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SCALING LIMITS FOR SUB-BALLISTIC BIASED RANDOM
WALKS IN RANDOM CONDUCTANCES

BY ALEXANDER FRIBERGH AND DANIEL KIOUS

Université de Montréal and New York University Shanghai

We consider biased random walks in positive random conductances on
the d-dimensional lattice in the zero-speed regime and study their scaling
limits. We obtain a functional law of large numbers for the position of the
walker, properly rescaled. Moreover, we state a functional central limit the-
orem where an atypical process, related to the fractional kinetics, appears in
the limit.
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1. Introduction. Random walks in random environments (RWRE) have been
the subject of intense research for over fifteen years. We refer the reader to [29, 39,
40, 43] and [8] for different surveys of the field.

One aspect that has attracted a lot of attention is the phenomenon of trapping.
Trapping appears in several physical systems and it motivated the Introduction
of an idealized model known as the Bouchaud trap model (BTM). The study of
the BTM led to the discovery of several interesting anomalous limiting processes
including the FIN diffusion (see [23]) and the Fractional Kinetics (FK) process
(see [33]). Moreover, the BTM is a natural setting to witness “aging”, which is the
phenomenon where the time it takes to witness a significant change in the system is
of the order of the “age”of the system. This behavior is common among dynamics
in random media such as dynamics on spin glasses [6] (see [15] for a physical
overview of spin glasses) as well as in the random energy model under Glauber
dynamics (see [7]) or in parabolic Anderson model (see [34]). For an overview of
the BTM, we refer the reader to [4].

Although the BTM was initially used to study random walks which are sym-
metric in the sense that, up to a time-change, behaves like a Brownian motion
(see [3] and [35]) it was subsequently used to study the behaviour of direction-
ally transient RWREs which experience trapping. The initial series of works in
this direction [20, 21] and [22] by Enriquez, Sabot and Zindy were concerned
with the one-dimensional RWRE. The authors managed to obtain the scaling lim-
its in the zero-speed regime (a result already obtained in [28]). Furthermore, they
also proved that this model experiences “aging”. This work also provided a robust
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method for studying directionally transient RWRE with trapping which served as
an inspiration for future works on more complex graphs.

Following the study of one-dimensional RWREs, several works were initiated
to understand trapping for directionally transient RWREs on trees; see [9, 10, 27]
and [1]. These works confirmed that the picture provided by BTM was relevant
for RWRE in general environment (up to some complication due to lattice effects,
see [9]).

It is a central question to prove that directionally transient RWREs in Z
d can

also be analyzed via the BTM analogy and to identify the limiting behaviors such
models may have. So far, the methods provided by the BTM have only been used
to identify scaling exponents for biased random walks in positive random con-
ductances [24], a model first studied in [36] and on supercritical percolation clus-
ters [25], which was first studied by [12] and [38].

In this paper, we carry on the study of the zero-speed regime for biased random
walks in positive random conductances in Z

d initiated in [24]. Our main result is to
find the limiting scaling processes appearing in those models. One of the scaling
limits we identify is related to the fractional kinetics in Z

d . This constitutes the
first scaling limit result that is rigorously proved for anisotropic random walks in
random environments on Z

d .

1.1. Definition of the model. We introduce P[·] = P
⊗E(Zd )∗ , where P∗ is the

law of a positive random variable c∗ ∈ (0,∞). This measure gives a random envi-
ronment usually denoted ω.

In order to define the random walk, we introduce a bias � = λ�� of strength λ > 0
and direction �� which is in the unit sphere with respect to the Euclidean metric
of Rd . In an environment ω, we consider the Markov chain of law P ω

x on Z
d with

X0 = x P ω
x -a.s. and transition probabilities pω(x, y) for x, y ∈ Z

d defined by

pω(x, y) = cω(x, y)∑
z∼x cω(x, z)

,(1.1)

where x ∼ y means that x and y are adjacent in Z
d and also we set

(1.2) for all x ∼ y ∈ Z
d , cω(x, y) = cω∗

([x, y])e(y+x)·�.

This Markov chain is reversible with invariant measure given by

πω(x) = ∑
y∼x

cω(x, y).(1.3)

The random variable cω(x, y) is called the conductance between x and y in the
configuration ω. This comes from the links existing between reversible Markov
chains and electrical networks. We refer the reader to [18] and [30] for a further
background on this relation, which we will use extensively. Moreover, for an edge
e = [x, y] ∈ E(Zd), we denote cω(e) = cω(x, y).
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Finally, the annealed law of the biased random walk will be the semi-direct
product P = P[·] × P ω

0 [·].
In the case where c∗ ∈ (1/K,K) for some K < ∞, the walk is uniformly ellip-

tic and this model is the one previously studied in [36]. Later on, this work was
generalized in [24]. Results of both papers can be stated in the following manner.

THEOREM 1.1 ([24, 36]). For d ≥ 2, we have

lim
Xn

n
= v, P-a.s.,

where:

1. if E∗[c∗] < ∞, then v · �� > 0,
2. if E∗[c∗] = ∞, then v = �0.

Moreover, if lim lnP∗[c∗>n]
lnn

= −γ with γ < 1 then

lim
lnXn · ��

lnn
= γ, P-a.s.

From this result, we see that a natural trapping regime occurs when γ < 1.
In this paper, we are interested in this sub-ballistic regime. For the rest of the

paper, we will naturally assume that

P[c∗ ≥ t] = L(t)t−γ , for any t ≥ 0,(1.4)

with γ ∈ (0,1) and where L is a slowly-varying function. We choose such a form
for the tail of c∗ in order to, on one hand, be in the sub-ballistic regime [provided
by γ ∈ (0,1)] and, on the other hand, in order to have some regularity, which is
ensured by the slowly varying function. If we do not assume this kind of regularity,
this would not be possible to obtain full asymptotic results but we could prove
some convergence along some subsequences of time. See, for example, [9] where
the authors treat these kinds of difficulties which arise when the distribution of c∗
is lattice.

1.2. Main results. Our main results are a functional law of large numbers and
a functional central limit theorem for the position of the walker.

For any time T > 0, we denote Dd([0, T ]) the space of càdlàg functions from
[0, T ] to R

d . The following results of convergence hold on the space Dd([0, T ])
equipped with the uniform topology or the Skorokhod’s J1-topology; see [42] for
details.

THEOREM 1.2. Consider the biased random walk among random conduc-
tances on Z

d , d ≥ 2, with law given by (1.4). There exist a deterministic unit vector
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v0 ∈ S
d−1 with v0 · �� > 0 and a constant C > 0 such that, for any T ∈ R+, under

the annealed law P,(
X	nt


nγ /L(n)

)
t∈[0,T ]

(d)−→ (
CS−1

γ (t)v0
)
t∈[0,T ],

on Dd([0, T ]) in the uniform topology, where S−1
γ (·) is the inverse of a stable

subordinator with index γ . Moreover, there exists a deterministic d × d matrix Md

of rank d − 1 such that, for any T ∈ R+,(
X	nt
 − (X	nt
 · v0)v0√

nγ /L(n)

)
t∈[0,T ]

(d)−→ (MdBS−1
γ (t)

)t∈[0,T ],

on Dd([0, T ]) in the J1-topology, where B· is a standard d-dimensional Brownian
motion, independent of S−1

γ (·).

REMARK 1.1. Our main theorem does not give any information on the fluc-
tuation in the direction v0. In the course of this paper, we will obtain a result on
those fluctuations which appears in Theorem 11.2. The drawback of this result is
that the recentering is random, depending on regeneration times, and that, to state
this result, we need to introduce a significant amount of notation. This is why we
choose not to state it here.

Besides, the matrix Md is defined in (11.11) where we prove that it has rank
d − 1. We also point that Pv0Md is the null matrix, where Pv0 is the projection
matrix on v0.

Finally, note that we cannot extend the second result to the uniform topology,
due to measurability issues, as explained in Section 11.5.3 of [42].

REMARK 1.2. Previous scaling-limit results were obtained in the isotropic
case, for example, an annealed [17] and quenched CLT was obtained for the sim-
ple random walk on the supercritical percolation cluster ([11, 32] and [37]), the
variable speed random walk in random conductances ([2]) and the random walk
in bounded conductances ([31] and [14]). The only other limiting process that had
appeared was the fractional kinetics in the case of the random walk in unbounded
random conductances in [3].

Our main result is the first scaling limit result for anisotropic random walks
and we believe that this type of result will prove to be universal for random walks
in random environments with directional transience that experience trapping. In
particular, we expect this type of result to appear for the biased random walk on
supercritical percolation cluster. Several steps in our proof will be easily transfer-
able to other models. However, one key step (the description of the environment
seen by the particle around a large trap) is extremely model dependent and will
require substantial work in any other model that will be analyzed in the future.
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REMARK 1.3. We believe that the estimates proved in this paper along with
techniques from [22] should be sufficient to prove aging results in this model.

REMARK 1.4. If we were to consider the variable speed random walk defined
in [3], we believe a similar theorem would hold with nγ /L(n) replaced by n and
S−1

γ (t) replaced by C0t , where C0 is some constant.

The process BS−1
γ (·) is known as fractional kinetics. This kind of process has

already been found to be the scaling limit of symmetric processes with trapping
(see [3–5, 35]).

1.3. Sketch of proof. The proof of the main result is rather long and involved.
For this reason, we start the paper by giving a sketch of proof which highlights the
structure and the main estimates of the paper.

It is known (see [24]) that the walk is slowed down by the presence of small
trapping areas in the environment. The sub-ballisticity condition exhibited in this
paper is equivalent to the fact that the annealed exit time of an edge is infinite.

This leads one to believe that the most efficient trapping mechanism is to have
one edge with large conductance surrounded by regular edges, and indeed this
intuition will turn out to be correct.

After having identified the geometry of efficient traps, we are going to imple-
ment a strategy for the analysis of anisotropic trapping models which was first
developed in the works of Enriquez, Sabot and Zindy [20–22] on Z and later ex-
tended to trees in [9, 10, 27].

Apart from identifying the geometry of efficient traps, one of the most difficult
tasks is to analyze the tail of the time spent in large traps. One particularly difficult
aspect is to describe the environment seen from the particle close to a deep trap.

1.3.1. Regeneration times and independent regeneration blocks. The standard
approach to study directionally transient walks is to use the regeneration times
τ1, . . . , τn associated to the walk, which is a particular increasing sequence of ran-
dom times (see Section 5). Our main problem is then to study the scaling limit of
a sum of i.i.d. random variables, namely

∑n
i=1(τi+1 − τi) where each term corre-

sponds to one regeneration period.
The two key elements to prove are the following:

1. The only regeneration periods that matter are those where edges with large
conductances are met, here large means above a certain specific cut-off f (n). Fur-
thermore, in those blocks, the time spent outside of the largest conductance does
not matter (see Proposition 10.1). This means that Ti , the time spent on the largest
edge of the ith regeneration block, is a good approximation for τi+1 − τi when the
latter time matters.
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2. The time spent during the ith regeneration period on the edge with the largest
conductance cmax∗,(i) (conditionally on the event that this conductance is large) can

asymptotically be written as cmax∗,(i)W
(i)∞ (see Proposition 9.1) where W

(i)∞ is an inde-
pendent random variable with high enough moments (see Lemma 9.9). This allows
us to compute the tail of cmax∗,(i)W

(i)∞ (see Lemma 9.10) and thus, in some sense, the
tail of the time spent on the edge with the largest conductance.

This procedure is summed up as follows:

n−1∑
i=0

(τi+1 − τi) ≈
n−1∑
i=0

Ti1
{
cmax∗,(i) ≥ f (n)

} ≈
n−1∑
i=0

W(i)∞ cmax∗,(i)1
{
cmax∗,(i) ≥ f (n)

}

≈
n−1∑
i=0

W(i)∞ cmax∗,(i),

the last line being a standard estimate on sums of heavy tailed random variables
(see [19]).

Hence, τn behaves like a sum of i.i.d. random variables whose tails can be com-
puted and as such we can obtain scaling limit results (see Proposition 10.3).

Of the two key elements we need as an input, the first one can be proved using
techniques similar to [24], this is done in Section 6. The second point is the more
difficult estimate, let us now discuss the difficulties arising to obtain that estimate.

1.3.2. Analysis of the time spent in one edge with large conductance. This is
the most important step. The key aspects to understand the time spent in an edge
with large conductance are the following:

• How likely are we to hit this edge?
• After having hit it, how much time does it take to come out of it?
• How likely are we to come back?

Let us start by addressing the second question. In a typical situation, once we
have entered an edge with large conductance, we will perform a lot of back and
forth crossings of that edge. The number of such crossings is roughly geometric
(see Lemma 9.2) and the exit probability of the large edge is almost proportional
to the conductances of the adjacent edges (see Lemma 8.1).

The first and third questions are related to the asymptotic environment seen from
the particle around a large edge at late time. It turns out that the analysis of this
object can be done in a very intuitive manner. Indeed, seen from outside the trap,
located at an edge e say, the environment looks like the usual environment where
e has been collapsed into a vertex xe; see Figure 1. Hence, the environment seen
from the particle should be a weighted average of such environments, to factor in
the likelihood of hitting such a vertex. This reweighting is done rigorously using
regeneration times; see Lemma 8.12.
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FIG. 1. Collapsing and edge e into a vertex xe .

In fine, we will show that the time T spent by the walker on some edge e, when
c∗(e) is large, will asymptotically behave like

(1.5) c∗(e) ×
(

2

π∞

V∞∑
i=1

ei

)
,

where π∞ is a random variable linked to the conductances surrounding xe (or
e equivalently) in the asymptotic environment, V∞ is the number of visits to xe

and (ei) is an independent sequence of i.i.d. exponential random variables with
mean 1 (related to the large geometric number of back and forth crossings). The
conductance c∗(e) is independent of all these quantities. As we know, the tail of
c∗(e) and because the sum in (1.5) behaves nicely, we are able to compute easily
the tail of T (see Lemma 9.10).

1.3.3. Conclusion. We now have the two main ingredients to conclude. First,
using the i.i.d. structure on the trajectory of the walk, we easily obtain limit the-
orems at regeneration times. Second, we are able to analyze the time spent dur-
ing one regeneration period. The conclusion will then follow using a classical
inversion argument and theorems on the limits of stochastic processes (see The-
orem 11.2).

2. Notation. In this section, we define most of the necessary notation.
Let us denote {e1, . . . , ed} an orthonormal basis of Z

d such that e1 · �� ≥
e2 · �� ≥ · · · ≥ ed · �� ≥ 0, and define, for any i ∈ {1, . . . , d}, ei+d := −ei . The set
{±e1, . . . ,±ed} will be denoted by ν. In particular, we have that e1 · �� ≥ 1/

√
d .

Set f1 := �� and complete it into an orthonormal basis (fi)1≤i≤d of Zd .
We set, for any z ∈ R,

(2.1) H+(z) := {
x ∈ Z

d : x · �� > z
}

and H−(z) := {
x ∈ Z

d : x · �� ≤ z
}
.

We also define the shorthand notation

H+
x := H+(x · ��) and H−

x := H−(x · ��).
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Two vertices x, y ∈ Z
d are called neighbours, or adjacent, denoted x ∼ y, if

‖x − y‖ = 1, where ‖ · ‖ is the Euclidean distance. Besides, for a vertex y and an
edge e, we write y ∼ e if y ∼ e+ or y ∼ e− and y /∈ {e+, e−}. Two edges e and
e′ are said to be adjacent or neighbours, denoted e ∼ e′, if they share exactly one
endpoint. We use the notation y ∈ e if y ∈ {e+, e−}. If y is a neighbour of e, we
denote ey the unique endpoint of e which is adjacent to y.

For any pair of neighbouring vertices x, y ∈ Z
d , we denote [x, y] the unit non-

oriented edge linking them. For a vertex x ∈ Z
d , we denote ‖x‖∞ the usual uni-

form norm and, for an edge [x, y] of Zd , we denote∥∥[x, y]∥∥∞ = ‖x‖∞ ∨ ‖y‖∞.

Given a set V of vertices of Zd , we denote by ‖V ‖ its cardinality, by E(V ) :=
{[x, y] s.t. x, y ∈ V }; we also define its vertex-boundary and edge-boundary

∂V := {x /∈ V : ∃y ∈ V,y ∼ x} and ∂EV := {[x, y] ∈ E
(
Z

d) : x ∈ V,y /∈ V
}
.

Given an edge e ∈ E(Zd), we denote by e+ and e− its endpoints, in an arbi-
trary order if not precised otherwise. Given a set E of edges in Z

d , we denote
by V (E) := {x ∈ Z

d : ∃e ∈ E s.t. x ∈ {e+, e−}} its vertices.
For any subset A of vertices or edges of Zd , we define the width of A to be

W(A) = max
1≤i≤d

(
max
y∈A

y · ei − min
y∈A

y · ei

)
.(2.2)

For any L,L′ ≥ 0 and y ∈ Z, define the tilted box:

By

(
L,L′)
:= {

x ∈ Z
d : ∣∣(x − y) · ��∣∣ ≤ L and

∣∣(x − y) · fi

∣∣ ≤ L′, for all i ∈ {2, . . . , d}},
and its positive boundary

∂+By

(
L,L′) := {

x ∈ ∂By

(
L,L′) : ∣∣(x − y) · ��∣∣ > L

}
.

Besides, we denote B(L,L′) = B0(L,L′). Also, we define the ball in the uniform
norm B∞(y, r) center at y and of radius r .

For any graph on which a random walk (Xn)n is defined, let A be some subset
of its vertices and define its hitting times,

TA := inf{n ≥ 0 : Xn ∈ A} and T +
A := inf{n ≥ 1 : Xn ∈ A},

and its exit time,

T ex
A := inf{n ≥ 0 : Xn /∈ A}.

We will use the abuse of notation Tx when A is the singleton {x}. We denote θn

the time shift by n units of times.
Besides, for any real numbers a and b, we denote

a ∨ b := max{a, b} and a ∧ b := min{a, b}.
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Throughout the paper, the letters c and C denote constants in (0,∞) that may
depend on the dimension d , the strength of the bias λ and the law P∗. Moreover,
their value may change from line to line.

Finally, we will define, later on, several probability measures that we cannot
define properly yet. Nevertheless, let us point out where they are defined and ex-
plain roughly their purpose. First, we will define P

K
0 , in Definition 5.1, which is

an annealed measure in a special environment which is key for understanding the
environment such that 0 is conditioned to be a regeneration time. Second, we will
introduce the shorthand notation P, defined in (7.1), which is the law of a regenera-
tion block. Third, we will define a probability measure Pn at (7.3), which provides
the law of a regeneration block conditioned on meeting a large trap.

3. Some previous results: Estimates on the backtracking event. As ex-
plained in the Introduction, this work is the sequel of the work [24] done by the
first author. Hence, we use several results from this paper. Let us state two of them
and very briefly explain their content.

THEOREM 3.1 (Theorem 5.1 of [24]). For α > d + 3,

P[T∂B(L,Lα) �= T∂+B(L,Lα)] ≤ Ce−cL.

LEMMA 3.1 (Lemma 7.3 of [24]). We have for any n,

P[TH−(−n) < ∞] ≤ C exp(−cn).

These two results look alike. The first one states that the walk, started at zero,
will exit a large tilted box through the positive boundary (towards ��) with large
probability.

The second result states that the probability of ever backtracking at distance n

is exponentially small in n.

4. Good/bad areas decomposition. Here, we will follow the idea already
used in [24], which consists in partitioning the space into good parts where the
walk is well behaved and bad parts where we have much less control.

Recall that, in the model we consider, we have no uniform ellipticity, but it will
be, at some places, convenient to consider only edges which are typical, in the
sense that their conductances are neither too small nor too large. This will enable
us to obtain several estimates.

For this purpose, we will define some vocabulary. These definitions depend on
some real number K ≥ 1, which we will choose later to be large.

DEFINITION 4.1. Fix a constant K ≥ 1. We say that an edge e ∈ E(Zd) is
K-normal if c∗(e) ∈ [1/K,K], otherwise the edge e is said to be abnormal.
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Note that we can choose the probability for an edge to be abnormal as small
as we need by taking K large enough: indeed, for any edge e ∈ E(Zd), c∗(e) ∈
(0,+∞) almost surely, hence P∗[e is abnormal] = P∗[c∗(e) /∈ [1/K,K]] goes to 0
as K goes to infinity.

DEFINITION 4.2. Fix a constant K ≥ 1. A vertex x ∈ Z
d is K-open if, for any

neighbouring site y, the edge [x, y] is K-normal. A vertex that is not K-open is
said to be K-closed.

As before, the probability for a vertex to be K-closed can be made arbitrarily
small be taking K large enough.

REMARK 4.1. We may notice that for any open vertex x, using (1.2) and (1.3),
we have

c

K
e2λx·�� ≤ cω([x, y])≤ CKe2λx·��,

for any vertex y adjacent to x in Z
d , and thus

c

K
e2λx·�� ≤ πω(x) ≤ CKe2λx·��.

DEFINITION 4.3. Fix a constant K ≥ 1. A vertex x ∈ Z
d is K-good if there

exists an infinite directed K-open path starting at x, that is a path {x0, x1, x2, . . .}
with x0 = x and such that, for all i ≥ 0:

(1) we have x2i+1 − x2i = e1 and x2i+2 − x2i+1 ∈ {e1, . . . , ed};
(2) xi is K-open.

If a vertex is not K-good, it is said to be K-bad.

REMARK 4.2. The key property of a good point will be that there exists a
open path (xi)i≥0 such that, for all i ≥ 0, xi · �� ≤ xi+1 · ��, and (xi − x0) · �� ≥ c(d)i.

REMARK 4.3. Note that d ≥ 2 is crucial in the decomposition between good
and bad points. Indeed in dimension-1, there exists only one directed path. This
means that K-good points exists only if the environment is uniformly elliptic,
which is not the context we are considering.

For notational simplicity, we will often call edges and vertices open, closed,
normal, etc., forgetting the dependence in K .

Let us state some results proved in [24]. For any environment ω, let us denote
BADω

K(x) the connected component of K-bad vertices containing x, in case x is
good then BADω

K(x) = ∅. We will often forget to indicate the dependence in K or
ω when it is clear from the context. Also, recall the definition (2.2) of W(·).
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LEMMA 4.1 (Lemma 5.1 of [24]). There exists K0 < ∞ such that, for any
K ≥ K0 and for any x ∈ Z

d , we have that the cluster BADK(x) is finite P-a.s. and

P
[
W

(
BADK(x)

) ≥ n
] ≤ C exp

(−ξ1(K)n
)
,

where ξ1(K) → ∞ as K tends to infinity. In particular, this implies that
P[0 is good] > 0.

For x ∈ Z
d , we define BADs

x(K,ω) = {x} ∪ ⋃
y∼x BADω

K(y) the union of all
bad areas adjacent to x. Notice that when x ∈ BADK(ω), we have BADs

x(K,ω) =
BADω

K(x). Again, we will often drop the dependency on ω or on K in the notation
of BADs

x(K,ω).
As a direct consequence of Lemma 4.1, we have the following.

LEMMA 4.2 (Lemma 8.2 of [24]). There exists K0 < ∞ such that, for any
K ≥ K0, BADs

x(K) is finite P-a.s. and

P
[
W

(
BADs

x(K)
) ≥ n

] ≤ C exp
(−ξ1(K)n

)
,

where ξ1(K) → ∞ as K tends to infinity.

Let us define BADK = ⋃
x∈Zd BADK(x) which is a union of finite sets. Also

we set GOODK = Z
d \ BADK . We may notice that

(4.1) for any x ∈ BADK , ∂BADK(x) ⊂ GOODK,

since BADK(x) is a connected component of bad points.
In the sequel, K will always be large enough so that BADK(x) is finite for any

x ∈ Z
d .

LEMMA 4.3 (Lemma 8.1 of [24]). Fix an environment ω. For any x ∈
GOODK(ω), we have

Eω
x

[ ∞∑
i=0

1{Xi = x}
]

≤ C(K) < ∞.

For any set of edges A ⊂ E(Zd) and any V ⊂ Z
d , let us define

T +
V,A := ∑

e∈A

∣∣{k ∈ [
1, T +

V

] : [Xk−1,Xk] = e
}∣∣,(4.2)

and notice that T +
V = T +

V,A + T +
V,Ac . Besides, for any t ∈R+ ∪ {+∞}, define

(4.3) E<t := {
e ∈ E

(
Z

d) : c∗(e) < t
}
.

