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ASYMPTOTIC THEORY FOR THE FIRST
PROJECTIVE DIRECTION1

BY MICHAEL G. AKRITAS

Penn State University

For a response variable Y , and a d dimensional vector of covariates X,
the first projective direction, ϑ , is defined as the direction that accounts for
the most variability in Y . The asymptotic distribution of an estimator of a
trimmed version of ϑ has been characterized only under the assumption of the
single index model (SIM). This paper proposes the use of a flexible trimming
function in the objective function, which results in the consistent estimation
of ϑ . It also derives the asymptotic normality of the proposed estimator, and
characterizes the components of the asymptotic variance which vanish when
the SIM holds.

1. Introduction. For a univariate response Y , and covariate vector X ∈ R
d ,

set μ(X) = E(Y |X). Attempts to overcome the “curse of dimentionality” in the
nonparametric estimation of μ(X), led to intensive work on dimension reduc-
tion models for high-dimensional data, including projection pursuit regression
[Friedman and Stuetzle (1981), Huber (1985)], and index models such as the
single- and multi-index models [cf. Horowitz (2009)]. Such models provide a use-
ful compromise between the restrictions of parametric models and the imprecision
of fully nonparametric models. Like all models, however, they only provide an
approximation to reality. Hence, it is important to examine their interpretation,
methods for fitting them, and the asymptotic theory of the resulting estimators in a
nonparametric context. The objective of this paper is to initiate such an investiga-
tion, starting with the simplest, and most widely used of the dimension reduction
models, which is the single index model (SIM).
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The SIM specifies

μ(X) = g
(
ϑT X

)
,(1.1)

where the d × 1 vector ϑ and function g are unknown. For identifiability, one
imposes certain conditions on ϑ , the most common of which is to assume that
‖ϑ‖ = 1, where ‖ · ‖ denotes the Euclidean norm, with its first coordinate positive.
Alternatively, it may be assumed that

ϑ = (
1, θT )T

, θ ∈R
d−1,(1.2)

a parameterization which is adopted in this paper. The term single index model
was coined by Stoker (1986), though the model was first introduced by Brillinger
(1983). Four main types of methods have been suggested for estimating ϑ . The first
consists of simply using least squares or another type of convex criterion function,
and is valid only under a certain linearity condition; see Brillinger (1983) and Li
and Duan (1989). The second type is based on Stoker’s (1986) observation that
the expectation of the gradient ∇(μ(X)) is a scalar multiple of ϑ ; such average
derivative estimation (ADE) methods include Powell, Stock and Stoker (1989),
Härdle and Stoker (1989), the direct estimation approach of Hristache et al. (2001),
and the outer product of gradients (OPG) method of Xia et al. (2002). The third
type includes Ichimura (1993), who termed the approach semiparametric least
squares (SLS) estimation, Hall (1989), Härdle, Hall and Ichimura (1993), Liang
et al. (2010) who also use penalized semiparametric least squares for simultaneous
estimation and variable selection and Cui, Härdle and Zhu (2011); related is the
minimum average variance estimation (MAVE), and the refined MAVE (rMAVE)
methods of Xia et al. (2002). The fourth type includes methods that evolved from
Li’s (1991) sliced inverse regression. Efficiency comparisons performed in Xia
(2006) show that rMAVE and Ishimura’s (1993) estimators are efficient.

The parameter ϑ in (1.1) has the property of being the first projective direction,
that is, it represents the projective direction that accounts for the most variability
in Y . However, the first projective direction is a well- defined quantity regardless of
whether or not the SIM holds. Namely, the first projective direction, parameterized
as ϑ = (1, θT )T , is defined by defining θ as

θ = arg inf
t

E
[(

Y − g
(
bT

t X|t))2]
,(1.3)

where the notation bt = (1, tT )T , t ∈ R
d−1 will be used throughout, and the func-

tion

g(u|t) = E
(
Y |bT

t X = u
)

(1.4)

is the projective approximation of μ(X) corresponding to the direction defined
by bt.

Clearly, estimation of ϑ is of interest even when the SIM does not hold,
for example, when a multi-index model holds; see Remark 1.1. Of the methods
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mentioned for estimating the SIM parameter ϑ only SLS-type methods estimate
the first projective direction regardless of whether or not (1.1) holds. For exam-
ple, though average derivatives are statistically meaningful [cf. Samarov (1993)]
and have been studied on their own right [cf. Chaudhuri, Doksum and Samarov
(1997)], projection on the vector of average derivatives has no clear interpretation
if (1.1) does not hold. Moreover, of the papers that use the SLS estimation method,
only Hall (1989) considers the asymptotic properties of the SLS estimator without
assuming the SIM, and establishes its

√
n-consistency.

REMARK 1.1. Many of the methods mentioned for estimating the SIM gen-
eralize to the multi-index model. See Li (1991), Hristache, Juditsky and Spokoiny
(2001), Xia et al. (2002) and the Iterative Hessian Transformations methodology of
Cook and Li (2002) who also introduced the important notion of the central mean
subspace. However, fitting a multi-index model does not render the first projective
direction irrelevant. Indeed, knowing the most important direction in the central
mean subspace provides additional useful insight. None of the available methods
for fitting the multi-index model is designed to identify its most important direc-
tion. Akritas (2016) shows that the first projective direction belongs in the central
mean subspace and, hence, is its most important direction. It follows that the first
projective direction can be used as a data analytic tool in parallel to any application
of multi-index model methodology.

In this paper, we use the SLS method, but with an important modification in the
trimming function which results in the consistent estimation of the first projective
direction as opposed to a trimmed version of it. This is made possible through
Proposition 2.1 which relies on uniform convergence results in the style of Hansen
(2008). See Section 2 for details. Section 3 gives the main results, which are the
asymptotic normality of the proposed estimator under the SIM, and when the SIM
does not hold. A small simulation study reported there suggests the asymptotic
theory yields confidence intervals that maintain the nominal coverage probability.
Sections 4 and 5 present the proofs of the main results with some details moved
to Appendix B and the supplementary material [Akritas (2016)]. The assumptions
under which the main results are derived are stated in Appendix A. The proof of
Proposition 2.1 is given in Appendix C, while Appendix D presents some lemmas
needed in the derivations.

2. The proposed estimator.

2.1. Ichimura’s SLS approach. Using an argument that goes back to Ichi-
mura’s Ph.D. dissertation [later published in Ichimura (1993)], if the functions
g(u|t), defined in (1.4), were known for all t ∈ R

d−1 then, according to (1.3),
θ would be estimated as the minimizer of

S∗
n(t) =

n∑
i=1

(
Yi − g

(
bT

t Xi |t))2
,(2.1)
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where, recall, bt = (1, tT )T . Since g(u|t) is unknown, g(bT
t Xi |t) is substituted by

an estimator ĝ(bT
t X|t), so θ can be estimated as the minimizer of

n∑
i=1

(
Yi − ĝ

(
bT

t Xi |t))2
.(2.2)

For technical reasons that have to do with the uniform convergence of the
Nadaraya–Watson or local linear estimator, a trimming function is introduced in
the objective function (2.2). Namely, one obtains θ̂

A
as the minimizer of

SI,n(t) =
n∑

i=1

(
Yi − ĝ

(
bT

t Xi |t))2
I (Xi ∈A),

for some region A ⊂ R
d . As Hall (1989) remarks, the necessity of such technical

restriction is regrettable. Clearly, θ̂
A

is a consistent estimator of θA which mini-
mizes E[(Y − g(bT

t X|t))2I (X ∈ A)].
Two general approaches have been used for deriving the asymptotic normality

of θ̂
A

under the SIM. One is based on showing that θ̂
A

is asymptotically equivalent
to the minimizer of (the trimmed version of) S∗

n(t) in (2.1). Standard nonlinear least
squares asymptotics, and the fact that

∇g
(
bT

t Xi |t)|t=θ = g′(ϑT Xi |θ)[
Xi,−1 − E

(
Xi,−1|ϑT Xi

)]
,(2.3)

where g′(u|θ) = (∂/∂u)g(u|θ) and Xi,−1 is the (d − 1)-dimensional vector con-
sisting of coordinates 2, . . . , d of Xi , lead to the known asymptotic distribution
of θ̂

A
under the SIM. See in particular Härdle, Hall and Ichimura (1993), who

used g̃−i (bT
t Xi |t), a Nadaraya–Watson estimator based on all data points except

(Yi,Xi) and minimized it also with respect to the bandwidth. The other approach
is based on showing that the solution to

∇SI,n(t) ≡ ∂

∂t
SI,n(t) = 0

is asymptotically equivalent to the solution of (the trimmed version of) ∇S∗
n(t) = 0,

and uses techniques from the theory of estimating equations. This approach is
adopted, among others, by Liang et al. (2010) and Cui, Härdle and Zhu (2011),
using local linear estimation of g(bT

t Xi |t); see also Newey (1994) who developed
general conditions for the asymptotic normality of semiparametric estimators.

2.2. The estimator. The main innovation lies in the use of an expanding se-
quence of regions An in the objective function:

Sn(t) =
n∑

i=1

(
Yi − ĝ

(
bT

t Xi |t))2
I (Xi ∈ An),(2.4)
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where, with cn as defined in Proposition 2.1, An ⊂ R
d is defined as

An =
{
x ∈ R

d : sup
t

∣∣bT
t x

∣∣ ≤ cn

}
,(2.5)

where, here and in all that follows, t will range in the compact set � so supremum
over t ∈ � will simply be indicated by supt. Thus, the proposed estimator is ϑ̂ =
(1, θ̂

T
)T , where θ̂ is defined as

θ̂ = arg inf
t

Sn(t).(2.6)

This innovation is made possible by convergence results similar to those in Hansen
(2008), which are uniform over expanding regions. Thus, with the choice of cn dic-
tated by (2.8) and under the tail condition expressed in Assumption A4, the result-
ing estimator ϑ̂ estimates the first projective direction ϑ , not a trimmed version of
it, bridging an existing gap between theory and practice. Moreover, the asymptotic
normality of θ̂ is obtained also without assuming the SIM. This is accomplished
through a novel method of proof based on the theory of empirical processes; see
Section 3.

