B is the special case of linear functional of sparse
loading regime with & = ey.

Theorem 1 implies that the minimax expected length for (1 — «) level confi-
dence intervals of 81 over ® (k) satisfies

11
(3.14) LEO®K), B1) = —— + k—2L

7

, the minimax expected length is of order

N

In the ultra-sparse region with k < >~ o

the

i
T However, when k falls in the moderate-sparse region gy K k< logp

minimax expected length is of order klng and in this case klOg” > f Hence,
the confidence intervals constructed in [16, 17, 25, 27], which are of parametric
length %, asymptotically have coverage probability going to 0. The condition

k< 132_1; is thus necessary for the parametric rate T [25] established asymptotic

normality and asymptotlc efficiency for a de-biased estimator under the sparsity

assumption k < 10 . Similar results have also been given in [21] for a related
problem of estlmatmg a single entry of a p-dimensional precision matrix based

f

on n i.i.d. samples under the same sparsity condition k < Tog . It was also shown

that k < l(:g; is necessary for the asymptotic normality and asymptotic efficiency

results.
The following corollary, as a special case of Theorem 3, illustrates the strong

Jn

logp*

nonadaptivity for confidence intervals of 1 when k >
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COROLLARY 1. Suppose that 0 < a < % and k < ¢ min{p? } for some

’ logp
constants ¢ > 0 and 0 <y < % Let ki1 < (1 — ¢o)k — 1 for some constant 0 <
Zo < 1. Then for any 6* = (8*,1, 0) € O(ky), there is some constant ¢ > 0 such
that

(3.15) inf Eg«L(Cly(B1. Z)) > ci (% +k

Cla(B1,2)eLa (O (k). B1)

10gp>
a.
n

4. Minimax rate and adaptivity of confidence intervals for dense loading
linear functionals. We now turn to the setting where the loading £ is dense in
the sense of (2.7). We will also briefly discuss the special case Zf’: | Bi and the
computationally feasible confidence intervals.

4.1. Minimax length of confidence intervals for £18 in the dense loading
regime. The following theorem establishes the minimax length of confidence in-
tervals of £T8 in the dense loading regime (2.7).

THEOREM 4. Suppose that 0 < a < % and k < ¢ min{p? } for some con-

’ log P
stants ¢ > 0 and 0 <y < % If & belongs to the dense loading regime (2.7), the
minimax expected length for (1 — «) level confidence intervals of £T8 over © (k)
satisfies

1
@.1) Ly(©K).£7B) = £ ook | — 8P

Note that the minimax rate in (4.1) is significantly different from the minimax
rate ||& ||2(ﬁ + kk’%) for the sparse loading case given in Theorem 1. In the

following, we construct a confidence interval CI(? (€78, Z) achieving the minimax
rate (4.1) in the dense loading regime. Define
Jn

4.2) Cry(X, k) =822—————— max{ 1.25,
min || X ;]2

912max || X ;13 }
nic2(X, k, 405( 20X 12y

min || X {|2

It will be shown that C»>(X, k) is upper bounded by a constant with overwhelming
probability. The confidence interval CIO? (E78, Z) is defined to be

[ETB = I&loop2(k), ETB + [IE lcop2(k)]  on 4,

D _
@) (STﬁ’ Z) B {{0} on A€,

where A is defined in (3.10) and 3 is the scaled Lasso estimator defined in (3.4)
and

(4.4) 02 (k) = mln{Cz(X k)k‘/ﬂ6 log p (k‘/logp&)}.
n n
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The confidence interval constructed in (4.3) will be shown to have the desired
coverage property and achieve the minimax length in (4.1). A major differ-
ence between the construction of CIOL,) (€78, Z) and that of CI‘f (78, Z) is that
CIO? (7B, Z) is not centered at a de-biased estimator. If a de-biased estimator is
used for the construction of confidence intervals for £78 with a dense loading, its
variance would be too large, which leads to a confidence interval with length much
log p

P

larger than the optimal length ||£ [|cok

4.2. Adaptivity of confidence intervals for T in the dense loading regime. In
this section, we investigate the possibility of adaptive confidence intervals for £T8
in the dense loading regime. The following theorem leads directly to an answer to
the adaptivity question (2.5) for confidence intervals for £T 8 in the dense loading
regime.

THEOREM 5. Suppose that 0 < o < % and k; <k < cmin{p?¥ } for some

’ log
constants ¢ > 0 and 0 <y < % If & belongs to the dense loading regime (2.7),
then there is some constant ¢y > 0 such that

1
4.5) LE(© K1), O®), §T) = c1[E ook, Oflp .

Theorem 5 implies the minimax lower bound in Theorem 4 by taking k| = k. If
k1 < k, (4.5) implies

“4.6)  Ly(®(k), OK), ETﬁ)>C||S||ook,/ logp > Ly (©(k1),§7H),

which shows that rate-optimal adaptation over two different sparsity levels k; and
k is not possible at all for any k; < k. In contrast, in the case of the sparse loading
regime, Theorem 2 shows that it is possible to construct an adaptive confidence

interval in the ultra-sparse region k < 18/g; although adaptation is not possible in
the moderate-sparse region 1*/— <k=< logp

Similarly to Theorem 3, the following theorem establishes the strong non-
adaptivity results for £T8 in the dense loading regime.

