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THE COMPLEXITY OF SPHERICAL p-SPIN MODELS—A SECOND
MOMENT APPROACH1

BY ELIRAN SUBAG

Weizmann Institute of Science

Recently, Auffinger, Ben Arous and Černý initiated the study of critical
points of the Hamiltonian in the spherical pure p-spin spin glass model, and
established connections between those and several notions from the physics
literature. Denoting the number of critical values less than Nu by CrtN(u),
they computed the asymptotics of 1

N
log(ECrtN(u)), as N , the dimension of

the sphere, goes to ∞. We compute the asymptotics of the corresponding sec-
ond moment and show that, for p ≥ 3 and sufficiently negative u, it matches
the first moment:

E
{(

CrtN(u)
)2}

/
(
E
{
CrtN(u)

})2 → 1.

As an immediate consequence we obtain that CrtN(u)/E{CrtN(u)} → 1, in
L2, and thus in probability. For any u for which ECrtN(u) does not tend to 0
we prove that the moments match on an exponential scale.
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1. Introduction. The Hamiltonian of the spherical pure p-spin spin glass
model is given by

HN(σ ) := HN,p(σ )

= 1

N(p−1)/2

N∑
i1,...,ip=1

Ji1,...,ipσi1 · · ·σip , σ ∈ S
N−1(

√
N),

(1.1)

where σ = (σ1, . . . , σN), SN−1(
√

N) � {σ ∈ R
N : ‖σ‖2 = √

N}, and Ji1,...,ip are
i.i.d. standard normal variables. Everywhere in the paper we shall assume that
p ≥ 3.2 The model was introduced by Crisanti and Sommers [21] as a variant of
the Ising p-spin spin glass model. Unlike the Ising p-spin model, defined on the
hypercube, the spherical p-spin model is defined on a continuous space—a prop-
erty they expected to yield a model amenable to different methods of analysis,
while retaining the main features of the original model. A generalization of the
model called the spherical mixed p-spin spin glass model is obtained by setting
the Hamiltonian to be HN(σ ) =∑p≥2 βpHN,p(σ ), with HN,p(σ ) being indepen-
dent pure p-spin models and βp ≥ 0 (such that the sum is defined).

Recently, Auffinger, Ben Arous and Černý [5] suggested studying the critical
points of the Hamiltonian of the spherical pure p-spin model in order to understand
its landscape. Their work was later extended [4] to the mixed case. The main results
of [5] on the complexity of the Hamiltonian for the pure p-spin model are as
follows. Let CrtN(B) denote the number of critical points of HN(σ ) at which
HN(σ )/N lies in a Borel set B ⊂ R [cf. (2.2)]. Use the notation CrtN,k(B) for the
number of such critical points with index k. It was shown in [5] that

lim
N→∞

1

N
log
(
E
{
CrtN

(
(−∞, u)

)})= �p(u),(1.2)

2In the case p = 2, the critical points of HN(σ ) are exactly the points σ ∈ S
N−1(

√
N) which

are eigenvectors of the matrix (Ji1,i2 + Ji2,i1 )
N
i1,i2=1. In particular, there are exactly 2N such points

almost surely.
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lim
N→∞

1

N
log
(
E
{
CrtN,k

(
(−∞, u)

)})= �p,k(u),(1.3)

where �p(u) and �p,k(u) are known nondecreasing functions (cf. Theo-
rem 10). Moreover, with Ek(p) being equal to the unique number satisfying
�p,k(−Ek(p)) = 0,

E0(p) > E1(p) > E2(p) > · · · , and lim
k→∞Ek(p) = E∞(p) � 2

√
p − 1

p
,

and for each k and closed set B ⊂ R such that B and [−Ek(p),−E∞(p)] are
disjoint, P{CrtN,k(B) > 0} decays (at least) exponentially in N . In addition, they
showed that for u < −E∞(p), �p(u) = �p,0(u), which, in particular, implies that
for any ε > 0, with high probability

(1.4) CrtN
((−∞,−E0(p) − ε

))= 0.

The computation of the means is certainly a significant step in the investigation
of the critical points. However, by themselves, the means give very limited informa-
tion on the probabilistic law of the corresponding variables. Essentially, they can
only be used to obtain (by appealing to Markov’s inequality) the upper bounds on
(1.4) stated above. A question that naturally arises is: are the corresponding vari-
ables concentrated around their means? In the general context of spherical mixed
p-spin models, this is not necessarily the case: for a subclass of models termed by
[4] full mixture models, there is a range of levels u, such that the mean number of
critical points in (−∞, u) is exponentially high, while the probability of having a
critical point in (−∞, u) goes to zero (see [4], Corollary 4.1).

Focusing on the pure case and on the number of critical points of general index
CrtN(·), we establish that the answer to the above is positive. This is done, as sug-
gested in [5], page 2, by computing the second moment in addition to the already
known first moment.

THEOREM 1. For any p ≥ 3 and u ∈ (−E0(p),−E∞(p)),

(1.5) lim
N→∞

E{(CrtN((−∞, u)))2}
(E{CrtN((−∞, u))})2 = 1.

As an immediate corollary, we obtain the following.

COROLLARY 2. For any p ≥ 3 and u ∈ (−E0(p),−E∞(p)),

lim
N→∞

CrtN((−∞, u))

E{CrtN((−∞, u))} = 1,

in L2, and thus, also in probability.
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The main motivation for the study of the Gaussian fields HN,p(σ ) is their im-
portance in the physics literature. Nevertheless, the model certainly serves as a
natural setting to investigate a question of pure mathematical interest: what is the
behavior of the critical points of an isotropic random function on a high dimen-
sional manifold? To the best of our knowledge, the corollary above (combined
with the computation of the first moment of [5]) is the first concentration result for
the high dimensional limit.

Computations of moments of the number of critical points were done in other
settings. Closest to our setting are the works of Fyodorov [32, 33] which dealt
with isotropic fields on the sphere S

N and on R
N and the first moment of num-

ber of critical points and its large N asymptotics. Further away, are the works of
Nicolaescu [37–41], Sarnak and Wigman [44], Cammarota, Marinucci and Wig-
man [11, 12], Douglas, Shiffman, and Zelditch [26–28], Baugher [6], and Feng and
Zelditch [30]. Those concerned Gaussian fields on a fixed space and asymptotics
in parameters of different nature than the dimension, for example, ones related to
roughness of the random field by adding functions of higher frequency to a random
expansion. In [11, 12, 37, 39], concentration results were also derived by second
moment computations. Lastly, we mention works on nodal domains of Gaussian
fields. See, for example, Nazarov and Sodin [35, 36] and references therein.

For any u for which E{CrtN((−∞, u))} does not tend to 0, we show that the
moments match on an exponential scale.

THEOREM 3. For any p ≥ 3 and u ∈ (−E0(p),∞),

lim
N→∞

1

N
log
(
E
{(

CrtN
(
(−∞, u)

))2})= 2 lim
N→∞

1

N
log
(
E
{
CrtN

(
(−∞, u)

)})
= 2�p(u),

(1.6)

where �p(u) is given in (3.9).

Connections between the critical points and two important notions from the
physics literature were established in [4, 5]: the Thouless–Anderson–Palmer (TAP)
equations and the free energy. The TAP approach suggests that “pure states” of the
system can be identified with critical points of the so-called TAP functional [50].
One of the main objects of interest in the analysis using this approach is the TAP-
complexity—that is, the logarithm of the number of solutions of the TAP equa-
tions. The TAP-complexity has been extensively studied in the physics literature
in the context of the Sherrington–Kirkpatrick model [3, 10, 15, 18, 23], the Ising
p-spin spin glass model [20, 34, 43] and the spherical p-spin spin glass model [13,
14, 19, 22]. The connection to critical points of the Hamiltonian is based on the ob-
servation of [5] (see Section 6 there for more details) that each critical point of the
Hamiltonian corresponds to exactly two solutions of the TAP equations—meaning
that a study of the critical points is equivalent to a study of the TAP complexity.
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Another interesting link that [4, 5] found is related to the ground state

(1.7) GS∞ = lim
N→∞ GSN � lim

N→∞
1

N
min

σ
HN(σ ).

The limiting free energy F(β) is known to exist and is given by the Parisi for-
mula [21, 42], proved in [16, 48]. The formula expresses F(β) through an intricate
variational problem, which is greatly simplified when one-step replica symmetry
breaking (1-RSB) is known to occur (see [49] for a definition of this terminology).
In Section 4 of their work, [4] define the class of pure-like spherical p-spin models
and prove for it that

(1.8) E0 ≥ −GS∞ = lim
β→∞

1

β
F(β) ≤ lim

β→∞
1

β
F 1RSB(β) = E0,

where F 1RSB(β) is defined to be the free energy obtained from the Parisi formula
under the assumption that 1-RSB occurs.

Therefore, if 1-RSB is exhibited, that is, the second inequality above holds as
equality, then GS∞ = −E0, and the first moment computation (1.2) gives the
ground state. Using the fact that pure spherical p-spin models are known to ex-
hibit 1-RSB ([48], Proposition 2.2), [5] proved that GS∞ = −E0. Note that, since
−E0 ≤ GS∞, in order to prove that GS∞ = −E0 only a corresponding reversed
inequality is needed. In particular, proving that w.h.p. CrtN((−∞,−E0 + ε)) ≥ 1,
for any ε > 0, is sufficient. Corollary 2 implies this, and in fact since HN(σ ) is a
Gaussian field, using concentration inequalities even Theorem 3 is sufficient; see
Appendix D. This gives an alternative derivation of the result of [5] without going
through Parisi’s formula.

Generally, mixed spherical p-spin models do not necessarily exhibit 1-RSB.
But, if we are able to compute second moments and prove (1.6) for some mixture,
then it would follow that GS∞ = −E0 and, by (1.8), that “1-RSB in the zero-
temperature limit” occurs. This will be explored in future work, where we shall
consider part of the mixed case regime.

We finish with a remark about two recent works which build on the concen-
tration result for the critical points which we prove in the current paper. In the
first, Zeitouni and the Subag [47] investigate the extremal point process of critical
points, that is, the point process constructed from critical values in the vicinity of
the global minimum of HN(σ )—and establish its convergence to a Poisson point
process of exponential density. As a corollary, they also obtain that the global
minimum [without normalization, contrary to (1.7)] converges to minus a Gumbel
variable. In the second work, Subag [46] relates the Gibbs measure at low temper-
ature to the critical points and shows that the measure is supported on spherical
“bands” around the deepest minima of HN(σ ), that is, those of which the extremal
process consists. This allows one to derive interesting consequences, for example,
the absence of temperature chaos and precise asymptotics of the free energy.
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In the next section, we introduce notation. In Section 3, we outline the proofs of
Theorems 1 and 3 and state several related auxiliary results. The rest of the paper
is devoted to proofs of the theorems stated above and those auxiliary results. When
stating each of the latter, we will also point out where its proof is given. The proof
of Theorem 3 is given is Section 7. Theorem 1 is proved in Section 8.

2. Notation. For any two points σ , σ ′ on the sphere, define the overlap func-
tion

(2.1) R
(
σ ,σ ′)� 〈σ ,σ ′〉

‖σ‖2‖σ ′‖2
=
∑N

i=1 σiσ
′
i

N
.

Adopting the notation of [5], for any Borel set B ⊂ R, let CN(B) denote the set
of critical points of HN , at which it attains a value in NB = {Nx : x ∈ B}, and
CrtN(B) denote the corresponding number of points:

(2.2) CrtN(B) := ∣∣CN(B)
∣∣ := ∣∣{σ ∈ S

N−1(
√

N)|∇HN(σ ) = 0,HN(σ ) ∈ NB
}∣∣,

where ∇HN(σ ) denotes the gradient of HN(σ ) (relative to the standard differential
structure on the sphere). We will also be concerned with the number of ordered
pairs (σ ,σ ′) ∈ (CN(B))2 with overlap in some range. For any subset IR ⊂ [−1,1],
we define [

CrtN(B, IR)
]
2 � #

{(
σ ,σ ′) ∈ (CN(B)

)2|R(σ ,σ ′) ∈ IR

}
.

Note that E[CrtN(B, IR)]2 is the “contribution” of pairs with R(σ ,σ ′) ∈ IR to the
second moment of CrtN(B) (and that, in particular, when IR = [−1,1], the full
range of the overlap, it is equal to the second moment). In the sequel, we shall
assume that each of B and IR is a finite union of nondegenerate open intervals
in R. In this case, we shall say that B (or IR) is “nice.”

A random matrix XN from the (normalized) N × N Gaussian orthogonal en-
semble, or an N × N GOE matrix, for short, is a real, symmetric matrix such that
all elements are centered Gaussian variables which, up to symmetry, are indepen-
dent with variance given by

E
{
X2

N,ij

}=
{

1/N, i �= j,

2/N, i = j.

Denote the surface area of the N − 1-dimensional unit sphere by

ωN = 2πN/2

�(N/2)
.

Let μ∗ denote the semicircle measure, the density of which with respect to
Lebesgue measure is

(2.3)
dμ∗

dx
= 1

2π

√
4 − x21|x|≤2,
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and define the function (see, e.g., [29], Proposition II.1.2)

	(x) �
∫
R

log |λ − x|dμ∗(λ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2

4
− 1

2
if 0 ≤ |x| ≤ 2,

x2

4
− 1

2

−
[ |x|

4

√
x2 − 4 − log

(√
x2

4
− 1 + |x|

2

)]
if |x| > 2.

(2.4)

Lastly, set

�p(r,u1, u2) � 1 + log(p − 1)

+ 1

2
log
(

1 − r2

1 − r2p−2

)
− 1

2
(u1, u2)

(
�U(r)

)−1
(

u1
u2

)

+ 	

(√
p

p − 1
u1

)
+ 	

(√
p

p − 1
u2

)
,

(2.5)

where �U(r) is defined in (B.1).

3. Outline of proofs and auxiliary results. As in the calculation of the first
moment [5], or in fact any of the moment calculations for critical points mentioned
below Corollary 2, the starting point of our analysis is an application of (a variant
of) the Kac–Rice formula (henceforth, K-R formula). The formula expresses the
expectation of [CrtN(B, IR)]2 as an integral over IR and combined with a study of
certain conditional laws, in particular those of the Hessians of the Hamiltonian at
two different points σ and σ ′, yields the following lemma, proved in Section 4.

LEMMA 4. Let (U1(r),U2(r)) ∼ N(0,�U(r)) [cf. (B.1)] be a Gaussian vec-
tor independent of M̂(i)

N−1(r), i = 1,2, defined in Lemma 13. Let M(i)
N−1(r,U1(r),

U2(r)) be defined by (4.7). Then for any nice B ⊂ R and IR ⊂ (−1,1),

E
{[

CrtN(B, IR)
]
2

}= CN

∫
IR

dr · (G(r)
)NF(r)

×E

{ ∏
i=1,2

∣∣det
(
M(i)

N−1

(
r,U1(r),U2(r)

))∣∣
· 1
{
U1(r),U2(r) ∈ √

NB
}}

,

(3.1)
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where

CN = ωNωN−1

(
(N − 1)(p − 1)

2π

)N−1
, G(r) =

(
1 − r2

1 − r2p−2

) 1
2
,

F(r) = (G(r)
)−3(1 − r2p−2)− 1

2
(
1 − (prp − (p − 1)rp−2)2)− 1

2 .

(3.2)

The analysis of the ratio of the second to first moment squared splits into two
parts—analysis of the asymptotics on the exponential scale and a refinement to
O(1) scale. We shall now discuss the first part. Lemma 13 implies that the (corre-
lated) random matrices M(i)

N−1(r,U1(r),U2(r)) satisfy, in distribution,⎛⎝M(1)
N−1

(
r,U1(r),U2(r)

)
M(2)

N−1

(
r,U1(r),U2(r)

)
⎞⎠

=

⎛⎜⎜⎜⎜⎝
X(1)

N−1(r) −
√

1

N − 1

p

p − 1
U1(r)I + E(1)

N−1(r)

X(2)
N−1(r) −

√
1

N − 1

p

p − 1
U2(r)I + E(2)

N−1(r)

⎞⎟⎟⎟⎟⎠ ,

(3.3)

where X(i)
N−1(r) are correlated GOE matrices independent of (U1(r),U2(r)) and

E(i)
N−1(r) are random matrices of rank 2 viewed as perturbations. On the exponen-

tial level, the rank 2 perturbations are easily dealt with by upper bounding their
Hilbert–Schmidt norm (see Lemmas 14 and 15). We remark that in parallel to
the above, in the computation of the first moment of [5] the determinant of a single
shifted GOE matrix appears in the corresponding K-R formula. There, a certain al-
gebraic identity related to the density of the eigenvalues of a GOE matrix, together
with Selberg’s integral formula, is key to the analysis. In our situation, explicit
computations such as Selberg’s formula cannot be used because of the presence
of two correlated GOE matrices. Instead, the main tool we use to upper bound
the product of determinants is the large deviation principle (LDP) satisfied by the
empirical measure of eigenvalues proved in [8], Theorem 2.1.1 (see Theorem 28).
Of course, 1

N
log of the absolute value of the determinant is a linear statistic of the

eigenvalues λi , namely, it is equal to 1
N

∑
log |λi |. Combining this with the LDP,

Varadhan’s integral lemma ([25], Theorem 4.3.1, Exercise 4.3.11), and a trunca-
tion argument (to control extremely large or close to 0 eigenvalues), we derive the
following theorem in Section 5. We stress that the fact that the LDP is at speed N2

in contrast to all other quantities involved in the problem, which decay or grow
exponentially with N , is crucial to the proof.

THEOREM 5. For any nice B ⊂ R and nice IR ⊂ (−1,1),

(3.4) lim sup
N→∞

1

N
log
(
E
{[

CrtN(B, IR)
]
2

})≤ sup
r∈IR

sup
ui∈B

�p(r, u1, u2).
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Note that the terms involving 	 in the definition of �p(r,u1, u2) can be iden-
tified as the contribution from 1

N
log of the absolute value of the determinants,

whose asymptotic behavior is expressed in terms of the semicircle law, and that
the quadratic form in u1 and u2 corresponds to the joint Gaussian density of U1(r)

and U2(r). In order to prove Theorem 3, we need to identify the points at which
the supremum above is attained. The following lemma, proved in Section 6, gives
sufficient conditions allowing to restrict attention to points satisfying u1 = u2.