REMARK 2.1. In the context of the SI model, the iterative estimator (rMAVE)
of the Euclidean parameter proposed in Xia (2006) is also based on a flexible trim-
ming function, with regions expanding at a similar rate. For example, with multi-
variate Gaussian covariates both An, with cn as defined in Proposition 2.1, and the
regions for the rMAVE estimator expand at a rate of O(

√
log(n)). However, none

of the initial estimators, needed to start the iterative algorithm in Xia (2006), are
consistent for the first projective direction unless the SI model holds.

The population version of ∇S∗
n(t) = 0, with S∗

n(t) defined in (2.1) is ∇E[(Y −
g(bT

t X|t))2] = 0. Assuming that expectation and differentiation can be inter-
changed, it takes the form

E
[(

Y − g
(
bT

t X|t))∇g
(
bT

t X|t)] = 0.(2.7)

Thus, θ , which is assumed to be unique, solves the equation (2.7). The following
proposition and corollary establish strong uniform estimation of ∇g(bT

t Xi |t).

PROPOSITION 2.1. Let ĝ(bT
t x|t) stand for either the Nadaraya–Watson or

the local linear estimator of g(bT
t x|t), with corresponding bandwidth h = o(1),

and let ft be the density of bT
t X, where bt = (1, tT )T . Set an = [lnn/(nh)]1/2,

a∗
n = an + h2, and let cn be a sequence tending to ∞ at a rate not exceeding

(ln lnn)2(lnn)n1/(2q), some q ≥ 1, and such that

δ−2
n h = o(1) = δ−2

n h−1.5(logn/n)0.5,(2.8)
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where, for t ∈ � ⊂ R
d−1, � compact, δn = inf|s|≤cn,t ft(s) > 0. Finally, set δ̃n =

inf|s|≤cn,t |ft(s)/f
′
t (s)| > 0. Then, under Assumptions A0–A4 of Appendix A [note

that by (2.8) and Assumption A3(a), δ̃−2
n h = o(1)],

∇ĝ
(
bT

t x|t) = h
(
bT

t x,x|t) + O
(
δ−1
n h−1(

an + h3) + δ−2
n h−1a∗

n + δ̃−2
n h2)

holds uniformly in t and in x such that |bT
t x| ≤ cn, almost surely, where

h(s,x|t) = −χ ′
1(s,x|t) + g(s|t)χ ′

2(s,x|t)
(2.9)

− f ′
t (s)

ft(s)

[
χ1(s,x|t) − g(s|t)χ2(s,x|t)],

and χ ′
1(s,x|t), χ ′

2(s,x|t) are the vectors of partial derivatives, with respect to s,
of the functions χ1(s,x|t), χ2(s,x|t), respectively, which are given by

χ1(s,x|t) = E
[
X−1μ(X)|bT

t X = s
] − x−1E

[
μ(X)|bT

t X = s
]
,

χ2(s,x|t) = E
[
X−1|bT

t X = s
] − x−1,

where, for any d-dimensional vector x, x−1 denotes the (d −1)-dimensional vector
formed by eliminating the first coordinate of x.

The proof of Proposition 2.1 is given in Appendix C.

REMARK 2.2. Under the SIM, χ1(s,x|θ) = g(s|θ)χ2(s,x|θ). Thus, the third
term on the right-hand side of (2.9) is zero while the first two terms combine to
yield [see (2.3)],

h
(
ϑT x,x|θ) = g′(ϑT x|θ)[

x−1 − E
(
X−1|ϑT X = ϑT x

)]
.

COROLLARY 2.1. Under the conditions of Proposition 2.1,

h
(
bT

t x,x|t) = ∇g
(
bT

t x|t).
The proof of Corollary 2.1 follows by the fact that the conditions for differenti-

ating inside the limit [cf. Rudin (1964), Theorem 7.17] hold almost surely.
In view of Proposition 2.1 and Corollary 2.1, we set

ĥ
(
bT

t x,x|t) = ∇ĝ
(
bT

t x|t).(2.10)

3. The main results. Let � be the class of functions γ : Rd → R defined
in Assumption A0(1) so that, by the convention specified there, γ (s|t) denotes
the value of γ at (s, tT )T . Thus, according to Lemma D.2 and Proposition 2.1,
� includes ĝ(·|t) for n large enough, almost surely, assuming the definition of
ĝ(s|t) for |s| > cn is artificially modified to ensure its convergence to g(s|t) in the
sup-norm metric, uniformly in t; see Remark 3.1.
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Let the functional θ1 : � →R
d−1 be defined through the property

θ1(γ ) = arg inf
t

E
[(

Y − γ
(
bT

t X|t))2]
.(3.1)

According to Assumption A0(1), θ1(γ ) is uniquely defined at least for γ (·|t) close
to g(·|t) in the Sobolev norm uniformly in t. Thus, letting

η
(
bT

t x,x|t) = ∇γ
(
bT

t x|t),(3.2)

m(y,x, t, γ,η) = (
y − γ

(
bT

t x|t))η(
bT

t x,x|t),(3.3)

and assuming expectation and differentiation can be interchanged, θ1(γ ) satisfies

E
[
m

(
Y,X, θ1(γ ), γ,η

)] = 0.(3.4)

Note that, for simplicity, the notation in (3.2) does not make the dependence of
η on γ explicit. In view of (3.4) we can also write θ1(γ,η) instead of θ1(γ ); see
Remark 3.2.

REMARK 3.1. The aforementioned modified version of ĝ(·|t), and hence also
of ĥ(s,x|t), are only used for theoretical derivations, for example, when ĝ(·|t) and
ĥ(·,x|t) enter as arguments in the functional θ1(γ,η) ≡ θ1(γ ), and do not affect
the objective function (2.4), or the estimating equations (3.8). For this reason, and
for simplicity, we keep the same notation for the modified versions of ĝ(·|t) and
ĥ(s,x|t).

REMARK 3.2. The general methodology for deriving the asymptotic theory
of SLS estimators developed by Newey (1994) [see also Liang et al. (2010)], con-
siders m(y,x, t, γ,η) as a functional of γ and η without utilizing their connection.
This could also be done here. For example, one can define H to be a class of
functions η :R2d →R

d−1 of the form

η(s,x|t) = x−1φ1(s|t) + φ2(s|t),(3.5)

where φ1 : Rd → R and φ2 : Rd → R
d−1 are continuous functions such that

φ1(·|t) and φ2(·|t) are in δ-neighborhoods, in the sup-norm metric, of g′(·|t) and

g(s|t)
[
E′(X−1|s) + f ′

t (s)

ft(s)
E(X−1|s)

]
− E′(X−1Y |s) − f ′

t (s)

ft(s)
E(X−1Y |s),(3.6)

respectively, where E(X−1|s), E′(X−1|s) denote E(X−1|bT
t X = s), (∂/∂s)

E(X−1|bT
t X = s), respectively, and similarly for E(X−1Y |s), E′(X−1Y |s). Since

h(s,x|t) can be written in the form (3.5) with φh
1 (s|t) = g′(s|t) and φh

2(s|t) the
expression in (3.6), it follows that h ∈ H, while, by Proposition 2.1, H includes
ĥ(s,x|t), for n large enough, almost surely, assuming its definition for |s| > cn is
again artificially modified. However, this enlarges the domain of θ1(γ,η) from �

to � × H, and leads to an unnecessary complication in the derivation of a bound
for the bracketing number.

Some simple implications of (3.4) are summarized in the following lemma.
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LEMMA 3.1. For j = 1, . . . , n, let ej (t) = Yj − g(bT
t Xj |t), and set ej =

ej (θ). Then

E
[
E

(
ej Xj,−1|ϑT Xj

)
g′(ϑT Xj |θ)] = E

[
ej Xj,−1g

′(ϑT Xj |θ)] = 0.

Under the SIM, ej = εj ≡ Yj − E(Y |X), and (see Remark 2.2)

E
(
h
(
ϑT X,X|θ)|ϑT X

) = 0.

Next, writing here and in all that follows η(bT
t x,x|t) instead of ∇γ (bT

t x|t), set

�n(t, γ ) = n−1/2
n∑

j=1

m(Yj ,Xj , t, γ,η)I (Xj ∈ An).(3.7)

In the above notation, the estimating equations ∇Sn(t) = 0, where Sn(t) is given
in (2.4), are written as

�n(t, ĝ) = 0.(3.8)

THEOREM 3.1. Let assumptions of Proposition 2.1, and Assumption A5 hold,
let θ̂ be the proposed estimator [thus it solves (3.8)], and let θ̂

0
be a solution to

�n(t, g) = 0. Then

n1/2[(̂
θ − θ1(ĝ)

) − (̂
θ

0 − θ1(g)
)] = oP (1),

where θ1(γ ) is the functional defined in (3.4) [thus, θ1(g) is θ ]. In par-
ticular, letting � = Q−1	Q−1, with Q = E[∇m(Y,X, t, g,h)|t=θ ] and 	 =
E[m(Y,X, θ, g,h)m(Y,X, θ, g,h)T ], we have

√
n
(̂
θ − θ1(ĝ)

) d→ N(0,�).

The proof of Theorem 3.1 is given in Section 4. Note that under the SIM the
expression for Q becomes E[h(ϑT X,X|θ)h(ϑT X,X|θ)T ], so the limiting distri-
bution given in Theorem 3.1 is the familiar asymptotic distribution of

√
n(̂θ − θ)

in this case. Of course, in Theorem 3.1 θ̂ is centered by the random variable θ1(ĝ)

instead of the true parameter value θ = θ1(g). Write
√

n(̂θ − θ) = √
n
(̂
θ − θ1(ĝ)

) + √
n
(
θ1(ĝ) − θ

)
.

