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THE FRONT LOCATION IN BRANCHING BROWNIAN MOTION
WITH DECAY OF MASS

BY LOUIGI ADDARIO-BERRY1,2 AND SARAH PENINGTON2,3

McGill University and University of Oxford

We augment standard branching Brownian motion by adding a compet-
itive interaction between nearby particles. Informally, when particles are in
competition, the local resources are insufficient to cover the energetic cost
of motion, so the particles’ masses decay. In standard BBM, we may define
the front displacement at time t as the greatest distance of a particle from
the origin. For the model with masses, it makes sense to instead define the
front displacement as the distance at which the local mass density drops from
�(1) to o(1). We show that one can find arbitrarily large times t for which
this occurs at a distance �(t1/3) behind the front displacement for standard
BBM.

1. Introduction. In this work, we propose a mathematical model of com-
petition for resources within a single species, in a growing, spatially structured
population, and provide an initial study of the front location in this new setting.
The model is essentially standard one-dimensional branching Brownian motion
(BBM), augmented with a destructive, local interaction between particles. We first
briefly recall BBM: start from a single particle at a point in R, endowed with
an Exp(1) “branching clock.” The particle moves according to Brownian motion;
when its clock rings, it splits in two (branches). The new particles receive inde-
pendent Exp(1) clocks, and move independently (according to Brownian motion)
starting from where the first particle splits, until their own clocks ring and they in
turn split, et cetera.

Write n(t) for the total number of particles at time t , and X(t) = (Xi(t),1 ≤
i ≤ n(t)) for the locations of such particles. We assume the particles are listed in
a way that makes the vector X(t) exchangeable; one possible formalism is via the
Ulam–Harris tree, with particles listed lexicographically according to their label
in the tree. We refer the reader to [9] for more details on such matters; but many
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different references are possible. We also write N(t, x) = {i : Xi(t) ≥ x} for the
indices of particles with position greater than x at time t .

We sometimes write (Xi(t), i ≥ 1), ignoring the fact that X(t) has finite length,
for convenience. We adopt the convention that Xk(t) = ∂ for k > n(t) (so ∂ is
where new babies come from). We refer to “the particle Xi(t)” as shorthand for
“the particle with position Xi(t) at time t”; this is unambiguous at Leb-a.e. time t .
We write P for the probability measure under which (X(t), t ≥ 0) has the law of
one-dimensional BBM with initial individual at 0, E for the corresponding expec-
tation, and (Ft , t ≥ 0) for the filtration generated by the process.

We write (Xi,t (s),0 ≤ s ≤ t) for the ancestral path leading to Xi(t). Also, let
ji,t (s) be the index of Xi,t (s) among the time-s population, so that Xi,t (s) =
Xji,t (s)(s).

We now add destructive interaction as follows. Informally, imagine that the par-
ticles are, say, amoeba. Motion has an energetic cost, but for a single particle in
isolation, this cost is exactly accounted for by the resources available in the en-
vironment. When particles are nearby, however—at distance less than one, say—
they must share resources; in this case individuals do not consume enough to meet
their energy expenditure, and their mass decreases. Finally, larger (more massive)
individuals consume resources at a greater rate.

Formally, we define a vector M(t) = (Mi(t), i ≥ 0), and call Mi(t) the mass of
particle Xi(t). By convention, if Xi(t) = ∂ then Mi(t) = 0. Write

ζ(t, x) = ∑
{i:|Xi(t)−x|∈(0,1)}

Mi(s)

for the total mass of particles within distance one of x at time t , excluding any
particles at position x. Then at time t , Mi(t) decays at rate ζ(t,Xi(t)). In other
words, dMi(t) = −Mi(t) · ζ(t,Xi(t)) dt , so

Mi(t) = exp
(
−

∫ t

0
ζ
(
s,Xi,t (s)

)
ds

)
.

This should be viewed as defining (M(t), t ≥ 0) to be the solution of a system of
differential equations; the definition makes sense since the system has a unique
solution P-almost surely. Furthermore, the process (M(t), t ≥ 0) is clearly Ft -
adapted. We write Mi,t (s) for the mass of the ancestor of Xi(t) at time s [so
Mi,t (s) = Mji,t (s)(s)].

Note that along any given trajectory, mass decreases: (Mi,t (s),0 ≤ s ≤ t) is
decreasing in s for each 1 ≤ i ≤ n(t). Mass enters the system through branching
events, since each “child particle” inherits the mass of its parent. This is obviously
physically unrealistic in some settings (e.g., for amoebae) but may be more realistic
in others (e.g., in nuclear physics).

Rather than viewing Mi(t) as a mass, a perspective suggested by a referee is to
view (Mi,t (s),0 ≤ s ≤ t) as recording information about the local density of the
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environment observed along the ancestral trajectory of the particle Xi(t). The in-
teraction between the dynamics of X(t) and M(t) makes this point of view slightly
complicated to interpret, but here is one possibility. Imagine adding destructive in-
teraction to a BBM, as follows: whenever two different particles are at distance
less than 1, each kills the other at rate one. Record such a killing event as a mark
at the appropriate location of the BBM family tree. Particles with a mark on their
ancestral trajectory are ghosts, which continue to move and reproduce as before,
but can no longer kill other particles. Given the BBM but not the marks, one may
ask for the conditional survival probabilities pi(t) = P{Xi(t) is alive |Ft } of the
particles. The vector M(t) is a “linearized” version of the vector of these survival
probabilities.

1.1. Main result. Write

d(t,m) = min
{
x > 0 : ζ(t, x) < m

}
, D(t,m) = max

{
x : ζ(t, x) > m

}
,

for the leftmost (positive) location at which the total mass of nearby particles falls
below m, and the rightmost location at which it exceeds m, respectively. We prove
the following theorem.

THEOREM 1.1. Write c∗ = 34/3π2/3/27/6. Then almost surely, for all m < 1,

lim sup
t→∞

√
2t − d(t,m)

t1/3 ≥ c∗ and lim inf
t→∞

√
2t − D(t,m)

t1/3 ≤ c∗.

A well-known result of Bramson [4] states that the location of the rightmost
particle, maxi≥1 Xi(t), has median med(t) satisfying

med(t) = √
2t − 3

23/2 log t + O(1).

Furthermore, it turns out [11] that |maxi≥1 Xi(t) − med(t)| is almost surely
O(log t), in that lim supt→∞ |maxi≥1 Xi(t) − med(t)|/ log t is a.s. finite. In view
of this, the theorem states that (1) there are arbitrarily large times t at which the
first low-density region lags at least distance c∗t1/3 + o(t1/3) behind the rightmost
particle, and (2) there are also (potentially different) arbitrarily large times t at
which there is some high-density region within distance c∗t1/3 + o(t1/3) of the
rightmost particle.

We believe that in fact almost surely, for all m < 1,

lim
t→∞

√
2t − d(t,m)

t1/3 = c∗ = lim
t→∞

√
2t − D(t,m)

t1/3 .

If this is correct, then the front could equivalently be defined as, for example,
a median of D(t,m) or d(t,m)—or any other fixed quantile of one of these random
variables. We provide some justification for our belief in Section 6. That section
also contains a few open questions about the model and a discussion of various
generalizations of our results (some straightforward, some conjectural), as well as
describing variants of the model which have thus far resisted analysis.



THE FRONT LOCATION IN BBM WITH DECAY OF MASS 3755

2. Proof sketch. Here comes an outline of the key tools in our argument. The
first is technical but important and also, we believe, provides important intuition
when making heuristic predictions about the behaviour of the process. The remain-
der gives a fairly detailed overview of the proof.

Density self-correction. It is not hard to see that when ζ(t, x) is small (much
less than one), and this also holds in a region around x, then ζ(t, ·) will exhibit
exponential growth near x, at least for a short time. Indeed, we heuristically have

d

dt
ζ(t, x) ≈ ζ(t, x) − ∑

{i:|Xi(t)−x|∈(0,1)}
Mi(t) · ζ (

t,Xi(t)
)
.

This is not exactly correct since it ignores the effect of motion (particles may enter
or leave the region near x), but it is a useful first approximation. In particular, it
suggests that if ζ(t, y) is small (much less than one) for all y with |y − x| < 1,
then ζ(t, ·) will exhibit exponential growth near x, at least for a short time. This
is indeed true; one important consequence is that if ζ(t, x) = ε and ζ(t, ·) is not
too wild then it is very likely that ζ(t ′, x) = �(1) for some t ′ = t + �(log(1/ε)).
Similarly, when ζ(t, y) is much larger than 1 for y near x then ζ(t, x) will decrease
exponentially quickly. We use the self-correcting nature of the density in several
places throughout the paper.

As an aside, we remark that if ζ(t, y) ≈ ζ(t, x) for |y − x| < 1 then the above
heuristic gives d

dt
ζ(t, x) ≈ ζ(t, x)(1 − ζ(t, x)), which is suggestive of the logistic

control; we briefly revisit this connection in the conclusion.
Population + no competitors = mass. Fix β > 0 and suppose that for some

function f : [0,∞) → R, for all s ∈ [0, t], D(s,β) ≤ f (s), or in other words
ζ(s, x) ≤ β for all x > f (s). In this case, particles that stay ahead of the mov-
ing barrier f are in a relatively sparse environment, so do not lose mass too
quickly. More precisely, if Xi(t) satisfies Xi,t (s) > f (s) for all s ∈ [0, t] then
Mi(t) ≥ e−βt . It follows that for any x ≥ f (t) + 1,

ζ(t, x) ≥ e−βt · #
{
i : ∣∣Xi(t) − x

∣∣ < 1,∀s ∈ [0, t],Xi,t (s) > f (s)
}
.

For such x, if #{i : |Xi(t) − x| < 1,∀s ∈ [0, t],Xi,t (s) > f (s)} > βeβt then
ζ(t, x) > β , contradicting the assumption that D(t,β) ≤ f (t).

Surfing the wave. To exploit the above contradiction, we require that with high
probability there are many particles staying ahead of some barrier. Such results
are available: it follows fairly straightforwardly from recent studies of consistent
maximal displacement for BBM [17] that for c > c∗, for all large times t there are
e�(t1/3) particles at time t which have stayed ahead of the curve f (s) = √

2s −
cs1/3. This allows us to take β = t−1 above and obtain that there is s ∈ [0, t] and
x ≥ f (s) such that ζ(s, x) > t−1. Since the local density grows exponentially in
regions with small density, we will with high probability find s′ with ζ(s′, x) >

b > 0 and s′ − s = O(log t). Since x ≥ f (s) ≥ f (s ′) − O(log t), it follows that
D(s′, b) ≥ √

2s′ − c(s′)1/3 − O(log t).
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The lower bound is practically complete, but we must rule out the possibility
that s′ = O(1) for all t . To do so, we first establish that

sup
t>0

max{ζ(t, x), x ∈ R}
log(t + 2)

=: Z < ∞ almost surely.

Proving this is harder than might be expected; its proof, given in Section 4, occu-
pies 8 pages and is perhaps the most technically challenging part of the paper.

Once we prove that Z < ∞, we then reprise the above argument, but with a
variable mass bound

β = β(s) =
{
Z log(s + 2), for s ≤ t1/4,

t−1, for s ∈ (
t1/4, t

]
.

The loss of mass before time t1/4 is insignificant compared with that which fol-
lows, so essentially the same argument as above yields that there is s ∈ [0, t] and
x ≥ f (s) such that ζ(s, x) > β(s). On the other hand, this cannot happen for
s < t1/4 by the definition of Z, so it must happen later. This is enough to con-
clude the lower bound. The details of this argument appear in Section 5.

Competition implies decay. For the upper bound, given in Section 3 (with some
technical lemmas deferred to an Appendix), we invert the above argument by con-
tradiction. In brief: if all particles to the right of a given curve have spent large
amounts of time in high-mass environments, then all such individuals will have
very low mass; if furthermore there are not many of them, then their total mass is
also small.

More precisely, suppose that for some t ′ ∈ (0, t) and some function g :
[0,∞) → R, for all s ∈ [t ′, t], we have d(s,m) ≥ g(s) + 1, so ζ(s, x) ≥ m for
all x with x ∈ (0, g(s)). Then for all i,

Mi(t) ≤ exp
(−m · Leb

({
s ∈ [

t ′, t
] : ∣∣Xi,t (s)

∣∣ ∈ (
0, g(s)

)}))
.

Thus, if all particles with Xi(t) ≥ g(t) have Leb({s ∈ [t ′, t] : |Xi,t (s)| ∈
(0, g(s))}) ≥ � then for all x ≥ g(t) + 1, recalling the notation N(t, x) from the
Introduction,

ζ(t, x) ≤ e−m� · ∣∣N(
t, g(t)

)∣∣.
If |N(t, g(t))| < mem�, this is in contradiction with the assumption that d(t,m) ≥
g(t) + 1.

Whitecaps are just foam. Once again using estimates related to consistent max-
imal displacement for BBM, we show that for c < c∗, with g(s) = √

2s − cs1/3,
for C > 0, with high probability every particle with Xi(t) > g(t) indeed spends at
least a time Ct1/3 behind the curve g. This is the content of Proposition 3.2.