LEMMA 6. Defining �p(r,u) � �p(r,u,u) we have the following:

(i) For nice B ⊂ (−∞,−E∞(p)), for any r ∈ (−1,1),

sup
ui∈B

�p(r, u1, u2) = sup
u∈B

�p(r, u).

(ii) For nice B that intersect (−E0(p),E0(p)),

lim sup
N→∞

1

N
log
(
E
{[

CrtN
(
B, (−1,1)

)]
2

})≤ sup
r∈(−1,1)

sup
u∈B

�p(r, u).

We complement the above with the following lemma, also proved in Section 6,
which states for which r the maximum is attained [in one point of the proof we
use computer for the numeric evaluation of certain expressions, see the paragraph
following (6.15)].

LEMMA 7. Setting uth(p) �
√

2p−1
p−2 log(p − 1) > E0(p), for fixed u, �u

p(r) �
�p(r,u,u) can be extended to a continuous function �̄u

p(r) on [−1,1], such that:

(i) If |u| < uth(p), then �̄u
p(r) attains its maximum on [−1,1], uniquely, at

r = 0.
(ii) If |u| > uth(p), then �̄u

p(r) is maximal on [−1,1] at any r ∈ {1, (−1)p+1}
and only there.

(iii) If |u| = uth(p), then �̄u
p(r) is maximal on [−1,1] at any r ∈ {0,1, (−1)p+1}

and only there.

Combining Theorem 5 and Lemmas 6 and 7 (and using Theorem 10, which
provides a lower bound for [CrtN(B, (−1,1))]2), we prove Theorem 3 as well as
the following corollary in Section 7.

COROLLARY 8. For any u ∈ (−E0(p),−E∞(p)) and ε > 0,

lim
N→∞

1

N
log
(
E
{(

CrtN
(
(−∞, u)

))2})
= lim

N→∞
1

N
log
(
E
{[

CrtN
(
(−∞, u), (−1,1)

)]
2

})
> lim sup

N→∞
1

N
log
(
E
{[

CrtN
(
(−∞, u), (−1,1) \ (−ε, ε)

)]
2

})
.
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We now move on to discuss the refinement of the asymptotics to O(1) scale, that
is, the proof of Theorem 1. Corollary 8 implies that the contribution of overlaps
outside (−ε, ε) to the second moment of CrtN((−∞, u)) is negligible, assuming
u ∈ (−E0(p),−E∞(p)). By the fact that �p(u) [see (1.2)] is strictly increasing
for u < 0 and the equivalence of moments on exponential scale (i.e., Theorem 3),
we also have that the contribution of levels outside (u − ε,u) to either the first or
second moment is negligible. Thus, relying on the fact that the second moment is
larger than the first squared, in order to prove Theorem 1 it is enough to show that
(see Lemma 20)

(3.5) lim
N→∞

E[CrtN((u − εN,u), (−ρN,ρN))]2

(E{CrtN((u − εN,u))})2 ≤ 1,

for any sequences εN,ρN → 0. Using the formula (3.1) and the corresponding
formula for the first moment derived by [5], one finds that proving (3.5) boils down
to showing that uniformly in ui ∈ (u − εN,u) and r ∈ (−ρN,ρN), as N → ∞,

(3.6)
E{∏2

i=1 |det(M(i)
N−1(r,

√
Nu1,

√
Nu2))|}∏2

i=1 E{det(XN−1 −
√

N
N−1

p
p−1uiI )}

≤ 1 + o(1),

where XN−1 is a GOE matrix.
Recall the equality in distribution (3.3). As we shall see (in Lemma 24), the

perturbations E(i)
N−1(r) are negligible when computing the expectation above, even

on O(1) scale. That is, it is sufficient to prove (3.6) with its numerator replaced
by

(3.7) E

{ 2∏
i=1

∣∣∣∣det
(

X(i)
N−1(r) −

√
N

N − 1

p

p − 1
uiI

)∣∣∣∣
}
,

where X(i)
N−1(r) are the correlated GOE matrices in (3.3). Note that in the setting

of Theorem 1 we assume that u is strictly less than −E∞(p). This exactly means

that the shifts −
√

N
N−1

p
p−1ui are larger than 2 and, therefore, the eigenvalues of

the shifted GOE matrices in (3.7) are bounded away from 0 with high probabil-
ity. This will allow us to apply concentration inequalities of linear statistics of the
eigenvalues to 1

N
log of the product in (3.7) (truncated) and its derivative in ui .

Using the latter, we will relate (3.7) to

wu(r) = E

{ 2∏
i=1

det
(

X(i)
N−1(r) −

√
N

N − 1

p

p − 1
uI

)}
.

We note that with r = 0, X(1)
N−1(0) and X(2)

N−1(0) are i.i.d., so that wu(0) coincides
with the denominator of (3.6) with ui = u. Combining the above, at this point what
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we will need to show in order to conclude (3.6) is that wu(r) = (1+o(1))wu(0) as
N → ∞, uniformly in r ∈ (−ρN,ρN). The key to proving this will be to show that
wu(r) is convex in a power of r and bound the ratio |wu(1)/wu(0)| by a constant
independent of N (see Lemma 25).3

We finish with two remarks about generalizations. First, we note that parts of
the current work generalize to the case of general mixed models. Specifically, by
the same method, and a somewhat more tedious algebra, one can obtain an equiv-
alent of Theorem 5. In the general case, however, the function that replaces �p is
more complicated (mainly due to changes in the conditional law of the Hessians
of the Hamiltonian) and its analysis, albeit just “a matter of calculus,” seems to be
substantially more difficult. (Moreover, from the remark made in the Introduction,
we know that the second moment cannot match the first squared for full mixture
models, which implies that for certain mixed models the function �p achieve its
maximum in the interior of the interval [0,1]. We do not have a characterization
of the mixtures that allow one to carry out the analysis we performed in the pure
p-spin case.)

In another direction, the authors of [4, 5] treat the case of critical points of any
given index. To complete the analysis of the corresponding second moment, note
that the effect of introducing a restriction on the index in (3.1) is simply adding
there the indicator of the corresponding event. By a similar method to that used
in the proof of Theorem 5, this would result in an addition to �p(r,u1, u2) of the
term

lim sup
N→∞

1

N
log
(
P
{(

M(i)
N−1(r,

√
Nu1,

√
Nu2)

)
i=1,2 are of index k

})
,

and would require both analyzing the probability above and the modified function
�p(r,u1, u2) in order to obtain an upper bound on the logarithmic asymptotics
of the second moment of the number of critical points of index k. We have not
attempted to complete this computation. We remark, however, that for the study
of the Gibbs measure at low enough temperature it is sufficient to understand the
critical points with no restriction on the index; see [46]. In fact, only the critical
points close to −NE0(p) play a role in [46] and those are typically local min-
ima (e.g., as follows from bounds on critical points of positive index proved in
[5]).

Lastly, we state two results of [5] that will be needed later.

An integral formula and the logarithmic asymptotics of the first moment. We
shall need the following two results borrowed from [5].

3To be precise, wu(r) is convex in a power of r only on [0,1], and for negative r we will use a
certain relation between wu(r) and wu(−r).
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LEMMA 9 ([5], Lemmas 3.1, 3.2). For all p ≥ 3,

E
{
CrtN

(
(−∞, u)

)}
= ωN

(
p − 1

2π
(N − 1)

)N−1
2

×E

{∣∣∣∣det
(

MN−1 −
√

p

p − 1

1

N − 1
UI

)∣∣∣∣1{U <
√

Nu}
}
,

(3.8)

where MN−1 is a GOE matrix of dimension N − 1 × N − 1 independent of U ∼
N(0,1).

THEOREM 10 ([5], Theorem 2.8). For all p ≥ 3,

lim
N→∞

1

N
log
(
E
{
CrtN

(
(−∞, u)

)})

= �p(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2
+ 1

2
log(p − 1) − u2

2
+ 	

(√
p

p − 1
u

)
if u < 0,

1

2
log(p − 1) if u ≥ 0.

(3.9)

4. Proof of Lemma 4. This section is devoted to the proof of Lemma 4. Let
fN(σ ) be equal to HN(σ ) reparametrized and normalized to be a Gaussian field
on

S = S
N−1 = {σ ∈ R

N : ‖σ‖2 = 1
}

with constant variance 1,

(4.1) fN(σ ) = fN,p(σ ) = 1√
N

HN,p(
√

Nσ ).

The covariance of fN(σ ) is given by

E
{
fN(σ ), fN

(
σ ′)}= 〈σ ,σ ′〉p,

where 〈σ ,σ ′〉 =∑N
i=1 σiσ

′
i is the usual inner product.

Note that

CrtN(B) = CrtfN(B)

� #
{
σ ∈ S

N−1|∇fN(σ ) = 0, fN(σ ) ∈ √
NB
}
,[

CrtN(B, IR)
]
2 = [CrtfN(B, IR)

]
2

� #
{(

σ ,σ ′) ∈ (SN−1)2|〈σ ,σ ′〉 ∈ IR, . . .

∇fN(σ ) = ∇fN

(
σ ′)= 0,

fN(σ ) ∈ √
NB,fN

(
σ ′) ∈ √

NB
}
.

(4.2)
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Endow the sphere S
N−1 with the standard Riemannian structure, induced by

the Euclidean Riemannian metric on R
N . Given a (piecewise) smooth orthonormal

frame field E = (Ei)
N−1
i=1 on S

N−1, we define

(4.3) ∇fN(σ ) = (EifN(σ )
)N−1
i=1 , ∇2fN(σ ) = (EiEjfN(σ )

)N−1
i,j=1.

LEMMA 11. Let E = (Ei)
N−1
i=1 be an arbitrary (piecewise) smooth orthonor-

mal frame field on S
N−1 and use the notation (4.3). For any nice B ⊂ R and nice

IR ⊂ (−1,1),

E
{[

CrtN(B, IR)
]
2

}
= ωNωN−1

(
(N − 1)p(p − 1)

)N−1
∫
IR

dr · (1 − r2)N−3
2

× ϕ∇f (n),∇f (σ (r))(0,0)

×E

{∣∣∣∣det
( ∇2f (n)√

(N − 1)p(p − 1)

)∣∣∣∣ · ∣∣∣∣det
( ∇2f (σ (r))√

(N − 1)p(p − 1)

)∣∣∣∣
× 1
{
f (n), f

(
σ (r)

) ∈ √
NB
}|∇f (n) = ∇f

(
σ (r)

)= 0
}
,

(4.4)

where ϕ∇f (σ ),∇f (σ ′) is the joint density of the gradients ∇f (σ ) and ∇f (σ ′), and
where

(4.5) σ (r) = (0, . . . ,0,

√
1 − r2, r

)
.

The proof of Lemma 11 is deferred to the end of the section. Clearly, the
left-hand side of (4.4) is independent of the choice of the orthonormal frame E.
Thus, as a corresponding continuous Radon–Nikodym derivative, the integrand
in the right-hand side is also independent of E. Therefore, Lemma 4 follows from
Lemma 11, combined with Lemmas 12 and 13 given below. Their computationally
heavy proof is given in Appendix B.

LEMMA 12 (The density of the gradients and the conditional law of
(f (n), f (σ (r)))). For any r ∈ (−1,1), there exists a choice of E = (Ei)

N−1
i=1

such that the following holds. The density of (∇f (n),∇f (σ (r))) at (0,0) ∈
R

N−1 ×R
N−1 is

ϕ∇f (n),∇f (σ (r))(0,0)

= (2πp)−(N−1)[1 − r2p−2]−N−2
2
[
1 − (prp − (p − 1)rp−2)2]− 1

2 ,
(4.6)

and conditional on (∇f (n),∇f (σ (r))) = (0,0), the vector (f (n), f (σ (r))) is a
centered Gaussian vector with covariance matrix �U(r) [cf. (B.1)].
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LEMMA 13 (The conditional law of the Hessians). For any r ∈ (−1,1), with
the same choice of E = (Ei)

N−1
i=1 as in Lemma 12, the following holds. Conditional

on f (n) = u1, f (σ (r)) = u2, ∇f (n) = ∇f (σ (r)) = 0, the random variable( ∇2f (n)√
(N − 1)p(p − 1)

,
∇2f (σ (r))√

(N − 1)p(p − 1)

)
has the same law as (

M(1)
N−1(r, u1, u2),M(2)

N−1(r, u1, u2)
)
,

where

M(i)
N−1(r, u1, u2) = M̂(i)

N−1(r) −
√

1

N − 1

p

p − 1
uiI

+ mi(r, u1, u2)√
(N − 1)p(p − 1)

eN−1,N−1,

(4.7)

eN−1,N−1 is an N − 1 × N − 1 matrix whose N − 1,N − 1 entry is equal to 1
and all other entries are 0, mi is given in (B.4), and M̂(1)

N−1(r) and M̂(2)
N−1(r) are

N − 1 × N − 1 Gaussian random matrices with block structure

M̂(i)
N−1(r) =

⎛⎝ Ĝ(i)
N−2(r) Z(i)(r)(

Z(i)(r)
)T

Q(i)(r)

⎞⎠ ,(4.8)

satisfying the following:

(i) The random elements (Ĝ(1)
N−2(r), Ĝ(2)

N−2(r)), (Z(1)(r),Z(2)(r)) and
(Q(1)(r),Q(2)(r)) are independent.

(ii) The matrices Ĝ(i)(r) = Ĝ(i)
N−2(r) are N −2×N −2 random matrices such

that
√

N−1
N−2 Ĝ(i)(r) is a GOE matrix and, in distribution,

(
Ĝ(1)(r)

Ĝ(2)(r)

)
=
⎛⎝
√

1 − |r|p−2Ḡ(1) + (sgn(r)
)p√|r|p−2Ḡ√

1 − |r|p−2Ḡ(2) +
√

|r|p−2Ḡ

⎞⎠ ,

where Ḡ = ḠN−2, Ḡ(1) = Ḡ(1)
N−2 and Ḡ(2) = Ḡ(2)

N−2 are independent and have the

same law as Ĝ(i)(r).
(iii) The column vectors Z(i)(r) = (Z

(i)
j (r))N−2

j=1 are Gaussian such that for any

j ≤ N − 2, (Z
(1)
j (r),Z

(2)
j (r)) is independent of all the other elements of the two

vectors and (
Z

(1)
j (r),Z

(2)
j (r)

)∼ N
(
0,
(
(N − 1)p(p − 1)

)−1 · �Z(r)
)
,

where �Z(r) is given in (B.3).
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(iv) Lastly, Q(i)(r) are Gaussian random variables with(
Q(1)(r),Q(2)(r)

)∼ N
(
0,
(
(N − 1)p(p − 1)

)−1 · �Q(r)
)
,

where �Q(r) is given in (B.3).

4.1. Proof of Lemma 11. First, note that from additivity it is enough to prove
the lemma under the assumption that IR is an open interval. By the monotone
convergence theorem, we may also assume that the closure of IR is contained in
(−1,1). Defining

(4.9) S2
N(IR) �

{(
σ ,σ ′) ∈ (SN−1)2|〈σ ,σ ′〉 ∈ IR

}
,

we have [
CrtN(B, IR)

]
2 = #

{(
σ ,σ ′) ∈ S2

N(IR)|∇fN(σ ) = ∇fN

(
σ ′)= 0,

fN(σ ), fN

(
σ ′) ∈ √

NB
}
.

(4.10)

Consider the (R2(N−1)-valued) Gaussian field

(4.11)
(∇fN(σ ),∇fN

(
σ ′)),

defined on the [2(N − 1)-dimensional] submanifold S2
N(IR) (with boundary).

We are interested in the mean number of points in S2
N(IR) for which the field

(4.11) satisfies the condition in the definition of (4.10). This fits the setting of
the variant of the K-R theorem given in [1], Theorem 12.1.1. The latter requires
several regularity conditions to hold, which we prove in Appendix C. From [1],
Theorem 12.1.1, and an argument along the lines of [1], Section 11.5, we have
that

E
{[

CrtN(B, IR)
]
2

}=
∫
SN−1

dσ

∫
{σ ′∈SN−1:〈σ ,σ ′〉∈IR}

dσ ′ϕ∇f (σ ),∇f (σ ′)(0,0)

×E
{∣∣det∇2f (σ )

∣∣∣∣det∇2f
(
σ ′)∣∣

× 1
{
f (σ ), f

(
σ ′) ∈ √

NB
}|∇f (σ ) = ∇f

(
σ ′)= 0

}
,

where dσ denotes the usual surface area on S
N−1.

Denote the north pole n � (0,0, . . . ,0,1) ∈ S
N−1. By symmetry, the inner in-

tegral is independent of σ . Thus, above we can set σ = n, remove the integration
over σ and multiply by a factor of ωN . Now, note that with σ = n, the integrand
depends on σ ′ only through the overlap ρ(σ ′) = 〈n,σ ′〉. Thus, we can use the
co-area formula with the function ρ(σ ′) to express the second integral as a one-
dimensional integral over a parameter r [the volume of the inverse-image ρ−1(r)

and the inverse of the Jacobian are given by ωN−1(1 − r2)
N−2

2 and (1 − r2)− 1
2 ,

resp.]. Doing so yields (4.4), and completes the proof. �
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5. Proof of Theorem 5. This section is dedicated to the proof of Theorem 5.
For this, we shall need the three lemmas below, which are proved in the following
subsections. Throughout the section, we use the following notation. Let

(5.1)
(
U1(r),U2(r)

)∼ N
(
0,�U(r)

)
[cf. (B.1)] be a Gaussian vector independent of all other variables and set

(5.2) Ūi(r) =
√

1

N − 1

p

p − 1
Ui(r).

Also, let G(i)
N−2(r) be the upper-left N − 2 × N − 2 submatrix of M(i)

N−1(r) :=
M(i)

N−1(r,U1(r),U2(r)) (cf. Lemma 13). With Ĝ(i)
N−2(r) as defined in (4.8), we

have

(5.3) G(i)
N−2(r) � Ĝ(i)

N−2(r) − Ūi(r)I.

Set

Wi(r) = Wi,N(r)

�
(

2
N−2∑
j=1

((
M(i)

N−1(r)
)
j,N−1

)2 + ((M(i)
N−1(r)

)
N−1,N−1

)2)1/2

.
(5.4)

For any κ > ε > 0, define

hε(x) = max{ε, x},
and

(5.5) hκ
ε (x) =

⎧⎪⎪⎨⎪⎪⎩
ε if x < ε,

x if x ∈ [ε, κ],
1 if x > κ,

and h∞
κ (x) =

{
1 if x ≤ κ,

x if x > κ,

so that hκ
ε (x)h∞

κ (x) = hε(x). Lastly, define

logκ
ε (x) = log

(
hκ

ε (x)
)
.(5.6)

For a real symmetric matrix A, let λj (A) denote the eigenvalues of A.