In Theorem 3.2 it is shown that, under the SIM,
√

n(θ1(ĝ)− θ) = oP (1). This and
Theorem 3.1 yield the familiar asymptotic distribution of θ̂ . When the SIM does
not hold,

√
n(θ1(ĝ)−θ) contributes additional terms to the asymptotic distribution

of θ̂ . The details are given in the next theorem.

THEOREM 3.2. Let the assumptions of Theorem 3.1 hold. Moreover, let nh4 =
o(1), define


e,1(s|θ) = [
E

(
X−1μ(X)|ϑT X = s

) − g(s|θ)E
(
X−1|ϑT X = s

)]
fθ (s),
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and let 
′
e,1(ϑ

T Xj |θ) denote its derivative with respect to s evaluated at ϑT Xj .

Then, using the abbreviated notation hj (θ) for h(ϑT Xj ,Xj |θ),

n1/2(̂θ − θ)

= n1/2(̂
θ

0 − θ
) + Q−1n−1/2

n∑
j=1

ej (θ)E
(
hj (θ)|ϑT Xj

)

− Q−1n−1/2
n∑

j=1

ej (θ)
{
g′(ϑT Xj |θ)[

Xj,−1 − E
(
Xj,−1|ϑT Xj

)] − hj (θ)
}

+ Q−1 1

n1/2

n∑
j=1

ej (θ)f ′
θ (ϑ

T Xj )

fθ (ϑ
T Xj )

E
(
Xj,−1ej (θ)|ϑT Xj

)

+ Q−1n−1/2
n∑

j=1

ej (θ)

fθ (ϑ
T Xj )


′
e,1

(
ϑT Xj |θ) + op(1).

Under the SIM, the above representation simplifies to

n1/2(̂θ − θ) = n1/2(̂
θ

0 − θ
) + op(1).

The simplified representation under the SIM follows by Lemma 3.1, Re-
mark 2.2, and the fact that, under the SIM, 
e,1(s|θ) = 0. The proof for the general
representation is given in Section 5.

Note that by Lemma 3.1, all terms in the general representation of n1/2(̂θ − θ)

are centered. While their joint asymptotic normality can easily be established, it
does not seem meaningful to write an expression for the covariance matrix of the
limiting normal distribution. Computation of an estimate of the covariance matrix
is feasible on the basis of this representation.

In Table 1, “SIM CIs” and “General CIs” denote the confidence intervals
which use the asymptotic variance of θ̂ under the assumption of SIM and with-
out this assumption, respectively. Models 1–5 are Y = X1 +X2 + (X1 +X2)

2 + e,

TABLE 1
Coverage probabilities for nominal 95% and 90% CIs

SIM CIs General CIs

95% 90% 95% 90%

Model 1 0.952 0.932 0.944 0.912
Model 2 0.900 0.868 0.936 0.926
Model 3 0.872 0.828 0.936 0.920
Model 4 0.886 0.876 0.926 0.916
Model 5 0.886 0.884 0.930 0.924
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Y = X1 + X2 + 5(X2
1 + X2

2) + e, Y = X1 + X2 + 3(X2
1 + X2

2) + 3X1X2 + e,
Y = X1 + X2 + 3 tan((X2

1 + X2
2)/5) + e, Y = X1 + X2 + 3 tan((X2

1 + X2
2)/5) +

3X1X2 + e, respectively, with X1,X2 and e being i.i.d. N(0,1). Thus, the SIM
holds for Model 1 but not for the other models. For the estimation of the asymp-
totic variance, the bandwidth for the estimation of conditional expectations was
obtained by cross validation (CV), while the bandwidths for estimating the first
and second derivative of the conditional expectations are obtained by multiplying
the CV bandwidth by 2.8 × 2002/35 and 2.5 × 2004/45, respectively. For real life
applications, the constants can be calibrated by generating responses variables on
the basis of the observed covariates. The Epanechnikov kernel was used for estima-
tion of density and regression functions, while the biweight and triweight kernels
were used for estimation of the first and second derivative of regression functions;
see Müller (1984). The R package nlminb was used for all minimization tasks. The
results of Table 1 correspond to 500 simulation runs with sample size 200. They
suggest that when the SIM does not hold the General CIs maintain their nominal
coverage probabilities better than the SIM CIs.

4. Proof of Theorem 3.1. Let θ1(γ ) be the functional defined in (3.1), define
γ̃ (·) : X →R by

γ̃ (x) = γ
(
θ1(γ )T x|θ1(γ )

)
,(4.1)

and let �̃ = {γ̃ (x) = γ (θ1(γ )T x|θ1(γ ));γ ∈ �}. Next, set

θ1n(γ ) = arg inf
t

E
[(

Y − γ
(
bT

t X|t))2
I (X ∈ An)

]
,(4.2)

so θ1n(γ ) satisfies E[m(Y,X, θ1n(γ ), γ,η)I (X ∈ An)] = 0, define γ̃1(·) : X →R

by

γ̃1(x) = γ
(
θ1n(γ )T x|θ1n(γ )

)
,

and let �̃1 = {γ̃1(x) = γ (θ1n(γ )T x|θ1n(γ ));γ ∈ �}. The dependence of γ̃ and γ̃1
on γ is not made explicit, but it will always be assumed that to each γ̃ ∈ �̃, or
γ̃1 ∈ �̃1, there corresponds an underlying γ ∈ �. For γ̃ ∈ �̃ define

�̃n(γ̃ ) = n−1/2
n∑

j=1

m
(
Yj ,Xj , θ1(γ ), γ,η

)
.(4.3)

Note that because γ̃ is determined from θ1(γ ) and γ , �̃n(γ̃ ) can be thought of a
shorthand notation for �̃n(θ1(γ ), γ ). In this spirit, the following shorthand nota-
tion will also be used:

�n(γ̃ ) = �n

(
θ1(γ ), γ

)
and �n(γ̃1) = �n

(
θ1n(γ ), γ

)
,(4.4)

where �n(t, γ ) is defined in (3.7), and the second notation in (4.4) is justified by
the fact that γ̃1 is determined from θ1,n(γ ) and γ .
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Let �̃n,	(γ̃ ), �n,	(γ̃ ) and �n,	(γ̃1) denote the 	th components of �̃n(γ̃ ),
�n(γ̃ ) and �n(γ̃1), respectively. In Section 4.1, it is shown that �̃n,	(γ̃ ), as a
process indexed by the functions γ̃ ∈ �̃, converges weakly to a Gaussian process.
Because

sup
γ

∣∣�̃n,	(γ̃ ) − �n,	(γ̃ )
∣∣

= sup
γ

∣∣∣∣∣n−1/2
n∑

j=1

m	

(
Yj ,Xj , θ1(γ ), γ,η

)
I
(
Xj ∈ Ac

n

)∣∣∣∣∣ = o(1),

almost surely by Assumption A4, where m	 is the 	th component of m, it fol-
lows that �n,	(γ̃ ), as a process indexed by γ̃ ∈ �̃, converges weakly to the same
Gaussian process. Moreover, in Section 4.2 it is shown that

sup
γ

∥∥θ1n(γ ) − θ1(γ )
∥∥ = o

(
n−1/2)

.(4.5)

This implies that �n(γ̃1), as a process indexed by γ̃1 ∈ �̃1, also converges weakly
to a Gaussian process. Let {G	(γ̃1) : γ̃1 ∈ �̃1} denote this limiting Gaussian process
which, by Dudley’s (1973) result, has a version with uniformly continuous sample
paths in the canonical metric

d(γ̃1,1, γ̃2,1) =
√

E
∣∣G	(γ̃1,1) − G	(γ̃2,1)

∣∣2, for γ̃1,1, γ̃2,1 ∈ �̃1.

By Theorem 1.10.4 in van der Vaart and Wellner (1996), there are versions of
{�n,	(γ̃1) : γ̃1 ∈ �̃1} and {G	(γ̃1) : γ̃1 ∈ �̃1}, defined on a possibly different proba-
bility space, for which weak convergence is equivalent to almost uniform conver-
gence in the sup-norm; that is, keeping the same notation for these versions,

‖�n,	 − G	‖�̃1

a.u.−→ 0.(4.6)

Using the alternative notation G	((θ1n(γ ), γ )) for G	(γ̃1), which is justified by the
aforementioned correspondence between γ̃1 and (θ1n(γ ), γ ) (and helps avoid ad-
ditional notation for the γ̃1 versions of ĝ and g), an argument inspired by Shorack’s
(1982) proof of the validity of the bootstrap yields∣∣�n,	

(
θ1n(ĝ), ĝ

) − �n,	

(
θ1n(g), g

)∣∣
= ∣∣�n,	

(
θ1n(ĝ), ĝ

) − �n,	

(
θ1n(g), g

) ∓ (
G	

(
θ1n(ĝ), ĝ

) − G	

(
θ1n(g), g

))∣∣(4.7)

≤ 2‖�n,	 − G	‖�̃1
+ ∣∣G	

(
θ1n(ĝ), ĝ

) − G	

(
θ1n(g), g

)∣∣ = oP (1),

by (4.6), and the fact that the canonical distance d((θ1n(ĝ), ĝ), (θ1n(g), g)) tends
to zero, which follows by the strong consistency of ĝ and of ĥ (see Lemma D.2 and
Proposition 2.1) and the fact that ‖θ1n(ĝ) − θ1n(g)‖ → 0, almost surely, by (4.5)
and the sup-norm continuity of the functional θ1(γ ); see Section 4.2.
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Using �n(̂θ , ĝ) = 0, �n(̂θ
0
, g) = 0, Taylor expansions and the strong consis-

tency of θ̂ and θ̂
0

shown in Appendix B, we have

√
n
(̂
θ − θ1n(ĝ)

) = −(
n−1/2∇�n(θ , ĝ)

)−1
�n

(
θ1n(ĝ), ĝ

) + oP (1),(4.8)
√

n
(̂
θ

0 − θ1n(g)
) = −(

n−1/2∇�n(θ , g)
)−1

�n

(
θ1n(g), g

) + oP (1).(4.9)

Since the matrices on the right-hand side of (4.8) and (4.9) converge to Q−1, (4.7),
(4.8) and (4.9) imply the first part of the theorem. The second part of the theorem
follows directly from (4.5), (4.9) and the first part of the theorem.