Under the assumption that d(s,m) ≥ g(s)+ 1 for all s ∈ [Ct1/3/2, t], it follows
that the particles counted by N(t, g(t)) are as insubstantial as sea spray; for all
x ≥ g(t) + 1,

ζ(t, x) ≤ e−mCt1/3/2 · #
{
i : ∣∣Xi(t) − x

∣∣ < 1
} ≤ e−mCt1/3/2 · ∣∣N(

t, g(t)
)∣∣.
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Standard and simple arguments for BBM show that |N(t, g(t))| = eO(t1/3) with
high probability, so we obtain a contradiction for large t if C is sufficiently large.
It follows that with high probability there is s ∈ [Ct1/3/2, t] such that d(s,m) ≤
g(s) + 1.

Consistent maximal displacement. We conclude the sketch with a brief expla-
nation of why the threshold for consistent maximal displacement is at distance
�(t1/3) from the front. We restrict ourselves to consideration of the first moment.
We begin with a simple bound on the probability Brownian motion stays in a nar-
row tube. Write Px for the probability measure under which (B(t), t ≥ 0) is a
Brownian motion started at x, and let P = P0. Note that

inf
x≤1/2

Px

{
sup
s≤1

∣∣B(s)
∣∣ < 1,

∣∣B(1)
∣∣ ≤ 1/2

}
= p > 0.

By the Markov property, for any t > 0 we then have P{∀s ≤ t, |B(s)| ≤ 1} ≥ p�t.
Also,

inf|x|≤1
Px

{
inf

{
s : ∣∣B(s)

∣∣ > 1
}
< 1

} = q > 0,

so again by the Markov property,

P
{∀s ≤ t,

∣∣B(s)
∣∣ ≤ 1

} ≤ (1 − q)�t�.

Combining these bounds gives that P{∀s ≤ t, |B(s)| ≤ 1} = e−�(t).
Now fix C > 0 and let S = {i ≤ n(t) : ∀s ≤ t, |Xi,t (s) − √

2s| ≤ C}. This im-
poses that particles stay both above a lower envelope and below an upper enve-
lope, but the upper bound has little probability cost since the front stays behind√

2s +O(1) with high probability. Thus, the threshold for consistent maximal dis-
placement should be near the smallest value of C which makes S nonempty.

By the many-to-one lemma,

E|S| = etP
{∀s ≤ t,

∣∣B(s) − √
2s

∣∣ ≤ C
}
,

where B is a Brownian motion. By a Girsanov transform,

P
{∀s ≤ t,

∣∣B(s) − √
2s

∣∣ ≤ C
}

= E
[
et−√

2(B(t)+√
2t)1[∀s≤t ,|B(s)|≤C]

]
= e−t+√

2C+o(C)P
{∀s ≤ t,

∣∣B(s)
∣∣ ≤ C

}
.

By Brownian scaling, the last probability is P{∀s ≤ t/C2, |B(s)| ≤ 1} = e−�(t/C2).
We obtain that E|S| = e

√
2C+o(C)−�(t/C2). Thus, E|S| becomes large when C is of

order t1/3.
Definitions. We sometimes need to consider the evolution of a subset of the par-

ticles starting at a time greater than zero, so it is useful to allow initial conditions
other than a single mass-one particle at the origin. Generally, for x = (x1, . . . , xk) ∈
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R
k and m = (m1, . . . ,mk) ∈ (0,∞)k , we write Px,m for the probability measure

corresponding to an initial condition with a particle of mass mi at location xi for
each 1 ≤ i ≤ k. We write P = P(0),(1) for the default initial condition. When per-
forming computations with non-branching Brownian motion, we also write Px

for the probability measure under which the Brownian motion has initial position
x ∈ R, and let P = P0. The slight overlap in notation should cause no confusion
when reading.

We say a random variable X is geometric with parameter p, or is Geom(p)-
distributed, if P{X = k} = (1 − p)k−1p for positive integer k.

3. Upper bound. Recall from the Introduction that c∗ = 34/3π2/32−7/6. The
next proposition is a restatement of the upper bound from Theorem 1.1.

PROPOSITION 3.1. For any m > 0, almost surely

lim sup
t→∞

√
2t − d(t,m)

t1/3 ≥ c∗.

For the remainder of the section, we fix c ∈ (0, c∗) and let g(s) = √
2s − cs1/3

for s ≥ 0. The following is the key step of the proof.

PROPOSITION 3.2 (“No one can surf g”). For any C > 0, there exists δ =
δ(c,C) > 0 such that for t sufficiently large

P
{∃i ≤ n(t) : Leb

({
s ≤ t : Xi,t (s) ≤ g(s)

}) ≤ Ct1/3} ≤ e−δt1/3
.

The proof of Proposition 3.2 will take up most of this section, but we now give
a brief justification of the result, and then show how it is used to prove Proposi-
tion 3.1. By the method used in [12] for studying branching random walks, for ε

sufficiently small that c + ε < c∗, there exists δ > 0 such that

P
{∃i ≤ n(t) s.t. Xi,t (s) ≥ √

2s − (c + ε)s1/3 ∀s ≤ t
} ≤ e−δt1/3

.

For our fixed c, we shall choose a small constant β = β(c) > 0 and let b(s) =√
2s − c(s + βt)1/3 for s ∈ [0, t]. Then by adapting the method used in [12], one

may show that since c < c∗, if β is sufficiently small then for any constant K ,

P
{∃i ≤ n(t) s.t. Xi,t (s) ≥ b(s) − Kt1/6 ∀s ≤ t

} ≤ e−δt1/3

for some δ > 0.
Now fix K > 0 large. For large t , the function b is approximately linear on

intervals of length Ct1/3. This will allow us to use Brownian scaling to show that
if particle i only spends time Ct1/3 time below b, then it has conditional probability
at least 1/2 of staying above b − Kt1/6, so the probability such an i exists is also
O(e−δt1/3

). Since b ≤ g, this gives us Proposition 3.2.
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Before giving the details of this argument, we prove Proposition 3.1 assuming
Proposition 3.2.

PROOF OF PROPOSITION 3.1. We continue to write g(s) = √
2s − cs1/3, for

fixed c ∈ (0, c∗) as above. Fix m > 0, let C = 4
√

2c(1 + m−1), and let δ = δ(c,C)

be as defined in Proposition 3.2. It suffices to show that, as t → ∞,

(1) P
{∃s ∈ [

Ct1/3/2, t
] : d(s,m) ≤ g(s) + 1

} → 1.

Next, fix t large. Recalling the notation N(t, x) = {i ≤ n(t) : Xi(t) ≥ x}, let

A1 = {
i ∈ N

(
t, g(t)

) : Leb
({

s ≤ t : Xi,t (s) ≤ g(s)
}) ≤ Ct1/3}

and

A2 = {
i ∈ N

(
t, g(t)

) : ∃s ∈ [
Ct1/3/2, t

]
s.t. Xi,t (s) < 0

}
.

Also, let E be the event that d(s,m) > g(s) + 1 for all s ∈ [Ct1/3/2, t). On the
event E, if i ∈ N(t, g(t)) and i /∈ A1 ∪ A2 then

Mi(t) ≤ exp
(−mLeb

({
Ct1/3/2 ≤ s ≤ t : Xi,t (s) ∈ (

0, g(s)
)}))

≤ exp
(−mCt1/3/2

)
.

Since all masses are at most 1, it follows that on E,∑
i∈N(t,g(t))

Mi(t) ≤ |A1 ∪ A2| + exp
(−mCt1/3/2

)∣∣N(
t, g(t)

)∣∣.
Also, for all y ≥ g(t) + 1 we have ζ(t, y) ≤ ∑

i∈N(t,g(t)) Mi(t); we thus have

P
{∀s ∈ [

Ct1/3/2, t
]
, d(s,m) > g(s) + 1

}
= P

{
d(t,m) > g(t) + 1,E

}
≤ P

{ ∑
i∈N(t,g(t))

Mi(t) > m,E

}

≤ P{A1 ∪ A2 �= ∅} + P
{∣∣N(

t, g(t)
)∣∣ ≥ m exp

(
mCt1/3/2

)}
.

(2)

By Proposition 3.2, for t sufficiently large, P{A1 �= ∅} ≤ exp(−δt1/3). Next, by
the many-to-one lemma, for B a Brownian motion, we have

P{A2 �=∅} ≤ E|A2| = etP
{
B(t) ≥ √

2t − ct1/3,∃s ∈ [
Ct1/3/2, t

] : B(s) ≤ 0
}
.

Applying a Girsanov transform, it follows that

P{A2 �= ∅} ≤ etE
[
et−√

2(B(t)+√
2t)1[B(t)≥−ct1/3,∃s∈[Ct1/3/2,t]:B(s)≤−√

2s]
]

≤ e
√

2ct1/3
P

{
B(t) ≥ −ct1/3,∃s ∈ [

Ct1/3/2, t
] : B(s) ≤ −√

2s
}
.
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Now partitioning according to the first interval [j, j + 1] in which B(s) ≤ −√
2s,

P
{∃s ∈ [

Ct1/3/2, t
] : B(s) ≤ −√

2s
} ≤

�t�∑
j=�Ct1/3/2�

P
{

sup
s∈[j,j+1]

B(s) ≥ √
2j

}

≤
�t�∑

j=�Ct1/3/2�
P

{
sup

s≤j+1
B(s) ≥ √

2j
}

= 2
�t�∑

j=�Ct1/3/2�
P

{
B(j + 1) ≥ √

2j
}

≤ 2
�t�∑

j=�Ct1/3/2�
exp

(−j2/(j + 1)
)

≤ 2 exp
(−Ct1/3/3

)
,

where the equality in the third line follows by the reflection principle, and the final
inequality holds for t sufficiently large. Since C > 4

√
2c, it follows that

P{A2 �=∅} ≤ e
√

2ct1/3
2e−Ct1/3/3 ≤ 2e−√

2ct1/3/3.

Finally, by another Girsanov transform,

P
{∣∣N(

t, g(t)
)∣∣ > x

} ≤ x−1E
[∣∣N(

t, g(t)
)∣∣] = x−1E

[
e−√

2B(t)1[B(t)≥−ct1/3]
]

≤ x−1e
√

2ct1/3
.

Combining the bounds on P{A1 �= ∅}, P{A2 �= ∅}, and P{|N(t, g(t))| > x}
with (2), we obtain that

P
{∀s ∈ [

Ct1/3/2, t
]
, d(s,m) > g(s) + 1

}
≤ e−δt1/3 + 2e−√

2ct1/3/3 + m−1e(
√

2c−mC/2)t1/3
,

which tends to 0 as t → ∞ since C > 2
√

2cm−1. This establishes (1) and com-
pletes the proof. �

For the rest of this section, we work towards the proof of Proposition 3.2. Fig-
ure 1 should help in interpreting the statements of the next two lemmas. Recall that
we fixed c < c∗.

LEMMA 3.3. There exists β > 0 such that for b(s) = √
2s − c(s + βt)1/3

and for K > 0, t > 0 both sufficiently large, there exists a function 
 : [0, t] →
[t1/4,Kt1/3] with 
(t) ≤ Kt1/4 and with |
′(s)| ≤ 1 for all s ∈ [0, t], such that
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FIG. 1. For fixed u and x, Lemma 3.3 bounds the probability that the Brownian motion stays
between the upper and lower curves until time u and has final position on the vertical line segment.
Lemma 3.4 compares (a) the probability that a Brownian motion stays below the upper curve until
time t and spends very little time below the middle curve, with (b) the probability that the Brownian
motion stays between the upper and lower curves until time t .

for all u ∈ [0, t] and all x ∈ [−Kt1/6,
(u)), for (B(s))s≥0 a Brownian motion
started at 0,

P
{
b(s) − Kt1/6 < B(s) < b(s) + 
(s) ∀s ≤ u,B(u) > b(u) + x

}
(3)

≤ exp
(−u − t1/3/K + √

2
(

(u) − x

))
.

We prove Lemma 3.3 by appealing to technical lemmas from [17], which bound
the probability that a Brownian motion stays in a narrow tube of variable width. In
order to verify that the results of [17] apply for some function 
 with the above
properties, we adapt a technique from [12]. In [12], the existence of a function
analogous to 
 is constructed as the solution of a certain integral equation. We
defer the details of the proof to Appendix A.

From this point on, we let β > 0 and b(s) be as in Lemma 3.3. We assume
that t is sufficiently large that b is increasing on [0,∞). We now show that if K

is sufficiently large, a Brownian motion which spends at most Ct1/3 time before
time t below the curve b has a conditional probability of at least 1/2 of staying
above the curve b − Kt1/6 up to time t .

LEMMA 3.4. Let (B(s))s≥0 be a Brownian motion started at 0. Then given
C > 0, there is a constant K(C) > 0 such that for t sufficiently large, and any
measurable function 
 : [0, t] → (0,∞),

P
{
B(s) ≤ b(s) + 
(s) ∀s ≤ t,Leb

({
s ≤ t : B(s) ≤ b(s)

}) ≤ Ct1/3}
≤ 2P

{
b(s) − Kt1/6 < B(s) < b(s) + 
(s) ∀s ≤ t

}
.
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In proving Lemma 3.4, we will use the following auxiliary result.

LEMMA 3.5. Fix nonnegative real numbers (ti, i ≥ 1). For each i ≥ 1, let
(Xi(u),0 ≤ u ≤ ti) be either a Brownian meander or a Brownian excursion of
length ti . Then writing T = ∑

i≥1 ti , for x ≥ 8T 1/2 we have

P
{
max
i≥1

max
u≤ti

Xi(u) ≥ x
}

< e−x2/32T .