The following bounds the determinant of M(i)
N−1(r) in terms of the eigenvalues

of G(i)
N−2(r), up to a multiplicative error term depending only on the last column

and row of M(i)
N−1(r).

LEMMA 14. Under the notation of Lemma 13, for any ε > 0, r ∈ (−1,1),
almost surely,

∣∣det
(
M(i)

N−1

(
r,U1(r),U2(r)

))∣∣≤ Wi(r)(Wi(r) + ε)

ε

N−2∏
j=1

hε

(∣∣λj

(
G(i)

N−2(r)
)∣∣).
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We shall need the following bound on Wi(r).

LEMMA 15. There exists a bounded function v(r) : (−1,1) →R for which

lim
δ↘0

v(1 − δ)

δ
and lim

δ↘0

v(δ − 1)

δ

exist and are finite, such that for any natural m, the nonnegative random variables
Wi(r) satisfy for large enough N

E
{(

Wi(r)
)2m}≤ vm(r).

The following bounds, which are uniform in r , are the last ingredient we need
for proving Theorem 5.

LEMMA 16. For any q > 0 and nice set B , the following hold:

(i) For any ε > 0 and κ > max{ε,1}, there exists a constant c = c(ε, κ) > 0,
such that for large enough N , uniformly in r ∈ (−1,1),

E

{ ∏
i=1,2

N−2∏
j=1

(
hκ

ε

(∣∣λj

(
G(i)

N−2(r)
)∣∣))q · 1

{
U1(r),U2(r) ∈ √

NB
}}

≤ exp
{−cN2}

+E

{
exp
{ ∑

i=1,2

qN

∫
logκ

ε

(|λ − Ūi |)dμ∗ + 2qεN

}

· 1
{
U1(r),U2(r) ∈ √

NB
}}

,

(5.7)

where μ∗ is the semicircle law, given in (2.3).
(ii) For large enough κ > 0, uniformly in r ∈ (−1,1),

(5.8) E

{ ∏
i=1,2

N−2∏
j=1

(
h∞

κ

(∣∣λj

(
G(i)

N−2(r)
)∣∣))q}≤ 2.

5.1. Proof of Lemma 14. Let Ṁ(i)
N−1(r) denote the matrix obtained from

M(i)
N−1(r) by replacing all entries in the last row and column by 0. The eigen-

values of Ṁ(i)
N−1(r) are the same as those of G(i)

N−2(r), with an extra eigenvalue
equal to 0. For a general symmetric matrix A,

∑
i,j A2

i,j =∑j λ2
j (A). Thus,∑

j

λ2
j

(
M(i)

N−1(r) − Ṁ(i)
N−1(r)

)= W 2
i (r).
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Hence, the absolute value of any eigenvalue of M(i)
N−1(r) − Ṁ(i)

N−1(r) is bounded

by Wi(r). Note that M(i)
N−1(r) − Ṁ(i)

N−1(r) has rank 2 at most and, therefore, has
at most 2 nonzero eigenvalues. By an application of Corollary 29, we have that,
almost surely,

∣∣det
(
M(i)

N−1(r)
)∣∣≤ Wi(r)(Wi(r) + Ti(r))

Ti(r)

N−2∏
j=1

∣∣λj

(
G(i)

N−2(r)
)∣∣,

where Ti(r) is the minimal absolute value of an eigenvalue of G(i)
N−2(r). The

lemma follows from this. �

5.2. Proof of Lemma 15. From symmetry, it is enough to prove the lemma
with i = 1. From Lemma 13, it follows that the law of M(1)

N−1(r) is the same as the
law of

(5.9)
∇2f (n)√

(N − 1)p(p − 1)

conditional on

(5.10) ∇f (n) = ∇f
(
σ (r)

)= 0

[where σ (r) is given in (4.5)]. We emphasize that here the conditioning is only on
the gradient at the two points and not on the values of the Hamiltonian. The covari-
ance structure of the Gaussian matrix ∇2f (n), conditional on (5.10), is computed
in Section B.1. In particular, it is given by (B.5), in which Cov∇f denotes the con-
ditional covariance. In particular, we have that (W1(r))

2 is identical in distribution
to

2
Cov∇f {E1EN−1f (n),E1EN−1f (n)}

(N − 1)p(p − 1)

N−2∑
i=1

X2
i

+ Cov∇f {EN−1EN−1f (n),EN−1EN−1f (n)}
(N − 1)p(p − 1)

X2
N−1,

where the covariances are as in (B.5) and Xi are i.i.d. standard Gaussian variables
and where we used the fact that the conditional variance of EiEN−1f (n) is iden-
tical for all i ≤ N − 2.

Setting

v̄(r) = 2(N − 1)p(p − 1)

· max
i∈{1,N−1}

{
Cov∇f

{
EiEN−1f (n),EiEN−1f (n)

}}
,

(5.11)

by straightforward algebra, using (B.5), we have that

lim
ε↘0

v̄(1 − ε)

ε
and lim

ε↘0

v̄(ε − 1)

ε

exist and are finite, and that v̄(r) is a bounded function on (−1,1).
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Since W1(r) is stochastically dominated by√√√√ v̄(r)

p(p − 1)

1

N − 1

N−1∑
i=1

X2
i ,

we conclude that

E
{(

W1(r)
)2m}≤

(
v̄(r)

(N − 1)p(p − 1)

)m

E

{(
N−1∑
i=1

X2
i

)m}
.

Since
∑N−1

i=1 X2
i is a chi-squared variable of N − 1 degrees of freedom (cf. [45],

page 13),

E

{(
N−1∑
i=1

X2
i

)m}
= (N − 1)(N + 1) · · · (N − 3 + 2m).

The lemma follows from this. �

5.3. Proof of Lemma 16. Note that

E

{ ∏
i=1,2

N−2∏
j=1

(
hκ

ε

(∣∣λj

(
G(i)

N−2(r)
)∣∣))q · 1

{
Ui(r) ∈ √

NB
}}

= E

{ ∏
i=1,2

exp

{
q

N−2∑
j=1

logκ
ε

(∣∣λj

(
Ĝ(i)

N−2(r)
)− Ūi(r)

∣∣)}

· 1
{
Ui(r) ∈ √

NB
}}

= E

{ ∏
i=1,2

exp
{
q(N − 2)

∫
logκ

ε

(∣∣λ − Ūi(r)
∣∣)dL

(i)
N−2(λ)

}

· 1
{
Ui(r) ∈ √

NB
}}

,

(5.12)

where L
(i)
r,N−2 is the empirical measure of eigenvalues of Ĝ(i)

N−2(r) [cf. (A.1)].
The function logκ

ε (| · − x|) is bounded and Lipschitz continuous, with the same
bound and Lipschitz constant for all x ∈ R. Thus, there exists cε,κ > 0 such that
(cf. Appendix A)

Aε �
⋃

i=1,2

⋃
x∈R

{∫
logκ

ε

(|λ − x|)d(L(i)
r,N−2 − μ∗)> ε

}

⊂ ⋃
i=1,2

{
dLU
(
μ∗,L(i)

r,N−2

)
> cε,κ

}
.

(5.13)
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Since logκ
ε is bounded from above by log(κ) and since on Ac

ε ,∫
logκ

ε

(|λ − x|)dL
(i)
r,N−2(λ) ≤

∫
logκ

ε

(|λ − x|)dμ∗(λ) + ε,

with

S(r,μ1,μ2) � exp
{
q(N − 2)

∑
i=1,2

∫
logκ

ε

(∣∣λ − Ūi(r)
∣∣)dμi

}
,

FN(r) �
{
U1(r),U2(r) ∈ √

NB
}
,

we have

E
{
S
(
r,L

(1)
r,N−2,L

(2)
r,N−2

)
1FN(r)

}= E
{
S
(
r,L

(1)
r,N−2,L

(2)
r,N−2

) · 1Ac
ε
1FN(r)

}
+E
{
S
(
r,L

(1)
r,N−2,L

(2)
r,N−2

) · 1Aε1FN(r)

}
≤ exp{2qεN} ·E{S(r,μ∗,μ∗)1FN(r)

}
+ exp

{
2q log(κ)N

} · P{Aε}.

(5.14)

From Theorem 28 and (5.13), setting

c′
ε,κ = 1

2
inf

μ∈(B(μ∗,cε,κ ε))c
J (μ) > 0

(where positivity follows from the fact that J is a good rate function with unique
minimizer), one obtains for large enough N ,

(5.15) P{Aε} ≤ 2 exp
{−c′

ε,κN2}.
Combining (5.12), (5.14) and (5.15), we obtain, for large enough N ,

E

{ ∏
i=1,2

N−2∏
j=1

(
hκ

ε

(∣∣λj

(
G(i)

N−2(r)
)∣∣))q · 1

{
U1(r),U2(r) ∈ √

NB
}}

≤ exp{2qεN}

×E

{ ∏
i=1,2

exp
{
qN

∫
logκ

ε

(∣∣λ − Ūi(r)
∣∣)dμ∗

}
· 1
{
Ui(r) ∈ √

NB
}}

+ 2 exp
{
2q log(κ)N

}
exp
{−c′

ε,κN2},
from which part (i) follows.

Define

�(r) = �N(r) � max
i=1,2

j≤N−2

∣∣λj

(
G(i)

N−2(r)
)∣∣.

From a union bound and (5.3),

(5.16) P
{
�(r) > t

}≤ ∑
i=1,2

(
P

{
max

j≤N−2

∣∣λj

(
Ĝ(i)

N−2(r)
)∣∣> t/2

}
+ P
{
Ūi(r) > t/2

})
.
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It is easy to verify that the variance of Ui(r) is bounded by 1, uniformly

in r ∈ (−1,1). Recall that
√

N−1
N−2 Ĝ(i)

N−2(r) is a GOE matrix. Thus, from (5.16)
and Lemma 26, there exists a constant c̃ > 0 such that for large enough t and
any N ,

P
{
�(r) > t

}≤
√

c̃N

2π
e− 1

2 c̃t2N.

Let �0 ∼ N(0, (c̃N)−1). For large enough κ > 0 and any N ,

E

{ ∏
i=1,2

N−2∏
j=1

(
h∞

κ

(∣∣λj

(
G(i)

N−2(r)
)∣∣))q}

≤ P
{
�(r) ≤ κ

}+E
{(

�(r)
)2qN1

{
�(r) > κ

}}
≤ 1 +E

{
�

2qN
0 1{�0 > κ}}.

(5.17)

From the Cauchy–Schwarz inequality,

E
{
�

2qN
0 1{�0 > κ}}≤ [E{�4qN

0

}
P{�0 > κ}]1/2

≤ exp
{
−N

(
c̃κ2

4
− cq

)}
,

for some cq . Finally, taking κ to be large enough, this together with (5.17) yields
(5.8). �

5.4. Proof of Theorem 5. Let κ > ε > 0, let 2 ≤ m ∈ N and set q = q(m) =
m/(m − 1). From Lemma 14, the fact that hκ

ε (x)h∞
κ (x) = hε(x) and Hölder’s

inequality,

E

{ ∏
i=1,2

∣∣det
(
M(i)

N−1(r)
)∣∣ · 1

{
Ui(r) ∈ √

NB
}}

≤ (E (1)
ε,κ (r)

)1/q(E (2)
ε,κ (r)

)1/2m(E (3)
ε,κ (r)

)1/4m
,

(5.18)

where

E (1)
ε,κ (r) = E

{ ∏
i=1,2

N−2∏
j=1

(
hκ

ε

(∣∣λj

(
G(i)

N−2(r)
)∣∣))q · 1

{
Ui(r) ∈ √

NB
}}

,

E (2)
ε,κ (r) = E

{ ∏
i=1,2

N−2∏
j=1

(
h∞

κ

(∣∣λj

(
G(i)

N−2(r)
)∣∣))2m

}
,

E (3)
ε,κ (r) = E

{(
W1(r)(W1(r) + ε)

ε

)4m}
E

{(
W2(r)(W2(r) + ε)

ε

)4m}
.

(5.19)
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Substituting this in (3.1) and using Hölder’s inequality yields

E
{[

CrtN(B, IR)
]
2

}≤ CN

[∫
IR

(
G(r)

)qNE (1)
ε,κ (r) dr

]1/q

×
[∫

IR

(
F(r)

)m(E (2)
ε,κ (r)

)1/2(E (3)
ε,κ (r)

)1/4
dr

]1/m

,

where CN , F(r), and G(r) are given in (3.2).
Therefore,

lim sup
N→∞

1

N
log
(
E
{[

CrtN(B, IR)
]
2

})
≤ lim sup

N→∞
1

N
log(CN) + lim sup

N→∞
1

qN
log
(∫

IR

(
G(r)

)qNE (1)
ε,κ (r) dr

)

+ lim sup
N→∞

1

mN
log
(∫

IR

(
F(r)

)m(E (2)
ε,κ (r)

)1/2(E (3)
ε,κ (r)

)1/4
dr

)
.

(5.20)

The first summand is equal to

1 + log(p − 1).

One has that F(r) is bounded on any interval (−r0, r0) with 0 < r0 < 1, and
that the limits

lim
δ↘0

δF(1 − δ) and lim
δ↘0

δF(δ − 1)

exist and are finite. Using Lemma 15, we therefore have that(
F(r)

)m(E (3)
ε,κ (r)

)1/4

is a bounded function of r on (−1,1). Thus, from part (ii) of Lemma 16, for κ

large enough the third summand of (5.20) is equal to 0.
Lastly, we need to analyze the second summand. To do so, we use part (i) of

Lemma 16 and Varadhan’s integral lemma ([25], Theorem 4.3.1, Exercise 4.3.11).
Define

	κ
ε (x) �

∫
R

logκ
ε

(|λ − x|)dμ∗(λ), γp �
√

p

p − 1
.

Note that, for (Ũ1, Ũ2) ∼ N(0, I2×2),(
U1(r),U2(r)

) d= (Ũ1, Ũ2) · (�U(r)
)1/2

.

Let ei , i = 1,2, denote the standard basis of R2, taken as 2 × 1 column vectors; so
that (t1, t2)ei = ti . Lastly, define

T (B) �
{
(r, ũ1, ũ2) : r ∈ (−r0, r0), (ũ1, ũ2) · (�U(r)

)1/2 ∈ B × B
}
.
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Using part (i) of Lemma 16, we obtain that, for large N , assuming κ > 1, for
some constant c > 0,∫ r0

−r0

(
G(r)

)qNE (1)
ε,κ (r) dr − exp

{−cN2}
≤ e2qεN

∫ r0

−r0

(
G(r)

)qN
E

{ ∏
i=1,2

exp
{
qN	κ

ε

(
Ūi(r)

)}
· 1
{
Ui(r)√

N
∈ B

}}
dr

= 2r0e
2qεN

E

{
exp
{
qN · φκ

ε

(
R,

Ũ1√
N

,
Ũ2√
N

)}

· 1
{(

R,
Ũ1√
N

,
Ũ2√
N

)
∈ T (B)

}}
� 2r0e

2qεNζε,κ,N ,

(5.21)

where R is independent of Ũ1, Ũ1 and is uniformly distributed in (−r0, r0), and
where

φκ
ε (r, ū1, ū2) � log

(
G(r)

)+ ∑
i=1,2

	κ
ε

(
γp(ũ1, ũ2) · (�U(R)

)1/2 · ei

)
.

Note that φκ
ε is a continuous function on (−1,1) ×R ×R. Since G(r) ∈ (0,1)

and 	κ
ε is bounded from above by logκ , for any q ′ > 0,

lim sup
N→∞

1

N
log
(
E

{
exp
{
q ′N · φκ

ε

(
R,

Ũ1√
N

,
Ũ2√
N

)}})
≤ 2q ′ logκ.

The random variable (R, Ũ1√
N

, Ũ2√
N

) satisfies the LDP with the good rate function

J0(r, ũ1, ũ2) = ũ2
1

2
+ ũ2

2

2
.

Therefore, from Varadhan’s integral lemma ([25], Theorem 4.3.1, Exer-
cise 4.3.11) combined with (5.21),

lim sup
N→∞

1

N
log
(∫ r0

−r0

(
G(r)

)qNE (1)
ε,κ (r) dr

)

≤ lim sup
N→∞

1

N
log
(
2r0e

2qεNζε,κ,N

)
≤ 2qε + sup

(r,ũ1,ũ2)∈T (B)

{
qφκ

ε (r, ũ1, ũ2) − ũ2
1

2
− ũ2

2

2

}
.
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Together with our analysis of the two other summands in (5.20), this yields, for
large enough κ ,

lim sup
N→∞

1

N
log
(
E
{[

CrtN(B)
]r0
2

})
≤ 1 + log(p − 1) + 2ε

+ 1

q
sup

(r,ũ1,ũ2)∈T (B)

{
qφκ

ε (r, ũ1, ũ2) − ũ2
1

2
− ũ2

2

2

}
.

(5.22)

Letting m → ∞, which implies that q = q(m) → 1, we obtain (5.22) with q = 1.
By a change of variables,

sup
(r,ũ1,ũ2)∈T (B)

{
φκ

ε (r, ũ1, ũ2) − ũ2
1

2
− ũ2

2

2

}

= sup
r∈(−r0,r0)

sup
u1,u2∈B

{
log
(
G(r)

)+ ∑
i=1,2

	κ
ε (γpui)

− 1

2
(u1, u1)

(
�U(r)

)−1
(u1, u1)

T

}
.

Letting κ → ∞ and then ε → 0 completes the proof. �

6. Proofs of Lemmas 6 and 7. The bound of Theorem 5 is given in terms of
the supremum of �p(r,u1, u2) on the region IR × B × B . In order to complete
the proof of Theorem 3, we need to identify the points at which the supremum is
attained. This is the content of Lemmas 6 and 7, which we prove in this section.
The following simple remark is related to the proof of Lemma 6, and will also be
used in the sequel.

REMARK 17. The bound of Theorem 5 holds for any nice IR ⊂ (−1,1). We
are particularly interested in the case where IR = [−1,1],[

CrtN
(
B, [−1,1])]2 = (CrtN(B)

)2
.