The statement and the proof of the following result are close to those of
Lemma 8.3 in [24]. It will be used to prove that the time spent on edges with a
conductance that is not too large is asymptotically negligible.
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LEMMA 4.4. Fix an environment ω, for any x ∈ Z
d which is open, and any

t ∈ R+ ∪ {+∞} we have that

Eω
x

[
T +

GOOD(ω)∪{x},E<t

] ≤ C(K) exp
(
3λW

(
BADs

x(ω)
))(

1 + ∑
e∈E(BADs

x)∩E<t

cω∗ (e)

)
.

PROOF. The first remark to be made is that since x is open, then, for all y ∼ x,
c∗([x, y]) ∈ [1/K,K]. Besides, if BADs

x \ {x} = ∅, the result is obvious, thus we
assume from now on that BADs

x \ {x} �=∅.
Let us introduce the notation BADss

x (K) = BADs
x(K) \ {x}.

Now let us consider the finite network obtained by taking BADss
x (ω) ∪

∂BADss
x (ω) and merging all points of ∂BADss

x (ω) (which contains x) to one point
δ and removing all the ensuing loops. We denote ωδ the resulting graph which is
finite by Lemma 4.2 and Lemma 4.1, and it is also connected, since the different
connected components BADK(y), x ∼ y, are connected through x.

By Lemma A.1 from the Appendix, we have that, for any y ∈ BADss
x (K), y ∼ x,

Eωδ
y

[
T +

δ,E<t

] ≤ 2

cω(y, x)

∑
e∈E(BADss

x )∩E<t

cω(e),

where we used that [x, y] is an edge linking y and δ in ωδ .
Besides, using the fact the transition probabilities of the random walk in ωδ at

any point different from δ are the same as that of the walk in ω, Markov’s property
yields

Eω
x

[
T +

GOOD(ω)∪{x},E<t

] ≤ 1 + ∑
y∈BADss

x (K):
y∼x

cω(x, y)

πω(x)
Eωδ

y

[
T +

δ,E<t

]
(4.4)

≤ 1 + c(d)

πω(x)

∑
e∈E(BADss

x )∩E<t

cω(e).

Now, by (1.2), and using the fact that x is open and x ∈ ∂BADss
x , we have that

πω(x) ≥ C(K) exp
(
2λ min

y∈∂BADss
x

y · ��
)

and, for e ∈ E(BADss
x ) ∩ E<t ,

cω(e) ≤ cω∗ (e) exp
(
2λ max

y∈∂BADss
x

y · ��
)
.

Moreover, recalling definition (2.2) of W(·) and since BADss
x ∪ ∂BADss

x is con-
nected, we have

max
y∈∂BADss

x

y · �� − min
y∈∂BADss

x

y · �� ≤ W
(
BADss

x (ω)
)+ 2 ≤ W

(
BADs

x(ω)
)+ 3.
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Therefore, we conclude from (4.4) that

Eω
x

[
T +

GOOD(ω)∪{x},E<t

]
≤ C(K) exp

(
3λW

(
BADs

x(ω)
))(

1 + ∑
e∈E(BADs

x)∩E<t

cω∗ (e)

)
.

�

5. Regeneration times. A classical tool for analyzing directionally transient
RWREs is to use a regeneration structure; see [41]. We call ladder-point a new
maximum of the random walk in the direction ��.

The standard way of constructing regeneration times is to consider successive
ladder points and argue that there is a positive probability of never backtracking
again, that is, there exists a ladder-point Xn0 such that Xn0+k · �� > Xn0 · �� for any
k ≥ 1. Such a ladder-point creates a separation between the past and the future of
the random walk leading to interesting independence properties. We call this point
a regeneration time.

There are two major issues in our case. First, we do not have any type of uniform
ellipticity: this has been addressed in [24] by considering open ladder-points, so
we will follow this strategy. Second, for the reversible model that we consider, the
classical construction of regeneration times yields regeneration slabs (and quan-
tities defined on them) that are ergodic but not independent. As we want to get
limit theorems, it will be much more convenient to recover some independence.
For this purpose, we will introduce an alternative construction of the model and
define a slightly different version of regeneration times in order to obtain some
independence properties (see Theorem 5.4). After the completion of the paper, we
were made aware that a similar argument for creating independence of regenera-
tion blocks had already been developed in [26].

5.1. Construction of an enhanced random walk. In this section, we will define
an enhanced walk (X̃)n = (Xn,Zn)n, which will be such that, first, the marginal
law of (Xn) is the law of the original anisotropic walk that we study and, second,
some extra information is encapsulated in the variables Zn concerning the last step
of walk. We need to construct this enhanced walk in order to be able to define some
regeneration times with nice independence properties.

As the classical anisotropic walk, the process (X̃n) has two levels of random-
ness, one given by the environment, and one corresponding to the evolution of this
enhanced walk in this environment. The definition of the environment is the same
as before, that is a collection of random conductances with law P.

Let us now explicit the law of the process (X̃n). For this purpose, fix an
environment ω and recall from (1.1), (1.2) and (1.3) that, for all x ∈ Z

d and
j ∈ {1, . . . ,2d},

pω(x, x + ej ) = c∗(x, x + ej )e
ej ·�∑2d

i=1 c∗(x, x + ei)eei ·� = c(x, x + ej )

πω(x)
,
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and define

pω
K(x, x + ej ) := (c∗(x, x + ej ) ∧ K−1)eej ·�∑2d

i=1(c∗(x, x + ei) ∨ K)eei ·� ≤ pω(x, x + ej ).(5.1)

Moreover, pω(x, y) = pω
K(x, y) = 0 if y is not a neighbour of x in Z

d .
In the environment ω, we define, for any starting state (x, z) ∈ Z

d × {0,1},
the Markov chain (X̃n) with law P̃ ω

(x,z) on Z
d × {0,1} and transition probabilities

p̃ω((y1, z1), (y2, z2)) for y1, y2 ∈ Z
d and z1, z2 ∈ {0,1} defined by:

1. X̃0 = (x, z), P̃ ω
(x,z)-a.s.,

2. p̃ω((y1, z1), (y2,1)) = pω
K(y1, y2),

3. p̃ω((y1, z1), (y2,0)) = pω(y1, y2) − pω
K(y1, y2).

REMARK 5.1. If x is open and if y ∼ x, then p̃ω((x, z1), (y,1)) ≥ κ , where
κ > 0 is a constant depending only on K , � and d .

As before, we write P̃(x,z) for the annealed law of the enhanced walk starting at
(x, z). Now, let us emphasize two facts:

1. the process starting at (x, z) does not depend on z (except Z0),
2. it is easy to see that the marginal laws of the first coordinate of (X̃n) match

the laws P ω
x and Px of the original biased random walk in random conductances.

REMARK 5.2. We will often drop the z in subscript and the tilde, simply writ-
ing P ω

x and Px for P̃ ω
(x,z) and P̃(x,z) when the quantity observed does not depend

on z, voluntarily making the confusion with the original walk. For example, it is
clear from the definition that the trajectories (Xn)n≥0 and (Zn)n≥1, under P̃ ω

(x,z)

and P̃(x,z), do not depend on z.

From now on, when we write Xn = x without specifying the second coordinate,
we mean that X̃n ∈ {(x,0), (x,1)}.

5.2. Definition of the regeneration times. In this section, we will define the
regeneration times in a slightly different way than the classical one in order to
obtain independence properties; see Theorem 5.4. In particular, we will use the
enhanced random walk defined in Section 5.1.

Let us now introduce a variation on classical regeneration times where we ask
for the regeneration point to be K-open and for a specific behaviour of the infor-
mation encapsulated in the variables Zn. One advantage of this construction is that
it will allow us to obtain independence properties.

Let us now define the quantities we need. First, define the random variable

M(K) := inf{i ≥ 2 : Xi is K-open, Xj · �� < Xi−2 · �� for any j < i − 2
(5.2)

and Xi = Xi−1 + e1 = Xi−2 + 2e1}.
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Roughly, this corresponds to the time when we have reached a new maximum
towards the direction ��, with two extra conditions. Let us comment these condi-
tions.

Consider the time when the walker reaches a new maximum x, then the environ-
ment behind him and the environment in front of him have some common edges:
we want the walker to jump twice in the direction e1 (following [36]) in order to
have only a bounded number of common edges (namely those incident to x) and
thus reduce correlations. Besides, we want x to be open which will have two main
advantages: this will firstly make it easier to escape to infinity and, second, this
will enable us to define regeneration times verifying independence properties.

We will state some results from [24] in the Appendix about this random variable
where the same variable, exactly, is defined.

We define a random variable D which is essentially the time it takes for the
walk to go back beyond its starting point, with respect to the scalar product with ��.
Its definition is more complicated but we will explain the intuition below. In this
particular definition, we will need the enhanced walk of Section 5.1. Define

D := inf

{
{n > 0 : Xn · �� ≤ X0 · ��} ∪ I0

(5.3)

∪
d⋃

j=1

{n > 0 : Xn−1 = X0 + ej and Zn = 0}
}
,

where

I0 :=
{{1}, if Z1 = 0;
∅, otherwise.

We will be interested in the event {D = ∞}. The classic definition of D is such
that, on {D = ∞}, the walker never backtracks, that is, Xn · �� > X0 · �� for all n > 0.
Here, we additionally impose that Z1 = 1 and, if the walker is on a neighbour of
X0 at time n−1, then Zn = 1. This will again reduce correlations; see Remark 5.4.

REMARK 5.3. Note that D is measurable with respect to σ(X0, (X̃n)n≥1).

REMARK 5.4. We will prove that P ω
x0

[D = ∞] does not depend on the values
of the conductances of the edges adjacent to x0, as long as x0 is open. In fact,
the whole future of the walk on the event {D = ∞} does not depend on these
conductances. See Proposition 5.1.

Also, we introduce the maximum (in the direction ��) of the trajectory before D

(5.4) M := sup
n≤D

Xn · ��.
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We define the configuration dependent stopping times Sk , k ≥ 0 and the levels
Mk , k ≥ 0,

S0 = 0, M0 = X0 · �� and
(5.5)

for k ≥ 0 Sk+1 := M(K) ◦ θTH+(Mk)
+ TH+(Mk),

where

(5.6) Mk := sup{Xm · �� with 0 ≤ m ≤ Rk} with Rk := D ◦ θSk
+ Sk.

These definitions imply that if Si+1 < ∞, then

(5.7) XSi+1 · �� − XSi
· �� ≥ 2e1 · �� ≥ 2√

d
.

Finally, we define the basic regeneration time

(5.8) τ
(K)
1 = SN with N := inf{k ≥ 1 with Sk < ∞ and Mk = ∞}.

REMARK 5.5. As τ
(K)
1 depends on M(K), it also depends on the value of the

constant K . However, to lighten notation we will drop the dependence in K , since
this constant will be fixed later at a certain large value.

5.3. Uniformly bounded chance of never backtracking at open points. The
next result is natural. Starting from a good vertex and by following a directed open
path from there, we can bring the random walk far in the direction of the bias with
a positive probability, uniformly in the environment, and after this point it will be
unlikely by Lemma 3.1 to backtrack past your starting point. This means that there
is always a positive escape probability from a good point: we will then be allowed
to study events conditioned on {D = ∞}.

LEMMA 5.1. Recall the Definition 4.2 of a K-good vertex. There exists K0 <

∞ such that, for any K ≥ K0, we have

E
[
P ω

0 [D < ∞]|0 is K-good
]
< 1 − c(K).

PROOF. First, by Lemma 4.1, P[0 is good] > 0 as soon as K is large enough,
hence the conditioning is properly defined.

Fix n > 0. On the event that {0 is good}, we denote P(i) a directed path starting
at 0 where all points are open (including 0). By definition, P(0) = 0, P(1) =
e1, and denote j2 ∈ {1, . . . , d} the integer such that P(2) = e1 + ej2 . We denote
L∂+B(n,n2) = inf{i,P(i) ∈ ∂+B(n,n2)}. Recall the definition of the enhanced walk

(Xn,Zn) from Section 5.1. Define the event A = ⋂4
i=1 Ai , where

A1 = {
(X1,Z1) = (e1,1)

};
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A2 = {
(X2,Z2) = (e1 + ej2,1)

};
A3 = {

Xi = P(i) for 3 ≤ i ≤ L∂+B(n,n2)

};
A4 = {TH−(2) ◦ θTP(L

∂+B(n,n2)
)
= ∞}.

Then we have A ⊂ {D = ∞}, as an immediate consequence of the definitions.
As {0 is good}, then L∂+B(n,n2) ≤ Cn, and any vertex y on the trajectory P(i) is

open, hence pω
K(y, y + ej ) = (K−1eej ·�)(∑2d

i=1 Keei ·�)−1, for any j ∈ {1, . . . , d},
and where pω

K is defined in (5.1). Therefore, we have

P ω
0 [A1 ∩ A2 ∩ A3] ≥

[(
min

j∈{1,...,d} e
ej ·�)( 2d∑

i=1

K2eei ·�
)−1]Cn

= cn,

for some constant c > 0 that only depends on K , d and �. In particular, we have

E
[
P ω

0 [D = ∞]|0 is good
]

≥ E
[
P ω

0 [A1 ∩ A2 ∩ A3] × P ω
P(L

∂+B(n,n2)
)[TH−(2) = ∞]|0 is good

]
≥ cnE

[
P ω
P(L

∂+B(n,n2)
)[TH−(2) = ∞]|0 is good

]
.

Besides, we have

E
[
P ω
P(L

∂+B(n,n2)
)[TH−(2) < ∞]|0 is good

]
≤ P[0 is good]−1E

[
P ω
P(L

∂+B(n,n2)
)[TH−(2) < ∞]]

≤ P[0 is good]−1E
[

max
x∈∂+B(n,n2)

P ω
x [TH−(2) < ∞]

]
≤ Cnc(d)

P[TH−(−n+2) < ∞] ≤ Cnc(d) exp(−cn),

where we use translation invariance, the fact that P[0 is good] > 0 (see Lemma 4.1)
and Lemma 3.1.

We see that the previous quantity is less than 1/2 for n ≥ n0, for some n0 de-
pending on K and d . Hence, combining the last two equations,

E
[
P ω

0 [D = ∞]|0 is good
] ≥ (1/2)cn0 > 0,

which implies the result. �

5.4. Tails of regeneration times. Here, we state the following theorem on the
tails of regeneration times. We do not give the details of the proof since it is ex-
tremely similar to the proof of Theorem 4.1 in [24].

THEOREM 5.1. For any M ∈ (0,+∞), there exists K0 < ∞ such that, for any
K ≥ K0 we have τ

(K)
1 < ∞ P-a.s. and

P0[Xτ
(K)
1

· �� ≥ n] ≤ C(M)n−M.
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REMARK 5.6. Let us say some words about the proof of this last result. As
mentioned, it is similar to Theorem 4.1 of [24], the difference being that de defi-
nition of D is slightly more complex in our case because of the process Zn. This
does not however have a significant impact.

The proof of Theorem 4.1 of [24] relies on Lemmas 6.6, 7.1, 7.2 and 7.5 of [24].
The proofs of the first three lemmas can be transferred directly to our context
because they only rely on the fact that if Mi < ∞ then D ◦ θSi

+ Si < ∞, that
P(D < ∞) > 0, together with Theorem 3.1 (tagged 5.1 in [24]). The details of
the definition of D is used in the proof of Lemma 7.5 of [24] and some minor
adaptations are needed.

5.5. Fundamental property of regeneration times. We are going to define the
sequence τ0 := 0 < τ1 < τ2 < · · · < τk < · · · of successive regeneration times.
Moreover, we state and prove Theorem 5.4 which is the key result about the inde-
pendence of regeneration blocks.

Using a slight abuse of notation by viewing τk(·, ·) as a function of a walk and
an environment, we can define the sequence of successive regeneration times via
the following procedure:

(5.9) τk+1 = τ1 + τk

(
(Xτ1+· − Xτ1,Zτ1+·),ω(· + Xτ1)

)
, k ≥ 0,

meaning that the (k + 1)th regeneration time is the kth regeneration time after
the first one. We will denote by Fn the canonical filtration of the enhanced walk
X̃ = (X,Z); see Section 5.1.

We set

Ex := {[x, x + ej ], j ∈ {1, . . . ,2d}},
Lx := {[y, z] ∈ E

(
Z

d), y · � ≤ x · � and z · � ≤ x · �}∪ Ex,(5.10)

Rx := {[y, z] ∈ E
(
Z

d), y · � > x · � or z · � > x · �}∪ Ex,(5.11)

Gk := σ
{
τ1, . . . , τk; (X̃τk∧m)m≥0; c∗(e) with e ∈ LXτk

}
.

We will denote tx the canonical shift on Z
d . For a ∈ [1/K,K]E0 , we set

Pa
x = δa

((
c∗(e)

)
e∈Ex

)⊗
∫
e∈E(Zd )\Ex

⊗dP
(
c∗(e)

)
,

where ⊗ denotes the product of measures. We introduce the associated annealed
measure:

P
a
x = Pa

x × P ω
x .

In words, Pa
x denotes the annealed measure for the walk started at x but where

the conductances of the edges in Ex are fixed and given by a. We will use the
notation P

a (resp., Pa) for Pa
0 (resp., Pa

0).
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DEFINITION 5.1. We denote P
K
x and PK

x the annealed law of the walk started
at x and the law of the environment, respectively, when the configuration at x is
fixed such that c∗(e) = K for any e ∈ Ex . We also use the heavier notation P

x,K
y

when the configuration at x is fixed such that c∗(e) = K for any e ∈ Ex , and the
walk starts at y.

As a particular case of a result in [24], the following result holds.

THEOREM 5.2 (Theorem 7.3 of [24]). For α > d + 3

P
K
0 [T∂B(L,Lα) �= T∂+B(L,Lα)] ≤ Ce−cL.

We can also state the following variant of Theorem 5.1, whose proof is also
omitted.

THEOREM 5.3. For any M ∈ (0,+∞), there exists K0 < ∞ such that, for any
K ≥ K0 we have τ1 < ∞ P-a.s. and

P
K
0 [Xτ1 · �� ≥ n] ≤ C(M)n−M.

REMARK 5.7. To prove this result, one could check that the whole proof
of Theorem 5.1 holds for the measure P

K
0 . Alternatively, one can write a self-

contained argument using Theorem 3.1, Theorem 5.1 and Theorem 5.2.

The fundamental properties of regeneration times are that:

(1) the past and the future of the random walk that has arrived at Xτk
are inde-

pendent;
(2) the law of the future of the random walk has the same law as a random walk

under PK
0 [·|D = ∞].

Let us first state and prove the following result which is important for the in-
dependence of regeneration blocks: with our non-classical definition of D, the
environment at 0 is irrelevant for the evolution of the walk, on the event {D = ∞}
and when 0 is open.

PROPOSITION 5.1. Fix a vertex x0 ∈ Z
d and fix an environment ω such that

x0 is K-open. Define the environment ωK such that c
ωK∗ (g) = cω∗ (g) if g /∈ Ex0 , and

c
ωK∗ (g) = K if g ∈ Ex0 .

Then, for any bounded and σ((Xn,Zn), n ≥ 0)-measurable function f and for
any z0 ∈ {0,1}, we have

Eω
(x0,z0)

[
f (X·,Z·)1{D = ∞}] = E

ωK

(x0,z0)

[
f (X·,Z·)1{D = ∞}].
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PROOF. The proof essentially comes from the definition (5.3) of D and the
construction of the enhanced walk X̃ = (X,Z) in Section 5.1. Let us prove the
result by a coupling argument.

Recall the construction of Section 5.1. Given the environment ω, let us define
a new probability P

ω,ωK

(x0,z0)
such that the process (X̃

(1)· , X̃
(2)· ) under P

ω,ωK

(x0,z0)
is such

that the marginal law of X̃
(1)· (resp., X̃

(2)· ) matches the law of X̃· under P ω
(x0,z0)

(resp., P
ωK

(x0,z0)
).

Notice that, from (5.3), we obtain that D > 0 almost surely and, for any integer
N > 0,

{D > N} =
N⋂

n=1

{Xn · �� > X0 · ��} ∩ {Z1 = 1}

∩
d⋂

j=1

{for all 0 < n ≤ N s.t. Xn−1 = X0 + ej : Zn = 1}.

Moreover, we naturally define the quantities D(1) and D(2), respectively, associ-
ated to X̃

(1)· and X̃
(2)· .

Now, let us describe the law of (X̃
(1)· , X̃

(2)· ) under P
ω,ωK

(x0,z0)
. The important point

of the coupling is that if D(1) ∨ D(2) = ∞, then the two walks remain coupled for
ever (and in particular D(1) = D(2) = ∞).

To do this, we can couple the walks in the following manner:

1. if at time n the two walks are still coupled and if the trajectories are still
compatible with D(1) = D(2) = ∞, then we let X̃(1) make a step according to P ω,

2. if this step is again compatible with D(1) = ∞, then X̃(2) takes the same
step,

3. otherwise, it means that D(1) = n + 1 and we impose X̃(2) to move such that
D(2) = n + 1 (and the walks are considered as decoupled).

We do not detail this coupling for the sake of brevity, but one would obtain

P
ω,ωK

(x0,z0)

[{
D(1) = ∞}∩ {{∃n ≥ 0 : X̃(1)

n �= X̃(2)
n

}∪ {
D(2) < ∞}}] = 0.

Finally, for any integer n ≥ 0 and any set A = A0 ×· · ·×An with A0, . . . ,An in
the σ -algebra generated by the subsets of Zd × {0,1}, and on the event {D = ∞},
we have that

Eω
(x0,z0)

[
1
{
(X̃0, . . . , X̃n) ∈ A

}
1{D = ∞}]

= E
ω,ωK

(x0,z0)

[
1
{(

X̃
(1)
0 , . . . , X̃(1)

n

) ∈ A
}
1
{
D(1) = ∞}]

= E
ω,ωK

(x0,z0)

[
1
{(

X̃
(2)
0 , . . . , X̃(2)

n

) ∈ A
}
1
{
D(2) = ∞}]

= E
ωK

(x0,z0)

[
1
{
(X̃0, . . . , X̃n) ∈ A

}
1{D = ∞}],

and we conclude the proof using the monotone class theorem. �
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REMARK 5.8. The last result implies, for example, that P
K
0 [D = ∞] =

P0[D = ∞|0 is open].

Let us now state the fundamental property of regeneration times which provides
an i.i.d. structure on the trajectory of the walk.

THEOREM 5.4. Let us fix K large enough, and k ≥ 1. First, for any k ≥ 1, we
have τ

(K)
k < ∞ P-a.s. (or Pa-a.s. for any a ∈ [1/K,K]E ).

Second, let f , g, hk be bounded functions which are measurable with respect to
σ {X0, X̃n : n ≥ 1}, σ {c∗(e), e ∈ R0 \ E0} and Gk , respectively. Then we have

E(0,z0)

[
f (Xτk+· − Xτk

,Zτk+·)g ◦ tXτk
hk

] = E(0,z0)[hk] ×E
K
0
[
f (X̃·)g|D = ∞]

.

REMARK 5.9. According to Remark 5.3, the event {D = ∞} is σ {X0, X̃n :
n ≥ 1}-measurable but not σ {Xn : n ≥ 0}-measurable, this is why we need to deal
with the enhanced walk in Theorem 5.4. Note that the function that we consider for
the future of the walk should not depend on Z0 in order to have the independence
between the future and the past.

The proof is classic and follows the blueprint of [41], precisely Proposition 1.3
and Theorem 1.4. Since the adaptation are minor we choose not to give the proof.

6. The time spent outside abnormally large edges is negligible. In this sec-
tion, the goal is to prove that the time spent, during one regeneration period, on
edges with a conductance that is not too large is asymptotically negligible. This
result is given by Lemma 6.2. We need first to have estimates on the size of the
regeneration blocks.

Recall that the regeneration times (τi) depend on the constant K ; see Re-
mark 5.5. Also, recall that, for any x ∈ Z

d , Tx is the hitting of the vertex x. Fix
some constant α > d + 3 and define

(6.1) χ := χ(K) = inf
{
m ∈N : {Xi, i ∈ [0, τ1]} ⊂ B

(
m,mα)}.

LEMMA 6.1. For any M ∈ (0,+∞), there exists K0 < ∞ such that, for any
K ≥ K0,

P0
[
χ(K) ≥ k

] ≤ Ck−M.

This implies that for any M < ∞, there exists K0 < ∞ such that, for any K ≥
K0 and for any x ∈ Z

d ,

P0[Tx ≤ τ1] ≤ C‖x‖−M/α∞ .

The same results hold for PK
0 .