THEOREM 6. Suppose that 0 < a < % and k < cmin{pY¥

, logp}for some con-

stantsc > 0and 0 <y < 5 Letq satisfy (2.7) and k1 < (1 —¢&9)k — 1 for some pos-
itive constant 0 < ¢g < 1. Thenfor any 0* = (B*,1,0) € ©(ky) and & € E(q, ¢),
there is some constant c1 > 0 such that

i logp
4.7 f EgL(Cl, (T8, Z)) > ' .
@D e owers B L(ClaET8. Z) Z ciliElloe \/T o
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4.3. Minimax length and adaptivity of confidence intervals for Zle Bi. We
now turn to the special case of T(8) = Zle Bi, the sum of all regression coef-
ficients. Theorem 4 implies that the minimax expected length for (1 — o) level
confidence intervals of Zf: | Bi over O (k) satisfies

N log p
(4.8) La(®(k),2ﬂi) = k| =

The following impossibility of adaptivity result for confidence intervals for
3P| Bi is a special case of Theorem 6.

n
* logp
constants ¢ > 0and 0 <y < % Letky < (1 — o)k — 1 for some constant 0 < {y <
1. Then for any 6* = (B*,1,0) € O (ky),

COROLLARY 2. Suppose that 0 < a < % and k < ¢ min{pY } for some

(4.9) B+ L(Cl(Y" 1. 2)) = 1k 10%0,

inf
Cly 3 Bi. 2)eZa (O (k). ) Bi)

for some constant ¢y > 0.

REMARK 2. In the Gaussian sequence model, minimax estimation of the sum
of sparse means has been considered in [8] and construction of confidence inter-
vals for the sum was studied in [9]. In particular, minimax estimation rate and
minimax expected length of confidence intervals are given in [8] and [9], respec-
tively. A more refined nonasymptotic analysis for the minimax estimation of the
sum of sparse means was given in a recent paper [13].

4.4. Computationally feasible confidence intervals. A major drawback of
the minimax rate-optimal confidence intervals CIg (7B, Z) given in (3.11) and
CIOI? (€78, Z) given in (4.3) is that they are not computationally feasible as both
depend on restricted eigenvalue « (X, k, og), which is difficult to evaluate. In this
section, we assume the prior knowledge of the sparsity k and discuss how to con-
struct a computationally feasible confidence interval.

The main idea is to replace the term involved with restricted eigenvalue by a
computationally feasible lower bound function w (€2, X, k) defined by

X ll2

1 9(1 +40522-02) [ )

(4.10) a)(Q,X,k):( _ min [X ;T2 ng) ‘
4/ Amax (£2) Amin (€2) n n

The lower bound relation is established by Lemma 13 in the Supplementary Mate-
rial [6], which is based on the concentration inequality for Gaussian design in [20].
Except for Amin (€2) and Apax(€2), all terms in (4.10) are based on the data (X, y)
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and the prior knowledge of k. To construct a data-dependent computationally fea-
sible confidence interval, we make the following assumption:

sup Px(max{\km) —
(4.11) Qedo
|)Vmax(Q) - )\max(Q)H = Can,p) =o(D),

where limsupay,, , =0 and Gg, is a pre-specified parameter space for 2 and Py
denotes the probability distribution with respect to X.

REMARK 3. We assume G, is a subspace of the precision matrix defined in
24), {2 M% < Amin(2) < Amax(2) < M1}. By assuming Gg is the set of pre-
cision matrix of special structure, we can find estimators satisfying (4.11). For
example, if Gg is assumed to be the set of sparse precision matrices, the preci-
sion matrix €2 can be estimated by the CLIME estimator Q proposed inEl/Under
a proper spars1ty assumption on 2, the plug-in estimator (Amln(Q) Amax (2)) =
(kmln(Q) Amax(Q)) satisfies (4.11). Other special structures can also be assumed,
for example, the covariance matrix X is sparse. We can use the plug-in estimator
of the thresholding estimators proposed in [4, 11].

With Amin () and Amax (2), we define (2, X, k) as

max | X |
9(1 + 405 T ) 10gp

1
(M Jmax () Vmin(2) &

and construct computationally feasible confidence intervals by replacing «%(X, k,

405(Famx2)) in (3.11) and (4.3) with (2, X, k).

(R, X, k)=

5. Confidence intervals for linear functionals with prior knowledge @ =1
and o0 = 09. We have so far focused on the setting where both the precision
matrix 2 and the noise level o are unknown, which is the case in most statistical
applications. It is still of theoretical interest to study the problem when 2 and o
are known. It is interesting to contrast the results with the ones when €2 and o are
unknown. In this case, we consider the setting where it is known a priori that Q =1
and o = op and specify the parameter space as

(.1 Ok, 1, 00) = {0 = (B,L,00) : | Bllo < k}.

We will discuss separately the minimax rates and adaptivity of confidence intervals
for the linear functionals in the sparse loading regime and dense loading regime
over the parameter space © (k, I, 0p).
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5.1. Confidence intervals for linear functionals in the sparse loading regime.
The following theorem establishes the minimax rate of confidence intervals for
linear functionals in the sparse loading regime when there is prior knowledge that
Q=Iand o = 0y.