The difference [
CrtN

(
B, [−1,1])]2 − [CrtN

(
B, (−1,1)

)]
2

is simply the number of ordered pairs of points σ = ±σ ′ with HN(σ ),HN(σ ′) ∈
NB . Thus, it is bounded from above by 2 CrtN(B).

Therefore, assuming limN→∞ECrtN(B) = ∞,

(6.1)
E{[CrtN(B, (−1,1))]2}

E{(CrtN(B))2}
N→∞−→ 1.
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6.1. Proof of Lemma 6. We begin with part (i). Fix r ∈ (−1,1). Note that
log(x) is a concave function on (0,∞), and thus 	(x) [defined in (2.4)] is concave
on (−∞,−2). Since �−1

U (r) is positive definite for any r ∈ (−1,1), we conclude

that, for u1, u2 < −2
√

p−1
p

= −E∞(p), the function

(u1, u2) �→ −1

2
(u1, u2)

(
�U(r)

)−1
(

u1
u2

)

+ 	

(√
p

p − 1
u1

)
+ 	

(√
p

p − 1
u2

)(6.2)

is concave.
Let u ∈ R and define

�∗
u(v) = �p(r,u + v,u − v)

= τp,r − 1

2
(u + v,u − v)

(
�U(r)

)−1
(

u + v

u − v

)

+ 	

(√
p

p − 1
(u + v)

)
+ 	

(√
p

p − 1
(u − v)

)
,

where τp,r is a constant depending on p, r .
If u ∈ (−∞,−E∞(p)), then for

v ∈ (E∞(p) + u,−E∞(p) − u
)
� D(u),

the function �∗
u(v) is concave in v [as a restriction of (6.2) to a line in R

2, up to
adding the constant τp,r ]. Moreover, by symmetry,

∂

∂v
�∗

u(0) = 0

and, therefore,

sup
v∈D(u)

�∗
u(v) = �∗

u(0) = �p(r,u,u).

Hence, for nice B ⊂ (−∞,−E∞(p)), since

B × B ⊂ {(u + v,u − v) : u ∈ B,v ∈ D(u)
}
,

we conclude that

sup
ui∈B

�p(r, u1, u2) ≤ sup
u∈B

sup
v∈D(u)

�∗
u(v) = sup

u∈B

�p(r, u,u).

This completes the proof of part (i) of Lemma 6.
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Now, assume that B ⊂ R is nice. Let B1 and B2 be nice disjoint sets whose
union is B . Note that, since x2 + y2 ≥ 2xy, for any x, y ∈ R,[

CrtN
(
B, (−1,1)

)]
2 ≤ (CrtN(B1) + CrtN(B2)

)2
≤ 2
((

CrtN(B1)
)2 + (CrtN(B2)

)2)
.

Note that (see Remark 17)(
CrtN(Bi)

)2 = [CrtN
(
Bi, [−1,1])]2

≤ [CrtN
(
Bi, (−1,1)

)]
2 + 2CrtN(Bi).

Thus, by Theorem 5,

lim sup
N→∞

1

N
log
(
E
{[

CrtN
(
B, (−1,1)

)]
2

})
≤ max

i=1,2

{
sup

r∈(−1,1)

sup
u1,u2∈Bi

�p(r, u1, u2)
}

∨ lim sup
N→∞

1

N
log
(
E
{
CrtN(B)

})
,

(6.3)

where x ∨ y = max{x, y}, for any two numbers x, y.
By applying the same argument iteratively, we obtain that if Bi , i = 1, . . . , n, is

an N -independent partition of B to nice sets, then (6.3) holds with the maximum
taken over all i ≤ n.

Let ε > 0 and choose a partition B1, . . . ,Bn+1,Bn+2 of B such that B1, . . . ,Bn

are intervals that form a partition of B ′ = B ∩ [−E0(p),E0(p)] such that the di-
ameter of Bi is less then ε and such that

Bn+1 = B ∩ (−∞,−E0(p)
)
,

Bn+2 = B ∩ (E0(p),∞).
Then,

lim sup
N→∞

1

N
log
(
E
{[

CrtN
(
B, (−1,1)

)]
2

})
≤ lim sup

N→∞
1

N
log
(
E
{
CrtN(B)

})∨ sup
r∈(−1,1)

sup
u1,u2∈B ′
|u1−u2|<ε

�p(r, u1, u2)

∨ sup
r∈(−1,1)

sup
u1,u2∈Bn+1

�p(r,u1, u2)

∨ sup
r∈(−1,1)

sup
u1,u2∈Bn+2

�p(r,u1, u2).

(6.4)

Since Bn+1 ⊂ (−∞,−E∞(p)), by the first part of the lemma,

(6.5) sup
u1,u2∈Bn+1

�p(r,u1, u2) = sup
u∈Bn+1

�p(r,u,u).

By symmetry of �p(r,u1, u2) in (u1, u2), the same holds with Bn+2.
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By concavity considerations similar to those used in the proof of part (i), for
any u1, u2 ∈ R, setting u = (u1 + u2)/2,

−1

2
(u1, u2)

(
�U(r)

)−1
(

u1
u2

)
≤ −1

2
(u,u)

(
�U(r)

)−1
(

u

u

)
.

Therefore,

�p(r,u1, u2) ≤ �p(r,u,u)

+
∣∣∣∣2	

(√
p

p − 1
u

)
− 	

(√
p

p − 1
u1

)
− 	

(√
p

p − 1
u2

)∣∣∣∣.
The function 	 is uniformly continuous on [−E0(p),E0(p)]. Therefore, for

any u1, u2 such that |u1 − u2| < ε,

�p(r,u1, u2) ≤ �p(r,u,u) + O(ε) as ε → 0.

Therefore,

sup
r∈(−1,1)

sup
u1,u2∈B ′
|u1−u2|<ε

�p(r, u1, u2) ≤ sup
r∈(−1,1)

sup
u∈B ′

�p(r,u,u) + O(ε).

By letting ε → 0, combining the above with (6.5) and the similar equality for
Bn+2, we obtain from (6.4),

lim sup
N→∞

1

N
log
(
E
{[

CrtN
(
B, (−1,1)

)]
2

})
≤ lim sup

N→∞
1

N
log
(
E
{
CrtN(B)

})∨ sup
r∈(−1,1)

sup
u∈B

�p(r, u,u).

(6.6)

Now, assume that B intersects (−E0(p),E0(p)). Since it is nice, the intersec-
tion contains an open interval and by Theorem 10,

lim
N→∞

1

N
log
(
E
{
CrtN(B)

})
> 0.

By Remark 17, it follows that

(6.7) lim sup
N→∞

1

N
log
(
E
{[

CrtN
(
B, (−1,1)

)]
2

})
> lim

N→∞
1

N
log
(
E
{(

CrtN(B)
)})

,

meaning that (6.6) is equal to supr∈(−1,1) supu∈B �p(r, u,u). This completes the
proof of part (ii). �



3412 E. SUBAG

6.2. Proof of Lemma 7. By straightforward algebra,

�u
p(r) = ζp,u + 1

2
log
(

1 − r2

1 − r2p−2

)

− u2 1 − rp + (p − 1)rp−2(1 − r2)

1 − r2p−2 + (p − 1)rp−2(1 − r2)
,

(6.8)

where ζp,u depends only on p and u.
Note that

1 − rp + (p − 1)rp−2(1 − r2)

1 − r2p−2 + (p − 1)rp−2(1 − r2)

= 1 − rp − r2p−2

1 − r2p−2 + (p − 1)rp−2(1 − r2)

(6.9)

and

1 − r2p−2 + (p − 1)rp−2(1 − r2)
= (1 − r2)(p − 1)

(
1 + r2 + · · · + r2p−4

p − 1
+ rp−2

)
.

(6.10)

For any r ∈ (−1,1),

1 + r2 + · · · + r2p−4

p − 1
>
∣∣rp−2∣∣, and thus

1 + r2 + · · · + r2p−4

p − 1
+ rp−2 > 0,

(6.11)

since these are the arithmetic and geometric means of the same nondegenerate,
nonnegative sequence.

That is, the denominator in (6.8) above is positive for r ∈ (−1,1). Hence, in
order to see that �u

p(r) can be continuously extended to [−1,1] all that is need is
to check that the limits at r = ±1 exist. This can be verified using L’Hôpital’s rule.

Moreover, for odd p, (6.9) is less then 1 for r ∈ (0,1) and is greater then 1 for
r ∈ (−1,0). For even p, of course, the expression is symmetric in r . Thus, the
maximum of �̄u

p(r) is achieved on [0,1], and if and only if p is even, then the
maximum can be attained at some r∗ < 0. In that case, it is also attained at −r∗.

Set, for r ∈ [0,1),

(6.12) Qu
p(r) � 1

2
log
(

1 − r2

1 − r2p−2

)
+ u2 rp − r2p−2

1 − r2p−2 + (p − 1)rp−2(1 − r2)

and

Qu
p(1) � lim

r↗1
Qu

p(r) = 1

2
log
(

1

p − 1

)
+ u2 p − 2

4(p − 1)
.
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We conclude that in order to prove the lemma, it is enough to prove it with
�p(r,u) replaced by Qu

p(r), with [−1,1] replaced by [0,1], and with the term
(−1)p+1 removed.

Setting, for r ∈ [0,1),

(6.13) g0(r) � rp − r2p−2

1 − r2p−2 + (p − 1)rp−2(1 − r2)

and

g0(1) � lim
r↗1

g0(r) = p − 2

4(p − 1)
,

we have, for r ∈ (0,1),

(6.14)
d

dr
g0(r) = prp−1 + [p(p − 2)]r3p−3 − (p − 1)(p − 2)r3p−5

(1 − r2p−2 + (p − 1)rp−2(1 − r2))2 > 0.

That is, g0(r) is strictly increasing in r .
We now show that if part (iii) of the lemma holds, the other two follow. Assume

that part (iii) holds. Let u ∈ R such that |u| < uth(p). For any r ∈ (0,1], g0(r) > 0
and

Qu
p(r) < Quth(p)

p (r) ≤ Quth(p)
p (0) = Qu

p(0).

Similarly, let u ∈ R such that |u| > uth(p). For any r ∈ [0,1),

Qu
p(1) = Quth(p)

p (1) + (u2 − u2
th(p)

)
g0(1) ≥ Quth(p)

p (r) + (u2 − u2
th(p)

)
g0(1)

= Qu
p(r) + (u2 − u2

th(p)
)(

g0(1) − g0(r)
)
> Qu

p(r).

All that remains is to prove part (iii). First, we note that

Quth(p)
p (1) = 1

2
log
(

1

p − 1

)
+ 2

p − 1

p − 2
log(p − 1)

p − 2

4(p − 1)

= 0 = Quth(p)
p (0).

(6.15)

We need to show that for any r ∈ (0,1), Q
uth(p)
p (r) < 0. First, we assume that

p ≤ 10. We have that d
dr

Q
uth(p)
p (0) = 0 and d

dr
Q

uth(p)
p (1),− d2

dr2 Q
uth(p)
p (0) > c0 for

some c0 > 0 (c0 and t0, ε0, to be defined soon, can be computed explicitly). By
a Taylor expansion combined with bounds on higher order derivatives, for some
t0 > 0, for any r ∈ (0, t0) ∪ (1 − t0,1), Q

uth(p)
p (r) < 0. By bounding the absolute

value of the derivative d
dr

Q
uth(p)
p (r) on the interval (t0,1 − t0), we have that for

some ε0 > 0, in order to prove that Q
uth(p)
p (r) < 0 for any r ∈ (t0,1 − t0) it is

enough to verify the same only for a finite mesh t0 = r1 < · · · < rk = 1 − t0, with
differences ri+1 − ri that are bounded from above by ε0. We verified the latter
numerically using computer (see also Figure 1).
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FIG. 1. The functions Q
uth(p)
p (r) in the interval [0,1], for 3 ≤ p ≤ 10. For any r , Q

uth(p)
p (r)

decreases in p: Q
uth(p)
p (r) ≥ Q

uth(p+1)
p+1 (r).

We now assume that p > 10. First, suppose also that r ∈ (0,0.65]. By (6.11),

1 − r2p−2

1 − r2 = 1 + (p − 2)r2 1 + r2 + · · · + r2p−6

p − 2

≥ 1 + (p − 2)rp−1.

From the inequality log(1 + x) ≥ x
1+x

, valid for x > 0, we then have, for r ∈
(0,0.65], p ≥ 10,

log
(

1 − r2p−2

1 − r2

)
≥ (p − 2)rp−1

1 + (p − 2)rp−1 ≥ (p − 2)rp−1

1 + 8 · 0.65(−9)
,

where the last inequality follows since (p − 2) · 0.65p−1 is decreasing in p, for
p ≥ 10. In addition, for r ∈ (0,1),

rp − r2p−2

1 − r2p−2 + (p − 1)rp−2(1 − r2)
≤ rp 1 − rp−2

1 − r2p−2 ≤ rp.

Thus, for r ∈ (0,0.65], p ≥ 10,

Quth(p)
p (r) = 1

2
log
(

1 − r2

1 − r2p−2

)
+ (uth(p)

)2 rp − r2p−2

1 − r2p−2 + (p − 1)rp−2(1 − r2)

≤ −1

2

(p − 2)rp−1

1 + 8 · 0.65(−9)
+ (uth(p)

)2
rp

≤ rp−1
{

0.65 · u2
th(p) − (p − 2)

2(1 + 8 · 0.65(−9))

}
� τprp−1 � Q̄p(r).

We have that τ10 < 0 and τp decreases in p, for p ≥ 10. Hence, for r ∈ (0,0.65],
p ≥ 10,

Quth(p)
p (r) < 0 = Quth(p)

p (0).
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Now, assume that r ∈ [0.65,1). From (6.11) and (6.10),

Quth(p)
p (r) ≤ 1

2
log
(

1 − r2

1 − r2p−2

)
+ u2

th(p)
rp − r2p−2

2(p − 1)rp−2(1 − r2)

= 1

2
log
(

1 − r2

1 − r2p−2

)
+ log(p − 1)

p − 2

1 − rp−2

1 − r2 r2 � Q̃p(r).

The derivative of Q̃p(r) by p is given, for r ∈ (0,1), by

d

dp
Q̃p(r) = r2p−2 log r

1 − r2p−2 +
p−2
p−1 − log(p − 1)

p − 2
· 1 − rp−2

(1 − r2)
· r2

+ log(p − 1)

p − 2
· −rp log r

(1 − r2)

≤ r2

(p − 2)(1 − r2)

× [(1 − log(p − 1)
)(

1 − rp−2)− log r · log(p − 1)rp−2].
Therefore, for r ∈ (0,1), d

dp
Q̃p(r) < 0 if

1 − log(p − 1)

log(p − 1)

(
1 − rp−2)− log r < 0.

Since for any r ∈ [0.6,1) and any p ≥ 10, 1−log(p−1)
log(p−1)

decreases in p, (1 − rp−2)

increases in p, and

1 − log(10 − 1)

log(10 − 1)

(
1 − r10−2)− log r < 0,

it follows that d
dp

Q̃p(r) < 0, for any r ∈ [0.6,1) and any p ≥ 10. Thus, if

Q̃10(r) < 0 for all r ∈ [0.6,1), then the same holds for Q
uth(p)
p (r), for any p ≥ 10.

For Q̃10(r), this was verified numerically using a computer using a similar method
to one described above (see also Figure 2). �

7. Proofs of Theorem 3 and Corollary 8. The content of this section is in its
title. Our starting point is the bound of Theorem 3 and the main tools we shall use
are Lemmas 6 and 7.

7.1. Proof of Theorem 3. By Theorem 10, denoting u− = u ∧ 0 = min{u,0},
1

N
log
(
E
{(

CrtN
(
(−∞, u)

))2}) ≥ 1

N
log
((
E
{
CrtN

(
(−∞, u)

)})2)
N→∞−→ 2�N(u−) = �p(0, u−, u−).
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FIG. 2. The function Q̃10(r) in the interval [0,1].

Combining this with (6.1), it follows that what remains to show in order to prove
the theorem is that

(7.1) lim sup
N→∞

1

N
logE

{[
CrtN

(
(−∞, u), (−1,1)

)]
2

}≤ �p(0, u−, u−).

Theorem 5, part (ii) of Lemma 6, Lemma 7, and the fact that �̄v
p(0) is symmetric

in v, yield

lim sup
N→∞

1

N
logE

{[
CrtN

(
(−∞, u), (−1,1)

)]
2

}
≤
(

sup
v∈(−∞,−uth(p))

�̄v
p(1)

)
∨
(

sup
v∈[−uth(p),u−]

�̄v
p(0)

)
.

(7.2)

We note that, for v ≤ 0, �̄v
p(0) = 2�p(v) (cf. Theorem 10). Also, the mono-

tonicity of the left-hand side of (3.9) implies that �p(v) is nondecreasing for v ≤ 0.
Since u ∈ (−E0,∞), the supremum on the right-hand side of (7.2) is positive.
Hence, (7.1) holds if we are able to show that

(7.3) sup
v∈(−∞,−uth(p))

�̄v
p(1) ≤ 0.

By a straightforward calculation,

(7.4)
∂

∂v
�̄v

p(1) = −v(3p − 2)

2(p − 1)
+ 2

√
p

p − 1
	′
(√

p

p − 1
v

)
.

We note that for x < −2,

(7.5) 	′(x) =
∫
(−2,2)

d

dx
log(λ − x)dμ∗(λ) ≥ inf

λ∈(−2,2)

1

x − λ
= 1

x + 2
.

From the above, one can verify that ∂
∂v

�̄v
p(1) ≥ 0 for v ∈ (−∞,−uth(p)).

With v = −uth(p) < −E0(p), by Lemma 7,

�̄v
p(1) = �̄v

p(0) = 2�p(v) < 0.

This proves (7.3) and completes the proof. �
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7.2. Proof of Corollary 8. The equality follows from Remark 17 and the fact
that u > −E0(p).

Let u ∈ (−E0(p),−E∞(p)), let ε > 0 and set Iε = (−1,1) \ (−ε, ε). For arbi-
trary ũ ∈ (−uth(p),u), Theorem 5, Lemma 6 and Lemma 7 yield

lim sup
N→∞

1

N
logE

{[
CrtN

(
(−∞, u), Iε

)]
2

}
≤
(

sup
r∈(−1,1)

sup
u1,u2∈(−∞,ũ)

�p(r, u1, u2)
)

∨
(

sup
r∈Iε

sup
u1,u2∈[ũ,u)

�p(r, u1, u2)
)

(7.6)

≤
(

sup
v∈(−∞,ũ)

�̄v
p(1)

)
∨
(

sup
r∈Iε

sup
v∈[ũ,u)

�p(r, v)
)
.