BIASED RANDOM WALKS IN RANDOM CONDUCTANCES 627

PROOF. We can follow line by line the proof of Lemma 8.7 of [24] except
that maxa∈[1/K,K]E Pa has to be replaced by P0 (resp., PK

0 ) and, instead of using
Theorems 7.2 and 7.3 from [24], we need to use the analog Theorems 5.1 and 3.1
(resp., Theorems 5.3 and 5.2) from this paper. �

When observing the random variables (τi), we want to distinguish the time spent
on abnormally large edges (traps) and the time spent on the other edges which will
be negligible.

For this purpose, recall the definitions (4.3) of E<t and (5.11) of R, and let us
define

τ
≥t
1 := ∑

e∈Ec
<t∩{R0\E0}

∣∣{k ∈ [1, τ1] : [Xk−1,Xk] = e
}∣∣,(6.2)

as well as

τ<t
1 := τ1 − τ

≥t
1 .(6.3)

REMARK 6.1. We are careful about the definition of τ
≥t
1 in order to make sure

that this quantity does not depend on the conductances outside R0 \ E0, so that we
can later apply Theorem 5.4. Note that, under P

K
0 [·|D = ∞], one edge of E0 is

crossed once and the other edges of {R0 \ E0}c are not crossed at all. Moreover, as
soon as t ≥ K , E0 ⊂ E<t .

As for the regeneration times, we can define, for k ≥ 0,

τ ∗
k+1 = τ ∗

1 + τ ∗
k

(
(Xτ1+· − Xτ1,Zτ1+·),ω(· + Xτ1)

)
,(6.4)

where ∗ stands for < or ≥.
We now give an upper-bound on the PK [·|D = ∞]-probability that τ<t

1 is large,
when t is large.

LEMMA 6.2. For any δ ∈ (0,1), there exists K0 < ∞ such that, for any K ≥
K0 and for any constant a > 0,

P
K
0
[
τ<nδ

1 > an|D = ∞] ≤ C(K, δ, a)n−γ− (1−δ)(1−γ )
2 .

PROOF. Let us introduce

τ̃<nδ

1 := ∑
e∈E≤nδ ∩{R0\E0}

∣∣{k ∈ [TGOOD, TGOOD ◦ τ1) with [Xk,Xk+1] = e
}∣∣.

Define Tτ := T +
GOOD∪{0},E

<nδ
+ τ̃<nδ

1 . It is clear that, under P
K
0 [·|D = ∞], 0 is

open and τ<nδ

1 ≤ Tτ . Therefore, to prove the lemma it will be enough to prove that

P
K
0 [Tτ > an] ≤ C(K)n−γ− (1−δ)(1−γ )

2 .
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In this proof, we will point out the K dependence of constants, since the proof
requires us to be careful with this dependence. On the other hand, we drop the
dependence on δ and a since these quantities will be fixed throughout the proof.
Also, we fix n > 3 for convenience and note that the statement is obvious in the
other case.

Fix δ > 0 and a > 0. Let us work in an environment ω which is such that 0 is
open. We have

Tτ ≤ T +
GOOD∪{0},E≤nδ

+ ∑
x∈GOOD(ω)

1{Tx < τ1}
∞∑
i=0

1{Xi = x}

+ ∑
x∈∂BAD(ω)

1{Tx < τ1}
∞∑
i=1

1{Xi = x}T +
GOOD,E≤nδ

◦ θi.

Recalling the definition (6.1) of χ , for any ε > 0, we see that

Eω
0
[
1
{
χ ≤ nε}Tτ

] ≤ Eω
0
[
T +

GOOD∪{0},E
<nδ

]
+ ∑

x∈B(nε,nCε)

[
1
{
x ∈ GOOD(ω)

}
Eω

0

[ ∞∑
i=0

1{Xi = x}
]

+ 1
{
x ∈ ∂BAD(ω)

}
Eω

0

[ ∞∑
i=1

1{Xi = x}T +
GOOD,E

<nδ
◦ θi

]]
.

Using Markov’s property and Lemma 4.3, we obtain

Eω
0
[
1
{
χ ≤ nε}Tτ

] ≤ Eω
0
[
T +

GOOD∪{0},E
<nδ

]+ C(K)
∑

x∈B(nε,nCε)

[
1
{
x ∈ GOOD(ω)

}
+ 1

{
x ∈ ∂BAD(ω)

}
Eω

x

[
T +

GOOD,E
<nδ

]]
.

Recall that ∂BAD(ω) ⊂ GOOD(ω) and notice that, if x is good, then
T +

GOOD,E
<nδ

= T +
GOOD∪{x},E

<nδ
. We may now apply Lemma 4.4:

Eω
0
[
1
{
χ ≤ nε}Tτ

]
≤ C(K)

[
exp

(
3λ

∣∣∂BADs
0(ω)

∣∣)(1 + ∑
e∈E(BADs

0)∩E
<nδ

cω∗ (e)

)

+ ∑
x∈B(nε,nCε)

1
{
x ∈ GOOD(ω)

}
+ ∑

x∈B(nε,nCε)

1
{
x ∈ ∂BAD(ω)

}× exp
(
3λW

(
BADs

x(ω)
))

×
(

1 + ∑
e∈E(BADs

x)∩E
<nδ

cω∗ (e)

)]
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≤ C(K)nCε
[
1 + max

x∈B(nε,nCε)
1
{
x ∈ ∂BAD(ω) ∪ {0}}∣∣E(

BADs
x(ω)

)∣∣
× exp

(
3λW

(
BADs

x(ω)
))

×
(
1 + max

e∈E(BADs
x)∩E

<nδ

c∗(e)
)]

≤ C(K)nCε max
x∈B(nε,nCε)

exp
(
4λW

(
BADs

x(ω)
))

×
(
1 + max

e∈Fω(B(nε,nCε))
c∗(e)

)
,

where we used that |E(BADs
x(ω))| ≤ CW(BADs

x(ω))d ≤ C exp(λW(BADs
x(ω)))

and defined

(6.5) Fω(B(
nε, nCε)) := ⋃

x∈B(nε,nCε)

E
(
BADs

x

)∩ E<nδ .

Now, fix some integers I ∈ N
∗ and i ∈ [0, I − 1]. Using the previous inequality,

on the event {maxe∈Fω(B(nε,nCε)) c∗(e) ≤ nδ i+1
I } ∩ {Eω[1{χ ≤ nε}Tτ ] > nδ i+2

I }, we
have that

max
x∈B(nε,nCε)

exp
(
4λW

(
BADs

x(ω)
))

>
n

δ
I
−Cε

C(K)
.

Using Lemma 4.2 and the previous remark, we have

P
K
0

[
Eω[1{χ ≤ nε}τ̃≤nδ

1

]
> nδ i+2

I , max
e∈Fω(B(nε,nCε))

c∗(e) ≤ nδ i+1
I

]

≤ P
K
0

[
max

x∈B(nε,nCε)
exp

(
4λW

(
BADs

x(ω)
))

>
n

δ
I
−Cε

C(K)

]
(6.6)

≤ CnCε C(K)

In2 ≤ C(K)

In
,

as soon as ε > 0 is small enough (depending on δ, I and C but not K) and K is
large enough (depending on δ, I and C).

Now, using Lemma 6.1 and since every edge e ∈ Fω(B(nε, nCε)) is such that
c∗(e) < nδ , we have

P
K
0 [Tτ ≥ an] ≤ P

K
0
[
χ > nε]+ P

K
0
[
1
{
χ ≤ nε}Tτ ≥ an

]
≤ C(K)

n
+

I−1∑
i=0

P
K
0
[
1
{
χ ≤ nε}Tτ ≥ an,

max
e∈Fω(B(nε,nCε))

c∗(e) ∈ [
nδ i

I , nδ i+1
I
)]

.
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By (6.6), this implies

P
K
0 [Tτ ≥ an] ≤ C(K)

n
+

I−1∑
i=0

E
K
0

[
P ω[1{χ ≤ nε}Tτ ≥ an

]
× 1

{
max

e∈Fω(B(nε,nCε))
c∗(e) ∈ [

nδ i
I , nδ i+1

I
)}

× 1
{
Eω[1{χ ≤ nε}Tτ

] ≤ nδ i+2
I
}]

.

By Markov’s inequality, we obtain

(6.7) P
K
0 [Tτ ≥ an] ≤ C(K)

n
+

I−1∑
i=0

nδ i+2
I

an
P
[

max
e∈Fω(B(nε,nCε))

c∗(e) ∈ [
nδ i

I , nδ i+1
I
)]

.

Now, for any i ∈ [0, I − 1], using that |E(BADs
x(ω))| ≤ C|∂BADs

x(ω)|d ≤
|W(BADs

x)|dC and Lemma 4.2, we have

P
K
0

[
max

e∈Fω(B(nε,nCε))
c∗(e) ∈ [

nδ i
I , nδ i+1

I
)]

≤ ∑
x∈B(nε,nCε)

P
[

max
e∈E(BADs

x)
c∗(e) ∈ [

nδ i
I , nδ i+1

I
)]

≤ nCε
∑

e∈E(B(nCε,nCε))

P
[
c∗(e) ∈ [

nδ i
I , nδ i+1

I
)]

+ nCε
∑

x∈B(nε,nCε)

P
[∣∣E(

BADs
x

)∣∣ ≥ nε]

≤ C(K)
nCε

nγ δ i
I

Lmax(n),

as soon as K is large enough (depending on δ, I , C and ε), and where Lmax(n) =
max{L(nγ δ i

I ), i = 0, . . . , I − 1}, with L the slowly-varying function from the tail
c∗ introduced in (1.4). From (6.7), we then deduce

P
K
0 [Tτ ≥ n] ≤ C(K)

n
+ C(K)Lmax(n)

nδ 2
I
+Cε

n

I−1∑
i=0

n
δ(1−γ )

I
i

≤ C(K)

n
+ C(K)Lmax(n)nδ 2

I
+Cε nδ(1−γ )

n

≤ C(K)

n
+ C(K)Lmax(n)

n1−δ(1−γ )−δ 2
I
−Cε

≤ C(K)

nγ+ (1−δ)(1−γ )
2

,

as soon as I is large enough (depending on γ and δ, but not K), ε small enough
(depending on δ, γ , I and C), and for n large enough (depending on δ, γ and L).
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We used the fact that, as L is slowly varying, for any ε′ > 0, x−ε′
L(x) → 0 as

x → +∞.
Recall that K depends on δ, I , C and ε, so the proof is consistent and we can

conclude. �

A simple variation of the previous lemma is the following result.

LEMMA 6.3. Fix e ∈ E(Zd). For any δ ∈ (0,1) and m > δ, there exists K0 <

∞ such that, for any K ≥ K0 and for any constant a > 0,

P
K
0
[
τ<nδ

1 > an, c∗(e) ≥ nm|D = ∞]
≤ C(K, δ, a,m)n−γ− (1−δ)(1−γ )

2 P
[
c∗(e) ≥ nm].

PROOF. The proof of this lemma is very similar to the proof of Lemma 6.2.
Here are the only modifications to be made:

1. In (6.5), as e /∈ E<nδ , we can define Fω(B(nε, nCε)) as

Fω(B(
nε, nCε)) :=

( ⋃
x∈B(nε,nCε)

E
(
BADs

x

)∩ E<nδ

) ∖
{e},

excluding the edge e will also ensure that events measurable with respect to
Fω(B(nε, nCε)) are independent of those measurable with respect to e.

2. In the bound corresponding to (6.6), we will obtain the same upper-bound
multiplied by P[c∗(e) ≥ nm] as soon as ε is small enough and K is large enough,
depending on m, by Lemma 4.2 and using that P[c∗(e) ≥ nm] ≥ cn−γm−ε for any
ε > 0 by (1.4);

3. Similarly, we can obtain a bound P
K
0 [χ > nε] ≤ C(K)P[c∗(e) ≥ nm]/n by

Lemma 6.1;
4. Therefore, instead of (6.7), we obtain

P
K
0
[
Tτ ≥ an, c∗(e) ≥ nm]
≤ C(K)

n
P
[
c∗(e) ≥ nm]

+
I−1∑
i=0

nδ i+2
I

an
P
[

max
e∈Fω(B(nε,nCε))

c∗(e) ∈ [
nδ i

I , nδ i+1
I
)
, c∗(e) ≥ nm

]

≤ C(K)

n
P
[
c∗(e) ≥ nm]

+
I−1∑
i=0

nδ i+2
I

an
P
[

max
e∈Fω(B(nε,nCε))

c∗(e) ∈ [
nδ i

I , nδ i+1
I
)]

P
[
c∗(e) ≥ nm],

and the conclusion follows easily as in the proof of Lemma 6.2. �
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7. First estimates on the number of large traps in regeneration times. As
explained in Section 1.3, in order to understand the time spent by the walker during
one regeneration period, it is important to understand the time it spends in large
traps it meets. In this section, we start by studying the number of such traps the
walker can meet. In particular, we prove that, with overwhelming probability, the
walker meets at most one edge with large conductance during one regeneration
period; see Proposition 7.1.

First, let us introduce some notation. We will write

P[·] := P
K
0 [·|D = ∞].(7.1)

We call a large trap (resp., medium trap) an edge with a conductance greater than
n (resp., nδ), where n and δ are some variables we will be using later. Also, we
define

(7.2) LT(K,n) = {
there exists e ∈ E

(
Z

d) such that, cω∗ (e) ≥ n and Te < τ
(K)
1

}
,

and define the measure of a regeneration block in which we encounter a large trap.

Pn[·] := P
K
0
[·|LT(n),D = ∞]

.(7.3)

Further, we set

SLT(δ,K,n)

= {
there exists e ∈ E

(
Z

d) such that, cω∗ (e) ≥ n,Te < τ1,(7.4)

and there exists e′ �= e, e′ ∈ B
(
2χ,2χα), such that cω∗

(
e′) ≥ nδ},

and

(7.5) NLT(δ,K,n) = card
{
e ∈ E

(
Z

d), cω∗ (e) ≥ nδ and e ∈ B
(
2χ,2χα)},

a random variable which upper-bounds the number of medium traps seen in a
regeneration time.

Let us introduce the event on which the walker meets only one large conduc-
tance during one regeneration period:

OLT(δ,K,n) = {∃e ∈ E
(
Z

d) : cω∗ (e) ≥ n,Te < τ1 and for any e′ �= e
(7.6)

with Te′ < τ1 or e′ ∼ e, we have cω∗
(
e′) < nδ}.

Moreover, for any e ∈ E(Zd), we define the event

OLTe(δ,K,n) = {
cω∗ (e) ≥ n,Te < τ1 and for any e′ �= e with Te′ < τ1

(7.7)
or e′ ∼ e, we have cω∗

(
e′) < nδ},

so that OLT(δ,K,n) = ⋃
e∈E(Zd ) OLTe(δ,K,n).



BIASED RANDOM WALKS IN RANDOM CONDUCTANCES 633

REMARK 7.1. Note that if e is hit before τ1, then e′ ∈ B(2χ,2χα) for any
e′ ∼ e. Therefore, on SLT(δ,K,n)c ∩ {Te < τ1, c∗(e) ≥ n}, we have that c∗(e′) <

nδ for any e′ ∼ e.

The goal of this section is to show the following.

PROPOSITION 7.1. Fix δ ∈ (0,1). There exists K0 < ∞ such that, for any
K ≥ K0, there exists some ε > 0 such that we have

En

[
NLT(δ,K,n)1

{
SLT(δ,K,n)

}] = o
(
n−ε),

in particular

Pn

[
SLT(δ,K,n)

]= o
(
n−ε).

This proposition will follow easily from an upper bound on the quantity
E[NLT(δ,K,n)1{SLT(δ,K,n)}] (see Lemma 7.1) and a lower bound on P[LT(n)]
(see Lemma 7.2). This is the focus of the remainder of this section.

7.1. It is unlikely to see medium traps close to large traps.

LEMMA 7.1. For any δ ∈ (0,1) and any ε > 0 there exists K0 < ∞ such that,
for any K ≥ K0,

E
[
NLT(δ,K,n)1

{
SLT(δ,K,n)

}] ≤ CnεP
[
c∗ ≥ nδ]P[c∗ ≥ n],

in particular

P
[
SLT(δ,K,n)

]≤ CnεP
[
c∗ ≥ nδ]P[c∗ ≥ n].

PROOF. Note that we have

(7.8) NLT(δ,K,n) ≤ C(d)χ2dα,

where α > d + 3 is the constant from the definition (6.1) of χ . Using this, we see
that for any ε′ > 0,

E
[
NLT(δ,K,n)1

{
χ ≥ nε′}] ≤ C(K)n−2/γ = o

(
P
[
c∗ ≥ nδ]P[c∗ ≥ n]),

by Lemma 6.1, and choosing K ≥ K0 with K0 < ∞ large enough (depending on
ε′, d , γ and α). Recalling (7.8), we can see that for any ε′ > 0, there exists K0 < ∞
such that, for any K ≥ K0,

E
[
NLT(δ,K,n)1

{
SLT(δ,K,n)

}]
≤ C(d)n2dαε′

P
[
SLT(δ,K,n),χ ≤ nε′]+ o

(
P
[
c∗ ≥ nδ]P[c ≥ n])

≤ C(d)n2dαε′ ∑
e,e′∈B(nε′ ,nαε′ )

P
[
cω∗ (e) ≥ n

]
P
[
cω∗

(
e′) ≥ nδ]

+ o
(
P
[
c∗ ≥ nδ]P[c ≥ n])

≤ C(K,d)nc(d,α)ε′
P
[
c∗ ≥ nδ]P[c∗ ≥ n],

and the result follows from choosing ε′ small enough. �
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7.2. Lower bound on the probability of meeting a large trap in a regeneration
time.

LEMMA 7.2. We have

c(K,d)P[c∗ ≥ n] ≤ P
[
LT(n)

]
.

PROOF. First, notice that

P
[
LT(n)

] = P
K
0
[∃e ∈ E

(
Z

d) such that, cω∗ (e) ≥ n and Te < τ1|D = ∞]
= 1

P
K
0 [D = ∞]P

K
0
[
there exists e ∈ E

(
Z

d) with, cω∗ (e) ≥ n and

Te < τ1,D = ∞]
(7.9)

≥ C(K)PK
0
[
there exists e ∈ E

(
Z

d) with, cω∗ (e) ≥ n and

Te < τ1,D = ∞]
.

Let us describe a way to construct the event appearing in the last probability.
We set A to be the set of vertices: 0, e1, e1 ± ei , 2e1 ± ei , 2e1 ± 2ei , 3e1 ± 2ei ,
3e1 ± ei , 4e1, 4e1 ± ei , for all i ∈ [2, d], 5e1, 6e1 and the events

A = {any x ∈ A is 6e1-open} and B = {6e1 is good},
where a vertex is called x-open if it would be open in ω after all edges adjacent to
x are turned normal.

Note that A and B are independent and independent of c∗([2e1,3e1]). Also,
recall that, from the definition (5.8), we have that τ1 ≥ 3.

We may notice that on A ∩ B , if:

1. (X1,Z1) = (e1,1), (X2,Z2) = (2e1,1) (hence τ1 > T[2e1,3e1] = 2),
2. T6e1 ◦ θT

Zd \{2e1,3e1}◦θ2 ≤ T∂(A\{0}) ◦ θT
Zd \{2e1,3e1}◦θ2 , and Zi = 1 for any 3 ≤ i ≤

T6e1 such that Xi ∼ 0,
3. D ◦ θT6e1

= ∞,
4. cω∗ ([2e1,3e1]) ≥ n.

Then we have D = ∞ and τ1 > T[2e1,3e1] and thus there exists e ∈ E(Zd) such
that, cω∗ (e) ≥ n and Te < τ1. To provide a lower-bound on P[LT(n)], we aim at
estimating the four different events which will give us a lower bound on P[LT(n)].

On A ∩ B , we see, by Remark 5.1, that we have

(7.10) P ω
0
[
(X1,Z1) = (e1,1), (X2,Z2) = (2e1,1)

] ≥ κ2,

moreover on A ∩ B

P ω
2e1

[T6e1 ◦ θT
Zd \{2e1,3e1} ≤ T∂(A\{0}) ◦ θT

Zd \{2e1,3e1},
(7.11)

Zi = 1 for any 3 ≤ i ≤ T6e1 such that Xi ∼ 0] ≥ κ7,
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which follows from strong Markov’s property, Remark 5.1 and the fact that, on
A ∩ B , from any neighbour of 2e1 or 3e1, there exists an open nearest-neighbour
path of length at most 7 in A \ {0} to 6e1.

Using Markov’s property (at times 2, TZd\{2e1,3e1} ◦ θ2 and T6e1 ) along
with (7.10) and (7.11), we may see

P
K
0
[
A,B, there exists e ∈ E

(
Z

d) such that, cω∗ (e) ≥ n and Te < τ1,D = ∞]
(7.12)

≥ cEK
0
[
1{A,B}1{c∗

([2e1,3e1]) ≥ n
}
P ω

6e1
[D = ∞]].

Recalling that 1{A}, c∗([2e1,3e1]) and 1{B}P ω
6e1

[D = ∞] are PK
0 -independent,

we have

EK
0
[
1{A,B}1{c∗

([2e1,3e1]) ≥ n
}
P ω

6e1
[D = ∞]]

≥ PK
0 [A]P[c∗

([2e1,3e1]) ≥ n
]
E
[
1{B}P ω

6e1
[D = ∞]].

We have PK
0 [A] ≥ c > 0 and by translation invariance

E
[
1{B}P ω

6e1
[D = ∞]] = E

[
1{0 is good}P ω

0 [D = ∞]] > 0,

by Lemma 5.1 and the fact that P[0 is good] > 0 (see Lemma 4.1). This means
that, by (7.12),

P
[
A,B, there exists e ∈ E

(
Z

d) such that, cω∗ (e) ≥ n and Te < τ1,D = ∞]
(7.13)

≥ cP[c∗ ≥ n].
This and (7.9) imply the result. �

8. The environment seen by the particle close to a large edge using a cou-
pling. We know that with high probability a large edge will only be surrounded
by relatively small edges by Proposition 7.1. Because of this fact, the random walk
(once it hits this edge) will typically make a large number of back and forth cross-
ings of this edge. This has several important consequences.

First, the exit probabilities from the edge e are almost proportional to the con-
ductances leaving e (see Lemma 8.1). This indicates that we should be able to
couple, with high probability, the random walk with a random walk Y e in an envi-
ronment ωe where the large edge e is collapsed into one point, see Figure 1.

We will then argue that for this coupling:

1. There exists a regeneration τY e

1 for the random walk in ωe which coincides
with high probability with τ1. This regeneration time will take into account that
with overwhelming probability the random walker will do a back and forth cross-
ing of e when it reaches it (see Lemma 8.3).

2. The time change induced by the back and forth crossings of e will be de-
scribed in terms of exponential random variables in the limit (see Lemma 9.2).
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The strength of this coupling is that both the modified regeneration time τY e

1 and
the time change, normalized by c∗(e), will essentially be independent of the value
of c∗(e). This will allow us to describe the environment seen from the particle
around a large conductance independently of the precise value of c∗(e) as long
as it is large. Hence, this coupling will be useful to describe the behaviour of the
random walk in a regeneration block where it meets a large conductance.

8.1. Approximation of exit probabilities of the large edge. Recall that, for a
vertex y and an edge e, we write y ∼ e if y ∼ e+ or y ∼ e− and y /∈ {e+, e−}.
Moreover, if y is a neighbour of e we denote ey the unique endpoint of e which is
adjacent to y.

Finally, we denote ωe the environment inherited from ω but where the edge e is
collapsed into one point denoted xe; see Figure 1. In this environment ωe, we have
cωe(e′) = cω(e′) for any e′ �= e. Therefore, πωe(x) = πω(x) for any x �= xe and

πωe(xe) = ∑
e′∈E(Zd ):

e′∼e

cωe
(
e′) = πω(e+)+ πω(e−)− 2cω(e).

LEMMA 8.1. Fix δ ∈ (0,1), an environment ω and an edge e ∈ E(Zd). As-
sume that cω∗ (e) ≥ n and cω∗ (e′) ≤ nδ for any e′ ∼ e. For any x ∈ {e+, e−} and
y ∼ e, we have

(
1 − C(d)nδ−1)cωe(y, xe)

πωe(xe)
≤ P ω

x [XT ex
e

= y] ≤ (
1 + C(d)nδ−1)cωe(y, xe)

πωe(xe)
.

PROOF. For y ∼ e+ such that y �= e−, we can apply Markov’s property at time
1 and 2 to see that

P ω
e+[XT ex

e
= y] = P ω

e+[X1 = y] + P ω
e+[X1 = e−]P ω

e−[X1 = e+]P ω
e+[XT ex

e
= y],

which yields

P ω
e+[XT ex

e
= y] = cω(e+, y)

πω(e+)

1

1 − P ω
e+[X1 = e−]P ω

e−[X1 = e+] .