The proof of Lemma 3.5 is deferred to the Appendix.

PROOF OF LEMMA 3.4. Write

E = {
B(s) ≤ b(s) + 
(s) ∀s ≤ t

}
,

A1 = {
B(s) ≥ b(s) − Kt1/6 ∀s ≤ t

}
,

A2 = {
Leb

({
s ≤ t : B(s) ≤ b(s)

}) ≤ Ct1/3}
.

To prove the lemma, it suffices to show that provided K = K(C) is sufficiently
large, P{Ac

1|A2 ∩ E} ≤ 1/2, since

P{A1 ∩ E} ≥ P{A1 ∩ A2 ∩ E} = P{A2 ∩ E}(1 − P
{
Ac

1|A2 ∩ E
})

.

Fix L ∈ (Ct1/3,2Ct1/3] so that n := t/L is integer; this is possible for t large
enough. Then, for each 0 ≤ i ≤ n − 2 let bi : [iL, (i + 2)L] → R be defined by

(4) bi(s) = b(iL) + s − iL

2L

(
b
(
(i + 2)L

) − b(iL)
) − 1.

By the mean value theorem, for some s1, s2 ∈ [iL, (i + 2)L],

b(iL) + s − iL

2L

(
b
(
(i + 2)L

) − b(iL)
) = b(s) + (s − iL)

(
b′(s2) − b′(s1)

)
≤ b(s) + (2L)2 sup

r∈[iL,(i+2)L]
∣∣b′′(r)

∣∣

≤ b(s) + (2L)2 · 2c

9(βt + iL)5/3

≤ b(s) + 32cC2

9β5/3t
,

which is less than b(s) + 1 for t sufficiently large. It follows that for t sufficiently
large, bi ≤ b on the interval [iL, (i + 2)L], for all i ≤ n − 2.

Next, for i ≤ n − 2 let gi = inf{s ≥ iL : B(s) ≥ bi(s)}. Also, for i < n − 2 let
di = sup{s ≤ (i + 2)L : B(s) ≥ bi(s)}, and let dn−2 = t . Then write

Ui = {
s ∈ [gi, di] : B(s) ≤ bi(s)

}
.
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FIG. 2. An illustration of Ui for a Brownian motion B . The straight line shows
bi : [iL, (i + 2)L] → R. For times in Ui the path of B is bold, and during [iL, (i + 2)L] \ Ui it
is grey. The final bold, grey meander is in Ui if and only if i = n − 2.

For i < n − 2, this is the set of times when B is performing an excursion below bi

which starts at or after time iL and ends at or before time (i + 2)L. For i = n − 2,
we have (i + 2)L = t , and in this case we include a final excursion below bi which
does not end before time t if it starts at or after time iL. The set Ui is a union
of closed intervals, which we enumerate as {[li,j , ri,j ], j ≥ 1} according to a fixed
rule (in decreasing order of size, say). See Figure 2 for an illustration of Ui .

For all i < n − 2, conditional on Ui , for each j ≥ 1 the function

(5)
(
bi(li,j + s) − B(li,j + s),0 ≤ s ≤ ri,j − li,j

)
is a Brownian excursion of length ri,j − li,j . The case i = n − 2 is very slightly
different, and we now describe it; for the remainder of the paragraph set i = n− 2.
If B(t) ≥ bn−2(t) then there is no change. However, if B(t) < bn−2(t) then there
there is a unique integer j ≥ 1 with [li,j , ri,j ] with ri,j = t ; for this j the process
described by (5) is a Brownian meander of length ri,j − li,j ; for all other j the
process is a Brownian excursion. All this is true even if we additionally condition
on A2 ∩ E, since letting U = ⋃

k≤n−2 Uk , the occurrence of the event A2 ∩ E is
determined by Leb(U) and B|[0,t]\U . By Lemma 3.5, it follows that

P
{

sup
s∈Ui

(
bi(s) − B(s)

) ≥ x
∣∣Ui ,A2 ∩ E

}

= P
{
sup
j≥1

sup
s∈[li,j ,ri,j ]

(
bi(s) − B(s)

) ≥ x
∣∣Ui ,A2 ∩ E

}
(6)

≤ exp
(
− x2

32 Leb(Ui )

)
+ 1[x2<64 Leb(Ui )].
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We next analyze the event Ac
1 ∩A2. Note that bi + 1 is the linear interpolation of b

on the interval [iL, (i + 2)L]. Since b is convex, it follows that b ≤ bi + 1 on this
interval.

If Ac
1 occurs, then there is s ≤ t such that B(s) ≤ b(s) − Kt1/6. For such s, for

any i with s ∈ [iL, (i + 2)L], the preceding paragraph then implies that B(s) ≤
b(s) − Kt1/6 ≤ bi(s) − (Kt1/6 − 1).

Next, suppose A2 occurs, and suppose s ≤ t is such that B(s) ≤ b(s) − Kt1/6.
Then s is in an excursion of B(s) below b(s). Temporarily write [g, d] for the time
interval during which this excursion takes place. Since A2 occurs, [g,min(d, t)]
has length at most Ct1/3 so is strictly contained within in an interval [iL, (i +2)L]
for some i ≤ n − 2. Since s ∈ [g,min(d, t)] and B(g) = b(g) ≥ bi(g) and either
d ≥ t or B(d) = b(d) ≥ bi(d) but B(s) < bi(s), it follows that s ∈ Ui . On the other
hand, if s ∈ Ui then B(s) ≤ bi(s) ≤ b(s). Since each point s lies in at most three
distinct sets Ui , on A2 we have∑

i≤n−2

Leb(Ui ) ≤ 3Ct1/3.

Finally, suppose Ac
1 ∩ A2 occurs. Then the observations of the preceding three

paragraphs imply that there exists i ≤ n − 2 and s ∈ Ui such that B(s) ≤ bi(s) −
(Kt1/6 − 1) < bi(s) − Kt1/6/2, the last inequality holding for t large. Combined
with (6), this yields

P
{
Ac

1|A2 ∩ E
}

≤ P
{

sup
i≤n−2

sup
s∈Ui

(
bi(s) − B(s)

) ≥ Kt1/6/2,
∑

i≤n−2

Leb(Ui ) ≤ 3Ct1/3∣∣A2 ∩ E

}

≤ sup
u1+···+un−2≤3Ct1/3

ui≥0

n−2∑
i=1

P
{

sup
s∈Ui

(
bi(s) − B(s)

) ≥ Kt1/6/2
∣∣

Leb(Ui ) = ui,A2 ∩ E
}

≤ sup
u1+···+un−2≤3Ct1/3

ui≥0

n−2∑
i=1

exp
(−K2t1/3/128ui

)
,

the last bound holding provided that K2 > 768C so that (Kt1/6/2)2 > 64(3Ct1/3).
Finally, letting x = K2t1/3/64, the function f (a) = e−x/a1[a>0] is convex
for a ∈ [0, x/2], and f (0) = 0, so if K2 > 768C then for each i, f (ui) ≤
(ui/

∑
uk)f (

∑
uk). Hence,

P
{
Ac

1|A2 ∩ E
} ≤ e−K2/384C < e−2 < 1/2,

as required. �
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We next state a variant of Lemma 3.4 which is proved in a similar way.

LEMMA 3.6. Let (B(s))s≥0 be a Brownian motion started at 0. Then given
C > 0, there is a constant K = K(C) such that for t sufficiently large, and any
measurable function 
 : [0, t] → (0,∞), u ≤ t and z ∈ [b(u), b(u) + 
(u)), we
have

P
{
B(s) ≤ b(s) + 
(s) ∀s ≤ u,Leb

({
s ≤ u : B(s) ≤ b(s)

}) ≤ Ct1/3,B(u) ≥ z
}

≤ 2P
{
b(s) − Kt1/6 < B(s) < b(s) + 
(s) ∀s ≤ u,B(u) ≥ z

}
and

P
{
B(s) ≤ b(s) + 
(s) ∀s ≤ u,Leb

({
s ≤ u : B(s) ≤ b(s)

}) ≤ Ct1/3}
≤ 2P

{
b(s) − Kt1/6 < B(s) < b(s) + 
(s) ∀s ≤ u

}
.

PROOF. These bounds are proved in the same way as Lemma 3.4, by only
considering the times (Ui )i when B is performing an excursion below bi on the
interval [0, u], and using that z ≥ b(u), conditioning on B(u) ≥ z does not affect
the distribution of B on (Ui )i given (Ui )i . We omit the details. �

We are now in a position to complete the proof of Proposition 3.2, using Lem-
mas 3.3, 3.4 and 3.6. In the proof, we write, for example, Leb(s ≤ t : Xi,t (s) ≤
g(s)) instead of Leb({s ≤ t : Xi,t (s) ≤ g(s)}), to lighten the notation.

PROOF OF PROPOSITION 3.2. Choose β such that Lemma 3.3 applies, and
recall that b(s) = √

2s − c(s + βt)1/3 ≤ g(s) ∀s ≥ 0. Then

P
{∃i ≤ n(t) s.t. Leb

(
s ≤ t : Xi,t (s) ≤ g(s)

) ≤ Ct1/3}
≤ P

{∃i ≤ n(t) s.t. Leb
(
s ≤ t : Xi,t (s) ≤ b(s)

) ≤ Ct1/3}
.

We shall prove that

(7) P
{∃i ≤ n(t) : Leb

(
s ≤ t : Xi,t (s) ≤ b(s)

) ≤ Ct1/3} ≤ e−δt1/3

for some δ > 0 for t sufficiently large, which establishes the proposition. Take K

and t sufficiently large that Lemmas 3.3, 3.4 and 3.6 hold. Then let 
 : [0, t] →
[t1/4,Kt1/3] be as in Lemma 3.3, and in particular satisfying that 
(t) ≤ Kt1/4

and |
′(s)| ≤ 1 for all s ∈ [0, t].
Since |
′(s)| ≤ 1 for all s ∈ [0, t], infu∈[j,j+1] 
(u) ≥ 
(j) − 1 for j ∈ [0, t −

1]. Hence, if for some i ≤ n(j + 1), Xi,j+1(s) ≥ b(s) + 
(s) for some s ∈ [j, j +
1], then since b is increasing,

(8) Xi,j+1(s) ≥ b(j) + inf
u∈[j,j+1]
(u) ≥ b(j) + 
(j) − 1.
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Using (8), and partitioning the event {∃i ≤ n(t) : Leb(s ≤ t : Xi,t (s) ≤ b(s)) ≤
Ct1/3} according to the interval [j, j + 1] in which Xi,t (s) first exceeds b +
, we
have that

P
{∃i ≤ n(t) : Leb

(
s ≤ t : Xi,t (s) ≤ b(s)

) ≤ Ct1/3}
≤ P

{∃i ≤ n(t) : Xi,t (s) < b(s) + 
(s) ∀s ≤ t,

Leb
(
s ≤ t : Xi,t (s) ≤ b(s)

) ≤ Ct1/3}

+
�t�∑
j=0

P
{
∃i ≤ n(j + 1) : Xi,j+1(s) < b(s) + 
(s) ∀s ≤ j,

Leb
(
s ≤ j : Xi,j+1(s) ≤ b(s)

) ≤ Ct1/3,

sup
s∈[j,j+1]

Xi,j+1(s) ≥ b(j) + 
(j) − 1
}

≤ etP
{
B(s) < b(s) + 
(s) ∀s ≤ t,

Leb
(
s ≤ t : B(s) ≤ b(s)

) ≤ Ct1/3}

+
�t�∑
j=0

ej+1P
{
B(s) < b(s) + 
(s) ∀s ≤ j,

Leb
(
s ≤ j : B(s) ≤ b(s)

) ≤ Ct1/3,

sup
s∈[j,j+1]

B(s) ≥ b(j) + 
(j) − 1
}
,

where B is a Brownian motion and the last inequality follows by Markov’s in-
equality and the many-to-one lemma. Temporarily write Ej for the event that
B(s) < b(s) + 
(s) for all s ≤ j . By partitioning according to the value of B(j),
we further have

P
{
Ej ,Leb

(
s ≤ j : B(s) ≤ b(s)

) ≤ Ct1/3, sup
s∈[j,j+1]

B(s) ≥ b(j) + 
(j) − 1
}

≤ P
{
Ej ,Leb

(
s ≤ j : B(s) ≤ b(s)

) ≤ Ct1/3,B(j) ≥ b(j) + 
(j) − 1

2
t1/4

}

+ P
{

sup
[0,1]

B(u) ≥ 1

2
t1/4 − 1

}
P

{
Ej ,Leb

(
s ≤ j : B(s) ≤ b(s)

) ≤ Ct1/3}
.