We note that �p(r, v) is continuous as a function of r at (0, v). In the proof of
Lemma 7, we saw that �p(|r|, v) ≥ �p(r, v), thus

sup
r∈Iε

�p(r, v) = sup
0<r∈Iε

�p(r, v).

From (6.8), (6.9), with g0(r) as defined in (6.13),

�p(0, v) − �p(r, v) = Tr − g0(r)v
2,

where Tr depends only on r . From this and since g0(r) strictly increases in r > 0
[see (6.14)] and g0(0) = 0, we have that, uniformly in v ∈ [ũ, u),

�p(0, v) − sup
0<r∈Iε

�p(r, v)

= �p(0, ũ) − sup
0<r∈Iε

(
�p(r, ũ) − (ũ2 − v2)g0(r)

)
≥ �p(0, ũ) − sup

0<r∈Iε

�p(r, ũ) + (ũ2 − v2) inf
r∈IR

g0(r)(7.7)

≥ �p(0, ũ) − sup
0<r∈Iε

�p(r, ũ)

� cε > 0,

where the last inequality follows from Lemma 7.
Therefore,

(7.8) sup
r∈Iε

sup
v∈[ũ,u)

�p(r, v) ≤ sup
v∈[ũ,u)

�p(0, v) − cε < �p(0, u) = 2�p(u).

Recall that (7.3) holds. Thus, since �p(u) > 0 and �̄v
p(1) is continuous in v,

assuming ũ is close enough to −uth(p),

(7.9) sup
v∈(−∞,ũ)

�̄v
p(1) < 2�p(u).
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Equations (7.6), (7.8) and (7.9) give

lim sup
N→∞

1

N
logE

{[
CrtN

(
(−∞, u), Iε

)]
2

}
< 2�p(u) = lim

N→∞
1

N
logE

{[
CrtN

(
(−∞, u), (−1,1)

)]
2

}
,

where the equality follows from Theorems 3 and 10. �

8. Proof of Theorem 1. The following notation will be used throughout the
section. With X := XN−1 being a GOE matrix of dimension N − 1, setting ū :=
ūN =

√
1

N−1
p

p−1u, we define for any u < −E∞(p),

S(u) =
∫ 1√

p−1
p

λ − u
dμ∗(λ),(8.1)

CN(u) = ωN

(
p − 1

2π
(N − 1)

)N−1
2

√
N

2π
e−N u2

2 E
{
det(X − √

NūI)
}
,(8.2)

where μ∗ denotes the semicircle law (2.3). We note that, as follows from a direct
computation, for u < −E∞(p),

d

du
�p(u) = −(S(u) + u

)
> 0.(8.3)

Below we use the standard big- and little-O notation to describe asymptotic be-
havior as N → ∞. Often, equations will contain several o(a

(i)
N ) terms and will be

said to hold uniformly in some variable (or several), say x ∈ BN . Such statements
are to be understood as follows. The equation holds as an equality with each of the
o(a

(i)
N ) terms replaced by a function h

(i)
N (x) satisfying supx∈BN

|h(i)
N (x)|/|a(i)

N | → 0
as N → ∞.

LEMMA 18. Let u < −E∞(p) and suppose JN = (aN, bN) is an interval such
that aN, bN → u as N → ∞. Then, as N → ∞,

(8.4) E
{
CrtN(JN)

}= (1 + o(1)
)
CN(bN)

∫
JN

exp
{−N

(
u +S(u)

)
(v − bN)

}
dv.

For brevity, we shall use the notation [CrtN(B)]ρ2 � [CrtN(B, (−ρ,ρ))]2 in the
sequel.

LEMMA 19. Let u < −E∞(p) and suppose JN = (aN, bN) is an interval such
that aN, bN → u as N → ∞. Let 0 < ρN be a sequence such that ρN → 0 as
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N → ∞. Then, as N → ∞,

E
{[

CrtN(JN)
]ρN

2

}
≤ (1 + o(1)

)(
CN(bN)

∫
JN

exp
{−N

(
u +S(u)

)
(v − bN)

}
dv

)2
.

(8.5)

LEMMA 20. Let u ∈ (−E0(p),−E∞(p)), ρ ∈ (0,1) and ε > 0. Then

lim
N→∞E

{[
CrtN(u − ε,u)

]ρ
2

}
/E
{(

CrtN
(
(−∞, u)

))2}= 1.

In Section 8.1, we prove Theorem 1 assuming Lemmas 18, 19 and 20. The
proof of Lemma 20 only requires bounds on the exponential scale we have already
proved and will be given in Section 8.2. Lemmas 18 and 19 will be proved in
Sections 8.4 and 8.5 after we prove several auxiliary results in Section 8.3.

8.1. Proof of Theorem 1 assuming Lemmas 18, 19 and 20. From Theorem 10,
Lemma 20 and the fact that �p(u) is strictly increasing for u < −E∞(p) [see
(8.3)], there exist positive sequences εN , ρN such that as N → ∞, εN,ρN → 0
and

lim
N→∞

E{[CrtN(u − εN,u)]ρN

2 }
E{(CrtN((−∞, u)))2} = lim

N→∞
E{CrtN((u − εN,u))}
E{CrtN((−∞, u))} = 1.

By Lemmas 18 and 19,

lim
N→∞

E{[CrtN(u − εN,u)]ρN

2 }
(E{CrtN((u − εN,u))})2 ≤ 1.

For any N ,

E{(CrtN((−∞, u)))2}
(E{CrtN((−∞, u))})2 ≥ 1.

Theorem 1 follows from the above. �

8.2. Proof of Lemma 20. Note that(
CrtN

(
(−∞, u)

))2 − (CrtN
(
(u − ε,u)

))2
= (CrtN

(
(−∞, u − ε]))2 + 2 CrtN

(
(−∞, u − ε])CrtN

(
(u − ε,u)

)
.

By Theorem 3 and the Cauchy–Schwarz inequality,

lim
N→∞

1

N
log
(
E
{(

CrtN
(
(−∞, u)

))2})= 2�p(u),

lim
N→∞

1

N
log
(
E
{(

CrtN
(
(−∞, u − ε]))2})= 2�p(u − ε),

lim sup
N→∞

1

N
log
(
E
{
2CrtN

(
(−∞, u − ε])CrtN

(
(u − ε,u)

)})= �p(u) + �p(u − ε).
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For any u < −E∞(p), by (8.3), �p(u) is strictly increasing and, therefore, the
expressions in the last two lines above are strictly less than 2�p(u). It follows that

lim
N→∞E

{(
CrtN

(
(−∞, u)

))2}
/E
{(

CrtN
(
(u − ε,u)

))2}= 1.

By Remark 17 and the fact that u > −E0(p), also

lim
N→∞E

{[
CrtN(u − ε,u)

]1
2

}
/E
{(

CrtN
(
(u − ε,u)

))2}= 1.

Since[
CrtN

(
(−∞, u), (−1,1) \ (−ρ,ρ)

)]
2 ≥ [CrtN

(
(u − ε,u), (−1,1) \ (−ρ,ρ)

)]
2,

Corollary 8 implies that

lim
N→∞E

{[
CrtN

(
(u − ε,u), (−1,1) \ (−ρ,ρ)

)]
2

}
/E
{[

CrtN(u − ε,u)
]1
2

}= 0,

and completes the proof. �

8.3. Auxiliary results. The expectations in Lemmas 18 and 19 are expressed
by the integral formulas of Lemmas 9 and 4, which by further conditioning on the
value of U and U1(r),U2(r), respectively, can be written as integrals over JN and
JN ×JN . In this section, we prove several auxiliary results that are concerned with
the corresponding integrands.

We now discuss elements in the proofs related to the more involved Lemma 19.
We note that the random matrices M(i)

N−1(r,
√

Nu1,
√

Nu2) which appear in
Lemma 4 satisfy, in distribution,⎛⎝M(1)

N−1(r,
√

Nu1,
√

Nu2)

M(2)
N−1(r,

√
Nu1,

√
Nu2)

⎞⎠=
⎛⎝X(1)

N−1(r) − √
Nū1I + E(1)

N−1

X(2)
N−1(r) − √

Nū2I + E(2)
N−1

⎞⎠ ,

where ūi =
√

1
N−1

p
p−1ui , X(i)

N−1(r) are correlated GOE matrices and E(i)
N−1 :=

E(i)
N−1(r,

√
Nu1,

√
Nu2) are random matrices of rank 2, viewed as perturbations.

We are interested in values of u1 and u2 that are approximately equal to some fixed
u and values of r which are close to 0. In order to prove Lemma 19, we will need
to compute the asymptotics of the ratio of

(8.6)
E

{ ∏
i=1,2

∣∣det
(
M(i)

N−1(r,
√

Nu1,
√

Nu2)
)∣∣} and

(
E
{
det(XN−1 − √

Nb̄NI)
})2

,

where b̄N =
√

p
p−1

1
N−1bN and XN−1 is a GOE matrix. This will be done in

three steps: (1) We will show that the perturbations E(i)
N−1 are negligible, that

is, the expectation on the left-hand side of (8.6) is asymptotically equivalent to
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E
∏

i=1,2 |det(X(i)
N−1(r) − √

NūiI )|; (2) relate the latter expectation to the same

without the absolute value and with ūi = b̄N ; and (3) prove that taking X(i)
N−1(r) to

be independent in the expectation with ūi = b̄N asymptotically does not affect the
expectation.

The first step is dealt with in Lemma 24 where we bound the Hilbert–Schmidt
norms of the perturbations E(i)

N−1 and relate them to the ratio of the perturbed and
unperturbed determinants. The importance of the assumption in Lemma 19 that
u < −E∞(p), is that for large N , we have that −√

Nū > 2, as in the setting of
Lemma 21 below. The fact that the shifts are greater than 2, and thus the corre-
sponding spectra of the shifted GOE matrices are strictly positive, is crucial to
the proof of Lemma 21 since it allows us to use concentration results for linear
statistics of the eigenvalues. The latter will be applied to (uniformly) control the
fluctuation of the corresponding determinants and their derivatives in the shifts (vi

in Lemma 21, which correspond to −√
Nūi above). Other arguments in the proof

of Lemma 21 are related to large deviations and similar to ones we already used,
for example, in the proof of Lemma 16. Once the bound on the fluctuations of the
derivative in ūi is obtained, step (2) above can be completed. Finally, in Lemma 25
we shall exploit certain Gaussian identities to analyze the expectation of a product
related to two shifted GOE matrices, assuming a particular correlation structure. In
the case where the product is of the determinants of the two matrices, the lemma
asserts that the corresponding expectation is convex in a parameter controlling the
correlation. This allows us to relate the situation of low correlation to that where
the matrices are completely independent and complete step (3) above. We now
proceed to state and prove the auxiliary results.

With Xi = Xi,N−1, i ≤ k, being random N − 1 × N − 1 matrices, denote by
LGOE

k,N−1 the space of probability measures on (RN−1×N−1)k such that

P
{
(Xi)i≤k ∈ ·} ∈ LGOE

k,N−1 ⇐⇒ ∀i ≤ k,under P{Xi ∈ ·} is a GOE matrix.

That is, the collection of probability laws such that marginally each Xi is a GOE
matrix, but with no further assumptions on the joint law. For a measure ν ∈ LGOE

k,N−1,
we will use (Xi )i≤k ∼ ν to denote P{(Xi )i≤k ∈ ·} = ν(·).

LEMMA 21. Assume (Xi)i≤k ∼ ν with ν ∈ LGOE
k,N−1 and denote by λ

(i)
j the

eigenvalues of Xi := Xi,N−1. Let t2 > t1 > 2 be real numbers. Then:

(i) For any δ > 0, there exists c > 0 such that, for large enough N , uniformly
in vi := vi,N ∈ (−t2,−t1) and ν ∈ LGOE

k,N−1,

E

{
k∏

i=1

∣∣det(Xi − viI )
∣∣1{min

i,j
λ

(i)
j ≤ −2 − δ

}}

≤ e−cN
E

{
k∏

i=1

∣∣det(Xi − viI )
∣∣},

(8.7)
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E

{
k∏

i=1

∣∣det(Xi − viI )
∣∣1{max

i,j
λ

(i)
j ≥ 2 + δ

}}

≤ e−cN
E

{
k∏

i=1

∣∣det(Xi − viI )
∣∣}.

(8.8)

(ii) With μ∗ denoting the semicircle law (2.3), as N → ∞, uniformly in vi :=
vi,N ∈ (−t2,−t1) and ν := νN ∈ LGOE

k,N−1,

(8.9)
d

dv1
log

(
E

{
k∏

i=1

det(Xi − viI )

})
= −(1 + o(1)

)
N

∫ 1

λ − v1
dμ∗(λ).

PROOF. All the equalities, inequalities and limits in the proof should be un-
derstood to hold uniformly in vi ∈ (−t2,−t1) and ν ∈ LGOE

k,N−1. First, we show that

(8.10) lim sup
N→∞

1

N
log

(
E

{
k∏

i=1

∣∣det(Xi − viI )
∣∣})≤

k∑
i=1

	(vi).

Recall the definition (5.5) of the truncation functions hκ
ε (x) and h∞

κ (x). Fix some
κ̄ > ε̄ > 0. By the Cauchy–Schwarz inequality,

E

{
k∏

i=1

∣∣det(Xi − viI )
∣∣}≤

(
E

{
k∏

i=1

N−1∏
j=1

(
hκ̄

ε̄

(∣∣λ(i)
j − vi

∣∣))2})1/2

×
(
E

{
k∏

i=1

N−1∏
j=1

(
h∞̄

κ (x)
(∣∣λ(i)

j − vi

∣∣))2})1/2

.

Similarly to part (ii) of Lemma 16, using Lemma 26 and a union bound (over
i ≤ k), one can show that the second expectation above is smaller than 2, assuming
κ̄ is larger than some appropriate constant κ̄0. From the LDP for the empirical
measure of eigenvalues of Theorem 28 [similar to the proof of part (i) of Lemma
16], we therefore have that4

(8.11) lim sup
N→∞

1

N
log

(
E

{
k∏

i=1

∣∣det(Xi − viI )
∣∣})≤

k∑
i=1

∫
logκ̄

ε̄

(|λ − vi |)dμ∗(λ),

where logκ̄
ε̄ (x) = log(hκ̄

ε̄ (x)). By choosing small enough ε̄ and large enough κ̄ so
that ε̄ < t1 − 2 < −vi − 2 and κ̄ > t2 + 2 > −vi + 2, (8.10) follows.

4We remark that uniformity in vi relies on the fact that the LDP for the empirical measure
of the eigenvalues is phrased in terms of the Lipschitz bounded metric and we use the functions
logκ̄

ε̄ (| · −vi |) which have the same bound and Lipschitz constant for all vi .
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Suppose δ, ε, κ > 0 satisfy 0 < ε < t1 − 2 − δ and κ > t2 + 2 + δ. Then on the
event

(8.12) A(δ) =
{
−2 − δ < min

i,j
λ

(i)
j ≤ max

i,j
λ

(i)
j < 2 + δ

}
all the eigenvalues of Xi − viI , i ≤ k, are in (ε, κ) and

k∏
i=1

det(Xi − viI ) = eVN and
1

N

N−1∑
j=1

1

λ
(1)
j − v1

= V ′
N,

with

(8.13) VN �
k∑

i=1

N−1∑
j=1

log
(
hκ

ε

(
λ

(i)
j − vi

))
, V ′

N � 1

N

N−1∑
j=1

1

hκ
ε (λ

(1)
j − v1)

.

From the LDP of Theorem 28, as N → ∞,5

(8.14) E
{
V ′

N

}→
∫ 1

λ − v1
dμ∗(λ) and

1

N
log
(
E
{
eVN
})→ k∑

i=1

	(vi),

where we used the fact that for λ in the support of μ∗, λ − vi ∈ (ε, κ).
For large enough L = L(ε, κ) > 0, log(hκ

ε (x)) and 1
N

(hκ
ε (x))−1 are Lipschitz

continuous with Lipschitz constant L and 1
N

L, respectively. Thus, by the concen-
tration of linear statistics of Wigner matrices as in [2], Theorem 2.3.5, and the
union bound, we have that

(8.15) P
{|VN −EVN | > s

}≤ 2ke−Cs2
, P

{∣∣V ′
N −EV ′

N

∣∣> s
}≤ 2e−N2Cs2

,

for some constant C > 0. By the LDP for the maximal (and by symmetry, minimal)
eigenvalue of Xi (see Theorem 27),

(8.16) lim sup
N→∞

1

N
log
(
P
{(

A(δ)
)c})

< 0.

Therefore, using (8.15) and the Cauchy–Schwarz inequality we have that, as
N → ∞,

E
{
V ′

NeVN
}= E

{
V ′

N

}
E
{
eVN
}(

1 + o(1)
)
,

E
{
V ′

NeVN 1(A(δ))c
}≤ (E{(V ′

NeVN
)2}

P
{(

A(δ)
)c})1/2 = o

(
E
{
V ′

NeVN
})(8.17)

and similarly

(8.18) E
{
V ′

N1(A(δ))c
}= o

(
E
{
V ′

N

})
, E

{
eVN 1(A(δ))c

}= o
(
E
{
eVN
})

.

5See Footnote 4.
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Since
∏k

i=1 |det(Xi − viI )| ≥ eVN 1A(δ), from (8.10), (8.14) and (8.18) we have

(8.19) lim
N→∞

1

N
log

(
E

{
k∏

i=1

∣∣det(Xi − viI )
∣∣})=

k∑
i=1

	(vi).

Since k ≥ 1 was general, by taking two copies of each of the matrices in (8.19),
we also have

(8.20) lim
N→∞

1

N
log

(
E

{
k∏

i=1

∣∣det(Xi − viI )
∣∣2})= 2

k∑
i=1

	(vi),

and by (8.16) and the Cauchy–Schwarz inequality, the first part of Lemma 21 fol-
lows.

Since det(Xi −viI ) is a polynomial function of the Gaussian entries of Xi −viI ,
the left-hand side of (8.9) is equal to

d

dv1
log
(
E{YN })= E{ d

dv1
YN }

E{YN } = −NE{YNZN }
E{YN } ,

where we denote

YN =
k∏

i=1

det(Xi − viI ) and ZN = 1

N

N−1∑
j=1

1

λ
(1)
j − v1

.