1 .
THEOREM 7.  Suppose that 0 < a < 5 and k < cmin{p?, logp } for some con-

stants ¢ > 0 and 0 <y < % If & belongs to the sparse loading regime (2.6),
the minimax expected length for (1 — ) level confidence intervals of ETS over
O(k, 1, op) satisfies

€112
N

(5.2) LY (®(k,1,00),T8) <

Compared with the minimax rate % + ||& ||2k10% for the unknown 2 and o

case given in Theorem 1, the minimax rate in (5.2) is significantly different. With
the prior knowledge of Q2 =1 and o = oy, the above theorem shows that the min-
imax expected length of confidence intervals for £T g is always of the parametric
rate and in particular does not depend on the sparsity parameter k. In this case,
adaptive confidence intervals for £T8 is possible over the full range k < C1o§p-
A similar result for confidence intervals covering all B; was given in a recent paper
[18]. The focus of [18] is on individual coordinates, not general linear functionals.

The proof of Theorem 7 involves establishment of both minimax lower and
upper bounds. The lower bound follows from the same proof for the parametric
lower bound in Theorem 1. As both 2 and o are known, the upper bound analysis
is easier than the unknown 2 and o case and is similar to the one given in [18].
For completeness, we detail the construction of a confidence interval achieving
the minimax length in (5.2) using the de-biasing method. We first randomly split
the samples (X, y) into two subsamples (X1, y(V) and (X®, y®) with sample
sizes n1 and ny, respectively. Without loss of generality, we assume that n is even
and ny =ny = % Let E denote the Lasso estimator defined based on the sample

. . 2.051
(X y(y with the proper tuning parameter A = ./ %00,

(1
. ly® = xDp|3 X
(5.3) B=argmin ——= + A —Bil.

g > P

BeRP 2ny st

We define the following estimator of £75:
~ 1
(5.4) A=ETB+ —&ET(XP)T(y® — xPp).
nz

Based on the estimator, we construct the following confidence interval:

1 - €112 _ 112
(5.5) CLL (678, Z) = [u - l.Ol—nzzao/zoo, i+ 1.01—nzza0/zoo ,
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where a9 = yoa with 0 < yp < 1. It will be shown in the Supplementary Mate-
rial [6] that the confidence interval proposed in (5.5) has the nominal coverage
probability asymptotically and achieves the minimax length in (5.2).

5.2. Confidence intervals for linear functionals in the dense loading regime.
The following theorem establishes the adaptivity lower bound in the dense loading
regime.

THEOREM 8. Suppose that 0 < o < % and k; <k < cmin{pY¥

, 1ng}for some

constants ¢ > 0 and 0 <y < % If & belongs to the dense loading regime (2.7),
then there is some constant c; > 0 such that

L5(© (k1,1 09), ©(k, 1, 00). £TB)
(5.6)

’

no a1

logp VK
>c1||5||oooomax{/ﬁ logp. in{ og p f}}

REMARK 4. There are two parts in the lower bound given in (5.6), which are
established separately. The lower bound min{k ]ng */_} is obtained using well-

known techniques by testing a simple null against a composne alternative. The
construction of the least favorable set is quite standard. For example, such a con-
struction of least favorable set has been used under the Gaussian sequence model
in [1] for signal detection and in [8, 9] for estimation and confidence intervals for
linear functionals. The technique has also been used more recently in [15, 19] for
detection and confidence ball in sparse linear regression. On the other hand, the

other lower bound, /kki,/ loﬁp , cannot be established using a similar argument
and a novel comparison of two composite least favorable spaces is introduced to
establish this lower bound.

The lower bound given in (5.6) immediately yields the minimax lower bound
for the expected length of confidence intervals over ® (k, I, 0p),

L5 (O(k,1,00), £7B) = c1 € ook, %ao,

by simply setting k; = k in (5.6). Since this lower bound can be achieved by the
confidence interval constructed in (4.3), we have established the minimax con-
vergence rate L¥ (O (ky, 1L, 00), ETB) < [|€]lock ngao, which is the same as the
minimax rate established in Theorem 4 for the case of unknown 2 and o. Thus,
in marked contrast to the sparse loading regime, the prior knowledge of 2 =1 and
o = og does not improve the minimax rate in the dense loading regime. Under
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the framework (2.5), adaptive confidence intervals are still impossible, since for
ki <k,

Ly (®(k1,1, 00), O(k,1,00),§TB) > Ly (O (k1. 1, 00), §TH).

However, compared with Theorem 5, we observe that the cost of adaptation is
reduced with the prior knowledge of 2 =1and o = op.

6. Discussion. In the present paper, we studied the minimaxity and adaptivity
of confidence intervals for general linear functionals £T8 with a sparse or dense
loading & for the setting where €2 and o are unknown as well as the setting with
the prior knowledge of 2 =1 and o = o¢. In the more typical case in practice
where Q2 and o are unknown, the adaptivity results are quite negative: With the
exception of the ultra-sparse region for confidence intervals for £T8 with a sparse
loading &, it is necessary to know the true sparsity k in order to have guaranteed
coverage probability and rate-optimal expected length. In contrast to estimation,
knowledge of the sparsity k is crucial to constructing honest confidence intervals.
In this sense, the problem of constructing confidence intervals is much harder than
the estimation problem.

The case of known 2 =1 and ¢ = oy is strikingly different. The minimax ex-
pected length in the sparse loading regime is of order % and in particular does

not depend on k and adaptivity can be achieved over the full range of sparsity
k< @. So in this case, the knowledge of Q2 and o is very useful. On the other
hand, in the dense loading regime the information on 2 and o is of limited use.
In this case, the minimax rate and lack of adaptivity remain unchanged, compared
with the unknown 2 and o case, although the cost of adaptation is reduced.