A similar computation will yield that, for z ∼ e− such that z �= e+,

P ω
e+[XT ex

e
= z] = cω(e−, z)

πω(e−)

P ω
e+[X1 = e−]

1 − P ω
e+[X1 = e−]P ω

e−[X1 = e+] .

Recalling (1.2) and (1.3), we have that

1 − C(d)nδ−1 ≤ cω(e)

πω(e∓)
≤ πω(e±)

πω(e∓)
≤ 1 + C(d)nδ−1,
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where “±” can stand for + or − and ∓ is the opposite sign. Then we can see that,
for any y, y′ ∼ e,

(
1 − C(d)nδ−1)cω(y′, ey′)

cω(y, ey)
≤ P ω

e+[XT ex
e

= y′]
P ω

e+[XT ex
e

= y] ≤ (
1 + C(d)nδ−1)cω(y′, ey′)

cω(y, ey)
,

and a similar inequality holds under P ω
e− .

Since
∑

y′∼e P ω
e+[XT ex

e
= y′] = 1 and

∑
y′∼e cω(y′, ey′) = ∑

e′∼e cω(e′) =
πω(e+) + πω(e−) − 2cω(e), a simple computation allows us to see that for any
y ∼ e: (

1 − C(d)nδ−1) cω(y, ey)

πω(e+) + πω(e−) − 2cω(e)
≤ P ω

e+[XT ex
e

= y],

and

P ω
e+[XT ex

e
= y] ≤ (

1 + C(d)nδ−1) cω(y, ey)

πω(e+) + πω(e−) − 2cω(e)
,

and a similar inequality holds under P ω
e− .

The last two lines are a restatement of the lemma. �

8.2. Definition of two walks on a modified graph. For e ∈ E(Zd), we denote
(Zd

e ,E(Zd
e )) the graph obtained by collapsing the edge e into one vertex xe; see

Figure 1. Given an environment ω of conductances on Z
d , we denote ωe the con-

ductances induced on Z
d
e by ω. Moreover, we denote Pe the law of the environment

ωe on Z
d
e .

We will define two random walks on Z
d
e . We will show later that it is possible

to couple those random variables with high probability. The first walk will simply
correspond to the trace on Z

d
e of the random walk X on Z

d in the environment ω,
which still depends on c∗(e). The second walk will be a random walk on Z

d
e in the

environment ωe, and thus will be independent of c∗(e).
Provided c∗(e) is large, we will be able to couple those random walks with high

probability, which intuitively means that the trace on Z
d
e of the random walk X is

essentially independent of the value of c∗(e) when the latter is large.
We define and compare these walks in order to understand the influence of c∗(e)

on the trajectory when this conductance is large. In particular, we will prove that
when c∗(e) is large, even if the walk X spends a lot of time on e, the trace of X

outside e will be essentially independent of c∗(e).

8.2.1. The random walk in the environment where e is collapsed. First, we
define the random walk obtained from the conductances induced on ωe and we
denote the corresponding walk by (Y e

n )n∈N. We extend to Z
d
e all the vocabulary

and the definitions introduced in Section 4, where, in particular, we defined an
open point, a good point and the subsets GOOD(ωe), BAD(ωe) and BADωe(x)
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for x ∈ Z
d . The only difference is that, for an environment ωe on Z

d
e , we always

consider the vertex xe to be closed and consequently bad.
Besides, given an environment ωe, we define an enhanced version (Y e,ZYe

) of
Y e, with law P ωe , in the exact same way as in Section 5.1, except for the transition
probabilities on xe where, for any y ∼ xe:

1. p̃ωe((xe, z1), (y,1)) = 0,
2. p̃ωe((xe, z1), (y,0)) = pωe(xe, y) = c([xe,y])

πωe (x)
.

Finally, we define Pe the law of the environment ωe on Z
d
e and we denote P

e
0 the

annealed law of (Y e,ZYe
).

8.2.2. The trace of (Xn)n≥0 outside of e. Now, we are going to introduce
(Xe

n,Z
Xe

n )n∈N, an enhanced walk on Z
d
e , as the trace of (Xn,Zn)n≥0 outside of e.

For this, introduce the time change (Ae
n)n∈N defined by Ae

k = k for k ≤ Te and
for larger k we set Ae

k+1 = inf{j > Ak, {Xj,Xj−1} �= e}.
Now set

(
Xe

n,Z
Xe

n

) =

⎧⎪⎪⎨⎪⎪⎩
(XAe

n
,ZAe

n
), if XAe

n−1,XAe
n

/∈ e,

(XAe
n
,0), if XAe

n−1 ∈ e,XAe
n

/∈ e,

(xe,ZAe
n
), otherwise.

(8.1)

In words, Xe
n follows the transitions that Xn makes outside of e. ZXe

does as
well, except when the walk is jumping out of the edge e.

REMARK 8.1. We may notice that (Xe
n)n∈N is not a Markov chain, because

its transition probabilities at xe depends on which vertex it used to enter xe. It is
however a “two-step” Markov chain.

8.3. Coupling (Y e
n )n∈N and (Xe

n)n∈N. The goal of this section is to show that
there exists a version of (Y e

n ,ZYe

n )n∈N which is, with high probability, equal to
(Xe

n,Z
Xe

n )n∈N. This will allow us to say that the behaviour of (Xn)n∈N outside of
the edge e is, with high probability, independent of the value of c∗(e).

For any set A of vertices or edges of Zd
e , we denote T Xe

A (resp., T Ye

A ) the first
time Xe (resp., Y e) hits A.

Recall that Xe is the trace of X on Z
d
e and, as the two walks X and Xe coincide

until Te, we have Te = T Xe

xe
. Thus, later on, when dealing with Xe and by a slight

abuse, we will use the stopping time Te without any further specification.

LEMMA 8.2. Fix ω, e ∈ E(Zd) and δ ∈ (0,1/3). Assume that cω∗ (e) ≥ n

and cω∗ (e′) ≤ nδ for any e′ ∼ e. There exists a coupling P̂ ω of (Xe
k,Z

Xe

k )k and
(Y e

k ,ZYe

k )k such that

P̂ ω[(Xe
k,Z

Xe

k

)
k≤Te+n2δ �= (

Y e
k ,ZYe

k

)
k≤Te+n2δ

] ≤ C(d)n3δ−1,
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and T Xe

e = T Ye

xe
= Te, P̂ ω-almost surely. We also define P̂

K , the annealed version
of P̂ ω.

PROOF. Note first that it is plain that the transition probabilities of
(Y e

k ,ZYe

k )k∈N and (Xe
k,Z

Xe

k )k∈N at any point x ∈ Z
d
e are given by those of

(Xk,Zk)k∈N except for x = xe.
At the point xe we have that for any y, y′ ∼ xe:

P ω[(Xe
k+1,Z

Xe

k+1
) = (y,1)|Xe

k = xe and Xe
k−1 = y′] = 0,

(8.2)
P ω[(Xe

k+1,Z
Xe

k+1
) = (y,0)|Xe

k = xe and Xe
k−1 = y′] = P ω

ey′ [XT ex
e

= y],
and

P ω[Y e
k+1 = (y,1)|Y e

k = xe

] = 0 and
(8.3)

P ω[Y e
k+1 = (y,0)|Y e

k = xe

] = cωe(y, xe)

πωe(xe)
.

So, under P̂ ω we define the process ((Xe
k,Z

Xe

k ), (Y e
k ,ZYe

k ))k with the following
transition probabilities:

1. if Xe
k �= Y e

k , then (Xe,ZXe
) and (Y e,ZYe

) move independently according
their respective original laws;

2. if Xe
k = Y e

k = x, with x �= xe, then (Xe
k+1k,ZXe

k+1) = (Y e
k+1,Z

Ye

k+1) almost
surely and (Xe

k+1,Z
Xe

k+1) = (y, z′) with probability P ω
(x,z)[X1 = (y, z′)];

3. if Xe
k = Y e

k = xe and Xe
k−1 = y′ ∼ xe, then:

(a) (Xe
k+1,Z

Xe

k+1) = (Y e
k+1,Z

Ye

k+1) = (y,0) with probability

py′,y := P ω
ey′ [XT ex

e
= y] ∧ P ω

xe

[
Y e

k+1 = (y,0)
];

(b) ((Xe
k+1,Z

Xe

k+1), (Y
e
k+1,Z

Ye

k+1)) = ((y1,0), (y2,0)) with probability

(P ω
ey′ [XT ex

e
= y1] − py′,y1)(P

ω
xe

[Y e
k+1 = (y2,0)] − py′,y2)

1 −∑
y∼xe

py′,y
.

With this coupling, the marginal laws of Xe and Y e are their original laws.
Moreover, as long as the two walks are coupled, if they are not on xe then they
stay coupled for at least one more step almost surely, and if they are on xe (and if
they were on y′ one time step before), they decouple with probability:

1 − ∑
y∼xe

py′,y ≤ 2(2d − 1) max
y,y′∼xe

∣∣P ω
ey′ [XT ex

e
= y] − P ω

xe

[
Y e

k+1 = (y,0)
]∣∣.

Hence, it is sufficient to show that the transition probabilities at xe are close for
(Xe

k,Z
Xe

k ) and (Y e
k ,ZYe

k ).
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In particular, using (8.2), (8.3) and Lemma 8.1, we see that if we assume that
cω∗ (e′) ≤ nδ for any e′ ∼ e, then for any y, y′ ∼ xe, we have∣∣P ω

ey′ [XT ex
e

= y] − P ω
xe

[
Y e

k+1 = (y,0)
]∣∣ ≤ C(d)nδ−1.

Until Te, we can keep (Xe
k,Z

Xe

k ) and (Y e
k ,ZYe

k ) coupled with probability 1.
After that at every point in time, we can keep the walks coupled except with prob-
ability at most C(d)nδ−1, it is clear that we can keep (Xe

k,Z
Xe

k ) and (Y e
k ,ZYe

k )

coupled for n2δ units of time with probability at least 1 − C(d)n3δ−1. �

8.4. The coupling of regeneration times of the new processes. Let us define
new regeneration times τY e

1 in Z
d
e associated to (Y e

k ,ZYe

k ). This is done in the
same way we defined τ1 except that:

1. we define DYe
as in (5.3), using the convention that xe · �� = e+ · �� ∧ e− · ��,

2. we define MYe

k+1 as in (5.6), using the convention that xe · �� = e+ · �� ∨ e− · ��,
3. we replace the definition (5.2) of M by

MY e := inf{i ≥ 2 : Xi is K-open, Xi,Xi−1,Xi−2 �= xe, for j < i − 2,
(8.4)

Xj · �� < Xi−2 · �� and Xi = Xi−1 + e1 = Xi−2 + 2e1}.
Recall that the times corresponding to MY e

are potential times for regeneration.
The definition (8.4) is chosen to into account that xe corresponds to an edge of
high conductance, hence a regeneration is unlikely to occur there because a back
and forth crossing will occur with overwhelming probability.

Also we define τXe

1 , the regeneration time associated to (Xe
k,Z

Xe

k ) which is
defined as the greatest number k such that Ae

k ≤ τ1, where (Ae
k) is the time-change

introduced in (8.1). Note that if Xτ1 /∈ e, then Ae

τXe

1
= τ1. Furthermore, as soon

as c∗(e) > K , it is guaranteed that Xτ1 /∈ e, since, in this case, e+ and e− are not
open.

LEMMA 8.3. Fix any environment ω, an edge e ∈ E(Zd) and δ ∈ (0,1/3).
Assume that cω∗ (e) ≥ n > K and cω∗ (e′) ≤ nδ for any e′ ∼ e. For the coupling
P̂ ω of ((Xe

k,Z
Xe

k ), τXe

1 ) and ((Y e
k ,ZYe

k ), τY e

1 ) from Lemma 8.2, we have, for any
z ∈ Z

d
e ,

P̂ ω
z

[(
Xe

k

)
k∈N �= (

Y e
k

)
k∈N, Te < τXe

1 ≤ n2δ] ≤ C(d, ��,K)n3δ−1,

P̂ ω
z

[
D = ∞,DYe

< ∞, Te < τXe

1 ≤ n2δ] ≤ C(d, ��,K)n3δ−1,

and

P̂ ω
z

[
τXe

1 �= τY e

1 , Te < τXe

1 ≤ n2δ] ≤ C(d, ��,K)n3δ−1.
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PROOF. For simplicity, we choose z = 0, which could stand for z = xe if 0 ∈ e.
By Lemma 8.2, we already have a coupling of (Xe

k,Z
Xe

k ) and (Y e
k ,ZYe

k ) such
that Te = T Xe

xe
= T Ye

xe
. We simply have to verify the three equations for that cou-

pling. To do this, we need first to control the events on which the walks decouple.
Second, it could happen that the two walks stay couple forever but τXe

1 �= τY e

1 , thus
we also want to control these events.

Let us define some events:

(A1) (Xe
k,Z

Xe

k ) and (Y e
k ,ZYe

k ) decouple before time n2δ ;
(A2) XτX

1 −2 or XτX
1 −1 belongs to e and there has not been a back and forth

crossing of e;
(A3) e is such that (e− − Xτ1) · �� ≤ 0 and (e+ − Xτ1) · �� > 0 (or switching e+

and e−) and there has not been a crossing of e right after Te < ∞;
(A4) e is such that one of its ends is a neighbour of 0, e+ say, Te < ∞ and

either Te+ = ∞ or ZTe++1 = 1 and XTe++1 �= 0;

(A5) e is such that e− · �� ≤ 0 and e+ · �� > 0 (or switching e+ and e−) and there
has not been a crossing of e right after Te < ∞.

Recall that, under the coupling of Lemma 8.2, Xe and Y e can decouple only at
times when they are on xe.

First, on Te < τXe

1 ≤ n2δ , if (Xe
k,Z

Xe

k ) and (Y e
k ,ZYe

k ) decouple at some finite
time then we are either in the situation (A1) or in (A1)c and it means that X goes
back to e after τ1 and we are in the situation (A3).

Second, on Te < τXe

1 ≤ n2δ , if the two walks remain coupled forever, and if
D = ∞ and DYe

< ∞, then we are in the situation (A4) or (A5).
Third, on Te < τXe

1 ≤ n2δ , if the two walks remain coupled forever, and if τY e

1 �=
τXe

1 then we are either in the situation (A2) or (A3).
By Lemma 8.2 and using Markov’s property at time Te, we have

P̂ ω
0
[
(A1) ∪ (A2) ∪ (A3) ∪ (A4) ∪ (A5), Te < τXe

1 ≤ n2δ] ≤ C(d, ��)n3δ−1,

where, recalling (5.1), we used for (A4) that P ω
e+[Z1 = 1] ≤ C(d, ��)K−1/c∗(e).

Now, the conclusion follows easily. �

8.5. Tail estimates on the new regeneration times. In this section, we prove
some estimates on the tail of the newly introduced regeneration times.

8.5.1. Regeneration times for Y e cannot be very large when a large conduc-
tance is met. We start by proving the following technical lemma.

LEMMA 8.4. Fix e ∈ E(Zd) and δ ∈ (0,1/3). We have, for n > K ,

P̂
K
0
[
τXe

1 �= τY e

1 , Te < τXe

1 ≤ n2δ, c∗(e) ≥ n,SLT(δ,K,n)c
]

≤ C(d, ��,K)n3δ−1P
[
c∗(e) ≥ n

]
,
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where P̂
K is the coupling of ((Xe

k,Z
Xe

k ), τXe

1 ) and ((Y e
k ,ZYe

k ), τY e

1 ) from
Lemma 8.2.

PROOF. For an environment ω, recall that, under P̂ ω, Te = T Xe

xe
= T Ye

xe
by

Lemma 8.2. On {Te < τXe

1 ≤ n2δ}∩ {c∗(e) ≥ n}∩ SLT(δ,K,n)c, we know that the
hypothesis of Lemma 8.3 is verified as, by Remark 7.1, there exists no other edge
e′ ∼ e such that cω∗ (e′) ≥ nδ .

Hence, by applying Lemma 8.3,

EK
0
[
1
{
c∗(e) ≥ n

}
P ω

0
[
Te < τXe

1 ≤ n2δ,SLT(δ,K,n)c, τXe

1 �= τY e

1
]]

≤ EK
0
[
1
{
c∗(e) ≥ n, c∗

(
e′) < nδ,∀e′ ∼ e

}
P ω

0
[
Te < τXe

1 ≤ n2δ, τXe

1 �= τY e

1
]]

≤ C(d, ��,K)n3δ−1P
[
c∗(e) ≥ n

]
. �

We proceed to prove another intermediate result.

LEMMA 8.5. Fix e ∈ Z
d . For any δ ∈ (0,1/(γ + 3)), there exists K0 < ∞

such that, for all K ≥ K0 and any n > 0,

P̂
K
0
[
τY e

1 ≥ n2δ, c∗(e) ≥ n,SLT(n,K, δ)c, Te < τ1|D = ∞] ≤ Cn−γ δP[c∗ ≥ n],
where P̂

K is the coupling of ((Xe
k,Z

Xe

k ), τXe

1 ) and ((Y e
k ,ZYe

k ), τY e

1 ) from
Lemma 8.2.

PROOF. First, recall that if n > K then e is closed, Xτn /∈ e and {Te < τ1} =
{T Xe

e < τXe

1 }. Using Lemma 8.4, we have

P̂
K
0
[
τY e

1 ≥ n2δ, c∗(e) ≥ n,SLT(n,K, δ)c, Te < τ1, τ
Xe

1 ≤ n2δ|D = ∞]
≤ C(K)P̂K

0
[
τXe

1 �= τY e

1 , Te < τXe

1 ≤ n2δ, c∗(e) ≥ n,SLT(δ,K,n)c
]

≤ C(d, ��,K)n3δ−1P
[
c∗(e) ≥ n

]
.

Second, as τXe

1 ≤ τ1 by the time-change (8.1), Lemma 6.3 yields

P̂
K
0
[
c∗(e) ≥ n,SLT(n,K, δ)c, τXe

1 ≥ n2δ|D = ∞]
≤ P

K
0
[
τ

≤nδ

1 ≥ n2δ, c∗(e) ≥ n|D = ∞]
(8.5)

≤ C(d, ��,K, δ)n−γ δP
[
c∗(e) ≥ n

]
,

where τ
≤nδ

1 , defined in (6.3), is the time spend before τ1 on the edges with a con-
ductance less than nδ . �

We now prove the main result of this section.
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LEMMA 8.6. Fix e ∈ E(Zd) and fix δ ∈ (0,1/(γ + 3)), there exists K0 < ∞
such that for any K ≥ K0, there exists ε′ > 0 such that

P̂
K
0
[
τY e

1 ≥ n2δ, Te < τ1, c∗(e) ≥ n|D = ∞] ≤ Cn−ε′
P[c∗ ≥ n] = o

(
P
[
LT(n)

])
,

and

P̂
K
0
[
τXe

1 ≥ n2δ, Te < τ1, c∗(e) ≥ n|D = ∞] ≤ Cn−ε′
P[c∗ ≥ n] = o

(
P
[
LT(n)

])
,

where P̂
K is the coupling of ((Xe

k,Z
Xe

k ), τXe

1 ) and ((Y e
k ,ZYe

k ), τY e

1 ) from
Lemma 8.2.

PROOF. For the first inequality, we just need to use Lemma 8.5 together with
Lemmas 7.1 and 7.2. The second inequality is given by (8.5) together with Lem-
mas 7.1 and 7.2. �

8.5.2. Backtracking probabilities for the random walk Y e. Recall, from Sec-
tion 8.2, the definition of Pe, the law of the environment ωe where the edge
e ∈ E(Zd) is collapsed. Note that, in order to define ωe, as the environment outside
e is independent of cω(e), it is equivalent to pick ω under P[·|e is closed] and then
to collapse the edge e.

Besides, recall that we extended, in Section 8.2.1, the definition of good and
bad vertices to the environment ωe keeping the exact same definition except that
the vertex xe is always considered as closed, whatever are the conductances of the
surrounding edges. In words, a vertex x ∈ Z

d
e is ωe-good if there exists an infinite

directed open path starting from x (hence, this path does not go through xe).
Now, notice that for P[·|e is closed]-a.e. environment ω, the vertices e+ and e−

are closed. Thus, under P[·|e is closed], this path does not go through e+ or e−.
This means that, for P[·|e is closed]-a.e. environment ω, a vertex is good in ω if
and only if it is good in ωe. In other words,

(8.6) GOOD(ωe) = GOOD(ω) P[·|e is closed]-a.s.,

where each vertex x ∈ Z
d
e \ {xe} is naturally associated to a unique vertex in Z

d \
{e+, e−}.

Also, under P[·|e is closed], BAD(ωe) \ {xe} = BAD(ω) \ {e+, e−} a.s., xe ∈
BAD(ωe) and e+, e− ∈ BAD(ω). Moreover, for any x �= xe, we have BADωe(x) \
{xe} = BADω(x) \ {e+, e−} and xe ∈ BADωe(xe) if and only if e+, e− ∈
BADω(e+). Besides, BADωe(xe) \ {xe} = BADω(e+) \ {e+, e−}. Then we extend
the definition of the width W(·) such that for any x �= xe

W
(
BADωe(x)

) = W
(
BADω(x)

)
and W

(
BADωe(xe)

) = W
(
BADω(e+)).

The two following results are the analog of Lemma 4.3 and Lemma 3.1 for the
walk Y e.
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LEMMA 8.7. Fix some edge e ∈ E(Zd) and some environment ωe on Z
d
e . For

any x ∈ GOOD(ωe), we have

Eωe
x

[ ∞∑
i=0

1
{
Y e

i = x
}] ≤ C(K) < ∞.

PROOF. This proof is identical to the proof of Lemma 8.1 in [24], but as it is
short, we give it again. First, we have that

Eωe
x

[ ∞∑
i=0

1
{
Y e

i = x
}] = 1

P ωe [T +
x = ∞] = πωe(x)

Cωe(x ↔ ∞)
,

where Cωe(x ↔ ∞) is the effective conductance between x and infinity in ωe.
Since x ∈ GOOD(ωe), using Remark 4.1, we have

πωe(x) ≤ C(K)e2x·�.

Moreover, using Rayleigh’s monotonicity principle (see [30]) and Remark 4.2, we
obtain that

Cωe(x ↔ ∞) ≥ 1∑
i≥0

1
cωe (gi)

≥ C(K)e2x·�∑
i≥0 e−c(d)i

≥ C(K)e2x·�,

where (gi)i≥0 is the sequence of the edges of an infinite directed open path starting
at x. The result now follows easily. �

For any e ∈ E(Zd), we define

de := e+ · �� ∧ e− · ��.
Let us define, for any k ≥ 0, the following half-space in Z

d
e :

H−
e (−k) = {

x ∈ Z
d
e \ {xe} : x · �� − de ≤ −k

}
.

We also naturally extend the definition of H−
e (−k) in Z

d .

LEMMA 8.8. Fix some edge e ∈ E(Zd). We have, for any k ≥ 0,

P
e
xe

[
T Ye

H−
e (−k)

< ∞] ≤ C exp(−ck).

PROOF. Recall that the law Pe of ωe is given by the law of ω under
P[·|e is closed] where e is collapsed into xe, and recall the equality (8.6). We then
have, for any constant c > 0, as soon as K is large enough,

Pe

[
W

(
BADωe(xe)

) ≥ k

8
√

d

]
= P

[
W

(
BADω(e+)) ≥ k

8
√

d
|e is closed

]
(8.7)

≤ C(K) exp(−ck),
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where we used Lemma 4.1.
Now, when Y e is started from xe, we have the following inclusion:

{
T Ye

H−
e (−k)

< ∞}∩
{
W

(
BADωe(xe)

)
<

k

8
√

d

}
⊂ A,

where

A := {∃i ∈ N s.t. Xi ∈ ∂BADωe(xe), T
Y e

H−
e (−k)

◦ θi < T Ye

BADωe (xe)
◦ θi

}
(8.8)

∩
{
W

(
BADωe(xe)

)
<

k

8
√

d

}
.