By the reflection principle, for N a standard normal random variable,

P
{

sup
[0,1]

B(u) ≥ 1

2
t1/4 − 1

}
≤ 2P

{
N ≥ 1

2
t1/4 − 1

}
≤ 2e− 1

9 t1/2
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for t sufficiently large. Since 
(j) − 1
2 t1/4 > 0, we can now apply Lemmas 3.4

and 3.6 to conclude that

P
{∃i ≤ n(t) : Leb

(
s ≤ t : Xi,t (s) ≤ b(s)

) ≤ Ct1/3}
≤ 2etP

{
b(s) − Kt1/6 < B(s) < b(s) + 
(s) ∀s ≤ t

}

+ 2
�t�∑
j=0

ej+1
(

P
{
b(s) − Kt1/6 < B(s) < b(s) + 
(s) ∀s ≤ j,(9)

B(j) ≥ b(j) + 
(j) − 1

2
t1/4

}

+ 2e− 1
9 t1/2

P
{
b(s) − Kt1/6 < B(s) < b(s) + 
(s) ∀s ≤ j

})
.

We can now apply Lemma 3.3 to each term. First, by Lemma 3.3 applied with
u = t and x = −Kt1/6, since 
(t) ≤ Kt1/4,

P
{
b(s) − Kt1/6 < B(s) < b(s) + 
(s) ∀s ≤ t

}
≤ exp

(−t − t1/3/K + √
2K

(
t1/4 + t1/6))

.

By Lemma 3.3 applied with u = j and x = 
(j) − 1
2 t1/4,

P
{
b(s) − Kt1/6 < B(s) < b(s) + 
(s) ∀s ≤ j,B(j) ≥ b(j) + 
(j) − 1

2
t1/4

}

≤ exp
(
−j − t1/3/K + √

2
1

2
t1/4

)
.

Finally, by Lemma 3.3 applied with u = j and x = −Kt1/6, since 
(j) ≤ Kt1/3,

P
{
b(s) − Kt1/6 < B(s) < b(s) + 
(s) ∀s ≤ j

}
≤ exp

(−j − t1/3/K + √
2K

(
t1/3 + t1/6))

.

Putting everything together in (9),

P
{∃i ≤ n(t) : Leb

(
s ≤ t : Xi,t (s) ≤ b(s)

) ≤ Ct1/3}
≤ 2 exp

(−t1/3/K + √
2K

(
t1/4 + t1/6))

+ 2e

�t�∑
j=0

(
exp

(
−t1/3/K + √

2
1

2
t1/4

)
+ 2 exp

(−t1/2/9 + O
(
t1/3)))

≤ e−δt1/3

for some δ > 0 for t sufficiently large, which proves (7). �
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4. The greatest overall particle density. Before moving to the lower bound,
we first prove logarithmic upper bounds on how the greatest particle density grows
over time; these are needed to ensure that particle masses cannot decay too quickly.
This may seem contradictory, but the point is that a particle may a priori quickly
lose a large amount of mass if it finds itself in an extremely dense environment.
The next proposition rules this out.

PROPOSITION 4.1. Let Z = 2 · 108; then for all s sufficiently large,

P
{
sup

{
ζ(t, x) : 0 ≤ t ≤ s, x ∈ R

}
> Z log s

} ≤ s−4.

Proving Proposition 4.1 turns out to be a fair amount of work. In order that the
idea is not obscured by detail, however, we set up the heart of the argument right
away.

Let z(t, x) = ∑
{i:|Xi(t)−x|<1/2} Mi(t). The differences between z and ζ are that

z only counts mass within distance 1/2 of x, and does not ignore the mass of
particles at x (should there be any).

Let z(t) = supx z(t, x), and define a sequence (τi, i ≥ 0) of stopping times
as follows. Fix s large and for the remainder of the section write N = N(s) =
107 log s. Let τ0 = inf{t : z(t) ≥ N − 1}, and for k ≥ 0 let τk+1 = inf{t > τk +
105/N : z(t) ≥ N − 1}. Then τk ≥ 105k/N , so with I = I (s) = inf{k : τk ≥ s}, we
have I ≤ �Ns/105 and

sup
{
z(t), t ≤ s

} ≤ sup
{
z(t), t < τI

}
.

Notice that the sequence of stopping times “ignores” small time intervals
[τk, τk + 105/N ]. However, in any time interval [τk + 105/N, τk+1), the function
z nowhere exceeds N by the definition of the stopping time τk+1. We thus have

(10) sup
{
z(t), t ≤ s

} ≤ sup
{
z(t), t < τI

} ≤ max
(
N, sup

k<I

sup
t∈[τk,τk+105/N]

z(t)
)
.

We prove the proposition by establishing the following facts. The first fact says
that for k < Ns/105, if z(τk) is not too large then with high probability z(t) is not
too large for any t ∈ [τk, τk + 105/N ]. The second says that for such k, with high
probability z(τk + 105/N) is small.

FACT 4.2. For s sufficiently large, for all 0 ≤ k < Ns/105,

P
{
sup

{
z(t), t ∈ [

τk, τk + 105/N
]}

> 10N,z(τk) ≤ N,k < I
}
< s−6.

FACT 4.3. For s sufficiently large, for all 0 ≤ k < Ns/105,

P
{
z
(
τk + 105/N

) ≥ N − 1, k < I
}
< s−6.
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Assuming these two facts, the proposition follows easily.

PROOF OF PROPOSITION 4.1. Fix k ≤ Ns/105. Note that if z(τk−1 +
105/N) < N − 1 then z(τ−

k ) < N − 1. Since mass only increases by branching, it
follows that almost surely a single branching event at time τk causes z to increase
above N − 1. As all masses are at most 1 and branching is binary, it follows that
in this case almost surely z(τk) ≤ z(τ−

k ) + 1 < N . With Fact 4.3, this implies that

P
{
z(τk) > N,k < I

} ≤ P
{
z
(
τk−1 + 105/N

) ≥ N − 1, k < I
}

≤ P
{
z
(
τk−1 + 105/N

) ≥ N − 1, k − 1 < I
}

< s−6.

We now use that for any events A,B,C we have

P{A ∩ C} ≤ P{A ∩ B ∩ C} + P
{
Bc ∩ C

}
.

By Fact 4.2 and the preceding bound, we obtain that for 0 ≤ k < Ns/105,

P
{
sup

{
z(t), t ∈ [

τk, τk + 105/N
]}

> 10N,k < I
} ≤ 2s−6.

A union bound and (10) then yield

P
{
sup
t≤s

z(t) > 10N
}

≤ P
{
sup
k<I

sup
t∈[τk,τk+105/N]

z(t) > 10N
}

≤
�Ns/105�∑

k=0

P
{

sup
t∈[τk,τk+105/N]

z(t) > 10N,k < I
}

≤
(

1 + Ns

105

)
· 2s−6

< s−4,

the last inequality holding for s large. Finally, it is easy to see that supx ζ(t, x) ≤
2z(t), so the same bound holds for P{supt≤s supx ζ(t, x) > 20N}, which proves
the proposition. �

The reader who is willing to believe the Facts 4.2 and 4.3 without proof—or
who is impatient to see how Proposition 4.1 is used to prove the lower bound from
the main theorem—could skip directly to Section 5 at this point.

4.1. Proofs of Facts 4.2 and 4.3. We first prove a handful of technical esti-
mates required for the proofs. The first shows that a fixed mass of particles is
extremely unlikely to quickly increase its total mass. Recall the definition of Px,m
from just before the start of Section 3.
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LEMMA 4.4. Fix x = (x1, . . . , xk) ∈ R
k and m = (m1, . . . ,mk) ∈ [0,1]k . Un-

der Px,m, for 1 ≤ j ≤ k let Gj(s) = #{i : ji,s(0) = j} be the number of time-s de-
scendants of xj . Then for any J ⊂ {1, . . . , k}, any x ≥ ∑

j∈J mj , for all t ≤ log 2
and all δ > 0,

Px,m

{∑
j∈J

mjGj (t) ≥ (1 + δ)x

}
≤ 2

(
21+δ(1 − e−t )δ)x.

PROOF. We may clearly assume J = {1, . . . , k}. Also, adding particles to
increase the mass of the starting configuration can only increase the probabil-
ity we aim to bound, so we may assume that x = ∑k

i=1 mi . The random vari-
ables (Gj (s),1 ≤ j ≤ k) are i.i.d. and are Geom(e−s)-distributed (see, e.g., [15]).
Lemma B.2 provides upper tail bounds for weighted sums of geometric random
variables where the individual coefficients are small compared with their sum. Us-
ing that lemma (with ε = 1 − e−t—this is where we require that t < log 2), the
result follows. �

Since Gj(s) is nondecreasing in s, we have

sup
s∈[0,t]

∑
{i:ji,s (0)∈J }

Mi,s(0) = sup
s∈[0,t]

∑
j∈J

mjGj (s) = ∑
j∈J

mjGj (t).

Combining this with the preceding lemma thus also yields the following bound.

COROLLARY 4.5. With the hypotheses and notation of Lemma 4.4,

Px,m

{
sup

s∈[0,t]

∑
{i:ji,s (0)∈J }

Mi,s(0) ≥ (1 + δ)x

}
≤ 2

(
21+δ(1 − e−t )δ)x.

The next proposition says that mass does not travel far in a short time, even once
branching is taken into account.

PROPOSITION 4.6. Fix x = (x1, . . . , xk) ∈ R
k and m = (m1, . . . ,mk) ∈

(0,1]k . Then for any J ⊂ {1, . . . , k}, and any x ≥ ∑
i∈J mi , for all t > 0, L > 0

and v > 0, we have

Px,m

{ ∑
{i:Xi(t)−Xi,t (0)>L,ji,t (0)∈J }

Mi,t (0) > vx

}
≤ exp(t − L2/(2t))

v
.

PROOF. We may clearly assume that J = {1, . . . , k}. For j ≤ k write Sj =
{i ≤ n(t) : ji,t (0) = j} for the set of indices of time-t descendants of xj . Then let
Rj = {i ∈ Sj : Xi(t) − Xi,t (0) > L}, so that

∑
{i:Xi(t)−Xi,t (0)>L}

Mi,t (0) =
k∑

j=1

∑
i∈Rj

Mi,t (0) =
k∑

j=1

mj |Rj |.
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By the many-to-one lemma, for W a one-dimensional Brownian motion,

E
[|Rj |] = etP{Wt − W0 > L} ≤ exp

(
t − L2/(2t)

)
.

This bound does not depend on j ≤ k. It then follows by Markov’s inequality that
for v > 0,

P
{ ∑

{i:Xi(t)−Xi,t (0)>L}
Mi,t (0) > vx

}
= P

{∑
j≤k

mj |Rj | > vx

}

≤ E[∑j≤k mj |Rj |]
vx

≤ exp(t − L2/(2t))

v
,

where we have used in the last inequality that
∑

j≤k mj ≤ x. �

In the sequel, we also use the following corollary, which extends Proposition 4.6
by considering all times in an interval [0, t], rather than a fixed time t > 0, at the
cost of a slightly weaker bound.

COROLLARY 4.7. Under the conditions of Proposition 4.6, for all t0 > 0,
L > 0 and v > 0, and all x ≥ ∑

i∈J mi ,

Px,m

{
sup
t≤t0

∑
{i:Xi(t)−Xi,t (0)≥L,ji,t (0)∈J }

Mi,t (0) > 2vx

}
≤ 2 exp(t0 − L2/(2t0))

v
.

PROOF. Consider the stopping time

τ = inf
{
t : ∑

{i:Xi(t)−Xi,t (0)≥L,ji,t (0)∈J }
Mi,t (0) > 2vx

}
.

By symmetry,

P
{ ∑

{i:Xi(t0)−Xi,t0 (0)≥L,ji,t0 (0)∈J }
Mi,t0(0) > vx

∣∣∣τ ≤ t0

}
≥ 1

2
,

and the corollary follows. �

The next lemma says that a large, concentrated mass will quickly decay; once
we prove this we will have all the tools we need to establish Facts 4.2 and 4.3.

LEMMA 4.8. There exist t0 > 0 and C > 0 such that the following holds.
Fix x = (x1, . . . , xk) ∈ R

k and m = (m1, . . . ,mk) ∈ [0,1]k . Let J = {j : |xj | <
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1/4}, and suppose A = ∑
j∈J mj > C. Then for all t ∈ [500/A, t0], setting I =

{i : ji,t (0) ∈ J } we have

Px,m

{∑
i∈I

Mi(t) > A/24
}

≤ 2e−200A.

PROOF. The proof is divided as follows. First, the total mass at time t of par-
ticles whose trajectory branches at least once is small. Next, among nonbranching
trajectories, the total mass which moves far from the origin is small. Finally, par-
ticles whose trajectories do not branch and stay near the origin will lose a large
amount of mass since they are a dense environment. We now formalize this.

Write Ib = {i ∈ I : ∃i ′ �= i, ji,t (0) = ji′,t (0)} for the indices of particles starting
near (distance < 1/4) to the origin whose trajectories branch before time t . Then
let I \ Ib = If ∪ In, where

If =
{
i ∈ I \ Ib : ∣∣Xi,t (0)

∣∣ < 1/4, sup
s∈[0,t]

∣∣Xi,t (s)
∣∣ > 1/2

}

indexes nonbranching trajectories that start near the origin but move far (dis-
tance > 1/2) from the origin before time t , and where In = I \ (If ∪ Ib) indexes
nonbranching trajectories that stay near the origin. Then with Mb = ∑

i∈Ib
Mi(t)

and Mf , Mn defined accordingly, we have∑
i∈I

Mi(t) = Mb + Mf + Mn.

