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DISCUSSION OF “INFLUENTIAL FEATURES PCA FOR HIGH
DIMENSIONAL CLUSTERING”1

BY ERY ARIAS-CASTRO AND NICOLAS VERZELEN
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We offer below some constructive criticism that, we hope, will shed some light,
or least provide a different perspective, on different points touched in the paper as
regards to the problem of sparse clustering. We hope this will stimulate a fruitful
discussion of the topic.

Before that, we want to congratulate the authors for a tour de force in mathemat-
ical technique. The authors went for the apparently unreachable goal of obtaining
a performance result—sharp to the multiplicative constant—for a sophisticated
method addressing a complex problem. This continues an impressive line of pa-
pers by Jiashun Jin and his students, postdocs and collaborators. Every time, the
goal is extremely ambitious: that of providing constant-sharp phase transition re-
sults for central problems in high-dimensional statistics. In fact, despite the fact
that the paper under discussion is quite substantial, it is only part of a larger pro-
gram that aims at precisely describing the phase transitions in the context of sparse
clustering—see Jin, Ke and Wang (2015, 2016) and also Jin (2015).

1. The review of the literature. The problem of sparse clustering can be de-
fined as that of clustering possibly high-dimensional (feature) vectors in a setting
where only a few features are useful. In their review of the literature, the authors
discuss two papers addressing the problem of sparse clustering [Azizyan, Singh
and Wasserman (2013), Chan and Hall (2010)]. They also cite ours [Verzelen and
Arias-Castro (2014)] somewhere in the middle of the paper. These papers all ap-
peared in the last few years and this may give the impression that the problem was
only considered recently. This is in fact not the case. Although minuscule rela-
tive to the literature on sparse regression and classification, the literature on sparse
clustering is nontrivial. Friedman and Meulman (2004), in their impactful paper
on the topic, cite papers from the 1980’s, for example, De Soete (1986). Another
important paper is that of Witten and Tibshirani (2010).

Not mentioning this literature, or discussing it properly, weakens the paper in at
least two respects. First, it has the potential of misleading the nonexpert reader into
believing that the problem is new, which it is not, and the same reader will not be
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able to appreciate the amount of novelty offered here (more on this in the sections
that follow). Second, it severely limits the scope of the numerical experiments per-
formed in the paper, as the method proposed by the authors is only compared to
methods that are not tailored to sparse clustering, such as K-means and Spectral-
GEM. It seems more reasonable to use COSA [Friedman and Meulman (2004)] or
Sparse K-means [Witten and Tibshirani (2010)] as benchmarks—not only on real
data but also in simulated data.

To tackle the problem of sparse clustering, the general strategy followed by the
authors is very natural:

1. Select the features that are useful for clustering.
2. Apply a clustering algorithm based only on the selected features.

In this contribution, the authors combine a new feature selection procedure cal-
ibrated by higher-criticism thresholding with a spectral clustering method. Al-
though the mathematical analysis is really impressive, it is difficult to disentan-
gle the respective merits of the different ingredients of the procedure in the paper
(IF-PCA):

(i) Coordinate-wise normality testing by Kolmogorov–Smirnov (KS).
(ii) Calibration by the higher criticism (HC).

(iii) Spectral graph partitioning using a measure of similarity based on the KS
statistics.

For example, would the method perform as well if HC were replaced by the
Benjamini–Hochberg method for FDR control?

2. The selection step.

Robustness to nonnormality. The selection step in IF-PCA is based on com-
puting, for each coordinate, the KS statistic with the standard normal distribution
as null distribution. This is done after each variable is standardized. This test will
find significance when there is substantial departure from normality even in use-
less features, for example, coordinates where the data are strongly unimodal but
not normal. There is no averaging—and therefore no central limit theorem—that
can help here so that this issue persists even in the large-sample limit. Although
the authors adjust the p-values following the empirical null approach proposed by
Efron (2004), we do not see how this can correct this issue. It would be interesting
to see how the method behaves when the data are not normal. The authors point to
the fact that their method does well on microarray data, but the sample sizes are a
bit small, and we believe that trying the method of larger simulated datasets would
be more revealing.

As a truly nonparametric method, we find the (coordinate-wise) procedure of
Chan and Hall (2010) appealing and possibly promising in some applications. The
method is based on coordinate-wise testing for unimodality. It is clear, however,
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that this method is substantially inferior to the KS normality test in the normal
setting considered in the paper under discussion.

Dependency of the rates with respect to the number of clusters K . (Here we
use the notation of Section 2 in the paper.) In (2.12), the authors assume that for
any relevant feature j

(1) τ(j) := √
n

∣∣∣∣∣
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δkm
3
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∣∣∣∣∣ �
√

log(p).

This assumption drives the SNR required for successful detection

(2) mk(j) �
(
log(p)/n

)1/6
,

at least in some of the regimes—see Section 2.4. Deriving the moment of W(j),
we can provide another interpretation of this rate. Indeed, we have
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where ≈ comes from the fact that W(j) is (only) empirically centered and nor-
malized. The feature detection procedure amounts to testing whether W(j) fol-
lows a centered normal distribution. The detection rate is driven by the skewness
E[W 3(j)]/E[W 2(j)]3/2 of the distribution—and this is implicitly what τ(j) is
quantifying.