Besides, recall that ∂BADωe(xe) ⊂ GOOD(ωe) and that xe /∈ GOOD(ωe) by defi-
nition. We then have

P
e
xe

[A] ≤ E
e
xe

[
1
{
W

(
BADωe(xe)

)
<

k

8
√

d

}

×∑
i≥0

∑
x∈∂BADωe (xe)

1
{
Xi = x,T Ye

H−
e (−k)

◦ θi < T Ye

BADωe (xe)
◦ θi

}]

≤ ∑
x∈B∞(e+,k/8

√
d)\{xe}

E
e
xe

[
1
{
x ∈ GOOD(ωe)

}∑
i≥0

1{Xi = x}

× 1
{
T Ye

H−
e (−k)

◦ θi < T Ye

BADωe (xe)
◦ θi

}]
≤ ∑

x∈B∞(e+,k/8
√

d)\{xe}
E

e
xe

[
1
{
x ∈ GOOD(ωe)

}∑
i≥0

1{Xi = x}

× P ωe
x

[
T Ye

H−
e (−k)

< T Ye

BADωe (xe)

]]
≤ ∑

x∈B∞(e+,k/8
√

d)\{xe}
C(K)Ee

xe

[
P ωe

x

[
T Ye

H−
e (−k)

< T Ye

BADωe (xe)

]]
,

where we used Markov’s property and Lemma 8.7. Moreover, notice that for
P[·|e is closed]-a.e. environment ω, ωe coincides with ω outside xe, and the transi-
tion probabilities of Y e outside xe are equal to those of X outside {e−, e+}, hence
for any x �= xe,

P ωe
x

[
T Ye

H−
e (−k)

< T Ye

BADωe (xe)

] = P ω
x

[
T X
H−

e (−k)
< T X

BADωe (e+)

]
.
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Therefore, using Lemma 3.1, we have

P
e
xe

[A] ≤ ∑
x∈B∞(e+,k/8

√
d)

C(K)Px

[
T X
H−

e (−k)
< T X

BADωe (e+)|e is closed
]

≤ ∑
x∈B∞(e+,k/8

√
d)

C(K)Px

[
T X
H−

e (−k)
< ∞]

≤ C(K)kd
P0

[
T X
H−(−k/2) < ∞] ≤ C(K) exp(−ck).

This implies the conclusion, together with (8.7) and (8.8). �

The next lemma deals with the original walk X and improves Lemma 3.1.

LEMMA 8.9. Fix an edge e ∈ E(Zd). For any n ≥ 0 and any k ≥ 0, we have

max
z∈{e+,e−}

Pz

[
T X
H−

e (−k)
< ∞, c∗(e) ≥ n

] ≤ C exp(−ck)P
[
c∗(e) ≥ n

]
.

PROOF. This proof is similar to the previous one. Fix z ∈ {e+, e−}.
Recall that the sets BAD(x) = BADω

K(x) depend on the value of some constant
K . Fix some constant c > 0. There exists a constant K0 < ∞ such that for any
K ≥ K0 and any n > K , we have

P
[
BAD

(
e+)∪ BAD

(
e−) ≥ k/8

√
d, c∗(e) ≥ n

]
= P

[
BAD

(
e+) ≥ k/8

√
d|c∗(e) ≥ n

]
P
[
c∗(e) ≥ n

]
= P

[
BAD

(
e+) ≥ k/8

√
d|e is closed

]
P
[
c∗(e) ≥ n

]
≤ C(K)P

[
BAD

(
e+) ≥ k/8

√
d
]
P
[
c∗(e) ≥ n

]
≤ C(K) exp(−ck)P

[
c∗(e) ≥ n

]
,

where we used Lemma 4.1.
Now, in a way that is very similar to the proof of Lemma 8.8, we obtain

Pz

[
T X
H−

e (−k)
< ∞, c∗(e) ≥ n,BAD

(
e+)∪ BAD

(
e−) < k/8

√
d
]

≤ ∑
x∈B∞(e+,k/8

√
d)

C(K)Ez

[
P ω

x

[
T X
H−

e (−k)
< T X

BAD(e+)

]
1
{
c∗(e) ≥ n

}]
.

Moreover, consider the environment ω̃ which coincides with ω everywhere ex-
pect on e for which we independently resample a conductance c̃∗(e) under
P[·|e is closed]. We then have, as soon as c∗(e) ≥ n > K ,

P ω
x

[
T X
H−

e (−k)
< T X

BAD(e+)

] = P ω̃
x

[
T X
H−

e (−k)
< T X

BAD(e+)

]
,
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and this last quantity is independent of c∗(e). This yields, using Lemma 3.1,

Pz

[
T X
H−

e (−k)
< ∞, c∗(e) ≥ n,BAD

(
e+)∪ BAD

(
e−) < k/8

√
d
]

≤ ∑
x∈B∞(e+,k/8

√
d)

C(K)Ez

[
P ω

x

[
T X
H−

e (−k)
< T X

BAD(e+)

]|e is closed
]

× P
[
c∗(e) ≥ n

]
,

where we used the fact that P ω
x [T X

H−
e (−k)

< T X
BAD(e+)

] depends on the value of c∗(e)
only through the fact that the edge e is closed. In turn we obtain that

Pz

[
T X
H−

e (−k)
< ∞, c∗(e) ≥ n,BAD

(
e+)∪ BAD

(
e−) < k/8

√
d
]

≤ C(K)kd
P0

[
T X
H−(−k/2) < ∞]

P
[
c∗(e) ≥ n

]
≤ C(K) exp(−ck)P

[
c∗(e) ≥ n

]
.

This enables us to conclude. �

8.5.3. Probability of reaching xe before regeneration for the random walk Y e.
We need some control on the probability for the walk Y e to touch xe before the
first regeneration time when this vertex is far away.

LEMMA 8.10. Fix e ∈ E(Zd). For any M ∈ (0,+∞), there exists K0 < ∞
such that, for any K ≥ K0,

P
K
0
[
T Ye

xe
≤ τY e

1
] ≤ C(K)‖e‖−M∞ .

PROOF. We fix e such that ‖e‖∞ ≥ 8 for convenience. We can notice that,
under the coupling P̂ ω from Lemma 8.2, (Y e

n )n∈N and (Xe
n)n∈N are coupled with

probability 1 up to Te = T Ye

xe
. This allows us to say that, on {T Ye

xe
≤ τY e

1 }, we have

either TBc∞(0,‖e‖∞/3) ≤ τ1, or TBc∞(0,‖e‖∞/3) > τ1 and τY e

1 ≥ T Ye

xe
≥ TBc∞(0,‖e‖∞/3) =

T Ye

Bc∞(0,‖e‖∞/3). Furthermore, TBc∞(0,‖e‖∞/3) > τ1 implies that Y e
τ1

is a potential re-

generation point for Y e
n up to time T Ye

e and since τ1 �= τY e

1 we know Y e
τ1

is

not a regeneration point, which means that after T Ye

e the walk Y e has to back-
track in H−((Y e

τ1
+ e1) · ��) ⊂ H−(‖e‖∞/2). This means that there exists y ∈

B∞(0,‖e‖∞/2) ∩ H+
0 [corresponding to Y e

τ1
and where H+

0 is defined in (2.1)]

such that T Ye

y < ∞, T Ye

xe
◦ θT Ye

y
< ∞ and T Ye

H−((y+e1)·��) ◦ θT Ye
xe

< ∞. To sum up we

either have:

1. TBc∞(0,‖e‖∞/3) ≤ τ1, or
2. there exists y ∈ B∞(0,‖e‖∞/2) ∩H+

0 such that T Ye

y < ∞, T Ye

xe
◦ θT Ye

y
< ∞

and T Ye

H−((y+e1)·��) ◦ θT Ye
xe

◦ θT Ye
y

< ∞,
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so we obtain, recalling Definition 5.1 of P0,K
y ,

P
K
0
[
T Ye

xe
≤ τY e

1
]

≤ P
K
0
[
T X

Bc∞(0,‖e‖∞/3) ≤ τ1
]

+ ∑
y∈B∞(0,‖e‖∞/2)∩H+

0

P
0,K
y

[
T Ye

xe
< ∞, T Y e

H−(y·��) ◦ θT Ye
xe

< ∞]
.

Using Markov’s property, we can see that

P
K
0
[
T Ye

xe
≤ τY e

1
]

≤ P
K
0
[
T X

Bc∞(0,‖e‖∞/3) ≤ τ1
]

+ C‖e‖d∞ max
y∈B∞(0,‖e‖∞/2)∩H+

0

(
P

0,K
y

[
T X

e < ∞]∧ P
0,K
xe

[
T Ye

H−(y·��) < ∞])
(8.9)

= P
K
0
[
T X

Bc∞(0,‖e‖∞/3) < τ1
]

+ C‖e‖d∞ max
y∈B∞(0,‖e‖∞/2)∩H+

0

(
P

0,K
y

[
T X

e < ∞]∧ Pxe

[
T Ye

H−(y·��) < ∞])
,

where H−(y · ��) is defined in (2.1).
By Lemma 6.1, we can see that for any M < ∞, there exists K0 < ∞ such that,

for any K ≥ K0,

(8.10) P
K
0 [TBc∞(0,‖e‖∞/3) ≤ τ1] ≤ C(K)‖e‖−M∞ .

Moreover, notice that for α > d + 3:

1. if |(y − e+) · ��| ≥ ‖e‖1/α/8 then by Lemma 3.1 and Lemma 8.8 we have

P
0,K
y

[
T X

e < ∞]∧ Pxe

[
T Ye

H−(y·��) < ∞]
≤ P0

[
T X

H−(−‖e‖1/α

16 )
< ∞]+ Pxe

[
T Ye

H−(−‖e‖1/α

16 )
< ∞]

≤ C exp
(−c‖e‖−1/α∞

)
.

2. Otherwise for y ∈ B∞(0,‖e‖∞/2) ∩ H+
0 , as α > 1 and by the triangle in-

equality, we know that d∞(y, e) ≥ ‖e‖∞/2. Furthermore, notice that, as |(y −
e+) · ��| < ‖e‖1/α/8, we have 0, e+, e− /∈ By(‖e‖1/α/2,‖e‖/2α), hence

P
0,K
y

[
T X

∂By(
‖e‖1/α

2 ,
‖e‖
2α )

�= T X

∂+By(
‖e‖1/α

2 ,
‖e‖
2α )

]
= Py

[
T X

∂By(
‖e‖1/α

2 ,
‖e‖
2α )

�= T X

∂+By(
‖e‖1/α

2 ,
‖e‖
2α )

]
.
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In this case,

P
0,K
y

[
T X

e < ∞] ≤ Py

[
T X

∂By(
‖e‖1/α

2 ,
‖e‖
2α )

�= T X

∂+By(
‖e‖1/α

2 ,
‖e‖
2α )

]
+ ∑

z∈∂+By(
‖e‖1/α

2 ,
‖e‖
2α )

Pz

[
T X

H−(e·��∧0)
< ∞]

,

noticing that for z ∈ ∂+By(
‖e‖1/α

2 ,
‖e‖
2α ) we have

(
z − e+) · �� ≥ (

y − e+) · �� + ‖e‖1/α

2
≥ 1/4‖e‖1/α∞ .

This implies, by Lemma 6.1 and Lemma 3.1,

max
y∈B∞(0,‖e‖∞/2)∩H+

0

(
P

0,K
y

[
T X

e < ∞]∧ Pxe

[
T Ye

H−(y·��) < ∞])
(8.11)

≤ C‖e‖d∞ exp
(−C‖e‖1/α∞

)
.

This last equation with (8.9) and (8.10) implies the lemma. �

We will also need to control the probability to reach an edge far away, condi-
tionally on the fact that this edge has a large conductance.

LEMMA 8.11. Fix e ∈ E(Zd). For any M < ∞, there exists K0 < ∞ such
that, for any K ≥ K0,

P
K
0
[
Te ≤ τ1, c

ω∗ (e) ≥ n
] ≤ C‖e‖−M∞ P[c∗ ≥ n],

where C does not depend on n.

PROOF. Let us denote A(e) the event on which there exists y ∈
B∞(0,‖e‖∞/2) such that, considering the trajectory up to time Te, the point y

is compatible with Xτ1 = y. This means that there exists a time n < Te such that
Xn = y is a new maximum for the trajectory in the direction �� and Xn+k · �� > Xn · ��
for any 1 ≤ k ≤ Te − n. In particular, if such a vertex y exists then e ∈ H+(0) and
y ∈ H0,e := H+(0) ∩H−

e++e1
.

First, let us control our event on A(e)c. Let us write ω̃ the environment co-
inciding with ω where c∗(e) has been resampled according to P. Notice that
Aω(e) = Aω̃(e) and ω̃ has the same law as ω.

We have

P
K
0
[
A(e)c, Te ≤ τ1, c

ω∗ (e) ≥ n
] ≤ P

K
0
[
A(e)c, cω∗ (e) ≥ n

]
= P

K
0
[
A(e)c, cω̃∗ (e) ≥ n

]
= P

K
0
[
A(e)c

]
P[c∗ ≥ n],
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but now we can notice that on A(e)c we necessarily have T∂B∞(0,‖e‖∞/2) < τ1

P
K
0
[
A(e)c

] ≤ ∑
y∈∂B∞(0,‖e‖∞/2)

P
K
0 [Ty < τ1] ≤ C‖e‖d∞‖e‖−M∞ ,

where we used Lemma 6.1 and we chose K large enough.
Combining the last two equations, we have

(8.12) P
K
0
[
A(e)c, Te ≤ τ1, c

ω∗ (e) ≥ n
] ≤ C‖e‖−M∞ P[c∗ ≥ n].

Now, we can estimate {A(e), Te ≤ τ1}. On that event, we know that there exists
y ∈ B∞(0,‖e‖∞/2) ∩H0,e such that, considering the trajectory up to time Te, the
point y is compatible with Xτ1 = y, but since Ty < Te ≤ τ1, we know that y is not
where the regeneration occurs. This means that TH−(y·��) ◦ θTe < ∞.

This means that we obtain

P
K
0
[
A(e), Te ≤ τ1, c

ω∗ (e) ≥ n
]

≤ ∑
y∈B∞(0,‖e‖∞/2)∩H0,e

P
0,K
y

[
Te ◦ θTy < ∞ and

TH−((y+e1)·��) ◦ θTe < ∞, cω∗ (e) ≥ n
]
.

Using Markov’s property, we can see that

P
K
0
[
A(e), Te ≤ τ1, c

ω∗ (e) ≥ n
]

≤ C‖e‖d∞ max
y∈B∞(0,‖e‖∞/2)

∩H0,e

(
P

0,K
y

[
T X

e < ∞, cω∗ (e) ≥ n
]

∧E
0,K

[
max

z∈{e+,e−}
P ω

z

[
T X

H−((y+e1)·��) < ∞]
, cω∗ (e) ≥ n

])
(8.13)

≤ C‖e‖d∞ max
y∈B∞(0,‖e‖∞/2)

∩H0,e

(
P

0,K
y

[
T X

e < ∞, cω∗ (e) ≥ n
]

∧ max
z∈{e+,e−}

Pz

[
T X

H−((y+e1)·��∨e1·��) < ∞, cω∗ (e) ≥ n
])

,

where, in the last line, we consider the hitting time of the hyperplane H−((y +e1) ·�� ∨ e1 · ��) in order to lose the dependence to the environment around the origin.
Besides, we can notice that the event {T X

e < ∞, } is P-independent of cω∗ (e).
Now, proceeding as for the estimate (8.11), we obtain, for α > d + 3:

1. if (e+ − y) · �� ≥ ‖e‖1/α/8 then by Lemma 8.9 we have

max
z∈{e+,e−}

Pz

[
T X

H−((y+e1)·��∨e1·��) < ∞, cω∗ (e) ≥ n
]

≤ C exp
(−c‖e‖−1/α∞

)
P
[
cω∗ (e) ≥ n

]
.
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2. Otherwise, for y ∈ B∞(0,‖e‖∞/2) ∩ H0,e. we know that d∞(y, e) ≥
‖e‖∞/2. Furthermore, notice that, as −2 ≤ (e+ − y) · �� < ‖e‖1/α/8, we have
0, e+, e− /∈ By(‖e‖1/α/2,‖e‖/2α). In this case,

P
0,K
y

[
T X

e < ∞, cω∗ (e) ≥ n
]

= P
[
cω∗ (e) ≥ n

]
P

0,K
y

[
T X

e < ∞]
≤ P

[
cω∗ (e) ≥ n

]
Py

[
T X

∂By(‖e‖1/α/2,‖e‖/2α)
�= T X

∂+By(‖e‖1/α/2,‖e‖/2α)

]
+ P

[
cω∗ (e) ≥ n

] ∑
z∈∂+By(‖e‖1/α/2,‖e‖/2α)

Pz

[
T X

H−((e++e1)·��) < ∞]
,

but noticing that for z ∈ ∂+By(‖e‖1/α/2,‖e‖/2α) we have (z − e+) · �� ≥
1/4‖e‖1/α∞ .

These two points imply, by Lemma 6.1 and Lemma 3.1, that

max
y∈B∞(0,‖e‖∞/2)

∩H0,e

(
P

0,K
y

[
T X

e < ∞, cω∗ (e) ≥ n
]

∧ max
z∈{e+,e−}

Pz

[
T X

H−((y+e1)·��∨e1·��) < ∞, cω∗ (e) ≥ n
])

≤ CP
[
cω∗ (e) ≥ n

]‖e‖d∞ exp
(−C‖e‖1/α∞

)
.

Using this equation, (8.13) and (8.12) yields the result. �

8.6. Probability of events conditional on the encounter of a large trap. In this
section, we give one of the key results about the asymptotic environment seen from
the particle. Indeed, Lemma 8.12 provides an explicit formula for the law the walk,
conditioned to meet a large trap, outside the edge with largest conductance.

Let us define e(n) as a random edge of E(Zd) verifying:

1. cω∗ (e(n)) ≥ n,
2. for all i < Te, we have cω∗ (e′) < n for any e′ ∈ E(Zd) such that Xi ∈ e′,

and in case of multiple possible choices we choose e(n) according to some prede-
termined order on Z

d . Under Pn, defined in (7.3), this edge is met before τ1 and,
because of Proposition 7.1, there is only one possible choice for e(n), with high
probability. Also, note that, on OLTe(δ,K,n) defined in (7.7), e(n) = e.

REMARK 8.2. We note that, for a fixed environment ω, Te(n) is a stopping-
time and the random variable e(n) is measurable with respect to (Xi)i≤T

e(n)
.

We write (A,B) ∈ F if:



652 A. FRIBERGH AND D. KIOUS

1. A = {{e} × Ae, e ∈ E(Zd)} where each Ae belongs to the σ -field generated
by the finite nearest-neighbour paths in Z

d
e ,

2. B = {{e} × Be, e ∈ E(Zd)} where each Be belongs to the σ -field generated
by the functions from Ee to the positive numbers, where Ee is a subset of E(Zd

e ).

For (A,B) ∈ F and for any trajectory T e on Z
d
e associated with some environ-

ment ωe, we write T e ∈ (A,B), with an abuse of notation, to designate the event
that:

1. (T e
n )n≤τ1 ∈ Ae,

2. {cωe(e′), e′ ∈ E(Zd
e ) with T e

i ∈ e′ for i ≤ τ1 or e′ ∼ e} ∈ Be.

In particular, this applies to Xe, Y e and we will also use the notation Xe(n) ∈
(A,B). Recall that e /∈ E(Zd

e ).
We are now going to prove one of the key propositions for understanding the

behaviour of the walk around large traps.

PROPOSITION 8.1. There exists K0 < ∞ such that, for any K ≥ K0, there
exists η > 0 and a function g(n) such that for any n ∈ N, any (A,B) ∈ F and any
borelian set F , we have that∣∣∣∣PK

0
[
cω∗

(
e(n)) ∈ F,Xe(n) ∈ (A,B),LT(n),D = ∞]

− P[c∗ ≥ n, c∗ ∈ F ] ∑
e∈E(Zd )

P
K
0
[
Y e ∈ (A,B),Te < τ

Ye

1 ,DYe = ∞]∣∣∣∣ ≤ g(n),

where g(n) = o(n−η
P[LT(n)]). In words, the difference on the left-hand side can

be upper-bounded independently of our choice of (A,B) or F .

The series appearing in the lemma cannot be infinite by Lemma 8.10.

PROOF. Fix some δ ∈ (0,1) that will be chosen later. Recalling the nota-
tion (7.2) and (7.4), we have

P
K
0
[
Xe(n) ∈ (A,B), c∗

(
e(n)) ∈ F,LT(n),D = ∞]

≤ ∑
e∈E(Zd )

P
K
0
[
c∗(e) ≥ n,Te < τ1,X

e ∈ (A,B),

cω∗ (e) ≥ n, cω∗ (e) ∈ F,D = ∞]+ P
K
0
[
SLT(δ,K,n)

]
,

and

P
K
0
[
Xe(n) ∈ (A,B), c∗

(
e(n)) ∈ F,LT(n),D = ∞]

≥ ∑
e∈E(Zd )

P
K
0
[
c∗(e) ≥ n,Te < τ1,X

e ∈ (A,B),
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cω∗ (e) ≥ n, cω∗ (e) ∈ F,D = ∞]
− ∑

e∈E(Zd )

P
K
0
[
c∗(e) ≥ nδ, e ∈ B

(
2χ,2χα),SLT(δ,K,n)

]
.

Therefore, this yields∣∣∣∣PK
0
[
Xe(n) ∈ (A,B), c∗

(
e(n)) ∈ F,LT(n),D = ∞]

− ∑
e∈E(Zd )

P
K
0
[
Xe ∈ (A,B),Te < τ1, c

ω∗ (e) ≥ n, cω∗ (e) ∈ F,D = ∞]∣∣∣∣
≤ E

K
0
[
NLT(δ, n)1

{
SLT(δ,K,n),D = ∞}]

,

and we know by Lemma 7.1 (applied with ε = γ δ/4) and Lemma 7.2 that

E
[
NLT(δ,K,n)1

{
SLT(δ,K,n)

}
1{D = ∞}]

≤ Cn−γ δ/2P[c∗ ≥ n] = n−γ δ/4o
(
P
[
LT(n)

])
[which is a bound that does not depend on (A,B) or F ], and thus

P
K
0
[
Xe(n) ∈ (A,B), cω∗

(
e(n)) ∈ F,LT(n),D = ∞]

= ∑
e∈E(Zd )

P
K
0
[
Xe ∈ (A,B),Te < τ1, c

ω∗ (e) ≥ n, cω∗ (e) ∈ F,D = ∞]
(8.14)

+ n−γ δ/4o
(
P
[
LT(n)

])
.

Fix M < ∞, by Lemma 6.1 and Lemma 8.10, there exists K0 < ∞ such that,
for any K ≥ K0,

P
K
0 [Te ≤ τ1] ≤ C‖e‖−M∞ and P

K
0
[
Te ≤ τY e

1
] ≤ C‖e‖−M∞ ,

and hence∣∣∣∣ ∑
e∈E(Zd )

P
K
0
[
Xe ∈ (A,B),Te < τ1, c

ω∗ (e) ≥ n, cω∗ (e) ∈ F,D = ∞]

− ∑
e∈E(Zd )

P
K
0
[
Y e ∈ (A,B),T Y e

xe
< τYe

1 , cω∗ (e) ≥ n, cω∗ (e) ∈ F,DYe = ∞]∣∣∣∣(8.15)

≤ 2
∑

e∈E(Zd )e/∈B
Zd (0,n1/M)

C‖e‖−2M∞

+ ∑
e∈E(Zd ),

e∈B
Zd (0,n1/M)

∣∣PK
0
[
Xe ∈ (A,B),Te < τ1,

cω∗ (e) ≥ n, cω∗ (e) ∈ F,D = ∞]
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− P
K
0
[
Y e ∈ (A,B),T Y e

xe
< τYe

1 , cω∗ (e) ≥ n, cω∗ (e) ∈ F,DYe = ∞]∣∣
≤ Cn−1

+ ∑
e∈E(Zd ),

e∈B
Zd (0,n1/M)

∣∣PK
0
[
Xe ∈ (A,B),Te < τ1,

cω∗ (e) ≥ n, cω∗ (e) ∈ F,D = ∞]
− P

K
0
[
Y e ∈ (A,B),T Y e

xe
< τYe

1 , cω∗ (e) ≥ n, cω∗ (e) ∈ F,DYe = ∞]∣∣.(8.16)

Choose δ ∈ (0,1/(γ + 3)) and recall that

P
[
c∗(e) ≥ n,∃e′ ∼ e : c∗

(
e′) ≥ nδ] ≤ Cn−δγ /2P

[
c∗(e) ≥ n

]
.

Thus, as γ ∈ (0,1), we can choose δ > 0 and ε > 0, independently of (A,B) or
F , such that, using the coupling and the results in Lemma 8.3 and Lemma 8.6, we
have ∣∣PK

0
[
Xe ∈ (A,B),Te < τ1, c

ω∗ (e) ≥ n, cω∗ (e) ∈ F,D = ∞]
− P

K
0
[
Y e ∈ (A,B),T Y e

xe
< τYe

1 , cω∗ (e) ≥ n, cω∗ (e) ∈ F,DYe = ∞]∣∣
≤ Cn−2ε

P
[
LT(n)

]
.