We begin by considering branching trajectories. For each 1 ≤ j ≤ k, let Gj =
#{i ∈ I : ji,t (0) = j}. Then i ∈ Ib precisely if ji,t (0) ∈ J and Gji,t (0) > 1. Since
masses decrease with time,∑

i∈Ib

Mi(t) ≤ ∑
i∈Ib

mji,t (0)

= ∑
j∈J

mjGj 1[Gj>1].

Next, since the Gj are integer-valued,∑
j∈J

mjGj 1[Gj>1] = ∑
j∈J

mj (Gj − 1) + ∑
j∈J

mj 1[Gj>1] < 2
∑
j∈J

mj (Gj − 1),

which with the preceding bound gives

∑
i∈Ib

Mi(t) ≤ 2
(∑

j∈J

mjGj − A

)
.
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By Lemma 4.4, it follows that for any fixed δ > 0, if t < log 2,

P
{∑

i∈Ib

Mi(t) > 2δA

}
≤ P

{∑
j∈J

mjGj ≥ (1 + δ)A

}

≤ 2
(
21+δ(1 − e−t )δ)A

< 2
(
21+δtδ

)A
≤ e−200A,

(11)

the last bound holding for t sufficiently small that 22+δtδ < e−200. We next bound∑
i∈In

Mi(t), the total final mass from “typical” trajectories, which do not branch
and do not move far from their starting position by time t . Fix c ∈ (0,1) and let E

be the event that for all s ∈ [0, t], ∑
{i:|Xi(s)|<1/2} Mi(s) > cA. On E, if i ∈ In has

ji,t (0) = j then Mi(t) ≤ mj · e−tcA. We thus have∑
i∈In

Mi(t)1[E] ≤ ∑
j∈J

mj · e−tcA · 1[E] = Ae−tcA1[E].

Next, let In(s) = {ji,t (s) : i ∈ In} be the indices of time-s ancestors of individuals
in In. Since trajectories indexed by In do not branch,

∑
i∈In(s) Mi(s) is decreasing

for s ∈ [0, t]. Necessarily |Xi(s)| < 1/2 for i ∈ In(s), so if Ec occurs then there is
s ∈ [0, t] such that

∑
i∈In(s) Mi(s) ≤ cA. We thus have

∑
i∈In

Mi(t)1[Ec] ≤ cA1[Ec],

and the two preceding bounds together give∑
i∈In

Mi(t) ≤ max
(
cA,Ae−tcA)

.(12)

Finally, we turn to the final mass of nonbranching trajectories that move far
from the origin, counted by

∑
i∈If

Mi(t). For any i ∈ I , If ji,t (0) = j and |xj | <

1/4 then in order to have sups∈[0,t] |Xi,t (s)| > 1/2 the trajectory leading to Xi(t)

wanders a distance of at least 1/4 from its starting position. Let W denote one-
dimensional Brownian motion started from the origin. By the reflection principle
and the fact that P{G > x} ≤ e−x2/2 for G a standard normal and for all x > 0, we
have

P
{
sup
s≤t

|Ws | > 1/4
}

≤ 4P
{
Wt >

1

4

}
≤ 4 exp

(−1/(32t)
)
.

Since an individual trajectory of X has the law of Brownian motion, for a particle
starting at distance less than 1/4 from the origin whose trajectory never branched,
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the above is a bound on the probability the trajectory attained distance 1/2 from
the origin. It follows that ∑

i∈If

Mi(t) �st
∑
j∈J

mj · ξj ,

where the terms ξj are i.i.d. Ber(4 exp(−1/(32t))). The variance of the latter sum
is bounded by A ·4 exp(−1/(32t)), so Theorem B.1 yields that for any fixed b > 0,

(13) P
{∑

i∈If

Mi(t) >
(
b + 4 exp

(−1/(32t)
))

A

}
≤

(
4e1−1/(32t)

b

)bA

< e−200A,

the final inequality for t sufficiently small.
We now combine (11), (12) and (13). This yields that for t sufficiently small,

and in particular provided that 22+δtδ < e−200, ((4e1−1/(32t))/b)b < e−200 and that

2δ + max
(
c, e−tcA) + b + 4 exp

(−1/(32t)
)
<

1

24

we have

P
{∑

i∈I

Mi ≥ A/24
}

≤ 2e−200A.

It can be checked that taking δ = b = c = 1/100 does the job when t >

100 log 100/A [so that max(c, e−tcA) = 1/100] and t is sufficiently small (it is
in order to satisfy these simultaneously that we require a lower bound on A). This
completes the proof. �

PROOF OF FACT 4.2. Let Z/2 = {y/2 : y ∈ Z}. Define the event

E = {
max

{∣∣Xi(r)
∣∣, i ≥ 1,0 ≤ r ≤ s + 105/N

} ≤ 3s
}
.

Any unit interval [x −1/2, x +1/2] is covered by at most two intervals from {[y −
1/2, y + 1/2] : y ∈ Z/2, y ∈ [x − 1/2, x + 1/2]}. It follows that on E, if τk < s but
sup{z(t), t ∈ [τk, τk + 105/N ]} > 10N then there is y with y ∈ [−3s,3s] ∩ Z/2
such that

sup
t∈[τk,τk+105/N]

∑
{i:|Xi(t)−y|<1/2}

Mi(t) > 5N.

When k < I , we have τk < s, so

P
{

sup
t∈[τk,τk+105/N]

z(t) > 10N,z(τk) ≤ N,k < I
}

(14)
≤ P

{
Ec} + ∑

y∈[−3s,3s]∩Z/2

P
{

sup
t∈[τk,τk+105/N]

z(t, y) > 5N,z(τk) ≤ N
}
.



THE FRONT LOCATION IN BBM WITH DECAY OF MASS 3775

Our bound on the above summands works identically for each y ∈ [−3s,3s]∩Z/2;
we explain it for y = 0 to avoid notational overload. So we wish to bound

P
{

sup
t∈[τk,τk+105/N]

z(t,0) > 5N,z(τk) ≤ N
}
.

Our strategy is as follows: we use Corollary 4.5 to show that with high proba-
bility, for all t ∈ [τk, τk +105/N ] the total contribution to z(t,0) from descendants
of particles with |Xi(τk)| ≤ 3/2 is at most 4N . We then use Corollary 4.7 to show
that with high probability the contribution to z(t,0) from descendants of further-
off particles decreases quadratically [as a function of |Xi(τk)|]; since the quadratic
series converges, this implies a bound on the total contribution from far-off parti-
cles. We now proceed to details.

For n ∈ Z, let

Yn = sup
t∈[τk,τk+105/N]

∑
{i:|Xi(t)|≤1/2,|Xi,t (τk)−n|≤1/2}

Mi(t);

Yn counts the greatest contribution at any time t ∈ [τk, τk + 105/N ], to the mass
near 0 from particles that at time τk are near n. We clearly have

(15) sup
t∈[τk,τk+105/N]

z(t,0) ≤ ∑
n∈Z

Yn.

As sketched above, we bound the sum in two parts: the contribution from
Y−1, Y0 and Y1 is handled separately from the rest, and we do this first. Note that
since masses decrease with time,

Y−1 + Y0 + Y1 ≤ sup
t∈[τk,τk+105/N]

∑
{i:|Xi,t (τk)|≤3/2}

Mi,t (τk).

If z(τk) ≤ N , then
∑

{i:|Xi(τk)|≤3/2} Mi(τk) ≤ 3N so, by Corollary 4.5 and the
strong Markov property,

P
{
Y−1 + Y0 + Y1 > 4N,z(τk) ≤ N

}
≤ 2

(
21+1/3(

1 − e−105/N )1/3)3N

≤ (
205/N

)N
.

Now consider n ∈ Z with |n| ≥ 2, and assume by symmetry that n > 0. If
|Xi(t)| ≤ 1/2 but |Xi,t (τk) + n| ≤ 1/2, then Xi(t) − Xi,t (τk) ≥ n − 1. Assuming
z(τk) ≤ N , in particular we have z(τk,−n) ≤ N . Furthermore,

Y−n ≤ sup
t∈[τk,τk+105/N]

∑
{i:Xi(t)−Xi,t (τk)>n−1,|Xi,t (τk)+n|≤1/2}

Mi,t (τk).



3776 L. ADDARIO-BERRY AND S. PENINGTON

When n ≥ 2, applying Corollary 4.7 with t0 = 105/N , L = n − 1, v = 1/(20(n −
1)2) and x = N , we then obtain that

P
{
Y−n >

N

10(n − 1)2 , z(τk) ≤ N

}
≤ 40(n − 1)2 exp

(
105

N
− N(n − 1)2

2 · 105

)

< exp
(
−N(n − 1)2

3 · 105

)
(16)

≤ s−10(n−1)2
.

The final inequality holds since N = N(s) = 107 log s; the second inequality holds
provided N is sufficiently large. We emphasize that once N is large enough the
inequality holds for all n ≥ 2. Note that by symmmetry the same bound also holds
for Yn.

Using (15), the two preceding probability bounds, and the fact that
(1/10)

∑
|n|≥2(n − 1)−2 = π2/30 < 1, we thus have

P
{

sup
t∈[τk,τk+105/N]

z(t,0) > 5N,z(τk) ≤ N
}

≤ P
{
Y−1 + Y0 + Y1 > 4N,z(τk) ≤ N

}
+ ∑

{n∈Z:|n|≥2}
P

{
Yn ≥ N

10(n − 1)2 , z(τk) ≤ N

}
(17)

<

(
205

N

)N

+ ∑
|n|≥2

s−10(n−1)2

<

(
205

N

)N

+ 4s−10,

where the last inequality holds for s sufficiently large. The same argument yields
the same bound with z(t, y) in place of z(t,0), and (14) then gives

P
{

sup
t∈[τk,τk+105/N]

z(t) > 10N,z(τk) ≤ N,k < I
}

≤ P
{
Ec} + (12s + 2) ·

((
205

N

)N

+ 4s−10
)

≤ P
{
Ec} + s−8,

the latter bound holding for s large, since N = 107 log s. To conclude, we use the
fact that

P
{
max

{∣∣Xi

(
s + 105/N

)∣∣, i ≥ 1
} ≥ 3s|Ec} ≥ 1

2
,
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which follows by considering the stopping time τ = inf{r : max{|Xi(r)|, i ≥ 1} ≥
3s} and using symmetry. This yields

P
{
Ec} ≤ 2P

{
max

{∣∣Xi

(
s + 105/N

)∣∣, i ≥ 1
} ≥ 3s

}
≤ 4E

[
#
{
i : Xi

(
s + 105/N

) ≥ 3s
}]

= 4esP
{(

s + 105/N
)1/2

G ≥ 3s
}

(18)

≤ e−3s

< s−8,

where G is a standard normal random variable and the last two inequalities hold
for s sufficiently large. �

PROOF OF FACT 4.3. The proof has aspects which will be familiar from the
previous proof; we describe these first. We recycle the event E from the preceding
proof. Note that on E ∩ {k < I } we have

z
(
τk + 105/N

) ≤ 2 sup
y∈[−3s,3s]∩Z/2

z
(
τk + 105/N,y

)
,

so

P
{
z
(
τk + 105/N

) ≥ N − 1, z(τk) ≤ N,k < I,E
}

(19)

≤ ∑
y∈[−3s,3s]∩Z/2

P
{
z
(
τk + 105/N,y

)
>

N − 1

2
, z(τk) ≤ N

}
.

We once again focus on the case y = 0 for notational simplicity. We write

Zn = ∑
{i:|Xi(τk+105/N)|<1/2,|X

i,τk+105/N
(τk)−n|<1/2}

Mi

(
τk + 105/N

)
.

The indices of summation correspond to particles with position near 0 at time
τk + 105/N , whose time τk ancestor had position near n. We have

z
(
τk + 105/N,0

) ≤ ∑
n∈Z

Zn.

Now similar to the argument leading to (16), apply Proposition 4.6 with t =
105/N , L = n − 1, v = 1/(40(n − 1)2) and x = N to bound Zn for |n| ≥ 2. We
obtain that for s sufficiently large [since (1/40)

∑
|n|≥2(n−1)−2 = π2/120 < 1/4]

P
{
z
(
τk + 105/N,0

) ≥ N − 1

2
, z(τk) ≤ N

}

≤ P
{
Z−1 + Z0 + Z1 ≥ N

4
, z(τk) ≤ N

}
(20)
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+ ∑
{n∈Z:|n|≥2}

P
{
Zn ≥ N

40(n − 1)2 , z(τk) ≤ N

}

≤ P
{
Z−1 + Z0 + Z1 ≥ N

4
, z(τk) ≤ N

}
+ 4s−10.

We now bound Z−1 + Z0 + Z1 from above by the total mass at time τk + 105/N

of individuals whose time-τk ancestor lies in [−3/2,3/2]. More precisely, recall
that Xi,t (s) is the (location of) the time-s ancestor of Xi(t), and write

D� = ∑
{i:X

i,τk+105/N
(τk)∈[�/2,(�+1)/2]}

Mi

(
τk + 105/N

)
.

Then

Z−1 + Z0 + Z1 ≤ ∑
�∈[−3,2]∩Z

D�.

This holds because the time-τk ancestors of particles counted by Z−1 +Z0 +Z1 all
lie in [−3/2,3/2] = ⋃

�∈[−3,2]∩Z[�/2, (�+1)/2]. The bound may be strict because
particles counted by Z−1 + Z0 + Z1 are additionally required to lie near 0 at time
τk + 105/N .