Regarding the construction of confidence intervals, there is a significant dif-
ference between the sparse and dense loading regimes. The de-biasing method is
useful in the sparse loading regime since such a procedure reduces the bias but
does not dramatically increase the variance. However, the de-biasing construction
is not applicable to the dense loading regime since the cost of obtaining a near-
unbiased estimator is to significantly increase the variance which would lead to
an unnecessarily long confidence interval. An interesting open problem is the con-
struction of a confidence interval for £T 8 achieving the minimax length where the
sparsity ¢ of the loading £ is in the middle regime with cp? < g < cp?’*S for
some )< ¢ <1—2yp.

In addition to constructing confidence intervals for linear functionals, another
interesting problem is constructing confidence balls for the whole vector 8. Such
has been considered in [19], where the impossibility of adaptive confidence balls
for sparse linear regression was established. These problems are connected, but
each has its own special features and the behaviors of the problems are differ-
ent from each other. The connections and differences in adaptivity among various
forms of confidence sets have also been observed in nonparametric function esti-
mation problems; see, for example, [9] for adaptive confidence intervals for linear
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functionals, [7, 14] for adaptive confidence bands and [10, 22] for adaptive confi-
dence balls.

In the context of nonparametric function estimation, a general adaptation the-
ory for confidence intervals for an arbitrary linear functional was developed in Cai
and Low [9] over a collection of convex parameter spaces. It was shown that the
key quantity that determines adaptivity is a geometric quantity called the between-
class modulus of continuity. The convexity assumption on the parameter space in
Cai and Low [9] is crucial for the adaptation theory. In high-dimensional linear
regression, the parameter space is highly nonconvex. The adaptation theory devel-
oped in [9] does not apply to the present setting of high-dimensional linear regres-
sion. It would be of significant interest to develop a general adaptation theory for
confidence intervals in such a nonconvex setting.

7. Proofs. In this section, we prove three main results, Theorem 1, Theorem 2
and Theorem 3. For reasons of space, the proofs of Theorems 4-8 are given in
the Supplementary Material [6]. A key technical tool for the proof of the lower
bound results is the following lemma which establishes the adaptivity over two
nested parameter spaces. Such a formulation has been considered in [9] in the
context of adaptive confidence intervals over convex parameter spaces under the
Gaussian sequence model. However, the parameter space ® (k) considered in the
high-dimensional setting is highly nonconvex. The following lemma can be viewed
as a generalization of [9] to the nonconvex parameter space, where the lower bound
argument requires testing composite hypotheses.

Suppose that we observe a random variable Z which has a distribution Py where
the parameter 6 belongs to the parameter space H. Let Cl, (T, Z) be the confi-
dence interval for the linear functional T(6) with the guaranteed coverage 1 — «
over the parameter space H. Let Ho and H; be subsets of the parameter space
‘H where H = Ho U H;. Let my, denote the prior distribution supported on the
parameter space H; for i =0, 1. Let fﬂH (z) denote the density function of the
marginal distribution of Z with the prior r3;, on H; for i =0, 1. More specifically,
frn, @ = [ fo(2)my; ()b, fori =0, 1.

Denote by IP),,Hi the marginal distribution of Z with the prior 7, on H; for
i =0, 1. For any function g, we write E;mo (g(Z)) for the expectation of g(Z)
with respect to the marginal distribution of Z with the prior 7;, on Ho. We define
the x2 distance between two density functions f; and fy by

2 B (f1(z)—fo(z))2 i@ @,
X (f"f")_f o T R

and the total variation distance by TV(f1, fo) = [|f1(2) — fo(z)|dz. It is well
known that

(7.2) TV(f1, fo) < x>(f1. fo)-

(7.1)
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LEMMA 1. Assume T(0) = ug for 0 € Ho and T(0) = 1 for 6 € Hy and
H=HoUH,. Forany Cl,(T, Z) € Z,(T, H),
L(Cly(T, Z), H) = L(Cl,(T, Z), Ho)

(7.3)
> |,LL1 - ,LLOl(l — 20 — TV(fﬂ’Hl ) fﬂq.[o))+-

7.1. Proof of Lemma 1. The supremum risk over H is lower bounded by the
Bayesian risk with the prior 7, on Hy,

sup By L(Cly (T, Z)) > / Eg L(Cly (T, Z))73,(0) d6
(7.4) OeHo 0

= IE;THO L(CIy(T, 2)).
By the definition of CI (T, Z) € Z (T, H), we have

(7.5 Pay, (i €Cly(T, 2)) = /9 Po (i € Cly (T, Z))m,(0)d6 > 1 —a,

for i =0, 1. By the following inequality,
|]P>,,H1 (n1 € Cly(T, 2)) — P”HO (r1 € Cly (T, 2))| < TV(f”H1 , anO),

then we have IP’;THO(;“ eCly(T,Z2)) > 1 —a — TV(fﬂHl,fﬂHO). This to-
gether with (7.5) yields IP’,,HO (g, w1 € CI) = 1 —2a — TV( f,m1 , f,,HO), which
leads to P,y (L(CL(T. 2)) = |1 = pol) = 1 = 20 = TV, . fy,)- Henee,
IE”HOL(CIQ(T, Z)) > |ur — pol(l —2a — TV(f;,Hl , fﬂHO))Jr. The lower bound
(7.3) then follows from inequality (7.4).