By (8.17), (8.18) and (8.14), as N → ∞,

E{YNZN1A(δ)}
E{YN1A(δ)} = E{V ′

NeVN 1A(δ)}
E{eVN 1A(δ)}

= (1 + o(1)
)
E
{
V ′

N

}= (1 + o(1)
) ∫ 1

λ − v1
dμ∗(λ),

where the first equality follows since on A(δ) all the eigenvalues of Xi −viI , i ≤ k,
are in (ε, κ). By the first part of Lemma 21, since YN = |YN | on A(δ),

(8.21)
E{|YN |1(A(δ))c}

E{|YN |}
N→∞−→ 0 and

E{YN1A(δ)}
E{YN }

N→∞−→ 1.

What remains to show in order to complete the proof of (8.9) is that

(8.22)
E{YNZN1A(δ)}

E{YNZN }
N→∞−→ 1.

Note that, for any ε̄ > 0,

|YNZN | ≤ 1

ε̄

k∏
i=1

N−1∏
j=1

hε̄

(∣∣λ(i)
j − vi

∣∣)
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and similarly to the proof of (8.10) and (8.11), by letting ε̄ → 0, it can be shown
that

lim sup
N→∞

1

2N
log
(
E
{
(YNZN)2})≤ k∑

i=1

	(vi).

On A(δ), ZN ∈ (c1, c2) for appropriate constants 0 < c1 < c2. Thus, from (8.21)
and (8.19),

lim
N→∞

1

N
log
(
E{YNZN1A(δ)})= lim

N→∞
1

N
log
(
E{YN1A(δ)})= k∑

i=1

	(vi).

From the Cauchy–Schwarz inequality and (8.16),

E{|YNZN |1(A(δ))c}
E{YNZN1A(δ)}

N→∞−→ 0.

This implies (8.22) and the proof is complete. �

COROLLARY 22. Let u < −E∞(p) and suppose JN = (aN, bN) is an interval
such that aN, bN → u as N → ∞. Assume (Xi)i≤k ∼ ν with ν ∈ LGOE

k,N−1. Then,

uniformly in ui := ui,N ∈ JN and ν := νN ∈ LGOE
k,N−1, as N → ∞,

log

(
E

{
k∏

i=1

∣∣det(Xi − √
NūiI )

∣∣})= log

(
E

{
k∏

i=1

det(Xi − √
NūiI )

})
+ o(1)

= log

(
E

{
k∏

i=1

det(Xi − √
Nb̄NI)

})
+ o(1)(8.23)

+ NS(u)

k∑
i=1

(
1 + o(1)

)
(bN − ui),

where b̄N =
√

p
p−1

1
N−1bN , ūi =

√
p

p−1
1

N−1ui and S(u) is given by (8.1).

PROOF. From our assumption on u, for some t2 > t1 > 2, for large N ,√
Nb̄N,

√
Nūi ∈ (−t2,−t1) for any ui ∈ JN . On the event A(δ) defined in (8.12),

for small enough δ,

k∏
i=1

∣∣det(Xi − √
NūiI )

∣∣= k∏
i=1

det(Xi − √
NūiI ).

Therefore, the first equality in (8.23) follows from the first part of Lemma 21 which
asserts that, as N → ∞,

E

{
k∏

i=1

∣∣det(Xi − √
NūiI )

∣∣1(A(δ))c

}
= o(1)E

{
k∏

i=1

∣∣det(Xi − √
NūiI )

∣∣}.
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From the second part of Lemma 21,

log

(
E

{
k∏

i=1

det(Xi − √
NūiI )

})

= log

(
E

{
k∏

i=1

det(Xi − √
Nb̄NI)

})

+ N3/2
∫ 1

λ − √
Nū

dμ∗(λ)

k∑
i=1

(
1 + o(1)

)
(b̄N − ūi),

as N → ∞, uniformly in ui ∈ JN and ν ∈ LGOE
k,N−1. This completes the proof. �

COROLLARY 23. Let u < −E∞(p) and suppose JN = (aN, bN) is an interval
such that aN, bN → u as N → ∞. Assume (Xi )i≤k ∼ ν with ν ∈ LGOE

k,N−1. Then,

uniformly in ui := ui,N ∈ JN and ν := νN ∈ LGOE
k,N−1,

(8.24) E

{
k∏

i=1

det(Xi − √
NūiI )

}
≤ ck

k∏
i=1

E
{
det(Xi − √

NūiI )
}
,

for appropriate constants ck > 0 independent of N , where ūi =
√

p
p−1

1
N−1ui .

PROOF. From our assumption on u for some t2 > t1 > 2, for large N ,√
Nū,

√
Nūi ∈ (−t2,−t1) for any ui ∈ JN . Let λ

(i)
j denote the eigenvalues of Xi

and recall the definition of A(δ) given in (8.12). From the first part of Lemma 21
for small δ > 0, uniformly in ui := ui,N ∈ JN and ν := νN ∈ LGOE

k,N−1, as N → ∞,

E

{
k∏

i=1

det(Xi − √
NūiI )

}
= (1 + o(1)

)
E

{
k∏

i=1

det(Xi − √
NūiI )1A(δ)

}
.

For small enough δ, ε > 0 and large enough κ > 0, on A(δ) we have that∏k
i=1 det(Xi − √

NūiI ) = eV̄N , where

V̄N �
k∑

i=1

N−1∑
j=1

log
(
hκ

ε

(
λ

(i)
j − √

Nūi

))
is defined similarly to VN [see (8.13)]. Similar to (8.15), by the concentration
of linear statistics of Wigner matrices as in [2], Theorem 2.3.5, defining V̄N,i =∑N−1

j=1 log(hκ
ε (λ

(i)
j − √

Nūi)), we have for all i ≤ k,

(8.25) P
{|V̄N,i −EV̄N,i | > s

}≤ 2ke−Cs2
,

with some constant C = C(ε, κ) > 0 that depends on the Lipschitz constant of
log(hκ

ε (x)). From the above, (8.24) follows. �
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LEMMA 24. Let u < −E∞(p) and suppose JN = (aN, bN) is an interval such
that aN, bN → u as N → ∞. Let 0 < ρN = o(1), let X(i)

iid = X(i)
iid,N−1, i = 1,2, and

Xiid = Xiid,N−1 be three i.i.d. GOE matrices of dimension N − 1, and set

(8.26) X(i)
N−1(r) =

√
1 − |r|p−2X(i)

iid + (sgn(r)
)ip√|r|p−2Xiid.

Let M(i)
N−1(r, u1, u2) be as defined in Lemma 13 and set ūi =

√
p

p−1
1

N−1ui . Then,
as N → ∞, uniformly in ui := ui.N ∈ JN and r := rN ∈ (−ρN,ρN),

E

{ ∏
i=1,2

∣∣det
(
M(i)

N−1(r,
√

Nu1,
√

Nu2)
)∣∣}

≤ (1 + o(1)
)
E

{ ∏
i=1,2

∣∣det
(
X(i)

N−1(r) − √
NūiI

)∣∣}.
PROOF. We start from the representation of Lemma 13. Conditional on

f (n) = √
Nu1, f (σ (r)) = √

Nu2 and ∇f (n) = ∇f (σ (r)) = 0 we have that, in
distribution, ⎛⎜⎜⎜⎜⎝

∇2f (n)√
(N − 1)p(p − 1)

∇2f (σ (r))√
(N − 1)p(p − 1)

⎞⎟⎟⎟⎟⎠=
⎛⎝M(1)

N−1(r,
√

Nu1,
√

Nu2)

M(2)
N−1(r,

√
Nu1,

√
Nu2)

⎞⎠ ,

with

M(i)
N−1(r, u1, u2) = M̂(i)

N−1(r) − √
NūiI + mi(r,

√
Nu1,

√
Nu2)√

(N − 1)p(p − 1)
eN−1,N−1,

M̂(i)
N−1(r) =

⎛⎝ Ĝ(i)
N−2(r) Z(i)(r)(

Z(i)(r)
)T

Q(i)(r)

⎞⎠ ,

Ĝ(i) =
√

1 − |r|p−2Ḡ(i) + (sgn(r)
)ip√|r|p−2Ḡ,

where all the variables are as described in Lemma 13.
Denote by X̃(i)

N−1(r) the matrix obtained from X(i)
N−1(r) [defined in (8.26)] by

replacing every element not in the last row or column by 0 and denote by X̄(i)
N−2(r)

the upper-left N − 2 × N − 2 submatrix of X(i)
N−1(r). Couple the variables so that,

almost surely,

(8.27) X̄(i)
N−2(r) = Ĝ(i)

N−2(r),
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and, denoting by (A)i,j the i, j element of a general matrix A,

Z
(i)
j (r) =

√
�Z,11(r) − |�Z,12(r)|

p(p − 1)

(
X(i)

iid

)
j,N−1

+ (sgn
(
�Z,12(r)

))i√ |�Z,12(r)|
p(p − 1)

(Xiid)j,N−1,

Qi(r) =
√

�Q,11(r) − |�Q,12(r)|
2p(p − 1)

(
X(i)

iid

)
N−1,N−1

+ (sgn
(
�Q,12(r)

))i√ |�Q,12(r)|
2p(p − 1)

(Xiid)N−1,N−1.

(8.28)

Define

T(i)
N−1(r) �

(
0 Z(i)(r)(

Z(i)(r)
)T

Qi(r)

)
− X̃(i)

N−1(r),

and note that

M̂(i)
N−1(r) = X(i)

N−1(r) + T(i)
N−1(r).

For a general matrix A with eigenvalues λi(A), denote λ∗(A) = maxi |λi(A)|.
Define the event

EN(δ) = ⋂
r∈(−ρN ,ρN)

( ⋂
i=1,2

{
λ∗
(
X(i)

N−1(r)
)
< 2 + η

}∩ {λ∗
(
T(i)

N−1(r)
)
< δ
})

,

where η > 0, which will be fixed from now on, is such that

λ∗
(
X(i)

N−1(r)
)
< 2 + η =⇒ min

j
λj

(
X(i)

N−1 − √
NūiI

)
> η,

for large N , uniformly in ui ∈ JN [which is possible to choose since u <

−E∞(p)]. Note that

M(i)
N−1(r, u1, u2) = X(i)

N−1(r) − √
NūiI︸ ︷︷ ︸

�D(i)
N−1(r,

√
Nu1,

√
Nu2)

+ T(i)
N−1(r) + mi(r,

√
Nu1,

√
Nu2)√

(N − 1)p(p − 1)
eN−1,N−1︸ ︷︷ ︸ .

�E(i)
N−1(r,

√
Nu1,

√
Nu2)

The rank of E(i)
N−1(r,

√
Nu1,

√
Nu2) and, therefore, the number of nonzero

eigenvalues, is 2 at most. On EN(δ), the eigenvalues of E(i)
N−1(r,

√
Nu1,

√
Nu2)
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are bounded in absolute value by

δ + 2
supui∈JN

|mi(r,
√

Nu1,
√

Nu2)|√
p(p − 1)

N→∞−→ δ,

uniformly in ui ∈ JN and r ∈ (−ρN,ρN). From the bound (A.2) of Corollary 29
with C1 = D(i)

N−1(r,
√

Nu1,
√

Nu2) and C2 = E(i)
N−1(r,

√
Nu1,

√
Nu2) we obtain

that on EN(δ), for large enough N , for any ui ∈ JN and r ∈ (−ρN,ρN),

(8.29)
∣∣det
(
M(i)

N−1(r,
√

Nu1,
√

Nu2)
)∣∣≤ ∣∣det

(
X(i)

N−1(r)−√
NūiI

)∣∣ ·(1+2
δ

η

)2
.

In order to conclude the proof of Lemma 24, it will be enough to show that for any
δ, uniformly in ui ∈ JN and r ∈ (−ρN,ρN),

(8.30) lim
N→∞

E{∏i=1,2 |det(M(i)
N−1(r,

√
Nu1,

√
Nu2))|1{(EN(δ))c}}

E{∏i=1,2 |det(X(i)
N−1(r) − √

NūiI )|1{EN(δ)}} = 0.

By (8.19) [which holds uniformly in vi ∈ (−t2,−t1) as in the statement of
Lemma 21], uniformly in ui ∈ JN and r ∈ (−ρN,ρN),

lim
N→∞

1

N
log
(
E

{ ∏
i=1,2

∣∣det
(
X(i)

N−1(r) − √
NūiI

)∣∣})

= 1

2
· lim
N→∞

1

N
log
(
E

{ ∏
i=1,2

∣∣det
(
X(i)

N−1(r) − √
NūiI

)∣∣2})

= ∑
i=1,2

	

(√
p

p − 1
ui

)
.

(8.31)

By Lemmas 14 and 15 and the Cauchy–Schwarz inequality, for any ε > 0, uni-
formly in ui ∈ JN and r ∈ (−ρN,ρN),

1

2
· lim sup

N→∞
1

N
log
(
E

{ ∏
i=1,2

∣∣det
(
M(i)

N−1(r, u1
√

N,u2
√

N)
)∣∣2})

(8.32)

≤ 1

4
· lim sup

N→∞
1

N
log

(
E

{ ∏
i=1,2

N−2∏
j=1

(
hε

(∣∣λj

(
Ĝ(i)

N−2(r) − √
NūiI

)∣∣))4}),
where hε(x) = max{ε, x}. By the same arguments used to derive (8.11) and by
letting ε → 0, we obtain that (8.32) is bounded from above by

∑
i=1,2 	(

√
p

p−1ui).
If we prove that for large N ,

(8.33) P
{(

EN(δ)
)c}

< e−C0N
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for some C0 = C0(δ) > 0, then from the above and the Cauchy–Schwarz inequality
we would have that the limit supremum of 1

N
log of the numerator of (8.30) and

the limit supremum of 1
N

log of

E

{ ∏
i=1,2

∣∣det
(
X(i)

N−1(r) − √
NūiI

)∣∣1{(EN(δ)
)c}}

are both asymptotically strictly smaller than
∑

i=1,2 	(
√

p
p−1ui), which together

with (8.31), would imply (8.30).
From the LDP of the maximal eigenvalue of GOE matrices (see Theorem 27)

and (8.26),

P

{
sup

r∈(−rN ,rN )

λ∗
(
X(i)

N−1(r)
)≥ 2 + η

}
< e−C1N

for some C1 > 0, for large N . Thus, in order to prove (8.33) it is enough to show
that, for large N ,

(8.34) P

{
sup

r∈(−rN ,rN )

λ∗
(
T(i)

N−1(r)
)≥ δ

}
< e−C2N

for some C2 = C2(δ) > 0. From (8.28) and the expressions for �Z and �Q (B.3),
it follows that any element of T(i)

N−1(r) in the last row or column can be written as

α1(r)
(
X(i)

iid

)
j,N−1 + α2(r)(Xiid)j,N−1,

for some j ≤ N − 1, such that supi∈{1,2},r∈(−rN ,rN ) |αi(r)| → 0, as N → ∞. The

variance of the Gaussian elements of X(i)
iid and Xiid is bounded from above by

2/(N − 1). Also,

2
N−1∑
m=1

((
T(i)

N−1(r)
)
N−1,m

)2 ≥ (λ∗
(
T(i)

N−1(r)
))2

.

Using, for example, Cramér’s theorem ([25], Theorem 2.2.3), (8.34) follows and
the proof is complete. �

LEMMA 25. For any ρ ∈ [−1,1], let W(1)
N (ρ) and W(2)

N (ρ) be N ×N centered
jointly Gaussian Wigner matrices with

(8.35) Cov
(
W(m)

ij (ρ),W(n)
kl (ρ)

)= δ{i,j}={k,l}(1 + δi=j )
(
ρ + (1 − ρ)δm=n

)
.

Let g : RN×N → R be a smooth function and assume all its derivatives have a
O(|x|n) growth rate at infinity. If we define

ĝ(ρ) � E
{
g
(
W(1)

N (ρ)
)
g
(
W(2)

N (ρ)
)}

,
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then dk

dρk ĝ(0) ≥ 0 for all k ≥ 1. In particular, if g(A) is a polynomial function of

the elements of A, then ĝ : [−1,1] → R is a polynomial function, it is convex on
[0,1], and for any ρ ∈ [0,1] it satisfies

(8.36)
∣∣ĝ(−ρ) − ĝ(0)

∣∣≤ ĝ(ρ) − ĝ(0) ≤ ρ
(
ĝ(1) − ĝ(0)

)
.

PROOF. In the current proof for any function h(A) of a symmetric matrix A,
we denote

∂

∂Aij

h(A) := lim
t→0

(
h
(
A + t

(
eij + (1 − δij )eji

))− h(A)
)
/t,

where eij is the matrix whose only nonzero entry is the (i, j) entry, which is equal
to 1. We will also use the notation

∂i1,j1,...,ik,jk
h(A) = ∂

∂Ai1j1

· · · ∂

∂Aikjk

h(A).

Suppose that XC ∼ N(0,C) is a general Gaussian vector of length k with density
ϕC(x), where C = (Cij ) is a nonsingular covariance matrix. From integration by
parts and the well-known fact that for i �= j ,

∂

∂Cij

ϕC(x) = ∂

∂xi

∂

∂xj

ϕC(x),

one has that, for any function w :Rk →R with O(|x|n) growth rate at infinity,

∂

∂Cij

E
{
w(XC)

}=
∫

w(x)
∂

∂Cij

ϕC(x) dx =
∫ (

∂

∂xi

∂

∂xj

w(x)

)
ϕC(x) dx.

Therefore, by applying the above with the function (A,B) �→ g(A)g(B) and
(W(1)

N (ρ),W(2)
N (ρ)), treated as a vector of the on-and-above elements, we obtain

dk

dρk
ĝ(ρ) = ∑

∀l≤k:1≤il≤jl≤N

k∏
l=1

(1 + δil=jl
)

×E
{(

∂i1,j1,...,ik,jk
g
(
W(1)

N (ρ)
))(

∂i1,j1,...,ik,jk
g
(
W(2)

N (ρ)
))}

.

(8.37)

For ρ = 0, W(1)
N (0) and W(2)

N (0) are i.i.d. and the expectation in (8.37) is equal to(
E
{(

∂i1,j1,...,ik,jk
g
(
W(1)

N (0)
))})2

,

which proves that dk

dρk ĝ(0) ≥ 0. Lastly, the fact that ĝ(ρ) is a polynomial function

whenever g is, follows from the fact that W(i)
N (ρ) are jointly Gaussian and (8.35).