Choosing M large enough (depending ε and d), using the last inequality, (8.14)
and (8.16), we obtain

P
K
0
[
Xe(n) ∈ (A,B), c∗

(
e(n)) ≥ n, cω∗

(
e(n)) ∈ F,LT(n),D = ∞]

= ∑
e∈E(Zd )

P
K
0
[
Y e ∈ (A,B),T Y e

xe
< τYe

1 , cω∗ (e) ≥ n, cω∗ (e) ∈ F,DYe = ∞]
+ n−εo

(
P
[
LT(n)

])
.

Now, we can use the fact that the trajectory of Y e and the environment outside e

are independent of cω∗ (e), and thus∑
e∈E(Zd )

P
K
0
[
Y e ∈ (A,B),T Y e

xe
< τYe

1 , cω∗ (e) ≥ n, cω∗ (e) ∈ F,DYe = ∞]
= P[c∗ ≥ n, c∗ ∈ F ] ∑

e∈E(Zd )

P
K
0
[
Y e ∈ (A,B),T Y e

xe
< τYe

1 ,DYe = ∞]
,

and so finally

P
K
0
[
Xe(n) ∈ (A,B), c∗

(
e(n)) ≥ n, cω∗

(
e(n)) ∈ F,LT(n),D = ∞]

= P[c∗ ≥ n, c∗ ∈ F ] ∑
e∈E(Zd )

P
K
0
[
Y e ∈ (A,B),T Y e

xe
< τYe

1 ,DYe = ∞]
+ n−εo

(
P
[
LT(n)

])
.
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This implies the result. �

The previous proposition implies the following statement.

LEMMA 8.12. Take (A,B) ∈ F. There exists K0 < ∞ such that, for any K ≥
K0, we have, as n goes to infinity,

P
K
0
[
Xe(n) ∈ (A,B)|LT(n),D = ∞]
−→

∑
e∈E(Zd ) P

K
0 [Y e ∈ (A,B),T Y e

xe
< τYe

1 ,DYe = ∞]∑
e∈E(Zd ) P

K
0 [T Ye

xe
< τYe

1 ,DYe = ∞] .

PROOF. The result follows easily once, we have proved that∑
e∈E(Zd )

P
K
0
[
T Ye

xe
< τYe

1 ,DYe = ∞] ≥ c.

For e0 = [2e1,3e1], we can prove a lower bound

P
K
0
[
T Ye0

xe0
< τYe0

1 ,DYe0 = ∞] ≥ c,

by noticing that the event {T Ye0
xe0

< τYe0
1 ,DYe0 = ∞} occurs if:

1. 0, e1, 2e1, 3e1 and 4e1 are good;
2. (Y

e0
1 ,ZYe0

1 ) = (e1,1), (Y
e0
2 ,ZYe0

2 ) = (xe0,1) and Y
e0
3 = 4e1;

3. DYe0 ◦ θ3 = ∞,

and then we can do a computation very similar to the proof of Lemma 7.2 and use
the fact that

E
K
0
[
1{4e1 is good}P ω

4e1

[
DYe0 = ∞]]

= E
K
0
[
1{4e1 is good}P ω

4e1
[D = ∞]] > 0. �

9. Approximation of the time spent in a large trap. The goal of this section
is to find an asymptotic approximation of the time spent in a trap when the edge
associated to this trap has a large conductance. More specifically, we want to show
that the time is roughly the conductance of the large edge times an independent
random variable W∞.

9.1. Number of return to a large trap. We define the random variable

V xe = card
{
i ≥ 0, Y e

i = xe, i ≤ τY e

1
}
.

Besides, let us define

(9.1) Vn := card
{
i < τ1,Xi /∈ e(n) and Xi+1 ∈ e(n)}.
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Note that, chosen under the measure P[·|LT(n)], Vn ≥ 1, we can see that the
previous random variable verifies

(9.2) Vn = card
{
i ≥ 0,Xi /∈ e(n) and Xi+1 ∈ e(n)}.

Finally, let us define, for any e ∈ E(Zd),

(9.3) πωe(xe) := e−(e++e−)·�πωe(xe).

A direct application of the Lemma 8.12 implies the following.

LEMMA 9.1. There exists K0 < ∞ such that, for any K ≥ K0, there exists a
couple of random variables (V∞, π∞) such that under Pn we have(

Vn,π
ω

e(n) (xe(n))
) (d)−→ (

V∞, π∞)
.

Denoting P
∞ the probability associated to (V∞, π∞), the distribution of this cou-

ple of variables is given by

P
∞[(

V∞, π∞) ∈ ·] =
∑

e∈E(Zd )P
K
0 [(V xe ,πωe(xe)) ∈ ·, Te < τYe

1 ,DYe = ∞]∑
e∈E(Zd )P

K
0 [T Ye

xe
< τYe

1 ,DYe = ∞] .

PROOF. Fix some sets A ⊂ N and B ⊂R which are measurable and define

Ã = {{e} × Ae, e ∈ E
(
Z

d)}, B̃ = {{e} × Be, e ∈ E
(
Z

d)},
where Ae a the set of trajectories on Z

d
e such that V xe ∈ A, and Be is the event

{πω
e(n) (xe(n)) ∈ B}. Note that (Ã, B̃) ∈ F. Therefore, we have by Lemma 8.12:

Pn

[
Vn ∈ A,πω

e(n) (xe(n)) ∈ B
]

= Pn

[
Xe(n) ∈ (Ã, B̃)

]
→

∑
e∈E(Zd ) P

K
0 [Y e ∈ (Ã, B̃), T Y e

xe
< τYe

1 ,DYe = ∞]∑
e∈E(Zd ) P

K
0 [T Ye

xe
< τYe

1 ,DYe = ∞]

=
∑

e∈E(Zd )P
K
0 [V xe ∈ A,πωe(xe) ∈ B,Te < τYe

1 ,DYe = ∞]∑
e∈E(Zd )P

K
0 [T Ye

xe
< τYe

1 ,DYe = ∞] ,

and notice that the right-hand side is a probability distribution corresponding to
our limiting random variables. �

9.2. Time in excursions in the large edge e. Let us define the exit time of an
edge e ∈ E(Zd) once it has been hit T ex

e = T{e+,e−}c ◦ θT{e+,e−} with the convention

that T ex
e = 0 if T{e+,e−} = ∞. Moreover, we define, for any i ≥ 1, T ex,i

e as the time
spent in e during the ith excursion, again with the convention that T ex,i

e = 0 if
there are not i excursions to e, that is, Vn < i.
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LEMMA 9.2. Fix δ > 0. Take e ∈ E(Zd) such that cω∗ (e) ≥ n and cω∗ (e′) ≤ nδ

for all e′ ∼ e. Then, there exists a coupling of (ei ) and (T ex,i
e ) where (ei ) are

i.i.d. exponential random variables with mean 1 such that, for any i ≥ 1 such that
Vn ≥ i, P ω-almost surely,(

1 − C(d)nδ−1) cω(e)

πωe(xe)
2ei ≤ T ex,i

e ≤ (
1 + C(d)nδ−1) cω(e)

πωe(xe)
2ei + 1,

where (ei ) is independent of cω(e), πωe(xe) and (Xe
n)n.

PROOF. Step 1: Probability distribution estimates. We do the proof for T ex
e =

T ex,1
e , and the result will follow by induction. Let us apply Markov’s property at

time Te, the time when the edge e is hit. For any k ∈ N, we have, almost surely,

P ω
XTe

[⌊
T ex

e

2

⌋
> k

]
= P

[
Geom

(
1 − (cω(e))2

πω(e+)πω(e−)

)
> k

]
= P

[
e

ln(πω(e+)πω(e−)

(cω(e))2 )
> k

]
,

where e is an exponential random variable e with mean 1, which does not depend
on the environment. These last equalities show in particular that 	T ex

e /2
 does not
depend on XTe . Using that cω(e) ≥ n and cω(e′) ≤ nδ for any e′ ∼ e, a straightfor-
ward computation yields

P

[(
1 − C(d)nδ−1) cω(e)

πωe(xe)
e > k

]
≤ P ω

XTe

[⌊
T ex

e

2

⌋
> k

]
(9.4)

≤ P

[(
1 + C(d)nδ−1) cω(e)

πωe(xe)
e > k

]
.

We give an explicit construction of the coupling in order to emphasize the depen-
dencies. First, note that, for any k ∈ N and any y ∼ e, y /∈ e,

P ω
XTe

[⌊
T ex

e

2

⌋
= k,XT ex

e
= y

]
= P ω

XTe

[⌊
T ex

e

2

⌋
= k

]
P ω

XTe

[
XT ex

e
= y

∣∣∣⌊T ex
e

2

⌋
= k

]
= P ω

XTe

[⌊
T ex

e

2

⌋
= k

]
P ω

XTe
[XT ex

e
= y],

where the last equality can be checked with a straightforward computation. This
means that, conditioned on Te, 	T ex

e /2
 and XT ex
e

are independent.
Step 2: The coupling. Let us now explain how we couple the exponential vari-

ables with the time spent in the edge e.
Assume that X hits e for the ith time. Then pick an exponential random variable

ei independently of anything else. First, we define ei,− := (1−C(d)nδ−1) cω(e)
πωe (xe)

ei

and ei,+ := (1 + C(d)nδ−1) cω(e)
πωe (xe)

ei , where C(d) is the same constant as in (9.4).
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Let us denote G−, G+ and F the respective cumulative distribution functions of
ei,−, ei,+ (conditioned on the environment) and the quenched cumulative distribu-
tion function of 	T ex

e /2
 (recall that this does not depend on the starting point).
Note that, given the environment, G+ and G− are continuous.

Now, given ei , we will introduce the coupling for the time spent on the edge by
setting ⌊

T ex,i
e

2

⌋
= F−1(G−(ei,−)

)
.

Once we notice that G−(·) = G+(· × (1 + C(d)nδ−1)/(1 − C(d)nδ−1)) and
that ei,+ = ei,−(1 + C(d)nδ−1)/(1 − C(d)nδ−1), it is easy to prove that, by con-
struction, ei,− ≤ 	T ex,i

e /2
 ≤ ei,+, which implies the inequality of the statement.
The independence of ei and X

T
ex,i
e

comes from the independence of 	T ex,i
e /2
 and

X
T

ex,i
e

. Indeed, we use ei only to determine the value of 	T ex,i
e /2
 and this is inde-

pendent of X
T

ex,i
e

. �

9.3. The time spent in the largest edge described using a random variable
Wn. We know that under Pn, defined in (7.3), the random variable T = card{i ≤
τ1,Xi ∈ e(n)} measuring the time spent in e(n) can be written

T =
Vn∑
i=1

T
(i)

e(n) ,

where T
(i)

e(n) is the time spent during the ith excursion in e(n).

REMARK 9.1. The random variables T
(i)

e(n) are distributed as T ex
e(n) chosen under

P ω
x for some x ∈ e(n). The law of the T

(i)

e(n) typically depends on Vn and may not
be the same for all i, as it depends on which vertex the walker enters and exits
the edge e(n). Nevertheless, in the previous proof, we showed that the random
variables 	T (i)

e(n)/2
 are independent of Vn.

As we stated in Section 1.3, we aim to prove that the time spent in the trap,
when this trap is large, is the product of the conductance cω∗ (e(n)), with a random
variable which is almost independent. For this reason, we introduce

(9.5) Wn := T

cω∗ (e(n))
,

and we will now prove that this random variable admits a limit under Pn and that
as n gets large Wn and cω∗ (e(n)) are asymptotically independent.

Recall the definitions (7.6) and (7.7) of OLT(δ,K,n) and OLTe(δ,K,n). Using
Lemma 7.1 and that LT(n) ∩ SLT(δ,K,n)c ⊂ OLT(δ,K,n) by Remark 7.1, it is
easy to conclude that there exists ε > 0 such that

(9.6) Pn

[
OLT(δ,K,n)c

] = o
(
n−ε).
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We have OLT(δ,K,n) = ⋃
e∈E(Zd ) OLTe(δ,K,n), and on OLTe(δ,K,n) we

have e(n) = e.
Let us first prove a uniform estimate on the moments of Wn which will be useful

to prove limiting results.

LEMMA 9.3. Fix δ > 0 and ε ∈ [0,1 − γ ). There exists K0 < ∞ such that,
for any K ≥ K0, there exists a constant C(K) such that, for any n > K , we have

En

[
Wγ+ε

n 1
{
OLT(δ,K,n)

}]
< C(K),

En

[(
Vn

πω
e(n) (xe(n))

)γ+ε

1
{
OLT(δ,K,n)

}]
< C(K).

PROOF. Recall that under Pn, defined in (7.3), 0 is open and thus 0 /∈ e(n). Fix
some ε ∈ [0,1 − γ ).

Step 1: Relating Wn and Vn. First, we want to show that Wn1{OLT(δ,K,n)}
has, under Pn, a moment γ + ε which is uniform in n.

Conditionally on the fact that e(n) is hit for the ith time, the random variables
T

(i)

e(n) are distributed as T ex
e(n) under P ω

x for some random x ∈ e(n) (see Remark 9.1).

Fix some edge e ∈ E(Zd). We can use Lemma 9.2 to see that on OLTe(δ,K,n)

for all i

T (i)
e ≤ (

1 + C(d)nδ−1) cω(e)

πωe(xe)
2ei + 1,(9.7)

where ei are i.i.d. exponential random variables of mean 1 that are independent of
(Xe(n)

), e(n), πω
e(n) (xe(n)) and c∗(e(n)). Thus, under Pn, we have

Wn1
{
OLT(δ,K,n)

}
≤ (

1 + C(d)nδ−1)1{OLT(δ,K,n)}
πω

e(n) (xe(n))

Vn∑
i=1

(2ei + 1)1
{
OLT(δ,K,n)

}
,

so taking the expectation with respect to the randomness of the exponentials, we
see that

Eexp
[
Wn1

{
OLT(δ,K,n)

}] ≤ C
Vn

πω
e(n) (xe(n))

1
{
OLT(δ,K,n)

}
.

Step 2: Relating Vn to the number of visits of e+ and e−. On the event
OLTe(δ,K,n), we have

Vn = card{i ≥ 1 : Xi ∈ e and Xi+1 /∈ e},
thus

Eω
0
[
Vn1

{
OLTe(δ,K,n),D = ∞}]
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≤ Eω
0

[ ∞∑
i=1

(
1
{
T +

0 > i,Xi = e−}(1 − 1
{
Xi+1 = e+})

+ 1
{
T +

0 > i,Xi = e+}(1 − 1
{
Xi+1 = e−}))](9.8)

= Eω
0
[
N0

(
e−)]∑y∼e−,y �=e+ c([y, ey])

π(e−)

+ Eω
0
[
N0

(
e+)]∑y∼e+,y �=e− c([y, ey])

π(e+)
,

where we used Markov’s property and where N0(e
±) := ∑∞

i=1 1{T +
0 > i,

Xi = e±}.
Step 3: The number of visits to e+ (resp., e−) are related to the size of the

surrounding bad area and πω(e+) [resp., πomega(e−)]. We now want to estimate
the expectations appearing in previous equation. For this purpose, note that, as
n > K , e+ and e− are bad vertices so that BAD(e+) = BAD(e−) and, for any
y ∈ Z

d and stopping-time T , define N(y,T ) = |{0 ≤ n ≤ T : Xn = y}|. We have
that

N0
(
e+) ≤ 1

{
0 ∈ BAD

(
e+)}N(

e+, T +
GOOD∪{0}

)
(9.9)

+ ∑
x∈∂BAD(e+)

∞∑
i=0

1{Xi = x}N(
e+, T +

GOOD

) ◦ θi,

and a similar inequality holds for N0(e
−).

Now, as in the proof of Lemma 4.4, we can consider the finite graph ωδ , obtained
by merging all the points of ∂BAD(e+) [or {0} ∪ ∂BAD(e+) if 0 ∈ BAD(e+)] into
one point δ.

In the case 0 ∈ BAD(e+) and by merging {0} ∪ ∂BAD(e+) into δ, as 0 is open,
we have by Lemma A.1 and Remark 4.1, for any y ∈ BAD(e+), y ∼ 0,

Eω
y

[
N
(
e+, T +

GOOD∪{0}
)]

= Eωδ
y

[
N
(
e+, T +

δ

)] ≤ C(K)
πω(e+)

cω([0, y])
≤ C exp

(
2λ

∣∣∣ max
z∈{0}∪∂BAD(e+)

z · �� − min
z∈{0}∪∂BAD(e+)

z · ��
∣∣∣)e−(e++e−)·�πω(e+),

where we used the fact that the number of visits to e+ is upper bounded by the
number of times incident edges have been crossed.

Using that

max
z∈{0}∪∂BAD(e+)

z · �� − min
z∈{0}∪∂BAD(e+)

z · �� ≤ W
(
BAD

(
e+)),
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we obtain

Eωδ
y

[
N
(
e+, T +

GOOD∪{0}
)] ≤ C exp

(
2λW

(
BAD

(
e+)))e−(e++e−)·�πω(e+).

This yields

Eω
0
[
N
(
e+, T +

GOOD∪{0}
)] ≤ 1 + C(K)

∑
y∼0

Eω
y

[
N
(
e+, T +

GOOD∪{0}
)]

(9.10)
≤ C exp

(
2λW

(
BAD

(
e+)))e−(e++e−)·�π

(
e+),

where we used that 0 is open and, as we are on OLTe(δ,K,n), e−(e++e−)·�π(e+) ≥
C(K). A similar inequality holds for e−.

In the same way, by merging only ∂BAD(e+) into δ, we have, for any x ∈
∂BAD(e+), we have

(9.11) Eω
x

[
N
(
e+, T +

GOOD

)] ≤ C exp
(
2λW

(
BAD

(
e+)))e−(e++e−)·lπ

(
e+),

and a similar inequality holds for e−.
Using Lemma 4.3, (9.8) and (9.9), we have

Eω
0
[
Vn1

{
OLTe(δ,K,n),D = ∞}]

(9.12)
≤ C(K) exp

(
2λW

(
BAD

(
e+)))πωe(xe).

Step 4: The size of bad areas is too small to have a significant effect. Fix some
constant M ≥ 4d+4d/(1−γ −ε). Now, for k ∈ {0, . . . , 	‖e‖M∞
}, by Lemma 8.11,
there exists K0 such that, for any K ≥ K0,

P
K
0

[(
Vn

πωe(xe)

)γ+ε

1
{
OLTe(δ,K,n),D = ∞} ≥ k

]
(9.13)

≤ P
K
0
[
Te < τ1, c∗(e) ≥ n

] ≤ C(K)‖e‖−2M−4d∞ P
[
c∗(e) ≥ n

]
.

Another more delicate upper bound can be obtained, for an integer k > 	‖e‖M∞
,
Markov’s inequality and (9.12) yield

P
K
0

[(
Vn

πωe(xe)

)γ+ε

1
{
OLTe(δ,K,n),D = ∞} ≥ k

]

≤ E
K
0

[
P ω

0

[(
Vn

πωe(xe)

)γ+ε

1
{
OLTe(δ,K,n),D = ∞} ≥ k

]
1
{
c∗(e) ≥ n

}]

≤ C(K)

k1/(γ+ε)
E

K
0
[
exp

(
2λW

(
BAD

(
e+)))1{c∗(e) ≥ n

}]
(9.14)

≤ C(K)

k1/(γ+ε)
E

K
0
[
exp

(
2λW

(
BAD

(
e+)))|c∗(e) ≥ n

]
P
[
c∗(e) ≥ n

]
≤ C(K)

k1/(γ+ε)
E

K
0
[
exp

(
2λW

(
BAD

(
e+)))|e is closed

]
P
[
c∗(e) ≥ n

]
≤ C(K)

k1/(γ+ε)
P
[
c∗(e) ≥ n

]
,
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where we used Lemma 4.1 with K large enough (depending on λ and d).
Step 5: Conclusion. Summing over k ≥ 0, we obtain, by (9.13) and (9.14),

E
K
0

[(
Vn

πωe(xe)

)γ+ε

1
{
OLTe(δ,K,n),D = ∞}]

≤ C(K)‖e‖−4d∞ P
[
c∗(e) ≥ n

]+ C(K)‖e‖−(1−γ−ε)M/(γ+ε)∞ P
[
c∗(e) ≥ n

]
≤ C(K)‖e‖−4d∞ P

[
c∗(e) ≥ n

]
.

Finally, as card{e ∈ E(Zd) : ‖e‖∞ = k} ≤ ckd−1, we have

E
K
0

[(
Vn

πω
e(n) (xe(n))

)γ+ε

1
{
OLT(δ,K,n),D = ∞}]

= ∑
e∈E(Zd )

E
K
0

[(
Vn

πωe(xe)

)γ+ε

1
{
OLTe(δ,K,n),D = ∞}]

≤ C(K)P
[
c∗(e) ≥ n

]
≤ C(K)PK

0
[
LT(n),D = ∞]

,

using Lemma 7.2 in the last line. This implies the result. �

9.4. Limit in law of the random variables Wn. The random variables Wn in-
troduced at (9.5) to understand the time spent in large trap have a limit in law.

LEMMA 9.4. Define

W∞ = 1

π∞
V∞∑
i=1

2ei ,

where ei are some i.i.d. exponential random variables with mean 1, independent
of V∞ and π∞ (defined in Lemma 9.1).

Then, for the random variables Wn chosen under Pn, we have

Wn
(d)−→ W∞ as n goes to infinity.

PROOF. Consider (ei )i a sequence of exponential random variables with
mean 1. If, for some e ∈ E(Zd), cω∗ (e) ≥ n and cω∗ (e′) ≤ nδ for all e′ ∼ e, then
using Lemma 9.2 there exists a coupling of (ei )i and (	T (i)

e /2
)i such that, for
all i, we have(

1 − C(d)nδ−1) cω(e)

πωe(xe)
2ei ≤ T (i)

e ≤ (
1 + C(d)nδ−1) cω(e)

πωe(xe)
2ei + 1,

and where ei are independent of each other and independent of (Xe), e, πωe(xe)

and c∗(e). Note that, on the other hand, T
(i)
e depends on these quantities and on ei .
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Using that OLT(δ,K,n) = ⋃
e∈E(Zd ) OLTe(δ,K,n), we have, on OLT(δ,K,n),

(
1 − C(d)nδ−1) 1

πω
e(n) (xe(n))

Vn∑
i=1

2ei

(9.15)

≤ Wn ≤ (
1 + C(d)nδ−1) 1

πω
e(n) (xe(n))

Vn∑
i=1

(
2ei + C(d)nδ−1),

where Vn and πωe(n)

(xe(n)) are defined in (9.1) and (9.3).

Now recall that by Lemma 9.1, under Pn, (Vn,π
ωe(n)

(xe(n))) converges in law
to (V∞, π∞) and that the exponential random variables are independent of Vn and

πωe(n)

(xe(n)). Using Markov’s inequality and Lemma 9.3 with ε < δ, it is easy to
prove that, under Pn,

nδ−1 Vn

πω
e(n) (xe(n))

1
{
OLT(δ,K,n)

} → 0 in probability,

and recalling the definition of Wn at (9.5)

nδ−1 1

πω
e(n) (xe(n))

Vn∑
i=1

2ei1
{
OLT(δ,K,n)

}→ 0 in probability.

Thus, we have the convergence in law, under Pn, of Wn1{OLT(δ,K,n)} to W∞
and, as Pn[OLT(δ,K,n)c] = o(1), the result follows. �

9.5. Asymptotic independence of the conductance and Wn. On the probability
space P

∞, we define the random variables (V∞, π∞) and independently of this
couple a variable cmax∗ which has the P-law of the largest conductance met during
the first regeneration period, that is,

cmax∗ = max
{
cω∗ (e), with e ∈ E

(
Z

d), Te < τ1
}
,

where P[·] = P
K
0 [·|D = ∞] is defined in (7.1).

REMARK 9.2. Note that, on OLT(δ,K,n), we have cmax∗ = cω∗ (e(n)). More-
over, it is plain to see that that {cmax∗ ≥ n} = LT(n), hence P[cmax∗ ≥ n] = P[LT(n)].

Define the constant

(9.16) C1 = 1

P
K
0 [D = ∞]

∑
e∈E(Zd )

P
K
0
[
Te < τYe

1 ,DYe = ∞] ∈ (0,+∞).

We obtain the probability of encountering at least one trap in a regeneration
period as a direct consequence of Proposition 8.1.
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LEMMA 9.5. There exists K0 < ∞ such that, for any K ≥ K0, there exists
η > 0 such that

P
[
LT(n)

]× (
C1P[c∗ ≥ n])−1 ∈ (

1 − n−η,1 + n−η).
Note that the constant C1 depends on K , and so does P.
It is also important to know that it is unlikely to encounter more than two large

traps when you know you are encountering one in the regeneration time.