4.1. Weak convergence of �̃n,	(γ̃ ). Let �̃n,	(γ̃ ) be defined in (4.3). Here,
it will be shown that, considered as a process indexed by the functions γ̃ ∈ �̃,
�̃n,	(γ̃ ) converges weakly to a Gaussian process. For γ̃a ∈ �̃, corresponding to
γa ∈ �, set mγ̃a (y,x) = m(y,x, θ1(γa), γa,ηγ̃a

), where m(y,x, t, γa,η) is de-
fined in (3.3) with γa substituting γ , and ηγ̃a

(x) = η(bT
θ1(γa)x,x|θ1(γa)) as defined

in (3.2) also with γa substituting γ . Moreover, let m	,γ̃a (y,x) denote the 	th co-
ordinate of mγ̃a (y,x), and η	,γ̃a (x) denote the 	th component of ηγ̃a

(x). Then, for
γ̃a, γ̃b ∈ �̃ corresponding to γa, γb ∈ �,∣∣m	,γ̃a (y,x) − m	,γ̃b

(y,x)
∣∣

≤ ∣∣[(y − γ̃a(x)
) − (

y − γ̃b(x)
)]

η	,γ̃a (x)
∣∣

+ ∣∣(y − γ̃b(x)
)[

η	,γ̃a (x) − η	,γ̃b
(x)

]∣∣(4.10)

= ∣∣γ̃a(x) − γ̃b(x)
∣∣∣∣η	,γ̃a (x)

∣∣ + ∣∣(y − γ̃b(x)
)[

η	,γ̃a (x) − η	,γ̃b
(x)

]∣∣
≤ d(γ̃a, γ̃b)

∣∣η	,γ̃a (x)
∣∣ + d(γ̃a, γ̃b)

∣∣(y − γ̃b(x)
)∣∣ ≤ d(γ̃a, γ̃b)F (x),

where d(γ̃a, γ̃b) = max{‖γ̃a(·) − γ̃b(·)‖,‖η	,γ̃a (·) − η	,γ̃b
(·)‖}, and F(x) =

supγ̃∈�̃{|η	,γ̃ (x)| + |y − γ̃ (x)|}, so that, by Assumption A0(5), ‖F‖L2 =
E(F(X)2) < ∞. Using (4.10) and an argument similar to that of the proof of
Theorem 2.7.11 in van der Vaart and Wellner [(1996), page 164] it follows that the
L2 norm bracketing number for the class of function M	 = {m	,γ̃ (y,x); γ̃ ∈ �̃} is

N[ ]
(
2ε‖F‖L2,M	,L2

) ≤ N
(
ε, �̃,‖ · ‖d

)
.(4.11)

Let H	,�̃ be the class of η	,γ̃ functions. It is easy to see that

N
(
ε, �̃,‖ · ‖d

) ≤ N
(
ε, �̃,‖ · ‖∞

) × N
(
ε,H	,�̃,‖ · ‖∞

)
.(4.12)

It will be shown that, as ε → 0,

logN
(
ε, �̃,‖ · ‖∞

) = O
(
ε−(1+1/p)/2) = logN

(
ε,H	,�̃,‖ · ‖∞

)
,(4.13)
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where p is the constant in Assumption A0(4). Relations (4.11), (4.12) and (4.13),
imply that the condition in van der Vaart and Wellner [(1996), page 129] is satis-
fied, showing the weak convergence of �̃n,	(γ̃ ). It remains to show (4.13). Con-
sider first the first equation in (4.13) and note that for γ̃a, γ̃b ∈ �̃,∣∣γ̃a(x) − γ̃b(x)

∣∣ = ∣∣γa

(
bT

θ1(γa)x|θ1(γa)
) − γb

(
bT

θ1(γb)
x|θ1(γb)

)∣∣
≤ ∣∣γa

(
bT

θ1(γa)x|θ1(γa)
) − γa

(
bT

θ1(γb)
x|θ1(γa)

)∣∣(4.14)

+ ∣∣γa

(
bT

θ1(γb)
x|θ1(γa)

) − γb

(
bT

θ1(γb)
x|θ1(γb)

)∣∣.
By Assumption A0(3), the first term on the right-hand side of (4.14) is
O(‖θ1(γa) − θ1(γb)‖), and the second term is bounded by ‖γa(·|θ1(γa)) −
γb(·|θ1(γb))‖∞. Moreover, using the sup-norm continuity of θ1(γ ), which is
shown in Section 4.2, and an analysis similar to that for θ1(ĝ) − θ1(g), which
is done in Section 5, it can be seen that ‖θ1(γa) − θ1(γb)‖ = O(‖γa(·|θ1(γa)) −
γb(·|θ1(γb))‖∞). Combining the above with (4.14), it follows that∥∥γ̃a(·) − γ̃b(·)

∥∥ = O
(∥∥γa

(·|θ1(γa)
) − γb

(·|θ1(γb)
)∥∥∞

)
.(4.15)

For ε > 0, set Xε = {x ∈ R
d : supt∈� |(1, tT )x| < (1/ε)1/(2p)}. Then, by Assump-

tion A0(4) it follows that for x ∈ X c
ε and ε small enough, we have γ̃ (x) < ε, for

all γ̃ ∈ �̃. Next, set �̃ε = {γ̃ |Xε ; γ̃ ∈ �̃}, where γ̃ |Xε denotes the restriction of γ̃

on Xε . Clearly,

N
(
ε, �̃,‖ · ‖∞

) = N
(
ε, �̃ε,‖ · ‖∞

)
.(4.16)

Next, for γ ∈ �, let γ :R →R be such that γ (s) = γ (s|θ1(γ )), let γ |X ε
denote the

restriction of γ on X ε = [−(1/ε)1/(2p), (1/ε)1/(2p)], and let �ε denote the class
of γ |X ε

functions for γ ∈ �. Relation (4.15) implies that

N
(
ε, �̃ε,‖ · ‖∞

) = O
(
N

(
ε,�ε,‖ · ‖∞

))
,(4.17)

while Assumption A0(2), and Theorem 2.7.1 in van der Vaart and Wellner [(1996),
page 155] yield

N
(
ε,�ε,‖ · ‖∞

) = O
(
ε−(1+1/p)/2)

.(4.18)

Relations (4.17) and (4.18) imply the first equation in (4.13). The second equation
in (4.13) is shown by a similar analysis, and this completes the proof.

4.2. The sup-norm continuity of θ1(γ ), and proof of (4.5). Consider first the
sup-norm continuity of θ1(γ ). Set t1 = θ1(γ1), t2 = θ1(γ2) and consider the ex-
pansion (around E[m	(Y,X, t1, γ1,η1)] = 0)

E
[
m(Y,X, t2, γ1,η1)

] = (t2 − t1)
T ∇E

[
m(Y,X, t, γ1,η1)

]|t∗ .
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If ‖γ1 − γ2‖ → 0, so also ‖η1 − η2‖ → 0 (see Corollary 2.1), then by Assump-
tion A5(b) we have E[m	(Y,X, t2, γ1,η1)] → 0. In fact, integrability conditions
and relation (4.10) imply that as ‖γ1 − γ2‖ → 0,

E
[
m(Y,X, t2, γ1,η1)

] = O
(
d(γ̃1, γ̃2)

)
.(4.19)

Thus, using also Assumption A5(a), ‖t1 − t2‖ → 0.
Next, consider the proof of relation (4.5). From the definition (4.2) of θ1n(γ )

and the definition (4.4) of �n(γ̃1) we have E[�n(γ̃1)] = 0, so that

n1/2E
[
m

(
Yj ,Xj , θ1n(γ ), γ,η

)] = n1/2E
[
m

(
Yj ,Xj , θ1n(γ ), γ,η

)
I
(
Xj ∈ Ac

n

)]
.

Letting m	 denote the 	th coordinate of m, the above implies

sup
γ

∣∣n1/2E
[
m	

(
Yj ,Xj , θ1n(γ ), γ,η

)]∣∣
= sup

γ

∣∣n1/2E
[
m	

(
Yj ,Xj , θ1n(γ ), γ,η

)
I
(
Xj ∈ Ac

n

)]∣∣
≤ sup

γ
E

[∣∣m	

(
Yj ,Xj , θ1n(γ ), γ,η

)∣∣r ]ns/2P
(
Xj ∈ Ac

n

) = o(1),

by Assumption A4. Since E[m	(Yj ,Xj , θ1(γ ), γ,η)] = 0, it follows that

o(1) = sup
γ

∣∣n1/2E
[
m	

(
Yj ,Xj , θ1n(γ ), γ,η

) − m	

(
Yj ,Xj , θ1(γ ), γ,η

)]∣∣
(4.20)

= sup
γ

∣∣n1/2E
(∇m

(
Yj ,Xj , θ

∗
1(γ ), γ,η

))(
θ1n(γ ) − θ1(γ )

)∣∣,
where θ∗

1(γ ) is a random variable between θ1(γ ) and θ1n(γ ). Relation (4.20) and
Assumption A5(a), yield (4.5).