7.2. Proof of Theorem 3. The lower bound in (3.13) can divided into the fol-
lowing two lower bounds,

. log p
7.6 inf Eg«L(CI,(E78, Z)) > k——
(7.6) Cla (676, 2)€Ta(OK) ETH) (Cle(76. 2)) = clié 2 no
and
1.7) inf EgL(Cla (678, 7)) = 12124
Cla(6TB,2)ET, (O(K),ETH) -

v
for some constant ¢ > 0. We will establish the lower bounds (7.6) and (7.7) sepa-
rately.

PROOF OF (7.6). Without loss of generality, we assume supp(¢§) ={1, ..., g},
where g = ||&]|o. We generate the orthogonal matrix M € R?*4 such that its first
row is mé‘supp@) and define the orthogonal matrix Q as Q = (% 7). We trans-
form both the design matrix X and the regression vector 8 and view the linear
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model (2.1)as y =V + ¢, Where V = XQT and ¢ = Q8. The transformed co-
efficient vector ¥* = QB* = ( gr Panp ©)) is of sparsity at most ¢ + k. The first co-

upp(£)
efficient yr of ¥ is méT B. The covariance matrix W of V;.is QX QT and its cor-
responding precision matrix is ' = QQ QT. To represent the transformed observed
data and parameter, we abuse the notation slightly and also use Z; = (y;, V;.) and

0* = (¥*,1, o). We define the parameter space G(k) of (¥, ", o) as

(7.8) Gky={(W,T,0):y=0B,T =007 for (B,Q,0) € OK)}.

For a given Q, there exists a bijective mapping between ® (k) and G(k). To
show that (¢, I, o) € G(k), it is equivalent to show (QT¢, QTI"Q, 0) € O(k). Let
Za(G(k), Y1) denote the set of confidence intervals for ¢ = mé T8 with guar-
anteed coverage over G (k). If Cl, (Y1, Z) € Z,(G(k), V1), then ||§ l2Cly (Y1, Z) €
T.(O(K).£7B); If Cly(6Tf.Z) € T,(O(K).£Th). then - Cl,(ET8.2) €
Zo(G(k), ¥1). Because of such one to one correspondence, we have

inf Eg+L(Cly (£78, Z
CIa@T,B,Z)IGI%a(@(k)’ET'B) ¢ ( a(f /3 ))

_ inf Eg+L(CL, (V1. Z)).
=802y 0 0 G gy B L (Cla 1, D)

By (7.6) and (7.9), we reduce the problem to

(7.9)

logp

7.10) inf Eg+« L(Cl, (Y1, Z)) > ck
( Cly (Y1, 2)€Zo (G(K). Y1) (Claty1. 2))

Under the Gaussian random design model, Z; = (y;, V;.) € RPH! follows a joint
Gaussian distribution with mean 0. Let X% denotes the covariance matrix of Z;.

: 5, (537 :
Decompose ¢ into blocks (Ef;y 5 ), where 25, 7 and 37 denote the vari-

ance of y, the variance of V and the covariance of y and V respectively. We
define the function /2 : £¢ — (¥, T, 0) as h(Z%) = ((£5,) 7' 2%, (85,) 71, 2%, —
(Egy)T(Efw)_lEf}y). The function % is bijective and its inverse mapping hl:
W, T,o) > X%is

1 YT~ ¢+o yTr—!

The null space is taken as Ho = {(¥'*,1,0)} and 7y, denotes the point mass
prior at this point. The proof is divided into three steps:

1. Construct H; and show that H; C G(k);

2. Control the distribution distance TV( fﬂ?—tl , fﬂHO);

3. Calculate the distance 111 — o where o = ¥ and py =y with (Y, I', o) €
H1. We show that ;1] = ¥ is a fixed constant for all (¢, I', o) € H and then apply
Lemma 1.
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Step 1. We construct the alternative hypothesis parameter space ;. Let X
denote the covariance matrix of Z; corresponding to (¥*,1,0) € Hy. Let S| =
supp(¥*) U {1} and S = S| \ {1}. Let k, denote the size of S and p; denote the
size of S and we have ky < ki + ¢ and p; > p — ky — 1 > cp. Without loss
of generality, let S = {2, ..., k. 4+ 1}. We have the following expression for the
covariance matrix of Z; under the null:

w5 +02 | wi | )T | 01xpy

7.11) 55 = vy 1 01xk, | O1xp,
/8 Ok, <1 | Tkoxky | Ok, py

0p,x1 05,51 | Opyxk, | Ipyxpy

To construct H 1, we define the following set:
.12 ¢(p1. Jhop) ={8:8 R 18l = Th8; € (0.p) for 1< < pi .

Define the parameter space F for X° by F ={X5:48 € £(p1, %Ok, 0)}, where

5 +02 | wr | @WHT | podT
* T
(7.13) si=| N L] O | 9
2 Ok, x1 | Tkoxke | Ok py
pod s 0P1><k* IP1><17|

Then we construct the alternative hypothesis space H; for (¢, ', o), which is
induced by the mapping / and the parameter space F,

(7.14) Hi={W,T,0): (Y, T,0)=h(T°) for £* € F}.

In the following, we show that H; C G (k). It is necessary to identify (i, I', 0) =
h(X*?) for £* € F and show (QTy, QTI'Q,0) € ©(k). First, we identify the
expression [E(y; | V;.) under the alternative joint distribution (7.13). Assuming
yi =V + Vis¥s + Vi sc¥se + ¢, we have

— 1181500 + ¥f
(7.15) Y1 = W Us=v5  Vso=(po— Y18
- 2
and
2 k)2
(7.16) Var(e]) = o2 — I815(P0 = V)" _ 2 _ py,.