Convexity on [0,1] and (8.36) are direct consequences since the coefficients of the
polynomial function are equal to dk

dρk ĝ(0)/k!. �
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8.4. Proof of Lemma 18. Lemma 9 expresses E{CrtN(JN)}. By further condi-
tioning on U , substituting (8.23), and using the fact that uniformly in v ∈ JN , as
N → ∞,

v2 = b2
N + 2u(v − bN)

(
1 + o(1)

)
(where u and bN are related to JN as in the statement of Lemma 18), we obtain
that, as N → ∞,

E
{
CrtN(JN)

}= ωN

(
p − 1

2π
(N − 1)

)N−1
2

√
N

2π
e−Nb2

N
2

×E
{
det(XN−1 − √

Nb̄NI)
} ∫

JN

g(v) dv,

where uniformly in v ∈ JN ,

g(v) = exp
{−(1 + o(1)

)
N
(
S(u) + u

)
(v − bN) + o(1)

}
.

Recall that S(u) + u < 0 [see (8.3)]. Thus,∫
JN

g(v) dv = (1 + o(1)
) ∫

JN

exp
{−N

(
S(u) + u

)
(v − bN)

}
dv,

which completes the proof. �

8.5. Proof of Lemma 19. By Lemma 4 and with the definitions in its statement,
by conditioning on U1(r), U2(r),

E
{[

CrtN(JN)
]ρN

2

}= CNN

∫ ρN

−ρN

dr · (G(r)
)NF(r)

∫
JN×JN

du1 du2

× ϕ�U(r)(
√

Nu1,
√

Nu2)

×E

{ ∏
i=1,2

∣∣det
(
M(i)

N−1(r,
√

Nu1,
√

Nu2)
)∣∣},

where by straightforward analysis, as r → 0,

ϕ�U(r)(u1, u2) � 1

2π

(
det
(
�U(r)

))−1/2 exp
{
−1

2
(u1, u2)

(
�U(r)

)−1
(u1, u2)

T

}
= (1 + O

(
rp)) 1

2π
exp
{
−1

2

(
u2

1 + u2
2
)+ (u1 + u2)

2O
(
rp)},

F(r) = 1 + O(r) and G(r) = e− 1
2 r2+O(r4). Also note that

ωN−1

ωN

/√ N

2π

N→∞−→ 1
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and that, as N → ∞, uniformly in ui ∈ JN (with u and bN related to JN as in the
statement of Lemma 19),

u2
i = b2

N + 2u(ui − bN)
(
1 + o(1)

)
.

Combining all of the above, we arrive at

E
{[

CrtN(JN)
]ρN

2

}= (CN(bN)
)2√ N

2π

∫ ρN

−ρN

dr · e− 1
2 Nr2+N ·O(r3)

×
∫
JN×JN

du1 du2g(u1, u2)

× E{∏i=1,2 |det(M(i)
N−1(r,

√
Nu1,

√
Nu2))|}

(E{det(XN−1 − √
Nb̄NI)})2

,

where CN(x) is defined in (8.2), XN−1 is a GOE matrix and as N → ∞, uniformly
in ui ∈ JN ,

g(u1, u2) = (1 + o(1)
)

exp

{
−N

2∑
i=1

u(ui − bN)
(
1 + o(1)

)}
.

Note that from our assumption that ρN → 0 as N → ∞,

lim
N→∞

√
N

2π

∫ ρN

−ρN

dr · e− 1
2 Nr2+N ·O(r3) ≤ 1.

Therefore, since S(u) + u < 0 [see (8.3)], Lemma 19 follows if we can show that
as N → ∞, uniformly in ui ∈ JN and r ∈ (−ρN,ρN),

E

{ ∏
i=1,2

∣∣det
(
M(i)

N−1(r,
√

Nu1,
√

Nu2)
)∣∣}

≤ (1 + o(1)
)(
E
{
det(XN−1 − √

Nb̄NI)
})2

× exp

{
NS(u)

2∑
i=1

(
1 + o(1)

)
(bN − ui)

}
.

(8.38)

By Lemma 24 and Corollary 22, as N → ∞, uniformly in ui ∈ JN and r ∈
(−ρN,ρN),

E

{ ∏
i=1,2

∣∣det
(
M(i)

N−1(r,
√

Nu1,
√

Nu2)
)∣∣}

≤ (1 + o(1)
)
E

{ 2∏
i=1

det
(
X(i)

N−1(r) − √
Nb̄NI

)}

× exp

{
NS(u)

2∑
i=1

(
1 + o(1)

)
(bN − ui)

}
,

(8.39)

with X(i)
N−1(r) as defined in Lemma 24.
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Since for r = 0, X(1)
N−1(0) and X(2)

N−1(0) are i.i.d., defining

�X(r) := �X,N(r) = E

{ 2∏
i=1

det
(
X(i)

N−1(r) − √
Nb̄NI

)}
,

what remains to show is that �X(r) = (1 + o(1))�X(0) as N → ∞, uniformly
in r ∈ (−ρN,ρN). We show this by appealing to Lemma 25. First, suppose that
W(i)

N−1(r) are defined as in this lemma and set

�W(r) := �W,N(r) = E

{ 2∏
i=1

det
(

1√
N − 1

W(i)
N−1(r) − √

Nb̄NI

)}
.

Since, in distribution,(
X(1)

N−1(r),X(2)
N−1(r)

)= 1√
N − 1

(
W(1)

N−1

(
s(r)
)
,W(2)

N−1

(
s(r)
))

,

with s(r) = (sgn(r))p
√

|r|p−2, it follows that

�X(r) = �W

(
s(r)
)
.

Thus, it is enough to show that for any ρ′
N > 0 such that ρ′

N → 0, as N → ∞,

(8.40) �W(r) = (1 + o(1)
)
�W(0) uniformly in r ∈ (−ρ′

N,ρ′
N

)
.

Assume ρ′
N > 0 is such an arbitrary sequence. By Corollary 23,

�W(1) ≤ C�W(0) = C
(
E
{
det(XN−1 − √

Nb̄NI)
})2

,(8.41)

where XN−1 is a GOE matrix of dimension N − 1 and C > 0 is an appropriate
constant.

In the notation of Lemma 25, ĝ(r) = �W(r) where g(A) = det( 1√
N−1

A −√
Nb̄NI) is a polynomial function of the elements of the matrix A. Thus by

Lemma 25, uniformly in r ∈ (−ρ′
N,ρ′

N), as N → ∞,∣∣�W(r) − �W(0)
∣∣≤ ρ ′

N

(
�W(1) − �W(0)

)
≤ ρ ′

N(C − 1)�W(0) = o(1)�W(0)

and, therefore, (8.40) follows. This completes the proof of Lemma 19. �

APPENDIX A: EIGENVALUES

Let λi = λN
i , i = 1, . . . ,N denote the eigenvalues of an N ×N GOE matrix and

denote by

(A.1) LN = 1

N

N∑
i=1

δλN
i

the empirical measure of eigenvalues. The following two bounds on the maximal
eigenvalue, both proved in [7], are useful to us.
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LEMMA 26 ([7], Lemma 6.3). For large enough m and all N ,

P

{
N

max
i=1

|λi | ≥ m
}

≤ e−Nm2/9.

THEOREM 27 ([7], Theorem 6.2). The maximal eigenvalues λN+ = maxN
i=1 λN

i

satisfy the large deviation principle in R with speed N and the good rate function

I+(x) =
⎧⎨⎩
∫ x

2

√
(z/2)2 − 1dz, x ≥ 2,

∞, otherwise.

Next, we state the LDP satisfied by LN proved in [8]. Let M1(R) be the space
of Borel probability measures on R, and endow it with the weak topology, which
is compatible with the Lipschitz bounded metric dLU(·, ·), defined by

dLU
(
μ,μ′)= sup

f ∈FLU

∣∣∣∣∫
R

f dμ −
∫
R

f dμ′
∣∣∣∣,

where FLU is the class of Lipschitz continuous functions f : R → R, with Lips-
chitz constant 1 and uniform bound 1. The specific form of the rate function in the
LDP is of no importance to us and will therefore not be included in the statement
below.

THEOREM 28 ([8], Theorem 2.1.1). There exists a good rate function J (μ),
for which J (μ) = 0 if and only if μ = μ∗, where μ∗ is the semicircle law [see
(2.3)], and such that the empirical measure LN satisfies the large deviation prin-
ciple on M1(R) with speed N2 and the rate function J (μ).

We finish with a corollary of the main theorem of [31].

COROLLARY 29 ([31]). Let C1, C2 be two (deterministic) real, symmetric
N × N matrices and let λj (Ci) denote the eigenvalues of Ci , ordered with nonde-
creasing absolute value. Suppose that the number of nonzero eigenvalues of C2 is
d at most. Then

∣∣det(C1 + C2)
∣∣≤ N∏

i=1

(∣∣λi(C1)
∣∣+ ∣∣λi(C2)

∣∣),
and if |λ1(C1)| > 0,

(A.2)
∣∣det(C1 + C2)

∣∣≤ ∣∣det(C1)
∣∣(1 + |λN(C2)|

|λ1(C1)|
)d

.
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APPENDIX B: COVARIANCES, DENSITIES AND CONDITIONAL LAWS

In this appendix we study the covariance structure of{
f (n),∇f (n),∇2f (n), f

(
σ (r)

)
,∇f

(
σ (r)

)
,∇2f

(
σ (r)

)}
,

where

σ (r) = (0, . . . ,0,

√
1 − r2, r

)
,

and prove Lemmas 12 and 13.
With the standard notation,

δij =
{

1 if i = j,

0 otherwise,

in the lemma below we denote δi=j = δij , δi=j=k = δij δjk , δi=j �=k = δij (1 − δjk),
etc.

LEMMA 30. For any r ∈ [−1,1], there exists an orthonormal frame field E =
(Ei) such that

E
{
f (n)f

(
σ (r)

)}= rp,

E
{
f (n)Elf

(
σ (r)

)}= −E
{
Elf (n)f

(
σ (r)

)}
= −prp−1(1 − r2)1/2

δl=N−1,

E
{
f (n)EkElf

(
σ (r)

)}= E
{
EkElf (n)f

(
σ (r)

)}
= p(p − 1)rp−2(1 − r2)δl=k=N−1 − prpδk=l,

E
{
Ejf (n)Elf

(
σ (r)

)}= [prp − p(p − 1)rp−2(1 − r2)]δl=j=N−1

+ prp−1δl=j �=N−1,

E
{
Ejf (n)EkElf

(
σ (r)

)}= −E
{
EkElf (n)Ejf

(
σ (r)

)}
= p(p − 1)(p − 2)rp−3(1 − r2)3/2

δj=k=l=N−1

− p(p − 1)rp−2(1 − r2)1/2

× [(δj=k �=N−1 + rδj=k=N−1)δl=N−1

+ (δj=l<N−1 + rδj=l=N−1)δk=N−1
]

− p2rp−1(1 − r2)1/2
δk=lδj=N−1,

E
{
EiEjf (n)EkElf

(
σ (r)

)}= p(p − 1)(p − 2)(p − 3)rp−4(1 − r2)2
× δi=j=k=l=N−1

− p(p − 1)(p − 2)rp−3(1 − r2)[4rδi=j=k=l=N−1
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+ rδi=j δk=l=N−1 + rδi=j=N−1δk=l

+ δj=l=N−1δi=k �=N−1 + δi=k=N−1δj=l �=N−1

+ δi=l=N−1δj=k �=N−1 + δj=k=N−1δi=l �=N−1]
+ p(p − 1)rp−2[−2

(
1 − r2)δi=j=N−1δk=l

+ (δj=l �=N−1 + rδj=l=N−1)

× (δi=k �=N−1 + rδi=k=N−1)

+ (δi=l �=N−1 + rδi=l=N−1)

× (δj=k �=N−1 + rδj=k=N−1)
]

+ p(p − 1)rp−2

× [−(1 − r2)δi=j δl=k=N−1 + r2δi=j δk=l

]
− p(p − 1)rp−2(1 − r2)δi=j δk=l=N−1

+ prpδi=j δk=l .

Note that r = 1 corresponds to the case σ (r) = n. (This is the case considered
in [5], Lemma 3.2.)

PROOF. We begin by defining the orthonormal frame field E. Let r ∈ [−1,1]
and let Pn : SN−1 →R

N−1 be the projection to R
N−1,

Pn(x1, . . . , xN) = (x1, . . . , xN−1),

set θ ∈ [−π/2, π/2] to be the angle such that sin θ = r , and let Rθ be the rotation
mapping

Rθ(x1, . . . , xN)

= (x1, . . . , xN−2, sin θ · xN−1 + cos θ · xN,− cos θ · xN−1 + sin θ · xN).

Let U and V be neighborhoods of n and σ (r), respectively. Assuming U and V

are small enough, the restrictions of Pn and Pn ◦R−θ to U and V , respectively, are
coordinate systems.

On Im(Pn) and Im(Pn ◦ R−θ ), the images of the charts above, define

f̄1 = f ◦ P −1
n and f̄2 = f ◦ (Pn ◦ R−θ )

−1.

We let E = (Ei) be an orthonormal frame field on the sphere such that [under the
notation (4.3)]6 {

f (n),∇f (n),∇2f (n)
}= {f̄1(0),∇f̄1(0),∇2f̄1(0)

}
,{

f
(
σ (r)

)
,∇f

(
σ (r)

)
,∇2f

(
σ (r)

)}= {f̄2(0),∇f̄2(0),∇2f̄2(0)
}
,

6The fact that such frame field exists can be seen from the following. If we let { ∂
∂xi

}N−1
i=1 be

the pull-back of { d
dxi

}N−1
i=1 by Pn, then { ∂

∂xi
(n)}N−1

i=1 is an orthonormal frame at the north pole.
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where in R
N−1, ∇f̄i and ∇2f̄i are the usual gradient and Hessian.

Define C(x, y) = Cov{f̄1(x), f̄2(y)} on Im(Pn) × Im(Pn ◦ R−θ ), and note that

C(x, y) = (ρ(x, y)
)p �

〈
P −1

n (x), (Pn ◦ R−θ )
−1(y)

〉p
=
(

N−2∑
i=1

xiyi + rxN−1yN−1 +
√

1 − r2xN−1

√
1 − 〈y, y〉

+ r
√

1 − 〈x, x〉
√

1 − 〈y, y〉 −
√

1 − r2yN−1
√

1 − 〈x, x〉
)p

.

The lemma follows by a (straightforward, but long) computation of the correspond-
ing derivatives, using the well-known formula [cf. [1], equation (5.5.4)]

Cov
{

dk

dxi1 · · ·dxik

f̄1(x),
dl

dyi1 · · ·dyil

f̄2(y)

}
= dk

dxi1 · · ·dxik

dl

dyi1 · · ·dyil

C(x, y).

�

The variables in Lemma 30 are jointly Gaussian. Now that we have their co-
variances, the required conditional laws can be computed using the well-known
formulas for the Gaussian conditional distribution (see [1], pages 10–11). We shall
need the following notation.

Define, for any r ∈ (−1,1),

a1(r) = 1

p(1 − r2p−2)
, a2(r) = 1

p[1 − (rp − (p − 1)rp−2(1 − r2))2] ,

a3(r) = −rp−1

p(1 − r2p−2)
, a4(r) = −rp + (p − 1)rp−2(1 − r2)

p[1 − (rp − (p − 1)rp−2(1 − r2))2] ,

b1(r) = −p + a2(r)p
3r2p−2(1 − r2),

b2(r) = −prp − a4(r)p
3r2p−2(1 − r2),

b3(r) = a2(r)p
2(p − 1)r2p−4(1 − r2)[−(p − 2) + pr2],

b4(r) = p(p − 1)rp−2(1 − r2)
− a4(r)p

2(p − 1)r2p−4(1 − r2)[−(p − 2) + pr2].
For any point in U , we can define an orthonormal frame as the parallel transport of { ∂

∂xi
(n)}N−1

i=1
along a geodesic from n to that point. This yields an orthonormal frame field on U , say Ei(σ ) =∑N−1

j=1 aij (σ ) ∂
∂xj

(σ ), i = 1, . . . ,N − 1. Working with the coordinate system Pn, one can verify

that at x = 0 the Christoffel symbols �k
ij are equal to 0, and, therefore (see, e.g., [24], equation (2),

page 53), the derivatives d
dxk

aij (P−1
n (x)) at x = 0 are also equal to 0. If r = 1, that is, σ (r) = n,

extend the orthonormal frame field Ei(σ ) to the sphere arbitrarily. Otherwise, assume U and V are
disjoint and construct the frame field on V similarly to U and then extend it to the sphere.
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Define �U(r) = (�U,ij (r))
2,2
i,j=1 by

(B.1) �U(r) = − 1

p

(
b1(r) b2(r)

b2(r) b1(r)

)
,

and define �Z(r) = (�Z,ij (r))
2,2
i,j=1 and �Q(r) = (�Q,ij (r))

2,2
i,j=1 by

�Z,11(r) = �Z,22(r) = p(p − 1) − a1(r)p
2(p − 1)2r2p−4(1 − r2),

�Z,12(r) = �Z,21(r)
(B.2)

= p(p − 1)2rp−1 − p(p − 1)(p − 2)rp−3

+ a3(r)p
2(p − 1)2r2p−4(1 − r2),

�Q,11(r) = �Q,22(r) = 2p(p − 1)

− a2(r)
(
1 − r2)[p(p − 1)rp−3(pr2 − (p − 2)

)]2
− (b3(r), b4(r)

)(
�U(r)

)−1
(
b3(r)

b4(r)

)
,

�Q,12(r) = �Q,21(r) = p4rp − 2p(p − 1)
(
p2 − 2p + 2

)
rp−2(B.3)

+ p(p − 1)(p − 2)(p − 3)rp−4

+ a4(r)p
2r2p−6(1 − r2)(p2r2 − (p − 1)(p − 2)

)2
− (b1(r) + b3(r), b2(r) + b4(r)

)(
�U(r)

)−1
(
b2(r) + b4(r)

b1(r) + b3(r)

)
.

Lastly, define

m1(r, u1, u2) = (b3(r), b4(r)
)(

�U(r)
)−1

(u1, u2)
T ,

m2(r, u1, u2) = m1(r, u2, u1).
(B.4)

REMARK 31. By standard analysis 1 ± (prp − (p − 1)rp−2), and thus the
denominators of ai(r) above, are positive for any r ∈ (−1,1). It is straightforward
to verify that(

�U,11(r) ± �U,12(r)
)(

1 ∓ (prp − (p − 1)rp−2))
= (1 − r2)(p − 1)

[
1 + r2 + · · · + r2p−4

p − 1
± rp−2

]
.