5. Proof of Theorem 3.2. In all that follows, we will use the abbreviated no-
tation hj (t) = h(bT

t Xj ,Xj |t), gj (t) = g(bT
t Xj |t), fj (t) = ft(bT

t Xj ) and similarly
for ĥj (t), ĝj (t) and f̂j (t). In view of Theorem 3.1, we have

n1/2(̂
θ − θ1(g)

) = n1/2(̂
θ

0 − θ1(g)
) + n1/2(

θ1(ĝ) − θ1(g)
) + oP (1).

To get an expression for n1/2(θ1(ĝ) − θ1(g)), use the weak convergence of (each
component of) �̃n(γ̃ ) = �̃n(θ1(γ ), γ ) [so that, by an argument like in (4.7),
�̃n(θ1(g), g) − �̃n(θ1(ĝ), ĝ) = oP (1)] to write

oP (1) = �̃n

(
θ1(g), g

) − �̃n

(
θ1(ĝ), ĝ

) ± n−1/2
n∑

j=1

(
Yj − gj

(
θ1(ĝ)

))
hj

(
θ1(g)

)

= n−1/2
n∑

j=1

[
gj

(
θ1(ĝ)

) − gj

(
θ1(g)

)]
hj

(
θ1(g)

) − �̃n

(
θ1(ĝ), ĝ

)
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+ n−1/2
n∑

j=1

(
Yj − gj

(
θ1(ĝ)

))[
hj

(
θ1(g)

) ± ĥj

(
θ1(ĝ)

)]

= n−1/2
n∑

j=1

[
gj

(
θ1(ĝ)

) − gj

(
θ1(g)

)]
hj

(
θ1(g)

)

− n−1/2
n∑

j=1

[
gj

(
θ1(ĝ)

) − ĝj

(
θ1(ĝ)

)]̂
hj

(
θ1(ĝ)

)

+ n−1/2
n∑

j=1

(
Yj − gj

(
θ1(ĝ)

))[
hj

(
θ1(g)

) ∓ hj

(
θ1(ĝ)

) − ĥj

(
θ1(ĝ)

)]
.

Substituting gj (θ1(ĝ))−gj (θ1(g)) and hj (θ1(g))− hj (θ1(ĝ)) by the first term in
their Taylor expansions, and combining terms, yields

n−1/2∇�̃n(t, g)|θ1(g)n
1/2(

θ1(ĝ) − θ1(g)
)

= n−1/2
n∑

j=1

[
ĝj

(
θ1(ĝ)

) − gj

(
θ1(ĝ)

)]̂
hj

(
θ1(ĝ)

)
(5.1)

− n−1/2
n∑

j=1

(
Yj − gj

(
θ1(ĝ)

))[̂
hj

(
θ1(ĝ)

) − hj

(
θ1(ĝ)

)] + oP (1).

In Section 5.1, it is shown that

n−1/2
n∑

j=1

(
ĝj

(
θ1(ĝ)

) − gj

(
θ1(ĝ)

))̂
hj

(
θ1(ĝ)

)
(5.2)

= n−1/2
n∑

i=1

E
(
hi(θ)|ϑT Xi

)
ei(θ) + op(1).

In Section 5.2, it is shown that

n−1/2
n∑

j=1

(
Yj − gj

(
θ1(ĝ)

))[̂
hj

(
θ1(ĝ)

) − hj

(
θ1(ĝ)

)]

= n−1/2
n∑

j=1

ej (θ)g′(ϑT Xj |θ)[
Xj,−1 − E

(
Xj,−1|ϑT Xj

)]

+ n−1/2
n∑

j=1

ej (θ)
[
E

(
hi (θ)|ϑXj

) − hj (θ)
]

(5.3)

− 1

n1/2

n∑
j=1

ej (θ)f ′
θ

(
ϑT Xj

)
E

(
Xj ej (θ)|ϑT Xj

)
/fθ

(
ϑT Xj

)



2176 M. G. AKRITAS

− n−1/2
n∑

j=1

ej (θ)

fj (θ)

′

e,1
(
ϑT Xj |θ)

− n−1/2
n∑

j=1

E
[
hj (θ)|ϑXj

]
ej (θ) + op(1).

This completes the proof of the theorem.

5.1. Proof of relation (5.2). Consider the notation ej (t) introduced in
Lemma 3.1, recall that θ = θ1(g) and write

ĝj (θ) = gj (θ) + 1

f̂j (θ)

1

nh

n∑
i=1

Kh

(
ϑT (Xi − Xj )

)[
gi(θ) − gj (θ)

]
(5.4)

+ 1

f̂j (θ)

1

nh

n∑
i=1

Kh

(
ϑT (Xi − Xj )

)
ei(θ).

Noting that n−1/2 ∑n
j=1(ĝj (θ1(ĝ))−gj (θ1(ĝ)))ĥj (θ1(ĝ)) = n−1/2 ∑n

j=1(ĝj (θ)−
gj (θ))ĥj (θ) + op(1), and using (5.4), we can write

n−1/2
n∑

j=1

(
ĝj

(
θ1(ĝ)

) − gj

(
θ1(ĝ)

))̂
hj

(
θ1(ĝ)

)

= 1

n1.5h

n∑
j=1

ĥj (θ)

f̂j (θ)

n∑
i=1

Kh

(
ϑT (Xi − Xj )

)[
gi(θ) − gj (θ)

]
(5.5)

+ 1

n1.5h

n∑
j=1

ĥj (θ)

f̂j (θ)

n∑
i=1

Kh

(
ϑT (Xi − Xj )

)
ei(θ) + op(1)

= T̂1n + T̂2n + op(1).

Letting T1n be defined as T̂1n but with hj (θ)/fj (θ) replacing ĥj (θ)/f̂j (θ), a
straightforward second moment calculation, and the condition nh4 = o(1), shows
that T1n = oP (1). Because the difference T̂1n − T1n is of smaller order than T1n, it
follows that

T̂1n = oP (1).(5.6)

In the supplementary material [Akritas (2016)], it is shown that

T̂2n = n−1/2
n∑

i=1

E
[
hi (θ)|ϑT Xi

]
ei(θ) + op(1).(5.7)

Relations (5.5), (5.6) and (5.7) show (5.2).
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5.2. Proof of relation (5.3). Noting that n−1/2 ∑n
j=1 ej (θ1(ĝ))[̂hj (θ1(ĝ)) −

hj (θ1(ĝ))] = n−1/2 ∑n
j=1 ej (θ)[̂hj (θ) − hj (θ)] + oP (1), where the notation ej (t)

is introduced in Lemma 3.1, write

n−1/2
n∑

j=1

ej (θ)
[̂
hj (θ) − hj (θ)

]

= ∇
[
n−1/2

n∑
j=1

ej (θ)
[
ĝj (t) − gj (t)

]]
t=θ

(5.8)

= ∇
[
n−1/2

n∑
j=1

ej (θ)

[
1

f̂j (t)

1

nh

n∑
i=1

Kh

(
bT

t (Xi − Xj )
)[

gi(t) − gj (t)
]

+ 1

f̂j (t)

1

nh

n∑
i=1

Kh

(
bT

t (Xi − Xj )
)
ei(t)

]]
t=θ

,

where the first equality above uses Corollary 2.1 and the second uses (5.4). Expand
the term on the right-hand side of (5.8) as follows:

−n−1/2
n∑

j=1

ej (θ)
∇f̂j (t)|t=θ

f̂j (θ)2

1

nh

n∑
i=1

Kh

(
ϑT (Xi − Xj )

)[
gi(θ) − gj (θ)

]

+ n−1/2
n∑

j=1

ej (θ)

f̂j (θ)

1

nh

n∑
i=1

K ′
h

(
ϑT (Xi − Xj )

)(Xi − Xj )−1

h

[
gi(θ) − gj (θ)

]

+ n−1/2
n∑

j=1

ej (θ)

f̂j (θ)

1

nh

n∑
i=1

Kh

(
ϑT (Xi − Xj )

)[
hi(θ) − hj (θ)

]

− n−1/2
n∑

j=1

ej (θ)
∇f̂j (t)|t=θ

f̂j (θ)2

1

nh

n∑
i=1

Kh

(
ϑT (Xi − Xj )

)
ei(θ)(5.9)

+ n−1/2
n∑

j=1

ej (θ)

f̂j (θ)

1

nh

n∑
i=1

K ′
h

(
ϑT (Xi − Xj )

)(Xi − Xj )−1

h
ei(θ)

− n−1/2
n∑

j=1

ej (θ)

f̂j (θ)

1

nh

n∑
i=1

Kh

(
ϑT (Xi − Xj )

)
hi(θ)

= T̂3n + T̂4n + T̂5n + T̂6n + T̂7n + T̂8n.

In the supplementary material [Akritas (2016)], it is shown that

T̂3n = oP (1),(5.10)
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T̂4n = n−1/2
n∑

j=1

ej (θ)g′(ϑT Xj |θ)[
Xj,−1 − E

(
Xj,−1|ϑT Xj

)]
(5.11)

+ oP (1),

T̂5n = n−1/2
n∑

j=1

ej (θ)
[
E

(
hi(θ)|ϑT Xj

) − hj (θ)
] + oP (1),(5.12)

T̂6n = −1

n1/2fθ (ϑ
T Xj )

n∑
j=1

ej (θ)f ′
θ

(
ϑT Xj

)
E

(
Xj,−1ej (θ)|ϑT Xj

)
(5.13)

+ oP (1),

T̂7n = −n−1/2
n∑

j=1

ej (θ)

fj (θ)

′

e,1
(
ϑT Xj |θ) + oP (1),(5.14)

T̂8n = −n−1/2
n∑

j=1

E
[
hj (θ)|ϑXj

]
ej (θ) + op(1).(5.15)

Relations (5.8)–(5.15) show (5.3).