1—813

Based on (7.15), the sparsity of ¥ in the alternative hypothesis space is upper
bounded by 1 + [supp(¥5)| + | supp(d)| < (1 — i—o)k, and hence the sparsity of the
corresponding 8 = QT is controlled by

(7.17) 1810 < (1 _ %)Hq <k.



HIGH-DIMENSIONAL CONFIDENCE INTERVAL 637

Second, we show that 2 = QTI'Q satisfies the condition M% < Amin(2) <
Amax(§2) < M. The covariance matrix W of V; . in the alternative hypothesis pa-

rameter space is expressed as

1 015k, | Ok, xp
V= 0k*><1 Ik*xk* Ok*xpl

0P1X1 0P1 X Ky Im X p1
0 lek* o7
+ 1 0,51 | Ok, xky | Ok

(7.18)

8 0171 Xk Opl X p1

Since the second matrix on the above equation is of spectral norm ||8]|2, Weyl’s
inequality leads to max{|Amin(¥) — 1], |Amax(¥) — 1]} < [|8]l2. When ||8]|2 is
chosen such that ||§]|> < min{l — MLI M; — 1}, then we have MLI < Amin(¥) <
Amax (W) < M. Since 2 and I' = QQQT have the same eigenvalues, we have
M% < Amin(2) < Amax(2) < My. Combined with (7.16) and (7.17), we show that
Hi C G(k).

Step 2. To control TV( fﬂHl , f”Ho)’ it is sufficient to control x2( fﬂHl , anO)

and apply (7.2). Let & denote the uniform prior on § over £(py, %Ok, p). Note that
this uniform prior 7 induces a prior distribution 73;, over the parameter space H.
Let E; 5 denote the expectation with respect to the independent random variables
8,8 with uniform prior 7 over the parameter space £(pq, %Ok, p). The following

lemma controls the x 2 distance between the null and the mixture over the alterna-
tive distribution.

LEMMA 2. Let fi = (6% + (¥})? — poyr). Then

1 NN
(7.19) Xz(fﬂg.[l ) fn;«.[o) +1= E8,§<1 - ;(PO(PO - Klfik) + f1)5T5> :

The following lemma is useful in controlling the right-hand side of (7.19).

LEMMA 3. Let J be a Hypergeometric(p, k, k) variable with P(J = j) =
(OI0))
@ , then

2 k k k
(7.20) Eexp(tJ) <er* (1 - — 4+ - exp(t)) .
p P

Taking po = ¥{ + o, we have ﬁ(po(po —¥{) + f1) =2 and by Lemma 2,

X2(f”’H| s fT[HO) + 1= E&S(l - 26Tg)_n
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By the inequality - < exp(2x) for x € [0, log2] if §78 < Lkp? < % then

(1—28T8)™" < exp(4n8T6). By Lemma 3, we further have

~ L Sok Lok 2k
E; 5exp(4n8T8) = Eexp(4Jnp?) < e™1-20F (1 T + S0 exp(4np )>
’ P

5 <1 Sok . Gok 4p1)7k

< o771 Zok
=¢ 21 2p1\ K2

22y

gt 1\
< e4r1-2t00” <1 + —> ,
AV P1
log ;zp '2
where the second inequality follows by plugging in p = 8—0 and the last

inequality follows by k < cp?. If k < c{lo ,p’}, where 0 <y < 5 Land cis a

sufficient small positive constant, then kp? < mln{lgi)z, (1 — 5 =21}, and hence

1 2 1
020 g frng) = (5= 0)  and TV, ) = 5

Step 3. We calculate the distance between w1 and po. Under Ho, no = /.

—18 2 *
Under 1. 1 = 1 = 5 St For 8 € E(p1. $k. ). 1815 = $kp? and g =

— Ok (Yr+o)+yt

Y1 = 92 . Since p is selected as fixed, w1 = ¥ is a fixed constant
2 *_ _ 2
for (¥, I, o) € H1. Note that ju1 — po = lls”f(lﬁg”zm) = 10‘|||63‘\‘|227 and it follows that
- 2 - 2
1813 log 25
l1 — wol = 60— 2 > ck—%—0. Combined with (7.2) and (7.21), Lemma 1

11815 =
leads to (7.10). By (72.9), we estabhsh (3.13). O

PROOF OF (7.7). Similar to the proof of (7.6), the proof is divided into three
steps.

The first step. We construct alternative hypothesis parameter space H. For a
given &, B* and a small positive constant £, we select 8 such that

* " €
(7.22) B—supp(®) = Blauppers | Bsuppe) — Biuppe) |2 = T
and
(7.23) ET(B—pB%) = Z &(Bi — B7) =128 — B7|,-

iesupp(§)



HIGH-DIMENSIONAL CONFIDENCE INTERVAL 639

The sparsity of B is controlled by || Bllo < [|8*llo + I lo < k, and hence (8,1, 0) €
® (k). We consider the parameter spaces Ho = {0* = (8*,1,0)} and H; =
{(B,L, o)}

The second step. Let 3, denote the point mass prior on the point (8*,1, o)
and 73, denote the point mass prior on the point (8,1, o). Let anO (y | X) denote
the conditional density function of the marginal distribution of y given X with
the parameter w3, on H; for i =0, 1. The x? distance between the conditional
distributions fm_[1 (y]X) and fﬂHO (y] X)is

