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1. Overview of the proposed clustering method. The paper by Jiashun Jin
and Wanjie Wang (henceforth referred to as [JW]) addresses an important issue of
clustering in Gaussian mixture models. To establish a conceptual framework, one
may consider a model which is slightly simpler than in [JW], but presents the same
difficulties. Namely, assume that we observe an n × p matrix X with rows

(1) Xi = μz(i) + Zi, i = 1, . . . , n,

where z : {1, . . . , n} → {1, . . . ,K} is an unknown assignment of the observations
to K classes, μ1, . . . ,μK are unknown vectors in R

p , and Zi ∈R
p are i.i.d. normal

vectors with mean 0 and covariance matrix σ 2Ip . Here Ip is the p×p identity ma-
trix. In [JW], the covariance matrix of Z1 is diagonal, with the diagonal elements
bounded from below and from above by constants that are independent of p, and
there is an additional common mean vector μ̄ in the model. This adds some tech-
nicalities but does not change the essence of the problem. Jiashun Jin and Wanjie
Wang consider an asymptotic setting where p → ∞ and n = o(p), but K is fixed.
It is assumed that the classes z−1(k), k = 1, . . . ,K , are “balanced” in the sense that
their cardinalities δk = |z−1(k)| are greater than C0n for some constant C0 > 0 in-
dependent of n and p. It is also assumed that the vectors μ1, . . . ,μK are linearly
independent and s-sparse in a group sense, that is, all their non-zero components
belong to the same set of indices of size s (called here the sparsity pattern), where
s = p1−ϑ for some 0 < ϑ < 1. Note that we may write the model (1) in the form
(which is a simplified version of (2.6) in [JW])

X = LM + Z,

where M is an K × p matrix with rows μ1, . . . ,μK , and L is an n × K binary
matrix with the ith row is equal to the z(i)th canonical basis vector.

The clustering problem that is addressed in the paper is to find an estimator ẑ(·)
of the class assignment z(·) such that the normalized Hamming loss

min
φ

1

n

n∑
i=1

P
(
ẑ(i) �= φ

(
z(i)

))
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converges to 0 as p → ∞. Here, minφ denotes the minimum over all permutations
(φ(1), . . . , φ(n)) of (1, . . . , n).

Clearly, it is natural to take advantage of sparsity. The IF-PCA procedure of
[JW] first selects the sparsity pattern of the vectors μ1, . . . ,μK based on the
Kolmogorov–Smirnov (KS) statistics. The KS statistics are computed indepen-
dently for each j ∈ {1, . . . , p} based on n-samples (X1(j), . . . ,Xn(j)) corre-
sponding to the columns of X. Then, they are compared to a suitably chosen
threshold t to perform selection. This is called the feature selection step. Two
main definitions of the threshold are considered. One of them is t = A

√
logp with

a carefully chosen A > 0, for which the theoretical results are proved. The sec-
ond one is a data-driven choice of t based on the version of the Higher Criticism
(HC) statistic, for which simulations are performed. We discuss this second choice
in detail below. Assuming that the sparsity pattern is correctly selected with high
probability, the columns of X marked as non-selected are dropped. This reduces
the dimension from p to s, leading to a new matrix X

′. Finally, the first K unit-
norm left singular vectors of X′ are computed and a k-means clustering procedure
is applied to obtain the estimated assignment ẑ(·).

2. Optimality issue. One of the messages of the paper stated in Section 2.4
is that “clustering and feature selection are possible but non-trivial” only when the
non-zero components of the vectors μk are greater than the critical values of order
((logp)/n)1/6. Section 2.4 also discusses some related “phase transitions.” How-
ever, the results deal with one particular method suggested in the paper. There is
no guarantee that the method is optimal. Moreover, only some upper bounds on the
rates are obtained, and there is no guarantee that the bounds are tight even for this
particular method. So, the phase transitions are only related to these upper bounds
for the proposed procedure and are not shown to represent a general phenomenon.
The ((logp)/n)1/6 critical value and the corresponding rates for the Hamming loss
appear to be too pessimistic1—the critical features are required to be rather strong.

An interesting question is to get more insight into the problem and to investi-
gate critical thresholds that cannot be improved with any method. This task needs
developing minimax lower bounds on the Hamming loss for suitably defined spar-
sity classes of vectors μ1, . . . ,μK . Since there is no minimax setting in [JW], it
is difficult to say what would be the best rate or the smallest critical value of use-
ful features. However, using other methods than in [JW], one can achieve better
critical thresholds in a natural minimax setting for this model. The argument is
as follows. The fact that the j th column of the matrix LM contains at least one
non-zero element implies that it contains at least C0n non-zero elements, since the
same row appears in LM at least C0n times (recall that C0n is a lower bound on

1The rate ((logp)/n)1/6 is a logarithmic rate for all reasonable sample sizes since n1/6! < logn if

n < 108.
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the size of any of K classes). Thus, for each j , we deal with a detection problem
for a normal means model in R

n where the mean vector is C0n-sparse. This is a
“dense” case of testing problem, and it is well-known that the minimal absolute
value of the non-zero components, for which successful detection is possible, is
of order n−1/4 (see, e.g., [2], Corollary 2, taking there d = n, s = C0n). The op-
timal test is based on a chi-square type statistic and the testing errors decrease
exponentially in n. Thus, taking the maximum over j = 1, . . . , p (that can only
have a logarithmic influence on rates), we find that the sparsity pattern is correctly
selected with high probability when the non-zero components of vectors μk are
of order n−1/4 (maybe up to logs), which is much better than ((logp)/n)1/6. One
should note that this argument is valid under the assumption that σ is known. There
remains a question of whether the knowledge of σ is so crucial that the rate of test-
ing changes dramatically when σ is unknown. There are some problems where
it is indeed the case. However, the analogy with Verzelen and Arias-Castro ([6],
Section 3.3), who considered a very similar problem, suggests that the case of di-
agonal covariance matrix does not present this anomaly. Usually, it is enough to
get a rough over-estimate of σ for the chi-square statistic to work.