APPENDIX A: ASSUMPTIONS

ASSUMPTION A0. Let � be a compact subset of Rd−1, and for γ :R×� →
R let γ (s|t) denote the value of γ at (s, tT )T ∈ R

d . Consider the class of func-
tions γ possessing second partial derivatives such that sups,t |γ ′(s|t)| < ∞, where
γ ′(s|t) = (∂/∂s)γ (s|t), and satisfy the following properties:

1. There exists a δ0 > 0 such that if supt ‖γ (·|t) − g(·|t)‖ ≤ δ0 and supt ‖γ ′(·|
t) − g′(·|t)‖ ≤ δ0, then the functional θ1(γ ) defined in (3.1) is uniquely defined.
Let � ≡ �δ0 denote the class of functions γ that satisfy the above conditions.

2. The functions γ̃ defined in (4.1) are Lipschitz functions of order 2.
3. For γ ∈ � and t, t1, t2 ∈ �, |γ ((1, tT1 )x|t) − γ ((1, tT2 )x|t)| = O(‖t1 − t2‖),

as ‖t1 − t2‖ → 0, uniformly in t and in γ .
4. For some p > 1, supγ∈� |γ (s|θ1(γ ))| = o(s−p), as s → ∞.
5. E(supγ̃∈�̃ |η	,γ̃ (x)|2) < ∞, and E(supγ̃∈�̃ |y − γ̃ (x)|2) < ∞, where �̃ is

the space of functions γ̃ defined in (4.1), and η	,γ̃ (x) is the 	th component of
ηγ̃ (x) = η(bT

θ1(γ )x,x|θ1(γ )) as defined in (3.2).

ASSUMPTION A1. (a) K is a symmetric and bounded density function.
(b) K(u) is differentiable and there exist �1 > 0 and L > 0 such that |K ′(u)| ≤

�1, and for some ν > 1, |K ′(u)| ≤ �1|u|−ν for all |u| ≥ L.
(c) There exist �2 > 0, L > 0 and q ≥ 1 such that |K(u)| ≤ �2|u|−q for all

|u| ≥ L.
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(d) K satisfies
∫

u4|K(u)|du < ∞.
(e) Assumptions (b), (c) and (d) are satisfied for the derivative K ′ of K .

ASSUMPTION A2. (a) For some constant B0, ft(s) < B0, holds ∀s, t, where
ft is the density of bT

t X.
(b) For some constant B1 and r > 2, E(|Y |r ) < ∞, and sups E(|Y |r |bT

t X =
s)ft(s) < B1, holds for all t.

(c) For some constant B2 and r ≥ 1, sups |s|rE(|Y ||bT
t X = s)ft(s) < B2, holds

for all t.
(d) For some constant B3 and r ≥ 1, E|bT

t X|2r < B3 holds for all t.

ASSUMPTION A3. (a) The first three derivatives of ft(s) are uniformly con-
tinuous and are bounded uniformly in t.

(b) The first three derivatives of 
(s|t) = g(s|t)ft(s), and E(X	|bT
t X =

s)ft(s), 	 = 1, . . . , d , are uniformly continuous, and bounded uniformly in t,
where X	 is the 	th coordinate of X. Moreover, t(s) = arg supt 
(s|t) is well de-
fined.

(c) sups,t |g′(s|t)| < ∞, where g′(s|t) = (∂/∂s)g(s|t).
(d) Let χ1(s,x|t), χ2(s,x|t) be as defined in Proposition 2.1, and set 
1(s,x|

t) = χ1(s,x|t)ft(s), 
2(s,x|t) = χ2(s,x|t)ft(s). Then ‖
′
1(·,x|t)‖, ‖
2(·,x|t)‖

and ‖
′
2(·,x|t)‖ are bounded uniformly in t, where 
′

	(s,x|t) denotes the vector
of partial derivatives of 
	(s,x|t), 	 = 1,2 with respect to s.

ASSUMPTION A4. For some r > 2, E[supγ∈� |m	(Y,X, θ1(γ ), γ,η)|r ] <

∞, 	 = 1, . . . , d , and n−1+s/2 ∑n
j=1 P(Xj ∈ Ac

n) → 0, where s is such that
1/s + 1/r = 1.

ASSUMPTION A5. Let m and Q be as defined in (3.3). Then
(a) supt,γ E[|m(Y,X, t, γ,η)|2] < ∞, E[∇m(Y,X, t, γ,η)] is positive definite

uniformly in γ ∈ � and t in a neighborhood of θ1(γ ), and ∇E[m(Y, X, t, g,h)] =
E[∇m(Y,X, t, g,h)] is continuous.

(b) Let m	 denote the 	th coordinate of m. For each t ∈ �, the family of random
variables m	(Y,X, t, γ,η), indexed by γ ∈ �, is uniformly integrable, for all 	.

Assumption A0 defines the class of functions � used for the proof of weak con-
vergence in Section 4.1. Proposition 2.1 and the results of Appendix D show that
ĝ(s|t) belongs in � for all n large enough almost surely. The class of functions �,
together with Assumption A5, is also used in the proof of the sup-norm continuity
of θ1(γ ) in Section 4.2. Assumptions A1, A2 and A3 are similar in nature to the
assumptions used in Hansen (2008) and are used for establishing the uniform al-
most sure convergence rates in Proposition 2.1 and Appendix D. Assumption A4,
together with condition (2.8) are used for dealing with the flexible trimming func-
tion in the estimating equation (2.4).
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APPENDIX B: PROOF OF STRONG CONSISTENCY OF θ̂ AND θ̂0

We will only prove the strong consistency of θ̂ ; the corresponding result for θ̂
0

is similar and easier. First, we will show that

sup
t

∣∣n−1/2(
�n(t, ĝ) − �̃n(t, g)

)∣∣ = o(1) almost surely,(B.1)

where �n(t, γ ) is defined in (3.7) and �̃n(t, γ ) = ∑n
j=1 m(Yj ,Xj , t, γ,η)/

√
n

[see (4.3) and the comment following it]. This will follow by showing that

1

n

n∑
j=1

[
m(Yj ,Xj , t, ĝ, ĥ) − m(Yj ,Xj , t, g,h)

]
I (Xj ∈ An) = o(1),(B.2)

1

n

n∑
j=1

m(Yj ,Xj , t, g,h)I
(
Xj ∈Ac

n

) = o(1)(B.3)

hold uniformly in t almost surely. Relation (B.3) follows by Assumption A4. By
Lemma D.2, part 1, and Proposition 2.1, the term in (B.2) is, in absolute value, less
than or equal to∣∣∣∣∣1

n

n∑
j=1

ej (t)
(̂
hj (t) − hj (t)

)
I (Xj ∈ An)

∣∣∣∣∣
+

∣∣∣∣∣1

n

n∑
j=1

(
ĝj (t) − gj (t)

)
hj (t)I (Xj ∈ An)

∣∣∣∣∣
+

∣∣∣∣∣1

n

n∑
j=1

(
ĝj (t) − gj (t)

)(̂
hj (t) − hj (t)

)
I (Xj ∈An)

∣∣∣∣∣
= O

(
δ−1
n h−1(

an + h3) + δ−2
n h−1a∗

n + δ̃−2
n h2) = o(1)

uniformly in t almost surely. Next, using the uniform strong law of large numbers
[cf. Ferguson (1996), Theorem 16(a)],

sup
t

∥∥n−1/2�̃n(t, g) − E
[
m(Y,X, t, g,h)

]∥∥ a.s.−→ 0.(B.4)

Set D̂n(t) = 1
n
�n(t, ĝ)T �n(t, ĝ), and D(t) = E[m(Y,X, t, g,h)]T E[m(Y,X,

t, g,h)]. From (B.1) and (B.4), it follows that

sup
t

∣∣D̂n(t) − D(t)
∣∣ a.s.−→ 0.(B.5)

For ε > 0, define the compact set Sε = {t : ‖t − θ‖ ≥ ε}. Since D(t) is continuous,
it achieves its infimum on Sε which, by the fact that θ is the unique solution to
D(t) = 0, is positive. Hence, by (B.5), there exists an Nε such that inft∈Sε {D̂n(t)} >

0, for all n > Nε . Since D̂n(̂θ) = 0, if follows that θ̂ /∈ Sε , for all n > Nε . Since ε

is arbitrary, the proof follows.
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APPENDIX C: PROOF OF PROPOSITION 2.1

Let ĝ(s|t) be the local linear estimator of g(s|t). The proof for the Nadaraya–
Watson estimator is similar but will not be presented. ĝ(s|t), and the estimator
ĝ′(s|t), of g′(s|t) satisfy the system of equations

n∑
j=1

Kh

(
bT

t Xj − s
)[

Yj − ĝ(s|t) − ĝ′(s|t)(bT
t Xj − s

)] = 0,(C.1)

n∑
j=1

(
bT

t Xj − s
)
Kh

(
bT

t Xj − s
)[

Yj − ĝ(s|t) − ĝ′(s|t)(bT
t Xj − s

)] = 0,(C.2)

where K is a symmetric kernel function and Kh(u) = K(u/h). Setting

f̂t(s) = 1

nh

n∑
j=1

Kh

(
bT

t Xj − s
)

(C.3)

for the estimator of ft(s), the density of bT
t X, the solution can be expressed as

ĝ(s|t) = 
1,0(s|t)
0,2(s|t) − 
0,1(s|t)
1,1(s|t)
f̂t(s)
0,2(s|t) − 
0,1(s|t)2

,

(C.4)

ĝ′(s|t) = f̂t(s)
1,1(s|t) − 
1,0(s|t)
0,1(s|t)
f̂t(s)
0,2(s|t) − 
0,1(s|t)2

,

where


i,j (s|t) =
n∑

k=1

Kh(bT
t Xk − s)

nh
Y i

k

(
bT

t Xk − s
)j

.(C.5)