1
724 X (g, O 1 XD, frg 01 X0) + 1= exp(; |X (8- ﬂ*)Hi)-

Let Ex denote the expectation with respect to X, where X;. N »(0,1), 1=
1,...,n, then we have

X2 (Frzg, 05 XD, frugy 02 X0) = Bx (P (fruag, 0 1 XD, frgyy 01 X))
1
=Exexp( 5 1X(6—8)13) - 1

2118*%— 2
It Lf“z < %, we have
o

* 2\ -5
208 ﬁnz) .

o2

X (frrg, 02 XD frgy (02 X)) = (1

Sexp(znuﬂ* —ﬁH%) 1,

o2

(7.25)

where the first equality follows from the moment generating function of x2 dis-
tribution and the second inequality follows from the inequality ﬁ < exp(2x) for
x €0, %22,

The third step. We calculate the distance between w; = TS and g = TS*. Note
that g and p are fixed constants under the simple null and alternative hypothesis.
By Lemma 1, the construction (7.22) and (7.23) and the control of X2 distance
(7.25) lead to

Ep+(L(Cle (678, Z))) = 0 - (1 —2a — \/exp(282) — 1). 0

7.3. Proof of Theorem?2. Theorem 2 follows from Theorem 3. Given 0 < ¢y <
1, we define ki = min{ky, (1 — ¢o)k — 1} and ¢* = min{a—ok, I€]l0}. Let J denote
the subset of {1, ..., p} corresponding to the ¢g* largest in absolute value coordi-
nates of §. Define the parameter space O (k) = {0 € O (k) : Bsupp(e)\s = 0}, which
is a subspace of ® (k) setting 8 to be zero on the set supp(§) \ J. Define the vector

4
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€ such that éj =§; for j € J and §j =0 for j ¢ J. By the fact that ET8 = £T8 for
B € ©¢(k), we have

Eo«L(Clo (578, Z))

inf
Clu(§TB,Z)eLy (O (k),ETB)

= inf ~ EgL(CL, (78, Z)).
Clo(ETB.2)€Za (0% (k).5TH)

It then follows from the same argument as the proof of Theorem 3 that

I £ z 1 klogp
inf Eg+«L(CL,(ETB, Z)) > c|| ||2(_Jr )
Cly(ETB,Z)eZy (O (k),ETP) ( o(§TH )) § 7 "

By taking 6* € O (k}), we have

L} (O (k]), O (k), &7 inf «L(CI,(§78, Z)).
( 5;( ) 6(k).& '3) CIa(STﬂZ)GIa(@)s(k)STﬂ) Bs ( (S p ))
Since O¢(k}) C ©(k1), Og(k) C O(k) and lENl2 > cl€]l2, we have established
Theorem 2.

7.4. Proof of Theorem 1. The lower bound of Theorem 1 follows from The-
orem 2 by taking k; = k. The minimax upper bound follows from the following
proposition, which establishes the coverage property and the expected length of
the confidence interval constructed in (3.11). Such a confidence interval achieves
the minimax length in (3.1).

PROPOSITION 1. Suppose that k < c*@, where cy is a small positive con-

stant, then
(7.26) %lg}n_l)rége 18{ Py(6TB € CIS(ETR, Z)) > 1 —a
and
log p 1
S(eT e I
(7.27) L(CI; (7B, Z2), B(k)) < CIISIIz(k + ﬁ)

for some constant C > 0.

In the following, we are going to prove Proposition 1. By normalizing the
columns of X and the true sparse vector 3, the linear regression model can be
expressed as

(7.28) y=Wd+e withW=XD,d=D"'gande~ N(0,0°1),

where

(7.29) D:diag( a )
I1X.ill2/ jerp
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denotes the p x p diagonal matrix with (j, j) entry to be ﬁ Take §p = 1.0048

and 19 = 0.01, and we have ,\0_(1+n) 20l0gP Take g =20 4 1 =202,

vo=0.01, C1 =2.25, ¢g = 6 and Co = 3. Rather than use the constants directly
in the following discussion, we use 8g, 19, €0, Vo, C1, Co and cg to represent the
above fixed constants in the following discussion. We also assume that Ing < 215
and 8o log p > 2. Define the [ cone invertibility factor (CIF;) as follows:

K 4 oo
(7.30) CIF{(xg, K, W)= {+

lugellt S aolluklin, u #0},
lugll

where K is an index set. Define 0% = T||y XBllr = f||y wWd||»,

= {k:|di| = oo},
(7.31)

4 87| }
T = (1 4+ g9) Ao max ’ '
(I+e0)ro {O.ora ldz<ly CIF12e0+1,T, W)

To facilitate the proof, we define the following events for the random design X and
the error &:

2 1 X.; 7
G| = < < I \/%Hz < §‘/M1 forlfjf]?},
oray2 1 1
G, =) —1‘52 ng+2°gp},
o n n
Gy = max{ 5Tis—l' ”Tiu—l‘}q logp+210gp}
3 ETSE TETQE B n n

where u = QE§,

1 9 logp
Gao=lex ko) > _ (1+a)fk }
4\/)kmax (Q) \/)\min(Q) n
T
Goo [Vl _ /250105;17}’
n n

wT
s = [ IWielloe _ oy (1—1)}
£ +

n =

={(1 —vp)é <o <1+ w6},

By ={|6TQS —£T|_ <i,)  where A, =4CoM2|& |2,/ 5”
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Define G = ﬂl 1Giand S = ﬂ _1 Si. The following lemmas control the prob-
ability of events G, S and Bj. The detailed proofs of Lemma 4, 5 and 6 are in the
Supplementary Material [6].