LEMMA 9.6. Fix δ > 0. There exists K0 < ∞ such that, for any K ≥ K0,
there exists η > 0 such that

P[LT(n)]
P[OLT(δ,K,n)] ∈ [1,1 + n−η).

PROOF. Obviously, we have that for any δ > 0 and K < ∞, we have

P
[
OLT(δ,K,n)

]≤ P
[
LT(n)

]
≤ P

[
LT(n) ∩ OLT(δ,K,n)c

]+ P
[
OLT(δ,K,n)

]
,

and the conclusion follows by (9.6). �

Using Proposition 8.1 and (9.6), a simple computation yields the following
statement.

LEMMA 9.7. There exists η > 0 such that, for any borelian set F ,

P
K
0
[
cmax∗ ∈ F, cmax∗ ≥ n|D = ∞]
= P[c∗ ∈ F, c∗ ≥ n]

P[c∗ ≥ n] P
[
LT(n)

]+ n−ηo
(
P
[
LT(n)

])
,

which implies, by Remark 9.2,

P
K
0
[
cmax∗ ∈ F |cmax∗ ≥ n,D = ∞] = P[c∗ ∈ F, c∗ ≥ n]

P[c∗ ≥ n] + o
(
n−η).

The following result is a simple consequence of Lemma 9.7, Proposition 8.1
and Lemma 9.1.

LEMMA 9.8. There exists K0 < ∞ such that, for any K ≥ K0, there exists
η > 0 such that for any n ∈ N, we have

max
A,B,F

∣∣P∞[
V∞ ∈ A,π∞ ∈ B,cmax∗ ∈ F |cmax∗ ≥ n

]
− Pn

[
cω∗

(
e(n)) ∈ F,Vn ∈ A,πω

e(n) (xe(n)) ∈ B
]∣∣

= o
(
n−η),
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where the maximum is taken over all borelians. It implies that

max
A,B

∣∣∣∣P∞[
W∞cmax∗ 1

{
cmax∗ ≥ n

} ∈ A,W̃∞cmax∗ 1
{
cmax∗ ≥ n

} ∈ B
]

− P

[
cω∗

(
e(n)) ∑Vn

i=1 2ei

πω
e(n) (xe(n))

1
{
LT(n)

} ∈ A,cω∗
(
e(n)) 2Vn

πω
e(n) (xe(n))

1
{
LT(n)

} ∈ B

]∣∣∣∣
= n−ηo

(
P
[
LT(n)

])
.

PROOF. The proof comes easily once we have noticed that

P
∞[

V∞ ∈ A,π∞ ∈ B,cmax∗ ∈ F |cmax∗ ≥ n
]

= P
K
0
[
cmax∗ ∈ F |cmax∗ ≥ n,D = ∞]

P
∞[

V∞ ∈ A,π∞ ∈ B
]
,

and that PK
0 [LT(n)|D = ∞] = P

K
0 [cmax∗ ≥ n|D = ∞]. Besides, 1

π∞
∑V∞

i=1 2ei has

the same law as W∞ and 2V∞
π∞ has the same law as W̃∞. �

REMARK 9.3. The previous proposition states that the total variation dis-
tance between the law of (cmax∗ ,V∞, π∞) chosen under P

∞[·|cmax∗ ≥ n] and
(cω∗ (e(n)),Vn,π

ω
e(n) (xe(n))) chosen under Pn is o(n−η). This allows us to pro-

duce a coupling such that those two triplets of random variables do not co-
incide with probability at most o(n−η). In the same way, we can couple the
4-uplets (cmax∗ ,V∞, π∞, (ei)) chosen under P

∞[·|cmax∗ ≥ n] and (cω∗ (e(n)),Vn,

πω
e(n) (xe(n)), (e′

i)) chosen under Pn such that they do not coincide with proba-
bility at most o(n−η), and where (ei ) and (e′

i) are two i.i.d. sequences of mean 1
exponential variables which are independent of the three other quantities involved
in their respective 4-uplets.

The following result will be used to prove the main theorem and gives an esti-
mate of the distance between cω∗ (e(n))Wn and cmax∗ W∞.

PROPOSITION 9.1. Fix δ ∈ (0,1). There exist η > 0 and a constant C′(d)

such that, for any n > K , there exists a coupling P n,∞ of (cω∗ (e(n)),Wn,

2Vn/π
ω

e(n) (xe(n))) under P and (cmax∗ ,W∞, W̃∞) under P∞ such that we have

P n,∞[∣∣cω∗
(
e(n))Wn1

{
OLT(δ,K,n)

}− cmax∗ W∞1
{
cmax∗ ≥ n

}∣∣
> C′(d)nδ−1cmax∗ (W∞ + W̃∞)1

{
cmax∗ ≥ n

}]
≤ n−ηo

(
P
[
LT(n)

])
.

PROOF. Recall that, by (9.6), there exists ε > 0 such that Pn[OLT(δ,K,

N)c] = o(n−ε). On OLT(δ,K,N), cω∗ (e(n)) = cmax∗ , and recalling (9.15) we can
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see that there exist exponential random variables e′
i , independent of πω

e(n) (xe(n))

and Vn, such that

(
1 − C(d)nδ−1) 1

πω
e(n) (xe(n))

Vn∑
i=1

2e′
i

(9.17)

≤ Wn ≤ (
1 + C(d)nδ−1) 1

πω
e(n) (xe(n))

Vn∑
i=1

(
2e′

i + C(d)nδ−1).
Now, by Lemma 9.8 we know that we can find(

W∞cmax∗ 1
{
cmax∗ ≥ n

}
, W̃∞cmax∗ 1

{
cmax∗ ≥ n

})
which is coupled with high probability with( ∑Vn

i=1 2ei

πω
e(n) (xe(n))

1
{
LT(n)

}
,

2Vn

πω
e(n) (xe(n))

1
{
LT(n)

})
.

Thus, we have built an adequate coupling and the conclusion follows easily. �

9.6. Tail estimate of the random variable W∞cmax∗ . The goal of this section
is to compute the tail of W∞. For this purpose, we need to give a moment on
this variable. To bound the error terms from Proposition 9.1, we will also need to
compute the tail the following random variable:

W̃∞ := 2
V∞
π∞

.

LEMMA 9.9. For any ε ∈ [0,1 − γ ), we have

E
∞[

Wγ+ε∞
]
< ∞ and E

∞[
W̃ γ+ε∞

]
< ∞.

PROOF. Since Pn[OLT(δ,K,n)] → 1 by Proposition 7.1, we can use by
Lemma 9.4 Skorokhod’s representation theorem to obtain, under a measure P ,
version of (Wn1{OLT(δ,K,n)})n∈N and W∞ such that Wn1{OLT(δ,K,n)} con-
verges P -almost surely to W∞. We can then use Fatou’s lemma to see that

E
[
Wγ∞

] = E
[
lim inf
n→∞

(
Wn1

{
OLT(δ,K,n)

})γ ]
≤ lim inf

n→∞ E
[(

Wn1
{
OLT(δ,K,n)

})γ ] ≤ C(K),

where we used Lemma 9.3. A similar result now holds easily for W̃∞. �

Finally, we are able to estimate de tail of W∞cmax∗ .
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LEMMA 9.10. We have

P
∞[

W∞cmax∗ ≥ t
] ∼ C1E

∞[
Wγ∞

]
L(t)t−γ ,

and

P
∞[

W̃∞cmax∗ ≥ t
] ∼ C1E

∞[
W̃ γ∞

]
L(t)t−γ ,

PROOF. Using Lemma 9.5 and Remark 9.2, we see that

P
∞[

cmax∗ ≥ t
] = P

[
cmax∗ ≥ t

] ∼ C1L(t)t−γ .

Hence, by using Breiman’s theorem [which is proved, e.g., in [16], see Corol-
lary 3.6(iii)], we obtain

P
∞[

cmax∗ W∞ ≥ t
] ∼ C1L(t)t−γ

E
∞[

Wγ∞
]
,

since E
∞[Wγ+ε∞ ] < ∞ for ε ∈ [0,1 − γ ), by Lemma 9.9.

The proof for W̃∞ is the same. �

10. Limit theorems. We now have all the necessary results to conclude the
main results.

Recall that we assumed that P[c∗(e) ≥ t] = L(t)t−γ for some γ ∈ (0,1) and
where L is a slowly varying function. Note that

τn = τ1 +
n−1∑
i=1

(τi+1 − τi),

where, using Remark 6.1 and Theorem 5.4, the quantities (τi+1 − τi), i ≥ 1, under
P0, are all independent, independent of τ1 and distributed as τ1 under PK

0 [·|D =
∞].

Let us define the generalized inverse of the tail of c∗, composed with t �→ 1/t ,
that is

Inv(t) := inf
{
x : P[c∗ > x] ≤ t−1}.(10.1)

Using that Inv(·) is nondecreasing and that t rL(t) → +∞ for any r > 0, one can
easily prove that

n
1
γ
−r

Inv(n)
−→ 0, for any r > 0.(10.2)

10.1. Identifying the terms that do not contribute. We are interested in the
scaling limit of τn/Inv(n) under P0. Recall that the quantities τi+1 − τi for i ≥ 1
are distributed like τ1 under P

K
0 [·|D = ∞], are independent of each other and

independent of τ1.
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As τ1 < ∞ P-a.s. and P
K
0 [·|D = ∞]-a.s., it is equivalent to look for the scaling

limit of

n∑
i=1

τ
(i)
1

Inv(n)
,

where the τ
(i)
1 ’s are i.i.d. copies of τ1 under PK

0 [·|D = ∞]. We will keep all previ-
ous notation adding naturally a superscript or subscript (i) to notify that the quan-
tity is related to the ith copy of the first regeneration block under PK

0 [·|D = ∞].
We will still denote P

K
0 [·|D = ∞] their common probability measure.

We are thus interested in the time spent during one regeneration period under
P

K
0 [·|D = ∞]. As explained before, the time spent by the walker during one re-

generation period is not negligible only if he meets an edge with large conductance
and, in this case, he spends essentially all of his time on this edge.

First, we prove the following result.

LEMMA 10.1. For any δ > 0, there exists K0 < ∞ such that, for any K > K0,

E
K
0
[
τ

γ−δ
1 |D = ∞]

< ∞.

PROOF. Recalling the definitions (6.2), (6.3) and (9.5), note that, for any ε >

0, under PK
0 [·|D = ∞],

τ1 = τ
≥n

1−ε
γ

1 1
{
OLT

(
1/2,K,n

1−ε
γ
)}+ τ<n

1−ε
2γ

1 1
{
OLT

(
1/2,K,n

1−ε
γ
)}

+ τ11
{
LT

(
n

1−ε
γ
)c}+ τ11

{
LT

(
n

1−ε
γ
)∩ OLT

(
1/2,K,n

1−ε
γ
)c}

= W
n

1−ε
γ

cω∗
(
e(n

1−ε
γ ))1{OLT

(
1/2,K,n

1−ε
γ
)}

(10.3)

+ τ<n
1−ε
2γ

1 1
{
OLT

(
1/2,K,n

1−ε
γ
)}

+ τ<n
1−ε
γ

1 1
{
LT

(
n

1−ε
γ
)c}+ τ11

{
LT

(
n

1−ε
γ
)∩ OLT

(
1/2,K,n

1−ε
γ
)c}

.

Now, for any k ∈ N, we can use Lemma 6.2 and Lemma 9.5 and prove that

P
K
0
[
τ

γ−δ
1 > k|D = ∞]
≤ P

K
0
[
τ<k

1
γ−δ2

1 > k
1

γ−δ |D = ∞]+ P
K
0
[
LT

(
k

1
γ−δ2

)|D = ∞]
≤ Ck

−1− δ
γ−δ + Ck

−1− δ2

2(γ−δ2) ,

which is summable. This implies the result. �
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Now let us prove that the time is overwhelmingly spent on large edges. The
quantity 1/2 in the following result as to be seen as some number strictly less than
1. We choose this specific value only to avoid useless notation.

PROPOSITION 10.1. For any ε ∈ (0,1/6), there exists K0 < ∞ such that, for
any K ≥ K0, we have

τn −∑n
i=1 W

(i)

n
1−ε
γ

cω∗ (e
(n

1−ε
γ )

(i) )1{OLT(i)(1
2 ,K,n

1−ε
γ )}

Inv(n)

(d)−→ 0.

PROOF. Using that τ1 < ∞ P-a.s. and P
K
0 [·|D = ∞]-a.s., and using (10.2)

and (10.3), it is enough to prove that, for some r > 0,

(10.4) n
− 1

γ
+r

n∑
i=1

[
τ

(i)
1 − W

(i)

n
1−ε
γ

cω∗
(
e
(n

1−ε
γ )

(i)

)
1
{
OLT(i)(1/2,K,n

1−ε
γ
)}] −→ 0,

in probability.
For notational simplicity, let us write

fi,n := τ
(i)
1 − W

(i)

n
1−ε
γ

cω∗
(
e
(n

1−ε
γ )

(i)

)
1
{
OLT(i)(1/2,K,n

1−ε
γ
)}

for the ith term of the sum in (10.4). Note that by Lemma 10.1, the fi,n’s, 1 ≤
i ≤ n, are i.i.d., have a moment γ − δ for any δ > 0 and their tails can be upper
bounded using (10.3).

The rest of the proof is made of three main steps. Before detailing them, let us
define constants that will be useful:

M := 4
2 + γ

η1
, η1 := (1 − γ )η2, η2 := 1 − γ

3 + γ
ε,(10.5)

and note that each of these constants depends only on γ and ε.
Moreover, the following inequality will be used several times. For any a ∈ R,

E
K
0
[
card{1 ≤ j ≤ n,fj,n ≥ a}|D = ∞]
= E

K
0

[ ∑
1≤j≤n

1{fj,n ≥ a}
∣∣∣D = ∞

]
(10.6)

≤ nPK
0 [f1,n ≥ a|D = ∞].

Step 1: Controlling terms with small or medium conductances. Using
Lemma 10.1 and Markov’s inequality, we have, for any i ∈ {0, . . . ,M},

P
K
0
[
f1,n ≥ ni/(Mγ )|D = ∞] ≤ C(K,M)n−(γ−1/M)(i/(Mγ )).
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Using (10.6) and Markov’s inequality, we obtain for 0 ≤ i ≤ M :

P
K
0

[
card

{
1 ≤ j ≤ n,fj,n ≥ ni/(Mγ )} ≥ n

1−η1
γ

+ 2+γ
Mγ

− i+1
Mγ

2M

∣∣∣D = ∞
]

≤ C(K,M)nn
−(γ− 1

M
) i
Mγ n

− 1−η1
γ

− 2+γ
Mγ

+ i+1
Mγ

≤ C(K,M)n
η1
γ

−( 1
γ
−1)(1− i

M
)− 1

M .

For any 0 ≤ i ≤ M , we define the event:

B(n, i,M,η1)

:=
{

card
{
1 ≤ j ≤ n,fj,n ∈ (ni/(Mγ ), n(i+1)/(Mγ )]} ≥ 1

2M
n

1−η1
γ

+ 2+γ
Mγ

− i+1
Mγ

}
.

Together with the fact that i ≤ M(1 − η1/(1 − γ )) is equivalent to η1/γ − (1/γ −
1)(1 − i/M) ≤ 0, this yields that, for any fixed M ,

P
K
0
[
B(n, i,M,η1)|D = ∞] ≤C(K,M)n−1/M = o(1),(10.7)

for any i ≤ 	M(1 − η1
1−γ

)
 =: imax.
Step 2: Ruling out terms with large conductances. Let us define the event

B ′(n, η2) = {
card

{
1 ≤ j ≤ n,fj,n ≥ n

1−η2
γ

} ≥ 1
}
.

Recalling (10.6) and using (10.3), we see that

P
K
0
[
B ′(n, η2)|D = ∞] ≤ nPK

0
[
f1,n ≥ n

1−η2
γ |D = ∞]

≤ n

(
P

K
0

[
τ<n

1−ε
2γ

1 ≥ 1

3
n

1−η2
γ |D = ∞

]

+ P
K
0

[
τ<n

1−ε
γ

1 ≥ 1

3
n

1−η2
γ |D = ∞

]
+ P

K
0
[
LT

(
n

1−ε
γ
)∩ OLT

(
1/2,K,n

1−ε
γ
)c|D = ∞])

≤ Cn
(
2n

1−η2
γ

[−γ−
(1− 1−ε

1−η2
)(1−γ )

2 ] + n
ε
2 + 1−ε

2 −(1−ε)),
where we used Lemma 6.2 twice and Lemma 7.1. Finally, using (10.5) and the fact
that η2 < ε < 1/6, we have

P
K
0
[
B ′(n, η2)|D = ∞] ≤ Cn × n−1−η2 ≤ Cn−η2 = o(1).(10.8)

Step 3: Conclusion. Recall that imax = 	M(1 − η2)
 so that (imax + 1)/(Mγ ) ≥
(1 − η2)/γ . Now, define the event

B(n,M) = B ′(n, η2) ∪
imax⋃
j=0

B(n, i,M,η1).
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Using (10.7) and (10.8), we have

P
K
0
[
B(n,M)|D = ∞] = o(1).

This implies that

n
− 1

γ
+ η1

4 1
{
B(n,M)

} n∑
j=1

fj,n −→ 0

in probability.
On the other hand, on B(n,M)c, we can give an upper bound:

n∑
j=1

fj,n ≤
imax∑
j=1

1

2M
n

1−η1
γ

+ 2+γ
Mγ ≤ n

1−η1
γ

+ 2+γ
Mγ = n

1
γ

− 3η1
4 .

This implies that

n
− 1

γ
+ η1

4 1
{
B(n,M)c

} n∑
j=1

fj,n −→ 0

in probability. This completes the proof. �

10.2. Scaling limits of the asymptotic environment. In this section, we state the
following results about the scaling limits of i.i.d. copies of the variable cmax∗ W∞.
In Section 10.3, we will then prove that τn has the same limit.

PROPOSITION 10.2. Under P∞, we have∑n
i=1 cmax∗,(i)W

(i)∞
Inv(n)

(d)−→ C∞Sγ and

∑n
i=1 cmax∗,(i)W̃

(i)∞
Inv(n)

(d)−→ C̃∞Sγ ,

where Sγ has a completely asymmetric stable law of index α and where the con-
stants are defined by

C∞ := (
C1E

∞[
Wγ∞

])1/γ and C̃∞ := (
C1E

∞[
W̃ γ∞

])1/γ
,(10.9)

with C1 being the constant defined in (9.16).

PROOF. Let us explain it for the first case, the second being similar. We have
to deal with a sum of i.i.d. random variables whose tails are heavy and are, by
Lemma 9.10, such that

P
∞[

cmax∗ W∞ ≥ t
] ∼ Cγ∞L(t)t−γ .

This is equivalent to say that there exists a slowly-varying function L̃ such that,
for any t ≥ 0,

P
∞[

cmax∗ W∞ ≥ t
] = L̃(t)t−γ .
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Let us denote Ĩnv(·) the generalized inverse function of this tail, composed with
t �→ 1/t , as in (10.1). Using classical results about sums of i.i.d. heavy-tailed ran-
dom variables (see Theorem 3.7.2, p. 161 of [19]), we have that∑n

i=1 cmax∗,(i)W
(i)∞

Ĩnv(n)

(d)−→ Sγ .

Now, using the properties of slowly-varying functions and using the monotonic-
ity of Inv and Ĩnv, one can easily show that, for any δ > 0, (1 − δ)C∞Inv(n) ≤
Ĩnv(n) ≤ (1 + δ)C∞Inv(n), as soon as n is large enough, hence

Ĩnv(n)

Inv(n)
→ C∞.

Finally, as we deal with sums of non-negative random variables, Sγ is necessarily
completely asymmetric (i.e., supported by the nonnegative real numbers). �

The last proposition obviously implies the following lemma.

LEMMA 10.2. Under P∞, we have, for any δ > 0,

n−δ

∑n
i=1 cmax∗,(i)W

(i)∞
Inv(n)

(d)−→ 0 and n−δ

∑n
i=1 cmax∗,(i)W̃

(i)∞
Inv(n)

(d)−→ 0.

The following result shows that only terms associated to large conductances
contribute to the limits stated in Proposition 10.2.

LEMMA 10.3. For any ε ∈ (0,1/6), we have∑n
i=1 cmax∗,(i)W

(i)∞ 1{cmax∗,(i) ≥ n
1−ε
γ } −∑n

i=1 cmax∗,(i)W
(i)∞

Inv(n)

(d)−→ 0,

and ∑n
i=1 cmax∗,(i)W̃

(i)∞ 1{cmax∗,(i) ≥ n
1−ε
γ } −∑n

i=1 cmax∗,(i)W̃
(i)∞

Inv(n)

(d)−→ 0.

PROOF. Using (10.2), we can conclude if we prove that, for some r > 0,

n
− 1

γ
+r

n∑
i=1

cmax∗,(i)W
(i)∞ 1

{
cmax∗,(i) < n

1−ε
γ
} (d)−→ 0,(10.10)

and

n
− 1

γ
+r

n∑
i=1

cmax∗,(i)W̃
(i)∞ 1

{
cmax∗,(i) < n

1−ε
γ
} (d)−→ 0.
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The proof is very close to the proof of Proposition 10.1. Let us do the proof of the
first equation, the second being similar. As in (10.5), let us define the following
constants which depend only on γ and ε:

M := 4
2 + γ

η1
, η1 := (1 − γ )η2, η2 := 1 − γ

6(1 + γ )
ε.(10.11)

Let us also define the following shorthand notation for the ith term of the sum
in (10.10):

fi,n := cmax∗,(i)W
(i)∞ 1

{
cmax∗,(i) < n

1−ε
γ
}
,

so that the fi,n’s, 1 ≤ i ≤ n, are i.i.d. and, using Lemma 9.10, we have

E
∞[

(f1,n)
γ− 1

M
] ≤ E

∞[(
cmax∗,(i)W

(i)∞
)γ− 1

M
]
< C(γ,M) < ∞.

Step 1: Controlling terms with small or medium conductances. For any 0 ≤ i ≤
M , we define the event

B(n, i,M,η1)

:=
{

card
{
1 ≤ j ≤ n,fj,n ∈ (ni/(Mγ ), n(i+1)/(Mγ )]} ≥ 1

2M
n

1−η1
γ

+ 2+γ
Mγ

− i+1
Mγ

}
.

Proceeding as in the Step 1 of the proof of Proposition 10.1, we obtain that, for
any fixed M ,

P
∞[

B(n, i,M,η1)
] ≤ C(M)n−1/M = o(1),(10.12)

for any i ≤ 	M(1 − η1
1−γ

)
 =: imax.
Step 2: Ruling out terms with large conductances. Denote, for η2 > 0,

B ′(n, η2) = {
card

{
1 ≤ j ≤ n,fj,n ≥ n(1−η2)/γ

} ≥ 1
}
.

Recalling (10.6), the fact that, by Lemma 9.10, cmax∗ W∞ has a slowly-varying
tail such that P∞[cmax∗ W∞ ≥ t] ≤ t−γ+γ η2 asymptotically, and using Breiman’s
theorem [see [16], see Corollary 3.6(iii)], we have

P
∞[

B ′(n, η2)
] ≤ nP∞[

cmax∗ W∞ ≥ n(1−η2)/γ , cmax∗ < n
1−ε
γ
]

≤ nP∞[
cmax∗ W∞1

{
W∞ ≥ n

ε−η2
γ

} ≥ n(1−η2)/γ
]

≤ Cnn−(1−η2)
2
P

∞[
W∞ ≥ n

ε−η2
γ

]
≤ Cn2η2n−(ε−η2) ≤ Cn−ε/2,

where we used that η2 ≤ ε/6. We have thus proved that

(10.13) P
∞[

B ′(n, η2)
] = o(1).
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Step 3: Conclusion. We conclude in the exact same manner as the step 3 in the
proof of Proposition 10.1 that

n
− 1

γ
+ η1

4

n∑
j=1

cmax∗,(j)W
(j)∞ 1

{
cmax∗ < n

1−ε
γ
} −→ 0

in probability. �

10.3. Coupling and conclusion. We finally are able to state and prove the scal-
ing limit of τn.

PROPOSITION 10.3. We have

τn

Inv(n)

(d)−→ C∞Sγ ,

where Sγ has a completely asymmetric stable law of index α, and where C∞ is the
constant defined in (10.9).