Bounding each of the summands D� by the largest summand, we then have

Z−1 + Z0 + Z1 ≤ 6 max
�∈[−3,2]∩ZD�,

so

P
{
Z−1 + Z0 + Z1 ≥ N

4
, z(τk) ≤ N

}

≤ 6 max
�∈[−3,2]∩ZP

{
D� >

N

24
, z(τk) ≤ N

}
.

The final probabilities are not hard to bound: if D� hearkens from a total time-
τk mass which is very small then at time τk + 105/N it is still rather small by
Corollary 4.5. On the other hand, if the aggregate mass of its time-τk ancestors was
larger (but still at most N ) then by Lemma 4.8, at time τk + 105/N that ancestral
population has lost most of its mass.

More precisely, since Mi(τk + 105/N) ≤ Mi,τk+105/N(τk) for each i, by Corol-
lary 4.5 and the strong Markov property,

P
{
D� >

N

24

∣∣∣ ∑
{j :Xj (τk)∈[�/2,(�+1)/2]}

Mj(τk) ≤ N/48
}

≤ 2
(
4
(
1 − e− 105

N
)) N

48 ≤ 2
(

205

N

) N
48

.
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Now assume that N = N(s) = 107 log s > 48C, where C is the constant from
Lemma 4.8. By that lemma, with t = 105/N , since t > 500/A for A ∈ [N/48,N ],
P

{
D� >

N

24

∣∣∣ ∑
{j :Xj (τk)∈[�/2,(�+1)/2]}

Mj(τk) ∈ [N/48,N ]
}

≤ 2e−200N/48 < e−4N,

the latter inequality for N = N(s) sufficiently large. This bound holds for each
� ∈ [−3,2] ∩Z. Under the assumption that z(τk) ≤ N , one of the conditions in the
above conditional probabilities must occur. It follows that

6 max
�∈[−3,2]∩ZP

{
D� >

N

24
, z(τk) ≤ N

}
≤ 6 max

(
2
(

205

N

)N/48
, e−4N

)
,

so for N sufficiently large

P
{
Z−1 + Z0 + Z1 ≥ N

4
, z(τk) ≤ N

}
≤ 6e−4N = 6s−4·107

.

Combined with (20), this gives

P
{
z
(
τk + 105/N,0

) ≥ N − 1

2
, z(τk) ≤ N

}
< 5s−10.

The same bound holds for each z(τk + 105/N,y), so using (19) and the bound
P{Ec} ≤ e−3s from (18), for s large we obtain

P
{
z
(
τk + 105/N

) ≥ N − 1, z(τk) ≤ N,k < I
} ≤ (12s + 2)5s−10 + e−3s < s−8.

The proof is almost complete; to finish it off we need to deal with the event
{z(τk) ≤ N} in the preceding probability. To do so, we use induction. First, for s

large, since N = N(s) = 107 log s and τ0 = inf{t : z(t) ≥ N −1}, we have z(τ−
0 ) ≤

N − 1. It follows that z(τ0) ≤ z(τ−
0 ) + 1 ≤ N (this was explained in the proof of

Proposition 4.1), so when k = 0 we have

P
{
z
(
τk + 105/N

) ≥ N − 1, k < I
}

= P
{
z
(
τk + 105/N

) ≥ N − 1, z(τk) ≤ N,k < I
}

≤ s−8.

For larger k, similarly if z(τk−1 + 105/N) ≤ N − 1 then z(τk) ≤ z(τ−
k ) + 1 ≤ N .

We thus have

P
{
z
(
τk + 105/N

) ≥ N − 1, k < I
}

≤ P
{
z
(
τk + 105/N

) ≥ N − 1, z(τk) ≤ N,k < I
}

+ P
{
z(τk) > N,k < I

}
≤ s−8 + P

{
z
(
τk−1 + 105/N

) ≥ N − 1, k − 1 < I
}
,

so by induction and the hypothesis that k ≤ Ns/105,

P
{
z
(
τk + 105/N

) ≥ N − 1, k < I
} ≤ (k + 1) · s−8 < Ns−7 < s−6. �
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5. Lower bound. The next proposition restates the second inequality of The-
orem 1.1. Recall that c∗ = 34/3π2/3/27/6.

PROPOSITION 5.1. For any m ∈ (0,1), almost surely

lim inf
t→∞

√
2t − D(t,m)

t1/3 ≤ c∗.

Given a function f : [0,∞) → R, for t ≥ 0 let I (t, f ) = {i ≥ 1 : ∀s ∈
[0, t],Xi,t (s) ≥ f (s)} be the indices of particles whose ancestral trajectory stays
above f up to time t . Note that |I (t, f )| is decreasing in t : if a trajectory stays
above f to time t then it also stays above f to time t ′ < t . It follows that
P{∀t, I (t, f ) �= ∅} = limt→∞ P{I (t, f ) �= ∅}, and this is a decreasing limit. We
will use the following result of Roberts [17].

LEMMA 5.2 ([17], Theorem 1). Let g(t) = √
2t − c∗t1/3 + c∗t1/3/ log2(t +

e) − 1. Then

lim
t→∞ P

{
I (t, g) �= ∅

} = p∗ > 0.

The idea of the proof of Proposition 5.1 is that if the density is always low
beyond g then a particle staying beyond g will have reasonably large mass at time
t ; the lemma guarantees that such a particle has a reasonable chance p∗ of existing.
The next corollary implies that at the cost of a constant shift of the function g, we
may increase p∗ as close to one as we like. For c ∈R, write g − c for the function
with (g − c)(x) = g(x) − c.

COROLLARY 5.3. Let C∗ = inf{c : ∀t, I (t, g − c) �= ∅}. Then almost surely
C∗ < ∞.

PROOF. The proof technique is sometimes called an amplification argument.
Consider the n(t) ≈ et independent copies of the BBM rooted at time-t particles,
the ith copy having initial individual at position Xi(t). Suppose the “translate
by Xi(t)” of the event from Lemma 5.2 occurs in the kth copy; more precisely,
suppose that for all t ′ ≥ t there is a descendant Xj(t

′) of Xk(t) such that for all
s ∈ [t, t ′],

Xj,t ′(s) − Xk(t) ≥ g(s − t) ≥ g(s) − √
2t − c∗t1/3.

For s ≤ t , we also have

Xj,t ′(s) ≥ inf
i≥1

Xi(s) ≥ inf
s≤t

inf
i≥1

Xi(s) ≥ g(s) + inf
s≤t

inf
i≥1

Xi(s) − sup
s≤t

g(s),

so in this case

C∗ ≤ − inf
s∈[0,t] inf

i≥1
Xi(s) + √

2t + c∗t1/3.
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By the branching property [i.e., the independence of the trajectories emanating
from each of the particles (Xi(t), i ≥ 1)], it follows that

P
{
C∗ > 3t + √

2t + c∗t1/3}
(21)

≤ P
{
n(t) ≤ 2t} + P

{
inf

s∈[0,t] inf
i≥1

Xi(s) ≤ −3t
}

+ (
1 − p∗)2t

,

where p∗ is the constant from Lemma 5.2. Since the distribution of n(t) is
Geom(e−t ) we have P{n(t) ≤ 2t } ≤ (2/e)t . Finally, let σ = inf{s : infi≥1 Xi(s) ≤
−3t}. With this definition, infs∈[0,t] infi≥1 Xi(s) ≤ −3t if and only if σ < t . Con-
sidering the descendants of the first individual to reach position −3t , by symmetry
we have

P
{

inf
i≥1

Xi(t) ≤ −3t
∣∣σ < t

}
≥ 1

2
,

so

P{σ < t} ≤ 2P
{

inf
i≥1

Xi(t) ≤ −3t
}

≤ 2etP
{
N(0, t) ≤ −3t

} ≤ 2e−7t/2.

These bounds and (21) then yield

P
{
C∗ > 3t + √

2t + c∗t1/3} ≤ (2/e)t + 2e−7t/2 + (
1 − p∗)2t

.

This can be made arbitrarily small by taking t large. �

In order to prove Proposition 5.1, we require one final lemma which shows that
a small mass will quickly increase to form some region of constant density within
a constant distance.

LEMMA 5.4. For all ε > 0 and m ∈ (0,1), there is C > 0 such that for all
x ∈ R

k and m ∈ (0,1]k , if z := ∑
{i:|xi |<1} mi > 0 then

(22) Px,m
{∃t ∈ [

0,C
(
1 + log(1/z)

)]
, x ∈ [−C,C] : ζ(t, x) ≥ m

} ≥ 1 − ε.

To prove the lemma, we use the following fact. Since the result is straightfor-
ward, we give a somewhat terse proof, trusting the reader to fill in the details.
The fact may also be deduced as a consequence of the results in [19], though the
translation into our language is somewhat involved.

FACT 5.5. For all ε > 0, there are t0 = t0(ε) and c = c(ε) > 0 such that

(23) P
{∀t ≥ t0,#

{
i : ∀s ∈ [0, t], ∣∣Xi,t (s)

∣∣ < c
} ≥ (e − ε)t

}
> 1 − ε.
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PROOF. First, by Brownian scaling, for all y > 0

inf|x|≤y
Px

{∣∣B(
y2)∣∣ ≤ y, sup

t≤y2

∣∣B(t) − x
∣∣ ≤ y

}

= inf|x|≤1
Px

{∣∣B(1)
∣∣ ≤ 1, sup

t≤1

∣∣B(t) − x
∣∣ ≤ 1

}

= p > 0.

Let S = {i ≤ n(y2) : |Xi(y
2)| ≤ y, supt≤y2 |Xi,y2(t) − Xi,y2(0)| ≤ y}. By the pre-

ceding equation, and the many-to-one lemma, we have

(24) inf|x|≤y
Ex

{|S|} = pey2
.

It is also easy to see that inf|x|≤y Px{S �= ∅} ≥ p.
Next, start a BBM with a single particle at position x with |x| ≤ y, and suppose

that j ≤ n(y/8) is such that supt≤y/8 |Xj,y/8(t) − x| ≤ y/4. In this case, if Xi(y
2)

is a descendant of Xj(y/8), that is, if ji,y2(y/8) = j , then |Xi,y2(y/8)| ≤ 5y/4 and
in order that i ∈ S, it suffices that |Xi(y

2)| ≤ y and that supy/8≤t≤y2 |Xi,y2(t) −
Xi,y2(y/8)| ≤ 3y/4. Again by Brownian scaling,

inf|w|≤5y/4
Pw

{∣∣B(
y2 − y/8

)∣∣ ≤ y, sup
t≤y2−y/8

∣∣B(t) − w
∣∣ ≤ 3y/4

}

= inf|w|≤5/4
Pw

{∣∣B(
1 − 1/(8y)

)∣∣ ≤ 1, sup
t≤1−1/(8y)

∣∣B(t) − w
∣∣ ≤ 3/4

}

≥ p′ > 0,

for an absolute constant p′ and for all y sufficiently large. Thus, given that |{j ≤
n(y/8) : supt≤y/8 |Xj,y/8(t) − x| ≤ y/4}| = k, for any x with |x| ≤ y, the law of
|S| under Px stochastically dominates the Binomial(k,p′) law. A first moment
computation shows that under Px , for y large, with high probability, at time y/8
no particle has left the interval [x − y/4, x + y/4]; in this case∣∣∣{j ≤ n(y/8) : sup

t≤y/8

∣∣Xj,y/8(t) − x
∣∣ ≤ y/4

}∣∣∣ = n(y/8).

Since n(y/8) is Geom(e−y/8)-distributed, it follows that inf|x|≤y Px{|S| > 1} → 1
as y → ∞.

Next, let Z0 = 1 and for n ≥ 1, let

Zn =
∣∣∣{i : ∀m ≤ n,

∣∣Xi,ny2
(
my2)∣∣ ≤ y,

sup
(m−1)y2≤s≤my2

∣∣Xi,ny2(s) − Xi,ny2
(
(m − 1)y2)∣∣ ≤ y

}∣∣∣.
By the Markov property and the branching property, it follows that Z = (Zn,n ≥
0) stochastically dominates a branching process Z′ = (Z′

n, n ≥ 0) with EZ′
1 ≥



THE FRONT LOCATION IN BBM WITH DECAY OF MASS 3783

pey2
, with E[Z′

1 log+ Z′
1] ≤ E[Z1 log+ Z1] ≤ E[n(y2) logn(y2)] < ∞ and with

P{Z′
1 > 1} = inf|x|≤y Px{|S| > 1}. For such a branching process, we have

Z′
n/EZ′

1
n → W almost surely, where {W > 0} almost everywhere on the event

of survival.
Finally, let q = inf|x|≤y Px{|S| > 1} = P{Z′

1 > 1}. Then the survival probability
of Z′ is at least that of a branching process where the number of offspring is 2 with
probability q and 0 otherwise. For any ε > 0, we may thus choose y large enough
that pey2

> (e − ε)y
2

and that P{W > 0} > 1 − ε; the result follows. �

As an aside, we note the very nice recent work [10] on the asymptotics of sur-
vival probability of branching Brownian motion in a strip [−c, c] for c near the
critical width ĉ below which survival has probability zero.