Note that in this notation, f̂t(s) = 
0,0(s|t). An expression for (∂/∂t)ĝ(bT
t x|t) is

most easily found by differentiating the left-hand side of (C.1) evaluated at s =
bT

t x. The resulting expression is

∂

∂t
ĝ
(
bT

t x|t) = 1

nh

n∑
j=1

K ′
h(b

T
t (Xj − x))

f̂t(bT
t x)

(Xj − x)−1

h

× [
Yj − ĝ

(
bT

t x|t) − ĝ′(bT
t x|t)bT

t (Xj − x)
]

(C.6)

− ∂

∂t
ĝ′(bT

t x|t)
0,1(bT
t x|t)

f̂t(bT
t x)

− ĝ′(bT
t x|t)Q(x|t)
f̂t(bT

t x)

= A1(x, t) − A2(x, t) − A3(x, t) − A4(x, t) − A5(x, t),

where Kh(u) = K(u/h), K ′
h(u) = K ′(u/h), Q(x|t) = 1

nh

∑n
j=1 Kh(bT

t (Xj −
x))(Xj − x)−1, and A1(x, t), . . . ,A5(x, t) are defined implicitly in (C.6); for ex-
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ample,

A1(x, t) = 1

nh

n∑
j=1

K ′
h(b

T
t (Xj − x))

f̂t(bT
t x)

(Xj − x)−1

h
Yj ,

and so forth. Using (D.6) and Lemma D.2, we have

1

f̂t(bT
t x)

= 1

ft(bT
t x)[f̂t(bT

t x)/ft(bT
t x)]

(C.7)

= 1

ft(bT
t x)[1 + O(δ−1

n a∗
n)] ,

ĝ(bT
t x|t)

f̂t(bT
t x)

= g(bT
t x|bt) + O(δ−2

n a∗
n)

ft(bT
t x)[1 + O(δ−1

n a∗
n)]

(C.8)

= g(bT
t x|t)

ft(bT
t x)

+ O
(
δ−3
n a∗

n

)
,

ĝ′(bT
t x|bt)

f̂t(bT
t x)

= g′(bT
t x|bt) + O((δnh)−1a∗

n)

ft(bT
t x)[1 + O(δ−1

n a∗
n)]

(C.9)

= g′(bT
t x|bt)

ft(bT
t x)

+ O
(
δ−2
n h−1a∗

n

)
,

hold almost surely uniformly in |bT
t x| ≤ cn. Let 
	(s,x|t), 
′

	(s,x|t), 	 = 1,2, be
as defined in Assumption A3(d). Using (C.7) and part 2 of Lemma D.3, we have

A1(x, t) = −
′
1(b

T
t x,x|t)

ft(bT
t x)

+ O
(
δ−1
n h−1(

an + h3))
,(C.10)

holds almost surely uniformly in |bT
t x| ≤ cn. Using (C.8) and part 3 of Lemma D.3,

we have

A2(x, t) = −g(bT
t x|t)

ft(bT
t x)


′
2
(
bT

t x,x|t)
(C.11)

+ O
(
δ−2
n h−1a∗

n + δ−1
n h−1(

an + h3))
holds almost surely uniformly in |bT

t x| ≤ cn. Using (C.9) and part 4 of Lemma D.3,
we have

A3(x, t) = g′
1(b

T
t x|t)

ft(bT
t x)


2
(
bT x,x|t)

(C.12)
+ O

(
δ−2
n h−1a∗

n + δ−1
n

(
an + h3))
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holds almost surely uniformly in |bT
t x| ≤ cn. Using Lemma D.4 and (D.7), we

have

A4(x, t) = O
(̃
δ−2
n h2 + δ̃−1

n δ−1
n ha∗

n

)
,(C.13)

holds almost surely uniformly in |bT
t x| ≤ cn. Finally, by part 2 of Lemma D.2 and

part 5 of Lemma D.3,

A5(x, t) = g′
1(b

T
t x|t)

ft(bT
t x)


2
(
bT

t x,x|t) + O
(
δ−2
n h−1a∗

n + δ−1
n a∗

n

)
.(C.14)

Combining (C.6) and (C.10)–(C.14) yields the result of the proposition.

APPENDIX D: SOME LEMMAS

Recall the notation bt = (1, tT )T , with t ∈ �.

LEMMA D.1. Let 
i,j (s|t) and 
̂(s|t) be as defined in (C.5). Set an =
( lnn

nh
)1/2, and let h = o(1), an = o(1). Then, under Assumptions A1(a)–(c),

and A2:

1. sups,t |
1,0(s|t) − E
1,0(s|t)| = O(an),
2. sups,t |
0,1(s|t) − E
0,1(t |t)| = O(han),
3. sups,t |
0,2(s|t) − E
0,2(s|t)| = O(h2an),
4. sups,t |
1,1(s|t) − E
1,1(s|t)| = O(han).

PROOF. For part 1, note that for each fixed t sups |
1,0(s|t) − E
1,0(s|t)| =
O(an) follows directly from Theorem 5 of Hansen (2008). Extension of this to the
stronger statement of part 1, hinges on a similar extension of Theorem 1 of Hansen
(2008), which is used for proving the pivotal relationship (A.12) of that paper. So,
the proof of part 1 will be limited to indicating how the extension of Theorem 1 of
Hansen (2008) is done, that is, showing that

Var
(
sup

t

1,0(s|t)

)
= O

(
1

nh

)
(D.1)

holds uniformly in s. Let tn(s) satisfy 
1,0(s|tn(s)) = supt 
1,0(s|t), and write
Var(
1,0(s|tn(s))) as

E
[
Var

(

1,0

(
s|tn(s))|tn(s))] + Var

[
E

(

1,0

(
s|tn(s))|tn(s))].(D.2)

By Theorem 1 of Hansen (2008), and Assumptions A1, A2 and A3, the first term
in (D.2) is O(1/(nh)) uniformly in s. Let t(s) satisfy 
(s|t(s)) = supt 
(s|t),
where 
(s|t) = g(s|t)ft(s); by Assumption A3(b), t(s) is uniquely defined. The
idea for dealing with the second term in (D.2) is to first achieve an approximation
of E(
1,0(s|tn(s))|tn(s)) by E(
1,0(s|t(s))|tn(s)) which ensures that the variance
of the two quantities is of the same order. Then, by the delta method principle it
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can be argued that the variance of the second quantity is of the same order as the
variance of tn(s). Finally, it will be shown that Var(tn(s)) = O(1/(nh)) uniformly
in s. To show this last statement, note that by an argument similar to that used for
relation (3.16) of Parzen (1962), it follows that∣∣
(

s|tn(s)) − 

(
s|t(s))∣∣ ≤ 2 sup

t

∣∣
1,0(s|t) − 
(s|t)∣∣.(D.3)

Using the results of Section 2.11.3 of van der Vaart and Wellner (1996), to-
gether with the fact that sups,t |E
1,0(s|t) − 
(s|t)| = O(h2) (see the proof of
Corollary D.1), it can be shown that

√
nh(
1,0(s|t) − 
(s|t)) converges to a

Gaussian process. It follows that sups,t |
1,0(s|t) − 
(s|t)| = Op(1/
√

nh), and
its variance is O(1/(nh)). This, and a Taylor expansion of the left-hand side
of (D.3), yields sups ‖tn(s) − t(s)‖ = Op(1/

√
nh) and Var(tn(s)) = O(1/(nh))

uniformly in s. With this result in place, it is easily seen that the approximation
of E(
1,0(s|tn(s))|tn(s)) by E(
1,0(s|t(s))|tn(s)) is suitable for our purposes, so
that the second term in (D.2) is also O(1/(nh)) uniformly in s, showing (D.1).

Parts 2, 3 and 4 follow by similar arguments by noting that 
0,1(s|t), 
0,2(s|t)
and 
1,1(s|t) are defined as 
1,0(s|t) with Y replaced by bT

t X − s, (bT
t X − s)2

and (bT
t X − s)Y , respectively. �

COROLLARY D.1. Consider the notation of Lemma D.1, let 
(s|t) be as de-
fined in Assumption A3(b), and set γ 2 = ∫

u2K(u)du and a∗
n = an + h2. Then,

under Assumptions A1(a)–(d), A2 and A3 we have:

1. sups,t |
1,0(s|t) − 
(s|t)| = O(a∗
n),

2. sups,t |f̂t(s) − ft(s)| = O(a∗
n),

3. sups,t |
0,1(s|t) − h2γ 2f ′
t (s)| = O(ha∗

n),
4. sups,t |
0,2(s|t) − h2γ 2ft(s)| = O(h2a∗

n),
5. sups,t |
1,1(s|t) − h2γ 2
 ′(s|t)| = O(ha∗

n).

PROOF. Part 1 follows by writing sups,t |
1,0(s|t) − 
(s|t)| ≤ sups,t |
1,0(s|
t) − E
̂(s|t)| + sups,t |E
1,0(s|t) − 
(s|t)|, using part 1 of Lemma D.1 and the
relation

sup
s,t

∣∣E
1,0(s|t) − 
(s|t)∣∣ = O
(
h2)

,

which follows by Assumptions A1(a), A1(d) and A3(b), and a straightforward
computation. Parts 3, 4 and 5 follow similarly, using parts 2, 3 and 4 of Lemma D.1
and the relations E(
0,1(s|t)) = h2γ 2f ′

t (s)+O(h3), E(
0,2(s|t)) = h2γ 2ft(s)+
O(h4), and E(
1,1(s|t)) = h2γ 2
 ′(s|t) + O(h3), respectively, which follow by
straightforward computations and Assumptions A1(a), A1(d) and A3. Finally,
part 2 is a special case of part 1 for Y ≡ 1. �
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LEMMA D.2. Let ĝ(s|t) be as defined in (C.4), and consider the assump-
tions of Corollary D.1. Moreover, assume that for some q > 0, δ−1

n h = o(1) and
(δnh)−1an = o(1), where δn is defined in Proposition 2.1. Then, for any b:

1. sup|s|≤cn,t |ĝ(s|t) − g(s|t)| = O(δ−2
n a∗

n), and
2. sup|s|≤cn,t |ĝ′(s|t) − g′(s|t)| = O((δnh)−1a∗

n)

hold almost surely.