PROOF. By Lemma 10.1, Proposition 10.2 and Lemma 10.3, we only need to
prove that, under some coupling,

∣∣∣∣
∑n

i=1 W
(i)

n
1−ε
γ

cω∗ (e
(n

1−ε
γ )

(i) )1{OLT(i)(1
2 ,K,n

1−ε
γ )}

Inv(n)
(10.14)

−
∑n

i=1 cmax∗,(i)W
(i)∞ 1{cmax∗,(i) ≥ n

1−ε
γ }

Inv(n)

∣∣∣∣ → 0,

in probability.
By Proposition 9.1, there exists η > 0 such that, for any ε, there exists a coupling

P n,∞ such that

P n,∞
[∣∣∣∣cω∗

(
e(n

1−ε
γ ))Wn1

{
OLT

(
1

2
,K,n

1−ε
γ

)}
− cmax∗ W∞1

{
cmax∗ ≥ n

1−ε
γ
}∣∣∣∣

> C′(d)n
− 1−ε

2γ cmax∗ (W∞ + W̃∞)1
{
cmax∗ ≥ n

1−ε
γ
}]

≤ n
−η 1−ε

γ o
(
P
[
LT

(
n

1−ε
γ
)])

.

By choosing ε small enough compared to η and using that P[LT(n
1−ε
γ )] ≤

Cn−1+2ε , this implies

P n,∞[Un] ≤ Cn
− η

2γ ,(10.15)
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where we define the event

Un :=
{
∃i ∈ {1, . . . , n} :

∣∣∣∣cω∗
(
e
(n

1−ε
γ )

(i)

)
W(i)

n 1
{

OLT
(

1

2
,K,n

1−ε
γ

)}
− cmax∗,(i)W

(i)∞ 1
{
cmax∗,(i) ≥ n

1−ε
γ
}∣∣∣∣

> C′(d)n
− 1−ε

2γ cmax∗,(i)

(
W(i)∞ + W̃ (i)∞

)
1
{
cmax∗,(i) ≥ n

1−ε
γ
}}

.

Let us denote Gn the left-hand side of (10.14), we have that

Gn ≤ Gn1{Un} + C′(d)n
− 1−ε

2γ

∑n
i=1 cmax∗,(i)W

(i)∞ 1{cmax∗,(i) ≥ n
1−ε
γ }

Inv(n)

+ C′(d)n
− 1−ε

2γ

∑n
i=1 cmax∗,(i)W̃

(i)∞ 1{cmax∗,(i) ≥ n
1−ε
γ }

Inv(n)
,

and the quantities on the right-hand side go to 0 in probability by (10.15) and
Lemma 10.2. �

11. Process convergence. We here give functional statements of scaling limit
results. The strategy is quite classical and consists of two main ingredients. First,
we prove the joint-convergence of the trajectory (or its deviation) and the clock
process, see Lemma 11.2. Second, we use an inversion argument to conclude the
main results; see Theorem 11.2.

In order to prove Lemma 11.2, we first need to prove that the position of the
walker depends mostly on regeneration blocks without large traps.

For this purpose, we denote OLTi the event OLT, defined in (7.6), associated
with the ith regeneration block. Besides, as before, we write (OLT(i))i a sequence
of i.i.d. events distributed as OLT under PK

0 [·|D = ∞].
LEMMA 11.1. Fix ε ∈ (0,1/12). There exists K0 < ∞, such that for any K ≥

K0, for any t ≥ 0, we have

lim
n→∞P0

[∥∥∥∥∥Xτ	tn
 −
	tn
−1∑

i=0

(Xτi+1 − Xτi
)

× 1
{(

OLTi+1
(
1/2,K, (tn)

1−ε
γ
))c}∥∥∥∥∥∞

≥ n1/4

]
= 0.

PROOF. First, we see that

P0

[∥∥∥∥∥Xτ	tn
 −
	tn
−1∑

i=0

(Xτi+1 − Xτi
)1
{(

OLTi+1
(
1/2,K, (tn)

1−ε
γ
))c}∥∥∥∥∥∞

≥ n1/4

]
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≤ P0

[∥∥Xτ11
{
OLT

(
1/2,K, (tn)

1−ε
γ
)}∥∥∞ ≥ n1/4

2

]

+ P
K
0

[∥∥∥∥∥
	tn
−1∑

i=1

X
(i)

τ
(i)
1

1
{
OLT(i)(1/2,K, (tn)

1−ε
γ
)}∥∥∥∥∥∞

≥ n1/4

2

∣∣∣D = ∞
]
,

where the variables X
(i)

τ
(i)
1

1{OLT(i)(1/2,K, (tn)
1−ε
γ )} are i.i.d. copies of the variable

Xτ11{OLT(1/2,K, (tn)
1−ε
γ )} under PK

0 [·|D = ∞].
Using Theorem 5.1, we have

P0

[∥∥Xτ11
{
OLT

(
1/2,K, (tn)

1−ε
γ
)}∥∥∞ ≥ n1/4

2

]
→ 0.

In order to take care of the second term, notice that, on the one hand,

P
K
0
[
Card

{
1 ≤ i ≤ 	tn
 − 1,OLT(i)(1/2,K, (tn)

1−ε
γ
)} ≥ n

1
4 −ε|D = ∞]

≤ n− 1
4 +ε

E
K
0
[
Card

{
1 ≤ i ≤ 	tn
 − 1,OLT(i)(1/2,K, (tn)

1−ε
γ
)}|D = ∞]

≤ n− 1
4 +ε

E
K
0

[	tn
−1∑
i=1

1
{
OLT(i)(1/2,K, (tn)

1−ε
γ
)}∣∣∣D = ∞

]

≤ n− 1
4 +ε × tnPK

0
[
OLT

(
1/2,K, (tn)

1−ε
γ
)|D = ∞] ≤ Cn− 1

4 +3ε = o(1),

where we used Lemma 9.5 and Lemma 9.6 in the last line.
On the other hand, we can see that

P
K
0

[
max

A⊂{1,...,	tn
−1},
|A|≤n

1
4 −ε

∑
j∈A

X
τ

(i)
1

≥ n1/4/2
∣∣∣D = ∞

]

≤ P
K
0

[
max

1≤j≤	tn
−1
X

τ
(i)
1

≥ nε/2|D = ∞
]

≤ tnPK
0
[
Xτ1 ≥ nε/2|D = ∞] = o(1),

where we used Theorem 5.3, with K large enough compared to ε (which is fixed).

Since on {‖∑	tn
−1
i=1 X

(i)

τ
(i)
1

1{OLT(i)(1/2,K, (tn)
1−ε
γ )}‖∞ ≥ n1/4

2 }, we have ei-

ther:

1. Card{1 ≤ i ≤ 	tn
 − 1,OLT(i)(1/2,K, (tn)
1−ε
γ )} ≥ n

1
4 −ε ,

2. or maxA⊂{1,...,	tn
−1},
|A|≤n

1
4 −ε

∑
j∈A X

τ
(i)
1

≥ n1/4/2,

the result follows. �
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Define

Yn(t) = Xτ	tn

n

, Zn(t) = Xτ	tn
 − vnt

n1/2 and Sn(t) = τ	nt

Inv(n)

,

where we also define the d-dimensional vector

v = E
K
0 [Xτ1 |D = ∞].(11.1)

To obtain our limiting result, it will be enough to prove the joint convergence of(
Yn(t), Sn(t)

)
0≤t≤T and

(
Zn(t), Sn(t)

)
0≤t≤T .

Using the basic properties of slowly varying functions and the monotonicity of
Inv(·), one can prove that, for any constant c > 0,

Inv(	cn
)
Inv(n)

→ c
1
γ .

By Proposition 10.3, the law of large numbers and the central limit theorem, we
thus have, for any fixed t ≥ 0,

(11.2) Sn(t)
(d)−→ t1/γ C∞Sγ , Yn(t)

a.s.−−→ vt, Zn(t)
(d)−→ √

�Bt,

where Sγ has a completely asymmetric stable law of index α, B· is a standard
d-dimensional Brownian motion and

√
� is some nonsingular d × d matrix such

that � := √
�

t√
� is the covariance matrix of Xτ1 under PK

0 [·|D = ∞]. The in-
vertibility of

√
� can be proved using an argument similar to [38], right after

display (3.40).
In the following results of process convergence, we use the uniform topology,

denoted U , and two classical Skorokhod’s topologies J1 and M1; see [42] for
details on these topologies.

Recall that D (resp., Dd ) is the space of R-valued (resp., Rd -valued) càdlàg
functions.

LEMMA 11.2. Fix some T ≥ 0. The joint distribution of (Yn(t), Sn(t))0≤t≤T

converges to the distribution of (vt,C∞Sγ (t))0≤t≤T in Dd × D in the U × M1-
topology, where Sγ (·) is a stable subordinator of index γ .

Moreover, the joint distribution of (Zn(t), Sn(t))0≤t≤T converges to the distri-
bution of (

√
�Bt,C∞Sγ (t))0≤t≤T in Dd × D in the J1 × M1-topology, where B·

is a standard Brownian motion independent of Sγ (·).

PROOF. By Theorem 11.6.6 of [42], we only have to prove the finite-
dimensional convergence and the tightness of the sequences. Let us proceed in
three steps.

Step 1: Joint convergence for one fixed time t ≥ 0. If t = 0, the result is im-
mediate, we then assume t > 0. First, as Yn(t) converges to a constant, the joint
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convergence in distribution of (Yn(t), Sn(t)) comes at once as soon as Sn(t) con-
verges.

Second, for (Zn(t), Sn(t)), notice that, by Lemma 11.1 and Proposition 10.1,
we only need to consider the joint limit of

Jn(t) :=
(∑	nt


i=1 X
(i)
τ1 1{OLT(i)(1/2,K, (tn)

1−ε
γ )c} − vtn√

n
,

∑	nt

i=1 τ

(i)
1 1{OLT(i)(1/2,K, (tn)

1−ε
γ )}

Inv(n)

)
,

where the variables (X
(i)
τ1 , τ

(i)
1 ) are i.i.d. copies of (Xτ1, τ1) under PK

0 [·|D = ∞],
and where ε ∈ (0,1/12) is a fixed constant.

The two sums occurring in the previous display are not independent but we
will show that this couple has the same limit as a couple of independent random
variables.

Let us define, in some probability space PH , two independent sequences of
i.i.d. random variables (H 1

n,i)i and (H 2
n,i)i , respectively, distributed as Xτ1 under

P
K
0 [·|D = ∞,OLT(1/2,K, (tn)

1−ε
γ )c] and τ1 under P

K
0 [·|D = ∞,OLT(1/2,K,

(tn)
1−ε
γ )]. In the space probability, we independently define a binomial random

variable Bn of parameters 	nt
 and pn := P
K
0 [OLT(1/2,K, (tn)

1−ε
γ )|D = ∞].

We claim that

Jn(t)
(d)=

(∑	nt
−Bn

i=1 H 1
n,i − vtn√

n
,

∑Bn

i=1 H 2
n,i

Inv(n)

)
.(11.3)

In order to prove that, let us define the random vector

In := (
1
{
OLT(i)(1/2,K, (tn)

1−ε
γ
)})

1≤i≤	nt
,
whose coordinates are i.i.d. Bernoulli random variables with parameter pn, and
thus |In| is a binomial random variable with parameters 	nt
 and pn. For any
0 ≤ k ≤ 	nt
 and any īk ⊂ {i1, . . . , ik} with 1 ≤ i1 < · · · < ik ≤ 	nt
, we denote
1n,īk

the 	nt
-dimensional vector with its ith component being 1 if i ∈ īk and 0
otherwise.

For any measurable set A, we have

P
K
0
[
Jn(t) ∈ A|D = ∞]
=

	nt
∑
k=0

∑
īk={i1,...,ik},

1≤i1<···<ik≤	nt


P
K
0 [In = 1n,īk

|D = ∞]

× P
K
0

[(∑
i∈{1,...,	nt
}\īk X

(i)
τ1 − vtn√

n
,

∑
i∈īk

τ
(i)
1

Inv(n)

)
∈ A

∣∣∣D = ∞, In = 1n,īk

]
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=
	nt
∑
k=0

∑
īk={i1,...,ik},

1≤i1<···<ik≤	nt


pk
n(1 − pn)

	nt
−k

× PH

[(∑	nt
−k
i=1 H 1

n,i − vtn√
n

,

∑k
i=1 H 2

n,i

Inv(n)

)
∈ A

]

=
	nt
∑
k=0

PH

[
Bn = k,

(∑	nt
−k
i=1 H 1

n,i − vtn√
n

,

∑k
i=1 H 2

n,i

Inv(n)

)
∈ A

]

= PH

[(∑	nt
−Bn

i=1 H 1
n,i − vtn√

n
,

∑Bn

i=1 H 2
n,i

Inv(n)

)
∈ A

]
,

which proves the claim. Besides, note that the marginal laws converge.
Moreover, it is clear that the following couple of random variables is indepen-

dent: (∑	nt

i=1 H 1

n,i − vtn√
n

,

∑Bn

i=1 H 2
n,i

Inv(n)

)
.(11.4)

So, if we prove that the distance between this couple and the right-hand side of
(11.3) goes to 0 in probability, we will be allowed to conclude. Recalling that the

H 1
n,i ’s have the law of Xτ1 under PK

0 [·|D = ∞,OLT(1/2,K, (tn)
1−ε
γ )c], we have,

for n large enough,

PH

[∥∥∥∥
∑	nt


i=	nt
−Bn+1 H 1
n,i√

n

∥∥∥∥∞
> ε

]
≤ PH

[∥∥∥∥
∑(1+t)n2ε

i=1 H 1
n,i√

n

∥∥∥∥∞
> ε

]
+ PH

[
Bn ≥ pn	nt
 + n2ε]

≤ Cn−1/3 + 	nt
pn/n−4ε ≤ Cn−2ε = o(1),

recalling that ε ∈ (0,1/12) is a constant and t ∈ [0, T ] where T is also a fixed
constant.

Hence, the marginal laws of (11.4) converge in distribution respectively to√
�Bt and t1/γ C∞Sγ , and, as the coordinates are independent, the couple con-

verges jointly to a couple of independent random variables. This finally implies
that (

Zn(t), Sn(t)
) (d)−→ (√

�Bt, t
1/γ C∞Sγ

)
,

where Bt and Sγ are independent.
Step 2: Finite-dimensional convergence. Fix a positive integer k and k + 1 times

t0 = 0 ≤ t1 < · · · < tk ≤ T . Consider the vectors:(
Yn(ti) − Yn(ti−1), Sn(ti) − Sn(ti−1)

)
1≤i≤tk

(11.5)
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and (
Zn(ti) − Zn(ti−1), Sn(ti) − Sn(ti−1)

)
1≤i≤tk

.(11.6)

As soon as n is large enough, the variables (Yn(ti) − Yn(ti−1), Sn(ti) − Sn(ti−1)),
1 ≤ i ≤ tk , are independent and have the same limit as (Yn(ti − ti−1), Sn(ti , ti−1)),
1 ≤ i ≤ tk . The same holds for (11.6) and this implies the finite-dimensional con-
vergence using basic properties on the increments of a stable subordinator.

Step 3: Tightness. First, the process (Yn(t))t∈[0,T ] converges almost surely and
uniformly to a constant. Besides, by Donsker’s theorem, the process (Zn(t))t∈[0,T ]
converges to a Brownian motion on Dd in the J1-topology, which implies the
tightness of the sequence by Prohorov’s theorem.

Second, we will need a criterion for tightness of probability measures on D,
the space of R-valued càdlàg functions. To this end, we define several moduli of
continuity,

wf (δ) = sup
{

inf
α∈[0,1]

∣∣f (t) − (
αf (t1) + (1 − α)f (t2)

)∣∣ :
t1 ≤ t ≤ t2 ≤ T , t2 − t1 ≤ δ

}
,(11.7)

vf (t, δ) = sup
{∣∣f (t1) − f (t2)

∣∣ : t1, t2 ∈ [0, T ] ∪ (t − δ, t + δ)
}
.

The following result is a restatement of Theorem 12.12.3 of [42].

THEOREM 11.1 (Theorem 12.12.3 of [42]). The sequence of probability mea-
sures {Pn} on D is tight in the M1-topology if:

(i) For each positive ε there exist c such that

(11.8) Pn

[
f : sup

t∈[0,T ]
∣∣f (t)

∣∣ > c
]
≤ ε, n ≥ 1.

(ii) For each ε > 0 and η > 0, there exist a δ, 0 < δ < T , and an integer n0
such that

(11.9) Pn

[
f : wf (δ) ≥ η

] ≤ ε, n ≥ n0,

and

(11.10) Pn

[
f : vf (0, δ) ≥ η

] ≤ ε and Pn

[
f : vf (T , δ) ≥ η

] ≤ ε, n ≥ n0.

Let us check that Sn(·) satisfies the two conditions of this theorem. For con-
dition (i), as Sn(·) is a.s. nondecreasing, we just have to check the tightness of
Sn(T ) which is easily obtained by the finite-dimensional convergence. For con-
dition (ii), note first that wf (δ) is equal to 0 when f is nondecreasing. We then
have to check the conditions (11.10). Using again the fact that Sn(·) is nonde-
creasing, we just need that, for any ε > 0 and η > 0, there exists δ > 0 such that



BIASED RANDOM WALKS IN RANDOM CONDUCTANCES 681

P0[Sn(δ) ≥ η] ≤ ε and P0[Sn(T ) − Sn(T − δ) ≥ η] ≤ ε. This is easily obtained
using the finite-dimensional convergence.

Finally, by Theorem 11.6.7 of [42], the tightness of Yn(·) and Sn(·) implies
that (Yn, Sn) and (Zn,Sn) are tight on the product space Dd × D in the U × M1-
topology and J1 × M1-topology, respectively. This completes the proof. �

Let us now introduce the inverse map on Du the subset of D of functions x that
are unbounded above and such that x(0) ≥ 0. For x ∈ Du, the inverse map of x is
defined as

x−1(t) = inf
{
s ≥ 0 : x(s) > t

}
, ∀t ≥ 0.

Besides, we define the subset Du,↑ of nondecreasing functions of Du. We also
define the subset D∗

u of functions x ∈ Du such that x−1(0) = 0. We denote D↑
the subset of nondecreasing functions of D and C↑↑ the set of increasing (strictly)
continuous functions.

We denote S−1
n (·) the inverse map of Sn(t). Also, recall the definition of the

matrix
√

� introduced in (11.2) and define v0 := v/‖v‖ where v is the vector
defined in (11.1). Finally, denote Id the d × d identity matrix, Pv0 the projection
matrix on v0, that is the matrix such that, for any x ∈ Z

d , Pv0x = (x · v0)v0, and let

(11.11) Md := C−γ /2∞ (Id − Pv0)
√

�.

Since
√

� is invertible [see (11.2)] and that (Id − Pv0) has rank d − 1, it is clear
Md has rank d − 1. Also, note that Pv0Md is the null matrix.

THEOREM 11.2. We have(
X	nt


nγ /L(n)

)
0≤t≤T

→ (
vC−γ∞ S−1

γ (t)
)
t∈[0,T ],(11.12)

(X	nt
 − v nγ

L(n)
S−1

nγ /L(n)(
nt

Inv(nγ /L(n))
)√

nγ /L(n)

)
0≤t≤T

(11.13)
→ (

C−γ /2∞
√

�BS−1
γ (t)

)
t∈[0,T ],

and

(11.14)
(

X	nt
 − (X	nt
 · v0)v0√
nγ /L(n)

)
0≤t≤T

→ (MdBS−1
γ (t)

)t∈[0,T ],

on Dd in the uniform topology for (11.12) and in the J1-topology for (11.13) and
(11.14). The process B· is a standard Brownian motion and S−1

γ (·) is the inverse
of a stable subordinator with index γ , independent of B .

REMARK 11.1. In (11.14), if we recenter with the projection on any other
unit vector than v0, then this quantity will diverge to infinity.
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PROOF. Here, we will use two results from [42]. First, Theorem 13.2.1 of
[42] states that if (xn, yn) → (x, y) in Dd × D↑ with (x, y) ∈ Cd × C↑, then xn ◦
yn → x ◦ y in the uniform topology, hence in the Skorokhod’s topologies. Second,
Corollary 13.6.4 of [42] states that the inverse map from (Du,↑↑,M1) to (C,U) is
continuous.

Note that (tn/Inv(nγ /L(n)))t∈[0,T ] converges uniformly to (t)t∈[0,T ]. Note also
that S−1

γ (·) is a.s. continuous and strictly increasing (see Lemma III.17 in [13]).
Using these results and Lemma 11.2, we have that(

S−1
nγ /L(n)

(
nt

Inv(nγ /L(n))

))
t∈[0,T ]

→ (
C−γ∞ S−1

γ (t)
)
t∈[0,T ],(

Ynγ /L(n)

(
S−1

nγ /L(n)

(
nt

Inv(nγ /L(n))

)))
t∈[0,T ]

→ (
vC−γ∞ S−1

γ (t)
)
t∈[0,T ],(

Znγ /L(n)

(
S−1

nγ /L(n)

(
nt

Inv(nγ /L(n))

)))
t∈[0,T ]

→ (
C−γ /2∞ BS−1

γ (t)

√
�
)
t∈[0,T ],

in the uniform topology (and thus J1) for the two first limits, and in the J1-topology
for the last one.

Now, we will be able to conclude if we prove that X	nt
 is uniformly close to
Xτ	 nγ

L(n)
S
−1
nγ /L(n)

(tn/Inv(nγ /L(n)))

.

It is elementary to verify that τ	 nγ

L(n)
S−1

nγ /L(n)
(tn/Inv(nγ /L(n)))
 is the smallest τi such

that τi > tn. It means that Xτ	 nγ

L(n)
S
−1
nγ /L(n)

(tn/Inv(nγ /L(n)))

− X	nt
 is less than the size

of a regeneration block, plus one.
Besides, we have that

Mn := max
t∈[0,T ]

∥∥Xτ	 nγ

L(n)
S
−1
nγ /L(n)

(tn/Inv(nγ /L(n))

− X	nt


∥∥∞

≤ C max
k=1,...,	nT 
+1

{∥∥Xτi
(t) − Xτi−1

∥∥∞
}
,

where it should be noticed that Xτ1 ≥ 1 almost surely. Using Lemma 6.1, we have
that

P0

[
Mn

nγ/4 ≥ δ

]
≤ CnT × n−2 = o(1).

This concludes the proof of (11.12) and (11.13).
For (11.14), notice that we just have to apply the linear combination (Id − Pv0)

to (11.13), as (Id − Pv0)v = 0. All linear combinations are continuous in the J1-
topology at continuous functions; see Section 3.3 of [42]. This completes the proof.

�



BIASED RANDOM WALKS IN RANDOM CONDUCTANCES 683

APPENDIX

LEMMA A.1. Let (G, (c(e))e∈E) be a finite network with set of vertices V and
set of edges E and consider a random walk X on this network. Fix some subset of
edges E0 ⊂ E and fix δ ∈ V . We have, for any y ∈ V , y ∼ δ,

Ey

[
T +

δ,E0

] ≤ 2

c(eyδ)

∑
e∈E0

c(e),

with eyδ being any edge linking y and δ, and where T +
δ,E0

is defined in (4.2).

PROOF. Let us denote, for x, y ∈ V , GG
δ (x, z) = EG

x [∑T +
δ

i=0 1{Xi = z}] the
standard Green function killed at δ. For x ∼ z, we introduce

Sδ
�xz := Card{i < Tδ,Xi = x and Xi+1 = z}.

It is possible to prove (see proof of Propositions 2.1 and 2.2. of [30]) that, for
y �= δ,

Ey

[
Sδ

�xz

] = c(x, z)vy→δ(x),

where vy→δ(x) is the potential (or voltage) at x when a unit current flows from y

to δ that verifies vy→δ(δ) = 0. Furthermore, as the voltage function is harmonic on
V \ {δ, y}, using the maximum principle (see Section 2.1 of [30]), we have

vy→δ(x) ≤ vy→δ(y) = RG(y ↔ δ),

where RG(y ↔ δ) is the effective resistance between y and δ and where we used
Proposition 2.1 together with display (2.5) from [30].

By Rayleigh’s monotonicity principle, we see that, when y ∼ δ, for any edge eyδ

linking y and δ, we have RG(y ↔ δ) ≤ 1/c(eyδ). Using the previous equations,
this leads to the upper-bound:

Ey

[
T +

δ,E0

] = ∑
x,z∈V :

[x,z]∈E0

Ey

[
Sδ

�xz

] ≤ ∑
x,z∈V :

[x,z]∈E0

c(x, z)

c(eyδ)
≤ 2

c(eyδ)

∑
e∈E0

c(e).

�
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