PROOF OF LEMMA 5.4. The claim is clearly true if z ≥ m, and we hereafter
assume z ∈ (0,m). We also assume ε is small enough that (e − ε)e−m(1 − ε1/2) >

(1 + ε); this can only make our job harder.
By relabelling, we may assume that for some 1 ≤ k′ ≤ k we have |xi | < 1 for

1 ≤ i ≤ k′ and |xi | > 1 for i > k′, so that z = ∑
1≤i≤k′ mi .

For 1 ≤ i ≤ k′, let Ji(t) index the time-t descendants of xi whose trajectory
stays fairly near the origin, that is,

Ji(t) = {
� ≥ 1 : j�,t (0) = i,

∣∣X�,t (s) − xi

∣∣ < c ∀s ∈ [0, t]},
where c = c(ε) is chosen as in Fact 5.5. By that fact, we then have for t0 = t0(ε)

(25) P
{∀t ≥ t0,

∣∣Ji(t)
∣∣ ≥ (e − ε)t

}
> 1 − ε.

We hereafter assume t ≥ t0(ε). Now suppose that ζ(s, x) < m for all s ≤ t and
|x| ≤ c + 1. Then for each 1 ≤ i ≤ k′, for all j ∈ Ji(t), Mj(t) ≥ mi · e−mt , so∑

1≤i≤k′

∑
j∈Ji(t)

Mj (t) ≥ e−mt
∑

1≤i≤k′
mi

∣∣Ji(t)
∣∣

≥ e−mt(e − ε)t
∑

1≤i≤k′
mi1[|Ji(t)|≥(e−ε)t ].

By Markov’s inequality and (25), since z = ∑
1≤i≤k′ mi ,

P
{ ∑

1≤i≤k′
mi1[|Ji(t)|<(e−ε)t ] ≥ zε1/2

}
≤ ε1/2,

so with probability at least 1 − ε1/2,∑
1≤i≤k′

∑
j∈Ji(t)

Mj (t) ≥ e−mt(e − ε)t
(
1 − ε1/2) · z.
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By our assumption on ε, we have e−m(e − ε) > (1 + ε)/(1 − ε1/2) > 1 + 2ε, so
this gives ∑

{j :|Xj (t)|<c+1}
Mj(t) ≥ (1 + 2ε)t−1z > c + 2,

the last inequality provided that t ≥ 1 + log1+2ε((c + 2)/z). Since [−c − 1, c + 1]
can be covered by �c + 2� intervals of radius 1, we see that in this case there is x

with |x| ≤ c + 1 such that ζ(t, x) > 1.
To sum up: with probability at least 1 − ε1/2, if t ≥ t0(ε) and t ≥ 1 +

log1+2ε((c + 2)/z), either ζ(s, x) ≥ m for some s ≤ t and |x| ≤ c + 1, or else
ζ(t, x) > 1 for some x with |x| ≤ c + 1. By choosing C = C(ε) appropriately, we
obtain

Px,m
{∃s ∈ [

0,C
(
1 + log(1/z)

)]
, x ∈ [−C,C] : ζ(t, x) ≥ m

} ≥ 1 − ε1/2. �

We are now ready for the final proof of the paper.

PROOF OF PROPOSITION 5.1. Fix m ∈ (0,1). Fix ε > 0 and by Corollary 5.3
choose L > 1 large enough that P{C∗ ≥ L} < ε. Fix t much larger than L (so that
log log t > L, say). Let Z = 2 · 108 and define the event

E =
{

sup
s∈[0,t]

sup
x∈R

ζ(s, x) ≤ Z log t
}
,

and note that for t sufficiently large, P{Ec} ≤ t−4 ≤ ε by Proposition 4.1.
Let σ = inf{s ≥ t1/4 : D(s,1/t) ≥ g(s) − C∗ − 1}. We first suppose that σ > t ,

so that for all s ∈ [t1/4, t] we have D(s,1/t) < g(s) − C∗ − 1. Let i∗ be such that
Xi∗,t (s) ≥ g(s) − C∗ for all s ∈ [0, t]; such i∗ exists by the definition of C∗. If E

occurs, then we have

− logMi∗(t) =
∫ t

0
ζ
(
s,Xi∗,t (s)

)
ds

≤
∫ t1/4

0
ζ
(
s,Xi∗,t (s)

)
ds +

∫ t

t1/4

1

t
ds

≤ Zt1/4 log t + 1,

the last bound because when E occurs the integrand is at most Z log t .
Let C = C(ε,m) be the constant from Lemma 5.4. Then given that E occurs,

by that lemma [applied with z = Mi∗(t) ≥ exp(−1 − Zt1/4 log t)] and the Markov
property, with probability at least 1 − ε there is s ∈ (t, t + C(2 + Zt1/4 log t)) and
x with |x| ≤ C such that ζ(s,Xi∗(t) + x) ≥ m. If this occurs, and additionally
C∗ ≤ L we have

D(s,m) ≥ Xi∗(t) − C ≥ g(t) − C∗ − C ≥ g(s) − s1/4 log2 s,
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the last bound holding for all t sufficiently large since s − t ≤ C(2 + Zt1/4 log t),
and for s and t large we have g(s) − g(t) = O(s − t). We thus have

P
{∀s ≥ t,D(s,m) < g(s) − s1/4 log2 s|σ > t

}
≤ P

{{∀s ≥ t,D(s,m) < g(t) − C∗ − C
} ∩ E|σ > t

}
(26)

+ P
{
C∗ ≥ L

∣∣σ > t
} + P

{
Ec

∣∣σ > t
}

≤ ε + P
{
C∗ ≥ L

∣∣σ > t
} + P

{
Ec

∣∣σ > t
}
.

Next, suppose that σ ≤ t . Apply the strong Markov property at time σ ,
and apply Lemma 5.4 just as above (but with a starting mass in [D(σ,1/t) −
1,D(σ,1/t) + 1] of at least 1/t = e− log t rather than e−1−Zt1/4 log t ). We obtain
that with probability at least 1 − ε there is s ∈ (σ, σ + C(1 + log t)) such that

D(s,m) ≥ g(σ) − C − C∗ ≥ g(s) − log2 s,

the last bound holding for t sufficiently large since s−σ ≤ C(1+ log t) and log t ≤
4 logσ ≤ 4 log s, and under the assumption C∗ ≤ L.

Since σ ≥ t1/4 and log2 s < s1/4 log2 s, it follows that

P
{∀s ≥ t1/4,D(s,m) < g(s) − s1/4 log2 s|σ ≤ t

}
≤ ε + P

{
C∗ ≥ L|σ ≤ t

}
.

Now combine this with (26) using the law of total probability. We chose L and t

large enough that P{C∗ ≥ L} ≤ ε and P{Ec} ≤ ε, so we obtain

P
{∃s ≥ t1/4 : D(s,m) ≥ g(s) − s1/4 log2 s

}
> 1 − 3ε.

Finally, if D(s,m) ≥ g(s) − s1/4 log2 s then
√

2s − D(s,m)

s1/3 ≤ c∗ − c∗

log2(s + e)
+ 1

s1/3 + log2 s

s1/12 ,

which tends to c∗ as s → ∞. �

6. Discussion and questions.

• The analysis of the paper should carry through fairly straightforwardly to higher
dimensions Rk , provided we redefine d(t,m) and D(t,m) as

d(t,m) = min
{|x| : ζ(t, x) < m

}
, D(t,m) = max

{|x| : ζ(t, x) > m
}
.

At time t , the density is then at least m within the ball of radius d(t,m) around
0, and less than m outside the ball of radius D(t,m) around 0. The proof of the
lower bound is then the same as in Sections 4 and 5. The proof of the upper
bound requires ruling out the possibility that the modulus of a particle in the
BBM stays ahead of a moving barrier g even though it cannot have consistent
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displacement more than g in any fixed direction. In order for our proof tech-
niques to carry over, this requires sample path estimates for Bes(k) processes
analogous to the ones derived in this work for Brownian motion. We expect
such estimates to hold for all k ≥ 1, though verifying this may be technical.

• We believe that Proposition 5.1 predicts the “true” front location, in that both
D(t,m) and d(t,m) are typically at distance o(t1/3) from

√
2t −c∗t1/3 when t is

large. This is our justification for the remark in the final paragraph of Section 1.
• In the same way as the KPP equation describes the evolution of multiplicative

functionals of BBM [15], it seems plausible that the model proposed in this
work (or a related model) should be connected to an equation of the form

ut = 1

2
uxx + u − u

∫
{y:|y−x|<1}

u(t, y) dy.

This equation has steady states at 0 (unstable) and 1/2 (stable), and is redolent
of a family of “nonlocal” Fisher-KPP-type equations which was introduced [5]
to model populations in which aggregation can have both a competitive advan-
tage (safety in numbers) and disadvantage (due to competition for resources).
These equations have received substantial study [2, 6, 8]; the survey [18] con-
tains many further references, as well as perspective on the biological motiva-
tions for such study.

If a probabilistic model for such an equation were found, it could yield new
results on, for example, the front propagation speed or temporal fluctuations of
solutions to the above equation. Conversely, a glance at that literature suggests
new probabilistic questions: for example, what if the effect of competition is
described by a kernel κ , where κ(|x − y|) describes the degree of competition
for resources between individuals at spatial positions x and y? In our model, we
took κ(|x − y|) = 1[|x−y|∈(0,1)]; a kernel which allows substantial long-range
interaction might yield rather different dynamics.

• As mentioned in the Introduction, one may reasonably consider the mechanism
for mass growth in our model—both children inherit the mass of the parent—
nonphysical. More physically realistic (at least for amoebae) is for the children
to each have half the mass of the parent. One must also then change the rules to
allow for mass growth; a reasonable modification is to take

ζ (t, x) = ∑
{i:|Xi(t)−x|≤1}

Mi(s)

and

Mi(t) = exp
(∫ t

0

(
1 − ζ

(
s,Xi(s)

))
ds

)
.

In other words, the mass of an individual can increase, when there is little nearby
competition for resources—but the larger particles get, the harder it is for them
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to sustain themselves. The key point is that 1 is still a universal upper bound on
the greatest mass of any particle.

We conjecture that any lack of physical realism in our model is relatively
insignificant for the long term behaviour, and more concretely that the front
location behaves similarly in the two models. As partial evidence for this, we
note that the analyses from Sections 4 and 5 carry through essentially unchanged
for the model described above.

The argument from Section 3, however, breaks down, because a particle mov-
ing through an environment of constant density m < 1 will have mass which
does not decay exponentially, even when the loss of mass due to branching is
taken into account. Instead, such a particle will (at large times) have a mass
which is random and typically of order �(1 − m).

Because of this, the existing argument only establishes Proposition 3.1 in
a highly weakened form, with the condition m ≥ 1 rather than m > 0. [It is
possible to do very slightly better, by considering a variable bound m = m(t).
One can then take m(t) < 1 if 1 − m(t) decays sufficiently quickly, but the
pain-to-gain ratio in writing down such an argument in detail does not seem
favourable.] But m ∈ (0,1) is the really meaningful region. Proving a genuine
analogue of Proposition 3.1 for this model seems to us the only missing step to
a proof of Theorem 1.1 for the modified dynamics.

• In the variant just described, one intriguing possibility is that there may now be
particles with mass �(1) at large times. If there are, they will be found near the
front, since that is where they can find food. Do they really exist?

• More generally, one may take

Mi(t) = exp
(∫ t

0

(
a − bζ

(
s,Xi(s)

))
d s

)
.

This looks, heuristically, like some sort of spatial logistic growth [7, 13]. It may
be interesting to investigate what different behaviours can occur as the parame-
ters a and b are varied.

APPENDIX A: ESTIMATES FOR THE UPPER BOUND

We first turn to the proof of Lemma 3.3. We shall consider functions f : [0, t] →
R and L : [0, t] → (0,∞) such that for a constant Q,

∣∣L′(0)
∣∣L(0) + ∣∣L′(u)

∣∣L(u) +
∫ u

0

∣∣L′′(s)
∣∣L(s) ds

+
∫ u

0

∣∣f ′′(s)
∣∣L(s) ds − ∣∣L′(0)

∣∣f (0) ≤ Q

for all 0 ≤ u ≤ t ; as in [17], we call this Assumption (A). The proof of Lemma 3.3
relies on the following sample path estimate for Brownian motion.
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LEMMA A.1. Suppose f : [0, t] → R and L : [0, t] → (0,∞) are twice con-
tinuously differentiable functions, with f (0) < 0, f (0) + L(0) > 0 and f increas-
ing, and for which Assumption (A) holds for some constant Q. Then there is a
constant M(Q) such that for 0 ≤ p ≤ 1,

P
{
B(s) − f (s) ∈ (

0,L(s)
) ∀s ≤ u,B(u) − f (u) ∈ (

pL(u),L(u)
)}

≤ M(Q) exp
(
−1

2

∫ u

0
f ′(s)2 ds

−
∫ u

0

π2

2L(s)2 ds − pf ′(u)L(u) − f ′(0)f (0) + 1

2
logL(u)

)
.

This result is obtained by combining Proposition 4 and Lemma 7 in [17] to cover
the two cases

∫ u
0

1
L(s)2 ds > 1 and

∫ u
0

1
L(s)2 ds ≤ 1. In order to apply Lemma A.1,

we exploit the existence of a solution to an integral equation; such a solution is
used for a related purpose in Section 3.4 of [12].