In Section 2.4, the authors observe that assumption (2.12) may fail in very sim-
ple settings such as symmetric mixtures (K = 2 and δ1 = δ2), in which case all
τ(j) are equal to zero. In that symmetric case, they argue that the detection rates
will be driven by τ4(j) := ∑K

k=1 δkm
4
k(j)—the fourth power instead of the third

power as in (1)—and this will result in the following condition on the SNR

mk �
(
log(p)/n

)1/8
,

which is obviously stronger than (2). Just like τ(j) appears in the third power of
W(j), τ4(j) occurs in the fourth moment E[W 4(j)] so that, by the same reasoning,
the detection rate is driven by the kurtosis W(j) compared to the one of a normal
distribution. (This phenomenon is carefully analyzed in our own work [Verzelen
and Arias-Castro (2014)].) Interestingly, the Kolmogorov–Smirnov statistic seems
to adapt to these moment conditions!

Going one step further, for some choices of parameters, the moments of W(j)

coincide with those of a normal distribution up to order 2K − 1. Indeed, this
construction is equivalent to a partial moment problem—see Karlin and Stud-
den (1966). We can speculate that the detection rate will then be driven by
τ2K(j) := ∑K

k=1 δkm
2K
k (j) which we believe will results in the condition

mk �
(
log(p)/n

)1/4K
.
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This exponential dependency of the rates with respect to the number of clusters
K is in line with recent results of Moitra and Valiant (2010) (among others) on
parameter estimation for Gaussian mixtures.

Although the authors did not conduct the analysis of their procedure in this
regime, it is likely that their IF-PCA adapts to this situation. The two main points
we want to make are:

• The detection (and clustering rates) are much worse than (log(p)/n)1/6 when
assumption (2.12) is not satisfied.

• IF-PCA may be able to adapt to the minimax rate regardless.

3. The clustering step.

Spectral algorithms. The authors call their clustering routine “PCA”, which
they equate with the SpectralGEM algorithm of Lee, Luca and Roeder (2010). Our
understanding is that this may not true to the letter. In a nutshell, their clustering
routine (after feature selection) is as follows:

(i) Project the standardized observations onto their top K − 1 principal com-
ponents.

(ii) Apply Lloyd’s algorithm2 for K-means.

This amounts to forming the affinity matrix A = WW� = (Aii′ : i, i′ ∈ [n]),
where3 Aii′ = 〈Wi,Wi′ 〉, and performing spectral clustering directly on A, for
example, as in Lei and Rinaldo (2015). This has been standard for a while, al-
though working with some form of graph Laplacian seems to be more popular
[von Luxburg (2007)].

The latter is essentially what SpectralGEM does. SpectralGEM is indeed very
similar to, but not quite the same as applying the spectral graph partitioning of
Ng, Jordan and Weiss (2002) to the affinity matrix B = (Bii′ : i, i′ ∈ [n]), where
Bii′ = √

max(〈Wi,Wi′ 〉,0). (A minor detail: SpectralGEM uses Ward’s algorithm
for K-means. It also includes a step for estimating the number of clusters based on
the eigengap.)

Beyond common covariance matrices. Throughout this paper, it is assumed
that all the components share the same diagonal covariance matrix �. It is per-
haps possible to modify this procedure to allow different covariance matrices
�k = Diag(σ 2

k (1), . . . , σ 2
k (p)), k = 1, . . . ,K . The coordinate-wise KS test will

still be able to distinguish coordinates j whose corresponding marginal distribu-
tion of X(j) is normal, that is σ 2

1 (j) = · · · = σ 2
K(j) and μ1(j) = · · · = μK(j),

from relevant coordinates j whose corresponding marginal distribution of Xj is

2This is what the kmeans function of Matlab does.
3〈·, ·〉 denotes the inner product.



2364 E. ARIAS-CASTRO AND N. VERZELEN

a nontrivial Gaussian mixture. It is not clear to us whether constant-sharp bounds
can be derived in this setting, but (up to multiplicative constants) rates seem within
reach. As for the clustering step, simple spectral methods (such as “PCA”) will fail
to recover the clusters when the covariances are different. Nevertheless, there exists
an important body of work on provably consistant learning methods for this prob-
lem [see, e.g., Achlioptas and McSherry (2005), Kannan, Salmasian and Vempala
(2005), Vempala and Wang (2004)] that one could plug into the feature selection
step.

A tribute to Peter Hall. Peter Hall passed away very recently (early January,
2016). His legendary prolific contribution to mathematical and methodological
statistics, as well as probability theory, includes some work related to the paper
under discussion, in particular [Chan and Hall (2010)], and also extensive work on
the higher criticism [Delaigle and Hall (2009), Delaigle, Hall and Jin (2011), Hall
and Jin (2008, 2010), Hall, Jin and Miller (2014)], the bulk of it with Jiashun Jin.
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