LEMMA 4.

(7.32) Po(G) > 1 — S_ 2p' 61— ;pl—% — ¢’ exp(—cn)
' - p 2 /méolog p

and

(7.33) Py(By) = 1 —2p' 0,

where ¢ and ¢ are universal positive constants. If k < c*ﬁ, then

go+1—v2go+1>n>
2

Ps(G N S) > Py(G) — Zexp<_(

(7.34)
" 1 1-6o

P )
Vlog p

where ¢, and ¢ are universal positive constants and gy = »75-- +3VO

The following lemma establishes a data-dependent upper bound for the term

1B — Bl

LEMMA 5. On the event GN S,

(7.35) IB— Bl <2+ 280)Ll(z k),
in [ X2

where

(2 + 2g0) max || X |13 (o MJr)»o&)k}
nic2(X, k, (1 + 2g0) (22 1X11 ) '

min || X.j{|2

(7.36) I(Z,k)= max{kkoa

The following lemma controls the radius of the confidence interval.

LEMMA 6. On the event G N S N By, there exists po such that if p > po,

7.37 P k C -’;: — o -’;: ogp (o
1 = 2 [+ = 210g [+

and

1 1
(7.38) pa(k) < Ch,| 2L < logp(k ng6>.
n n




HIGH-DIMENSIONAL CONFIDENCE INTERVAL 643

In the following, we establish the coverage property of the proposed confidence
interval. By the definition of i in (3.6), we have

1 ~ o~
(7.39) n—€TB= ;ATXTe +ET-uTE)(B - B).

We now construct a confidence interval for the variance term %ﬁT XTe by normal
distribution and a high probability upper bound for the bias term (§T —uTX)(8 —
B). Since ¢ is independent of X and # and X is a function of X, we have %iﬁ XTe |

X~ N(Q, Uzmn_iﬁ), and

TADITH Jat
ng( MTXTSE 0Za/2, O'Za/z ‘X —1—0(

By (7.39), we have ]P’g\x(éT,B eCly(Z,k)| X) =1 — a, where

aTSu

GZO{/Z?

Clo(Z. k) = [ﬁ T —aTS)F - ) —

n
“ o~ am
n—(ET-a"E)B-B)+ ! " MJZa/21|.

Integrating with respect to X, we have

(7.40)  Py(ETB € Cly(Z, k)) :fIP)g\x(éTﬂ eCly(Z, k) | x)f(x)dx=1—a.

Since |(ET—aTE)(B—B)| < |1ET—4TZ lsolB— Bll1, on the event SNG, Lemma 5
and the constraint in (3.5) lead to

_n

(7.41) 5 loollB = Bl = 202+ 260) mm

(Z,k),

where [(Z, k) is defined in (7.36). On the event G N S, we also have o < (1 +vp)o

and 0% < (1 + vo)\/ 142 10% + 210%6. We define the following confidence
interval to facilitate the discussion, CI{(Z, k) = (T — I, & + Ix), where [ = (1 +
Vo) logp 5. On the event G N S, we have

(7.42) Cly(Z, k) C CLi(Z, k).

On the event Sy, if p > exp(2M3), then 6 < 1_1U()o <1

event A holds and CIg(STﬁ, Z) =it — p1(k), & + p1(k)]. By Lemma 6, on the
event G N SN By, if p > max{pg, exp(2M>)}, we have p; (k) =i, and hence

(7.43) CL(Z,k) =CI3 (678, Z).
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We have the following bound on the coverage probability:
Po({£7B € CI§(§T/3, ) =Py({§TB e Clo(Z, )} NSNG N By)
>Py({678 € Clo(Z,k)}) —Po((SN G N By)°)
=1—a—Pg((SNG N B))
=Pe(SNGNBy) —a,

where the first inequality follows from (7.42) and (7.43) and the first equality fol-
lows from (7.40). Combined with Lemma 4, we establish (7.26). We control the
expected length as follows:

E¢L(CI; (578, Z))
=EeL(CL (78, Z))14a
=E¢L(CI (7B, Z))1ansnenay)
+EgL(CI3 (7B, Z))1an(snGns )

1 1
(7.44) < cnsnz(k EP ﬁ)o

klogp

1
4 IIEIIz(Ing)Z(ﬁ 4

log p 1 )
<C k —
< Iléllz( —+ NG

x (o + C(pl_min{’so’cl’cocg} + ¢’ exp(—cn))(log p)z),

)Pg((S NG nN Bl)c)

where the first inequality follows from (7.37) and second inequality follows from
Lemma 4. If k’% < c, then (plfmi“{‘so’cl’q)cg} + ¢’ exp(—cn))(log p)> — 0, and
hence Eq L(CI3 (T8, 2)) < ClIg |22 + )My

n
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Confidence intervals for high-dimensional linear regres-
sion: Minimax rates and adaptivity”’ (DOI: 10.1214/16-A0S1461SUPP; .pdf).
Detailed proofs of the adaptivity lower bound and minimax upper bound for con-
fidence intervals of the linear functional £€T8 with a dense loading & are given.
The minimax rates and adaptivity of confidence intervals of the linear functional
ETB are established when there is prior knowledge that Q2 =1 and o = o0y. Extra
propositions and technical lemmas are also proved in the supplement.
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