LEMMA A.2. For c < c∗, there exists a constant α > 0 such that the equation

(27) l(s) = α + cs1/3 − π2

2
√

2

∫ s

0

1

l(u)2 du

has a continuous solution on [0,1] which is twice continuously differentiable on
(0,1) with l(s) > 0 for all s ∈ [0,1) and with l(1) = 0.

The lemma follows from Propositions 3.2 and 3.6(iii) of [12]. More precisely,
in those lemmas there is a variance term σ 2, and the value analogous to c∗ is
ac = 3

2(3π2σ 2)1/3. Taking σ = 1/
√

2 yields the above formulation.

PROOF OF LEMMA 3.3. Fix t > 0 large. Since the integral on the RHS of
(27) is nonnegative, l(s) ≤ c + α for all s ∈ [0,1]. Since l(0) = α > 0, we can fix
β ∈ (0,min(α3/8, α3/(8c3),1)) sufficiently small that l(s) ≥ α/2 for s < β . Let

(28) L(s) = t1/3
(

1 + β

ut

)1/3
l

(
(s + βt)ut

t + βt

)

for 0 ≤ s ≤ t , where ut = inf{u ∈ [0,1] : l(u) ≤ 2t−1/12}. Note that ut → 1 as
t → ∞.

We will prove that the lemma holds for the above choice of β and with the
function 
(s) = L(s) − Kt1/6, provided K is sufficiently large. We must thus
verify that 
 satisfies the requisite properties, and prove the bound (3). Write
f (s) = b(s) − Kt1/6 = √

2s − c(s + βt)1/3 − Kt1/6; then to prove (3), it suffices
to show that for u ∈ [0, t] and all x ∈ [0,L(u)),

P
{
B(s) − f (s) ∈ (

0,L(s)
) ∀s ≤ u,B(u) > f (u) + x

}
(29)

≤ exp
(−u − t1/3/K + √

2
(
L(u) − x

))
.
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We establish this by applying Lemma A.1 with the above functions f and L. We
next derive the properties of f , L, L′ and L′′ which we require to do so.

First, note that f (0) = −c(βt)1/3 − Kt1/6 and L(0) ≥ t1/3l((βut )/(1 + β)) ≥
αt1/3/2 by our choice of β , so since β < (α/(2c))3 we have L(0) + f (0) > 0 for
t sufficiently large. For t sufficiently large, f is increasing on [0, t], and f and L

are twice continuously differentiable [since l is C2 on (0,1)].
We assume t is sufficiently large that (1 + β)1/3u

−1/3
t ≤ 2. Then for s ∈ [0, t],

by the definition of ut , L(s) ≥ 2(1+β)1/3u
−1/3
t t1/4 ≥ 2t1/4 and since l(r) ≤ c+α

∀r ∈ [0,1], L(s) ≤ (1 +β)1/3u
−1/3
t t1/3(c +α) ≤ 2(c +α)t1/3, so for all s ∈ [0, t],

(30) 2t1/4 ≤ L(s) ≤ 2(c + α)t1/3.

Since l is C2 on (0,1) and l(s) > 0 for s < 1, we can differentiate both sides of
(27) for s ∈ (0,1) to give

(31) l′(s) = 1

3
cs−2/3 − π2

2
√

2

1

l(s)2 .

Hence, L is differentiable on [0, t] with

L′(s) = t−2/3
(

1 + β

ut

)−2/3
l′
(

ut(s + βt)

t + βt

)
.

Also, for utβ
1+β

≤ u ≤ ut , by (31) and the definition of ut ,

(32)
∣∣l′(u)

∣∣ ≤ 1

3
c(βut )

−2/3(1 + β)2/3 + π2

8
√

2
t1/6 ≤ 2t1/6,

for t sufficiently large, so for all s ∈ [0, t] we have

(33)
∣∣L′(s)

∣∣ ≤ u
2/3
t (1 + β)−2/3t−2/32t1/6 ≤ 2t−1/2.

This is a convenient moment to verify that the function 
(s) = L(s)−Kt1/6 has
the requisite properties. By (30), for t sufficiently large, 
 : [0, t] → [t1/4,2(c +
α)t1/3]. Also 
(t) = L(t) − Kt1/6 < 2(1 + β)1/3u

−1/3
t t1/4 ≤ 4t1/4 for t suffi-

ciently large. Finally, by (33), |
′(s)| ≤ 2t−1/2 ≤ 1 for all s ∈ [0, t], once again
for t sufficiently large.

Proceeding with the proof of (29), we now check that Assumption (A) holds for
our choice of f and L, for some constant Q which does not depend on t . For t

sufficiently large, by (30) and (33) we have sups∈[0,t] |L′(s)L(s)| = O(t−1/6), and
also |L′(0)f (0)| = O(t−1/6).
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By the definition of L in (28), for s ∈ [0, t] we have

∣∣L′′(s)
∣∣L(s) = t−4/3

(
1 + β

ut

)−4/3∣∣∣∣l′′
(

ut (s + βt)

t + βt

)∣∣∣∣l
(

ut (s + βt)

t + βt

)
.

For utβ
1+β

≤ u ≤ ut , we also have |l′(u)| ≤ 2t1/6 by (32) and 2t−1/12 ≤ l(u) ≤ c +α

by the definition of ut . By differentiating (31), we obtain that, uniformly over u in
the above range,

∣∣l′′(u)
∣∣l(u) ≤ 2

9
cu−5/3l(u) + π2

√
2

|l′(u)|
l(u)2 = O

(
t1/3)

,

so sups∈[0,t] |L′′(s)|L(s) = O(t−1). Finally, sups∈[0,t] f ′′(s) = sups∈[0,t] 2
9c(s +

βt)−5/3 = O(t−5/3), which with (30) yields sups∈[0,t] |f ′′(s)|L(s) = O(t−4/3).
Thus, Assumption (A) holds for some fixed constant Q not depending on t .

Having verified the conditions of Lemma A.1, we now show that the bound
from that lemma indeed implies (29).

For 0 ≤ u ≤ t , f ′(u) = √
2 − 1

3c(s + βt)−2/3 so

−1

2

∫ u

0
f ′(s)2 ds = −u + √

2c(u + βt)1/3 − √
2c(βt)1/3

+ 1

6
c2(u + βt)−1/3 − 1

6
c2(βt)−1/3

≤ −u + √
2cu1/3 + O

(
t−1/3)

.

Also by the definition of L in (28),

π2

2

∫ u

0

1

L(s)2 du = π2

2
t1/3

(
1 + β

ut

)1/3(∫ (u+βt)ut
t+βt

βut
1+β

1

l(s)2 ds

)
.

We chose β sufficiently small that for s ≤ βut

1+β
, l(s) ≥ α/2. Therefore,

∫ βut
1+β

0

1

l(s)2 ds ≤ 4

α2

βut

1 + β
≤ α

2
,

since we also chose β < α3/8. It follows by (27) that

π2

2

∫ u

0

1

L(s)2 du

≥ √
2t1/3

(
1 + β

ut

)1/3(
α

2
+ c

(
(u + βt)ut

t + βt

)1/3
− l

(
(u + βt)ut

t + βt

))

≥ (
√

2/2)αt1/3 + √
2cu1/3 − √

2L(u),
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where the second line follows by the definition of L in (28). Hence, for u ≤ t and
p ∈ [0,1],

exp
(
−1

2

∫ u

0
f ′(s)2 ds −

∫ u

0

π2

2L(s)2 ds − pf ′(u)L(u) − f ′(0)f (0)

+ 1

2
logL(u)

)
(34)

≤ exp
(−u − (

√
2/2)αt1/3 + √

2(1 − p)L(u) + √
2cβ1/3t1/3 + O

(
t1/6))

≤ (
M(Q)

)−1 exp
(−u − t1/3/K + √

2(1 − p)L(u)
)
.

The last inequality holds for all large t , provided K is sufficiently large that
(
√

2/2)α − √
2cβ1/3 > 1/K ; this is possible by our choice of β .

Writing p = x/L(u), then

P
{
B(s) ∈ (

f (s), f (s) + L(s)
) ∀s ≤ u,B(u) > f (u) + x

}
= P

{
B(s) − f (s) ∈ (

0,L(s)
) ∀s ≤ u,B(u) − f (u) ∈ (

pL(u),L(u)
)}

≤ exp
(−u − t1/3/K + √

2(1 − p)L(u)
)

for some K > 0 by Lemma A.1 and (34). This establishes (29) and completes the
proof. �

We now turn to the proof of Lemma 3.5, during which we will use the following
fact.

FACT A.3. Let (W(u),0 ≤ u ≤ 1) be either Brownian excursion or Brownian
meander, and let N be a standard Gaussian. Then

P
{
max
u≤1

W(u) ≥ x
}

≤ 4P{N ≥ x/4}.

PROOF. Write B , Bme, Bex and Bbr for Brownian motion, meander, excur-
sion, and bridge, all of length one. In what follows, maxima are always over
u ∈ [0,1] even if this is not explicitly written.

We have

maxBex d= maxBbr − minBbr ≤ 2 max
∣∣Bbr∣∣ d= 2 max

u≤1

∣∣B(u)−uB(1)
∣∣ ≤ 4 max |B|,

so by the reflection principle,

P
{
maxBex ≥ x

} ≤ P
{
max |B| ≥ x/4

} ≤ 2P{maxB ≥ x/4} = 4P{N ≥ x/4}.
Next, let (Z(u),u ≥ 0) be a standard Bessel process. Since Bme is Brownian

motion conditioned to stay positive until time one, and Z is Brownian motion con-
ditioned to stay positive for all time, it follows straightforwardly that maxu≤1 Z(u)
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stochastically dominates maxBme. By Pitman’s 2M − B theorem (see [16]), we
have

max
u≤1

Z(u)
d= max

u≤1

∣∣∣B(u) − 2 inf
t≤u

B(t)
∣∣∣ ≤ 3 max |B|,

and it follows as above that

P
{
maxBme ≥ x

} ≤ P
{
max |B| ≥ x/3

} ≤ 4P{N ≥ x/3}. �

PROOF OF LEMMA 3.5. For a standard Gaussian N , we have P{N ≥ c} ≤
1√
2π

1
c
e−c2/2, for all c > 0. Using this bound, Fact A.3 and Brownian scaling, for

each i we obtain

P
{
max
u≤ti

Xi(u) ≥ x
}

≤ 4P
{
N ≥ x

4t
1/2
i

}
≤ 1√

2π

16t
1/2
i

x
e−x2/32ti <

8t
1/2
i

x
e−x2/32ti .

Provided that x ≥ 8T 1/2, a union bound then yields

P
{
max
i≥1

max
u≤ti

Xi(u) ≥ x
}

≤ ∑
i≥1

e−x2/32ti .

Finally, the function f (a) = e−x2/a1[a>0] is convex for a ∈ [0, x2/2], and f (0) =
0, so if x2 ≥ 64T then for each i, f (32ti) ≤ (ti/T )f (32T ). Hence,

P
{
max
i≥1

max
u≤ti

Xi(u) ≥ x
}

≤ e−x2/32T . �

APPENDIX B: PROBABILITY TAIL BOUNDS

We first state a Bernstein-type inequality due to Colin McDiarmid.

THEOREM B.1 ([14], Theorem 2.7). Let X1, . . . ,Xn be independent with
Xk − EXk ≤ 1 for each k. Write Sn = ∑n

k=1 Xk and fix V ≥ Var{Sn} =∑n
k=1 Var{Xi}. Then for any c ≥ 0,

P{Sn ≥ ESn + c} ≤ ec ·
(

V

V + c

)V +c

<

(
eV

c

)c

.

The first inequality is the heart of the theorem; the second is easy and is included
to simplify an application of the theorem. The next lemma provides upper tail
probability estimates for weighted geometric sums.

LEMMA B.2. Fix ε < 1/2 and let (Gi, i ≥ 1) be i.i.d. Geom(1 − ε). For any
n and any nonnegative real numbers r1, . . . , rn with max ri/

∑
ri ≤ 1/V , for all

δ > 0,

P

{
n∑

i=1

riGi ≥ (1 + δ)

n∑
i=1

ri

}
≤ 2

(
21+δεδ)V .
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PROOF. Let Ĝj = Gj − 1 and pj = rj /
∑

i ri . Then we must bound

P

{
n∑

i=1

piĜi ≥ δ

}
,

under the assumption that maxi pi ≤ 1/V . First, note that for c such that εec < 1,

E

[
exp

(
cV ·

n∑
i=1

piĜi

)]
= ∏

i

1 − ε

1 − εecVpi
.

For c > 0, the latter product is maximized (subject to the constraints that maxi pi ≤
1/V and that

∑
i pi = 1) when pi = 1/�V  for �V  values of i and pi = 0 other-

wise. We thus obtain

E

[
exp

(
cV ·

n∑
i=1

piĜi

)]
≤ (1 − ε)�V 

(1 − εec)�V  .

For any nonnegative random variable, P{X > δ} ≤ e−cδV EecV X; taking ec =
(2ε)−1 yields

P

{
n∑

i=1

piĜi ≥ δ

}
≤ e−cδV · (1 − ε)V

(1 − εec)V +1

= 2
(
2(1 − ε)(2ε)δ

)V
< 2

(
21+δεδ)V . �
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