3. The form of the HC statistic for feature selection. A key step of the pro-
cedure in [JW] consists in selecting the sparsity pattern by means of thresholding
at some level t . Section 1.3 in [JW] introduces a data-driven threshold selection
method based on the HC statistic (the thresholding step of the IF-PCA procedure),
which is only explored in [JW] numerically. We have some questions concerning
this method of threshold selection.

The HC statistic defined in (1.11) of [JW] has the form

HCp,j =
√

p(j/p − π(j))√
max{√n(j/p − π(j)),0} + j/p

, 1 ≤ j ≤ p/2.(2)

Based on it, the index

ĵ = argmax
1≤j≤p/2,π(j)>(logp)/p

HCp,j ,

is selected, and the threshold t = tHC
p is defined as the ĵ th largest KS score given

by formula (1.6) in [JW].
Observe that it is a one-sided statistic, which makes sense only if the non-

negative scores ψn,j are considered. However, the summary of the IF-HCT-PCA
method in Table 3 of [JW] employs the centered scores ψ∗

n,j . For such scores, some
significant features may correspond to highly negative values of j/p −π(j). Thus,
if most of the scores are negative, the method nevertheless will stop at ĵ , corre-
sponding to a positive score, no matter how small it is in absolute value. Therefore,
we wonder whether the authors mean using |HCp,j | rather than HCp,j .
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The role of the term Q � max{√n(j/p − π(j)),0} in (2) remains unclear. The
discussion at the end of Section 1.3 only arrives to the conclusion that the function
HCp(t) is monotone between the adjacent discontinuities. But this property is valid
with many other choices of additive terms in the denominator, not necessarily with
the term Q. Furthermore, it is not clear why this property is so important. Overall,
we were not able to follow the discussion after the word “Remark” at the end of
Section 1.3.

Finally, we wonder where does the exact form of the constraint π(j) > (logp)/p

come from. The authors write that it prevents an ill behavior of HCp,j for small j ,
by analogy with the HC statistic of Donoho and Jin [4]. However, in [4] we find
the truncation at 1/p rather than at (logp)/p. Moreover, the 1/p truncated and
non-truncated test statistics have the same asymptotic distribution under the null
hypothesis. This is conjectured in [4], page 974, and proved in [5]. One can also
prove that the (logp)/p truncation leads to the same distribution. Therefore, all
these truncations change nothing from the theoretical point of view—the asymp-
totic distribution is not affected. However, they may turn out to be extremely im-
portant for the output of the HC type procedures in practice. In view of this, choos-
ing one of the many, asymptotically equivalent, possible levels, such as (logp)/p,
looks more like a rough guide rather than something precisely recommended. Why
not, for example, 5(logp)/p or (logp)2/p? Then, although nothing changes in the
theory, the behavior of the procedure in practice may become dramatically differ-
ent. We suspect that the literal application of the constraint π(j) > (logp)/p may
actually result in a poor behavior in reality, and all the story is rather a way to
say that some truncation may be needed, though ultimately chosen by hand. An
open problem is to choose the truncation via a self-tuning adaptive procedure. An
alternative approach is to avoid any truncation and use a penalization in the de-
nominator of the test statistic (see [3, 5]). For example, a possible modification
that is based on Theorem 4.2.3 of [3] is to replace HCp,j , 1 ≤ j ≤ p/2, by the
statistics

ĤCp,j �
√

p(j/p − π(j))√
max{√n(j/p − π(j)),0} + (j/p) log log(p/j)

, 1 ≤ j ≤ p/2,

and set ĵ = argmax1≤j≤p/2 ĤCp,j .

4. Assumptions on the model and applications. The normality of the errors
and the diagonal structure of the covariance matrix are assumed throughout the
paper. These seem to be very strong assumptions in view of applications to the
analysis of the considered gene microarray data sets. In genomics, where a degree
of correlation is high within a group of genes sharing the same biological pathway,
the data are of different kind (see, e.g., [1]). The assumption that n = pθ and
s = p1−ϑ is also very specific and could be made more general. The main result
of the paper, Theorem 2.2, that ensures consistency of the proposed estimation
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procedure is stated under these and some other quite restrictive assumptions. For
example, the threshold is not data-driven but should depend on the unknown θ or
ϑ via q to get the rates in Corollary 2.2. At the same time, for several data sets
used in Section 1 of [JW], the empirical method, for which no theory has been
provided, gives reasonably good numerical results. This method, as defined, is
completely data-driven. In view of the above comments concerning the constraint
π(j) > (logp)/p, we wonder whether in the numerical experiments the truncation
is done exactly in this form, or it is chosen by hand.
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