PROOF. For part 1, note that for each fixed t sup|s|≤cn
|ĝ(s|t) − g(s|t)| =

O(δ−2
n a∗

n) follows directly from Theorem 11 of Hansen (2008). Extension of this
to the stronger statement of part 1 follows by the same result used for the proof
of part 1 of Lemma D.1. For part 2, divide numerator and denominator of the
expression for ĝ′(s|t) in (C.4) by h2γ 2ft(s)

2 to write

ĝ′(s|t)
(D.4)

= (f̂t(s)
1,1(s|t))/(h2γ 2ft(s)
2) − (
1,0(s|t)
0,1(s|t))/(h2γ 2ft(s)

2)

(f̂t(s)
0,2(s|t))/(h2γ 2ft(s)2) − (
0,1(s|t)2)/(h2γ 2ft(s)2)
.

Using Corollary D.1, we have

sup
|s|≤cn,t

∣∣∣∣
̂(s|t)
ft(s)

− g(s|t)
∣∣∣∣ ≤ O(a∗

n)

inf|s|≤cn,t ft(s)
= O

(
δ−1
n a∗

n

)
,(D.5)

sup
|s|≤cn,t

∣∣∣∣ f̂t(s)

ft(s)
− 1

∣∣∣∣ ≤ O(a∗
n)

inf|s|≤cn,t ft(s)
= O

(
δ−1
n a∗

n

)
,(D.6)

sup
|s|≤cn,t

∣∣∣∣ 
0,1(s|t)
h2γ 2ft(s)

− f ′
t (s)

ft(s)

∣∣∣∣ ≤ O(ha∗
n)

h2 inf|s|≤cn,t ft(s)
= O

(
(δnh)−1a∗

n

)
,(D.7)

sup
|s|≤cn,t

∣∣∣∣ 
0,2(s|t)
h2γ 2ft(s)

− 1
∣∣∣∣ ≤ O(a∗

n)

inf|s|≤cn,t ft(s)
= O

(
δ−1
n a∗

n

)
,(D.8)

sup
|s|≤cn,t

∣∣∣∣ 
1,1(s|t)
h2γ 2ft(s)

− 
 ′(s|t)
ft(s)

∣∣∣∣ ≤ O(ha∗
n)

h2 inf|s|≤cn,t ft(s)
= O

(
(δnh)−1a∗

n

)
(D.9)

almost surely. Using (D.6) and (D.9), we have that

f̂t(s)
1,1(s|t)
h2γ 2ft(s)2 = 
 ′(s|t)

ft(s)
+ O

(
(δnh)−1a∗

n

)
(D.10)

holds uniformly in |s| ≤ cn and t ∈ � almost surely. Also, using (D.5) and (D.7),
we have


1,0(s|t)
0,1(s|t)
h2γ 2ft(s)2 = g(s|t)f ′

t (s)

fbt(s)
+ O

(
(δnh)−1a∗

n

) + O
(
δ−2
n a∗

n

)
(D.11)
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holds uniformly in |s| ≤ cn and t ∈ � almost surely. From (D.10) and (D.11), it
follows that the numerator on the right-hand side of (D.4) is


 ′(s|t) − g(s|t)f ′
t (s)

ft(s)
+ O

(
δ−1
n a∗

n

(
h−1 + δ−1

n

))
= g′(s|bt) + O

(
δ−1
n a∗

n

(
h−1 + δ−1

n

))
,

uniformly in |s| ≤ cn and t ∈ � almost surely. Finally, using (D.6) and (D.8) we
have

f̂t(s)
0,2(s|t)
h2γ 2ft(s)2 = f̂t(s)

ft(s)

[

0,2(s|t)
h2γ 2ft(s)

− 1
]

+ f̂t(s)

ft(s)
(D.12)

= 1 + O
(
δ−1
n

(
an + h2))

,

while multiplying both sides of (D.7) times h, and using the assumption of uni-
form boundedness of the derivatives of ft(s), yields that 
0,1(s|t)/(hγ 2ft(s)) =
hf ′

t (s)/ft(s)+O(δ−1
n a∗

n) = O(δ−1
n (h+a∗

n)) holds uniformly in |s| ≤ cn and t ∈ �
almost surely. Thus, also


0,1(s|t)2

h2γ 2ft(s)2 = O
(
δ−2
n

(
h + a∗

n

)2) = O
(
δ−2
n h2)

holds uniformly in |s| ≤ cn and t ∈ � almost surely. Combining the above analysis
of the numerator and denominator of (D.4) yields the statement of part 2 of the
lemma. �

LEMMA D.3. Consider the notation and assumptions of Corollary D.1, and
assume in addition that Assumption A1(e) holds. Let 
̃i,j be defined as 
i,j

in (C.5) with K ′ instead of K , and 
	(s|b,x), 
′
	(s|b,x), 	 = 1,2, be as defined

in Assumption A3(d). Then:

1. (a) sups,t |
̃1,0(s|t) − E
̃1,0(s|t)| = O(an), almost surely, and
(b) sups,t |
̃1,0(s|t) + h
 ′(s|t)| = O(an + h3), almost surely.

2. 1
nh

∑n
j=1 K ′

h(b
T
t (Xj − x))

(Xj−x)−1
h

Yj = −
′
1(b

T
t x,x|t)+O(h−1(an +h3)),

holds uniformly in x and in t ∈ � almost surely.
3. 1

nh

∑n
j=1 K ′

h(b
T
t (Xj − x))

(Xj−x)−1
h

= −
′
2(b

T
t x,x|t) + O(h−1(an + h3)),

holds uniformly in x and in t ∈ � almost surely.

4. 1
nh

∑n
j=1 K ′

h(b
T
t (Xj − x))(Xj − x)−1

bT
t (Xj−x)

h
= −
2(bT

t x,x|t) + O(an +
h3), holds uniformly in x and in t ∈ � almost surely.

5. 1
nh

∑n
j=1 Kh(bT

t (Xj − x))(Xj − x)−1 = 
2(bT
t x,x|t) + O(a∗

n), holds uni-
formly in x and in t ∈ � almost surely.

PROOF. Part 1(a) follows by an argument similar to that for part 1 of
Lemma D.1. Part 1(b) follows by writing sups,t |
̃1,0(s|t) + h
 ′(s|t)| ≤
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sups,t |
̃1,0(s|t) − E
̃1,0(s|t)| + sups,t |E
̃1,0(s|t) + h
 ′(s|t)|, using part 1(a)
and the fact that

sup
s,t

∣∣E
̃1,0(s|t) + h
 ′(s|t)∣∣ = O
(
h3)

,

which follows by a straightforward computation using Assumptions A1(b), A3(b).
Part 2 follows by applying part 1(b), coordinate-wise and at s = bT

t x, with (X	 −
x	)Y replacing Y , 	 = 1, . . . , d . Similarly, part 3 follows by applying part 1(b),
coordinate-wise and at s = bT

t x, with and X	 − x	 replacing Y , 	 = 1, . . . , d .
Let L4 denote the left-hand side of part 4, and write∣∣L4 + 
2

(
bT

t x,x|t)∣∣ ≤ ∣∣L4 − E(L4)
∣∣ + ∣∣E(L4) + 
2

(
bT

t x,x|t)∣∣.
By arguments similar to those for part 1(a), applied coordinate-wise [i.e., for each
(X	 − x	)bT

t (X − x)/h] and at s = bT
t x, it follows that |L4 − E(L4)| = O(an).

Also, a straightforward calculation, using the uniform continuity and boundedness
of 
(3)(s|t), yields

E(L4) = −
2
(
bT

t x,x|t) + O
(
h3)

completing the proof of part 4. Finally, part 5 follows by applying part 1 of Corol-
lary D.1 coordinate-wise with X	 − x	 replacing Y and at s = bT

t x. �

LEMMA D.4. Let ĝ′(s|t) be given by (C.4). Then, under the assumptions of
Lemmas D.1, D.2, D.3 and Corollary D.1,∥∥∇ĝ′(s|t)∥∥ = O

(̃
δ−1
n

)
,

where δ̃n is defined in Proposition 2.1, holds uniformly on |s| ≤ cn and t ∈ �
almost surely.

PROOF. Let N(s|t),D(s|t) denote the numerator and denominator of the ex-
pression for ĝ′(s|t) given in (C.4). Then

∇ĝ′(s|t) = D(s|t)∇N(s|t) − N(s|t)∇D(s|t)
D(s|t)2 .

Since N(s|t)/D(s|t) = ĝ′(s|t) = g′(s|t) + O((δnh)−1a∗
n) + O(δ−2

n a∗
n) uniformly

on s ≤ cn and t ∈ � a.s., by part 2 of Lemma D.2, and thus, by Assumption A3(c),
it is uniformly bounded, and given the analysis of D(s|t) done in the proof of
Lemma D.2, it suffices to show that

∇N(s|t)
h2ft(s)2 = O

(̃
δ−1
n

)
and

∇D(s|t)
h2ft(s)2 = O

(̃
δ−1
n

)
,(D.13)

uniformly on t ≤ cn and t ∈ � a.s. Using the results of Lemmas D.1, D.2, D.3 and
Corollary D.1, (D.13) follows by lengthy but straightforward calculations. �
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SUPPLEMENTARY MATERIAL

Supplement to “Asymptotic theory for the first projective direction” (DOI:
10.1214/16-AOS1438SUPP; .pdf). The proofs of relations (5.7) and (5.10)–(5.15)
are given in Akritas (2016).
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