Thus, from (6.11), �U,11(r) ± �U,12(r) > 0 for any r ∈ (−1,1). Since these are
the two eigenvalues of �U(r), it is strictly positive definite for r ∈ (−1,1). In
Lemma 32, we shall prove that �Z(r) is strictly positive definite for r ∈ (−1,1).
In the proof of Lemmas 12 and 13, we show that �Q(r) is positive semi-definite.

Finally, we turn to the proof of Lemmas 12 and 13.
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B.1. Proof of Lemmas 12 and 13. Fix r ∈ (−1,1) and let E be the orthonor-
mal frame field defined in the proof of Lemma 30. We remind the reader that

∇fN(σ ) = (EifN(σ )
)N−1
i=1 , ∇2fN(σ ) = (EiEjfN(σ )

)N−1
i,j=1.

Assume all vectors in the proof are column vectors and denote the concatena-
tion of any two vectors v1, v2 by (v1;v2). The covariance matrix of the vector
(∇f (n);∇f (σ (r))) can be extracted from Lemma 30. By standard calculations,
one can prove (4.6) and show that the inverse of the covariance matrix is the block
matrix

G(r) =
(

a1(r)IN−1 + (a2(r) − a1(r)
)
eN−1,N−1 a3(r)IN−1 + (a4(r) − a3(r)

)
eN−1,N−1

a3(r)IN−1 + (a4(r) − a3(r)
)
eN−1,N−1 a1(r)IN−1 + (a2(r) − a1(r)

)
eN−1,N−1

)
,

where IN−1 is the N − 1 × N − 1 identity matrix and where eN−1,N−1 is the
N − 1 × N − 1 matrix whose N − 1 × N − 1 element is 1 and all others are 0.

For any random vector V , let EV denote the corresponding vector of expecta-
tions. From Lemma 30, denoting by ei the 1 × (2N − 2) vector with the ith entry
equal to 1 and all others equal to 0, we obtain

E
{
f (n) · (∇f (n);∇f

(
σ (r)

))}= −prp−1(1 − r2)1/2
e2N−2,

E
{
f
(
σ (r)

) · (∇f (n);∇f
(
σ (r)

))}= prp−1(1 − r2)1/2
eN−1,

E
{
EiEjf (n) · (∇f (n);∇f

(
σ (r)

))}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
∣∣{i, j,N − 1}∣∣= 3,

p2rp−1(1 − r2)1/2
e2N−2, i = j �= N − 1,

p(p − 1)rp−2(1 − r2)1/2
eN−1+i , i �= j = N − 1,

p(p − 1)rp−2(1 − r2)1/2
eN−1+j , j �= i = N − 1,(

1 − r2)1/2(
p3rp−1 − p(p − 1)(p − 2)rp−3)e2N−2,

i = j = N − 1,

E
{
EiEjf

(
σ (r)

) · (∇f (n);∇f
(
σ (r)

))}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
∣∣{i, j,N − 1}∣∣= 3,

−p2rp−1(1 − r2)1/2
eN−1, i = j �= N − 1,

−p(p − 1)rp−2(1 − r2)1/2
ei, i �= j = N − 1,

−p(p − 1)rp−2(1 − r2)1/2
ej , j �= i = N − 1,

−(1 − r2)1/2(
p3rp−1 − p(p − 1)(p − 2)rp−3)eN−1,

i = j = N − 1.

Denoting by Cov∇f {X,Y } the covariance of two random variables X, Y con-
ditional on ∇f (n) = ∇f (σ (r)) = 0 (and the covariance with no conditioning by
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Cov{X,Y }), we have (cf. [1], pages 10–11)

Cov∇f {X,Y }
= Cov{X,Y }

− (E{X · (∇f (n);∇f
(
σ (r)

))})T
G(r)E

{
Y · (∇f (n);∇f

(
σ (r)

))}
.

Thus, under the conditioning, f (n), f (σ (r)), ∇2f (n), and ∇2f (σ (r)) are
jointly Gaussian and centered and, by straightforward calculations,

Cov∇f

{
f (n), f (n)

}= Cov∇f

{
f
(
σ (r)

)
, f
(
σ (r)

)}
= �U,11(r),

Cov∇f

{
f (n), f

(
σ (r)

)}= �U,12(r),

Cov∇f

{
f (n),EiEjf (n)

}= Cov∇f

{
f
(
σ (r)

)
,EiEjf

(
σ (r)

)}
= δij

(
b1(r) + δi,N−1b3(r)

)
,

Cov∇f

{
f (n),EiEjf

(
σ (r)

)}= Cov∇f

{
f
(
σ (r)

)
,EiEjf (n)

}
= δij

(
b2(r) + δi,N−1b4(r)

)
,

Cov∇f

{
EiEjf (n),EkElf (n)

}
= Cov∇f

{
EiEjf

(
σ (r)

)
,EkElf

(
σ (r)

)}
(B.5)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2δikp(p − 1) − pb1(r) − pb3(r)(δi,N−1 + δk,N−1)

− δi,N−1δk,N−1a2(r)
(
1 − r2)

× [p(p − 1)rp−3(pr2 − (p − 2)
)]2

,

i = j, k = l,

p(p − 1), i = k �= j = l,N − 1 /∈ {i, j},
�Z,11(r), i = k �= j = l,N − 1 ∈ {i, j},
0, if

∣∣{i, j, k, l}∣∣≥ 3,

Cov∇f

{
EiEif (n),EjEjf

(
σ (r)

)}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−pb2(r) − pb4(r)(δi,N−1 + δj,N−1), i �= j,

−pb2(r) + 2p(p − 1)rp−2, i = j �= N − 1,

p4rp − 2p(p − 1)
(
p2 − 2p + 2

)
rp−2

+ p(p − 1)(p − 2)(p − 3)rp−4

+ a4(r)p
2r2p−6(1 − r2)(p2r2 − (p − 1)(p − 2)

)2
,

i = j = N − 1,
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Cov∇f

{
EiEjf (n),EiEjf

(
σ (r)

)}
=
{
p(p − 1)rp−2,

∣∣{i, j,N − 1}∣∣= 3,

�Z,12(r),
∣∣{i, j,N − 1}∣∣= 2, i �= j,

Cov∇f

{
EiEjf (n),EkElf

(
σ (r)

)}= 0, if
∣∣{i, j, k, l}∣∣≥ 3.

Note that, in particular, this shows that the law of (f (n), f (σ (r))) under the con-
ditioning is as stated in the lemma. Also, from the above it follows that �Z(r) is
positive definite for any r ∈ (−1,1).

Let Covf,∇f {X,Y } denote the covariance of two random variables X, Y condi-
tional on

(B.6) ∇f (n) = ∇f
(
σ (r)

)= 0, f (n) = u1, f
(
σ (r)

)= u2

(which is independent of the values ui). Note that

Covf,∇f {X,Y } = Cov∇f {X,Y }
− (Cov∇f

{
X,f (n)

}
,Cov∇f

{
X,f

(
σ (r)

)})(
�U(r)

)−1

×
(

Cov∇f

{
X,f (n)

}
Cov∇f

{
X,f

(
σ (r)

)}) .

Clearly, (
b1(r), b2(r)

)(
�U(r)

)−1 = −p(1,0),(
b2(r), b1(r)

)(
�U(r)

)−1 = −p(0,1).

Thus,

Covf,∇f

{
EiEjf (n),EkElf (n)

}− Cov∇f

{
EiEjf (n),EkElf (n)

}
= Covf,∇f

{
EiEjf

(
σ (r)

)
,EkElf

(
σ (r)

)}
− Cov∇f

{
EiEjf

(
σ (r)

)
,EkElf

(
σ (r)

)}
= −δij δkl

(
b1(r) + δi,N−1b3(r), b2(r) + δi,N−1b4(r)

)(
�U(r)

)−1

×
(
b1(r) + δk,N−1b3(r)

b2(r) + δk,N−1b4(r)

)

= δij δkl · p[b1(r) + (δi,N−1 + δk,N−1)b3(r)
]

− δij δklδi,N−1δk,N−1
(
b3(r), b4(r)

)(
�U(r)

)−1

×
(
b3(r)

b4(r)

)
,
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Covf,∇f

{
EiEjf (n),EkElf

(
σ (r)

)}− Cov∇f

{
EiEjf (n),EkElf

(
σ (r)

)}
= −δij δkl

(
b1(r) + δi,N−1b3(r), b2(r) + δi,N−1b4(r)

)(
�U(r)

)−1

×
(
b2(r) + δk,N−1b4(r)

b1(r) + δk,N−1b3(r)

)
= δij δkl · p[b2(r) + (δi,N−1 + δk,N−1)b4(r)

]
− δij δklδi,N−1δk,N−1

(
b3(r), b4(r)

)(
�U(r)

)−1
(
b4(r)

b3(r)

)
.

Combining the previous calculations, we arrive at

Covf,∇f

{
EiEif (n),EjEjf (n)

}= Covf,∇f

{
EiEif

(
σ (r)

)
,EjEjf

(
σ (r)

)}
=

⎧⎪⎪⎨⎪⎪⎩
0, i �= j,

2p(p − 1), i = j �= N − 1,

�Q,11(r), i = j = N − 1,

Covf,∇f

{
EiEif (n),EjEjf

(
σ (r)

)}=

⎧⎪⎪⎨⎪⎪⎩
0, i �= j,

2p(p − 1)rp−2, i = j �= N − 1,

�Q,12(r), i = j = N − 1.

For the cases of indices that do not appear above, we have

Covf,∇f

{
EiEjf (n),EkElf (n)

}= Cov∇f

{
EiEjf (n),EkElf (n)

}
,

Covf,∇f

{
EiEjf

(
σ (r)

)
,EkElf

(
σ (r)

)}= Cov∇f

{
EiEjf

(
σ (r)

)
,EkElf

(
σ (r)

)}
,

Covf,∇f

{
EiEjf (n),EkElf

(
σ (r)

)}= Cov∇f

{
EiEjf (n),EkElf

(
σ (r)

)}
.

From the above, it follows that �Q(r) is positive semi-definite for any r ∈ (−1,1).
It is now easy to compare covariances and see that, conditional on (B.6), the law

of (∇2f (n) −E{∇2f (n)}√
Np(p − 1)

,
∇2f (σ (r)) −E{∇2f (σ (r))}√

Np(p − 1)

)
is the same as that of (

M̂(1)
N−1(r),M̂(2)

N−1(r)
)
.

What remains is to show that the conditional expectation of ∇2f (n) and
∇2f (σ (r)) under (B.6) are equal to

−pu1I + m1(r, u1, u2)eN−1,N−1 and

−pu2I + m2(r, u1, u2)eN−1,N−1,
(B.7)
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respectively. Denoting expectation conditional on (B.6) by E
u1,u2
f,∇f {·},

E
u1,u2
f,∇f

{
EiEjf (n)

}
= (Cov∇f

{
EiEjf (n), f (n)

}
,Cov∇f

{
EiEjf (n), f

(
σ (r)

)})(
�U(r)

)−1

× (u1, u2)
T

= δij

(
b1(r) + δi,N−1b3(r), b2(r) + δi,N−1b4(r)

)(
�U(r)

)−1
(u1, u2)

T

= −δijpu1 + δij δi,N−1
(
b3(r), b4(r)

)(
�U(r)

)−1
(u1, u2)

T .

Similarly,

E
u1,u2
f,∇f

{
EiEjf

(
σ (r)

)}= −δijpu2 + δij δi,N−1
(
b3(r), b4(r)

)(
�U(r)

)−1
(u2, u1)

T .

Which gives the required expectation (B.7). This completes the proof. �

APPENDIX C: REGULARITY CONDITIONS FOR THE K-R FORMULA

In Section 4, we needed to apply the K-R theorem to “count” pairs of dif-
ferent points (σ ,σ ′) ∈ S

N−1 × S
N−1 at which ∇fN(σ ) = ∇fN(σ ′) = 0 and

fN(σ ), fN(σ ′) ∈ √
NB . The variant of the K-R theorem we used is [1], Theo-

rem 12.1.1, which in particular accounts for the case where the parameter space
is a (Riemannian) manifold. It requires a long list of technical conditions to be
met [conditions (a)–(g) in the statement of the theorem] which we discuss in this
section. We start by relating our notation to that of [1], Theorem 12.1.1.

In [1], Theorem 12.1.1, f (t) = (f 1(t), . . . , f N(t)) is a random field on an
N -dimensional manifold M taking values in R

N , ∇f (t) = (Ejf
i(t))Ni,j=1 is

its Jacobian matrix (where E is a fixed orthonormal frame field), and h(t) =
(h1(t), . . . , hK(t)) is an additional random field from M to R

K . Those f , ∇f and
h correspond to our (∇fN(σ ),∇fN(σ ′)), J (σ ,σ ′), and (fN(σ ), fN(σ ′)), respec-
tively, where J (σ ,σ ′) is defined as the Jacobian matrix of (∇fN(σ ),∇fN(σ ′))
with respect to the orthonormal frame field E. That is, if Ei(σ ) [resp., Ej(σ

′)]
is considered as a derivation with respect to the first (resp., second) coordinate of
fN(σ ,σ ′), then J (σ ,σ ′) is the block matrix

J
(
σ ,σ ′)� (Ei′(σ i )Ej ′(σ j )fN

(
σ ,σ ′))2N−2

i,j=1 =
(
∇2fN(σ ) 0

0 ∇2fN

(
σ ′)
)

,

where i′ = i mod N − 1 and similarly for j ′, and

σ i =
{
σ if i < N − 1,

σ ′ if i ≥ N − 2.
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The manifold M in our case is S2
N(IR) of (4.9) where IR is an open interval

whose closure is contained in (−1,1).7 Conditions (a), (f) and (g) of [1], The-
orem 12.1.1, regarding the continuity, moduli of continuity and moments of the
involved random fields are trivial consequences of the representation (1.1) of the
Hamiltonian HN(σ ), Gaussianity and stationarity. The remaining conditions con-
cern the continuity of certain conditional densities.8 Below we will prove the fol-
lowing lemma.

LEMMA 32. For any r ∈ (−1,1), the Gaussian array

(C.1)
{∇f (n),∇f

(
σ (r)

)
,∇2f (n),∇2f

(
σ (r)

)}
,

is nondegenerate, up to symmetry of the Hessians. That is, if we replace the Hes-
sians in (C.1) by only their on-and-above elements, then the support of the Gaus-
sian density corresponding to (C.1) is R2+(N−1)(N−2).

We wish to apply the K-R formula with
√

NB , the target set of fN(σ ), fN(σ ′),
being equal to an open interval or a finite union of such. Suppose that instead of
considering critical points σ , σ ′ with fN(σ ), fN(σ ′) ∈ √

NB , we consider crit-
ical points such that fN(σ ) + εgN(σ ), fN(σ ′) + εgN(σ ′) ∈ √

NB with gN(σ )

being a continuous Gaussian field on S
N−1 independent of fN(σ ) such that

(gN(σ ), gN(σ ′)) forms a nondegenerate Gaussian vector for any σ ′ �= ±σ . In the
latter case with ε > 0, the additional regularity conditions, conditions (b)-(e) can
be verified provided that Lemma 32 holds. Then, by letting ε → 0 we obtain that
the K-R formula holds for case ε = 0, which is what we wish to prove. Thus, what
remains is to prove the lemma.

Proof of Lemma 32. For r = 0, the lemma can be verified from the covariance
computations of Lemma 30. Fix r ∈ (−1,1) \ {0}. It will be enough to show that:

(i) (∇f (n),∇f (σ (r))) is nondegenerate and that conditional on (∇f (n),

∇f (σ (r))) = 0, and
(ii) (∇2f (n),∇2f (σ (r))) is nondegenerate (in the sense as in the statement of

the lemma).

7In [1], Theorem 12.1.1, it is required that M is compact but going the proof of the theorem it can

be seen that since in our case M = S2
N(IR) has a finite atlas, this requirement can be replaced by

requiring conditions (a)–(g) to hold on the closure of S2
N(IR).

8Though this is not explicit in the statement of [1], Theorem 12.1.1, from its proof it can be seen

that the support of the density of ∇f [which in our setting is J (σ ,σ ′)] can be any subspace L ⊂R
N2

such that is det(∇f ) has density whose support is R. For example, in our case J (σ ,σ ′) has entries
which are identically 0.
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The first of the two follows directly from the covariance computations of
Lemma 30. From Lemma 13, we have that second condition follows if we are
able to show that �Z(r) is invertible and that{(

m1(r, u1, u2),m2(r, u1, u2)
) : u1, u2 ∈R

}=R
2.

It can verified that

(�Z,11(r) ± �Z,12(r))(1 ∓ rp−1)

p(p − 1)
= 1 − r2p−4 ± (p − 2)rp−1 ∓ (p − 2)rp−3.

If r ≥ 0 or p is odd, then

�(r) � 1 − r2p−4 − (p − 2)rp−1 + (p − 2)rp−3 > 0.

If p is even, it can be verified that the derivative of �(r) has constant sign on
(−1,0), from which it follows, by the fact that �(0) = 1 and �(−1) = 0, that
�(r) > 0 for any r ∈ (−1,0). A similar analysis shows that

1 − r2p−4 + (p − 2)rp−1 − (p − 2)rp−3 > 0.

This proves that �Z(r) is strictly positive definite for r ∈ (−1,1).
By definition [see (B.4)],(

m1(r, u1, u2)

m2(r, u1, u2)

)
=
(
b3(r) b4(r)

b4(r) b3(r)

)(
�U(r)

)−1
(
u1
u2

)
,

where we recall that �U(r) invertible as shown in Remark 31. Thus, it is enough to
show that b3(r) ± b4(r) �= 0 (and, therefore, the matrix above is invertible). From
straightforward algebra,

b3(r) ± b4(r) = p(p − 1)rp−2(1 − r2) rp−2 ± 1

1 ∓ (rp − (p − 1)rp−2(1 − r2))
.

As mentioned in Remark 31, 1 ± (prp − (p − 1)rp−2) > 0 and, therefore, the
denominator above is positive. This completes the proof. �

APPENDIX D: UPPER BOUND ON THE GROUND STATE FROM
MOMENTS EQUIVALENCE ON EXPONENTIAL SCALE

In this appendix we show how Theorem 3 can be used to prove that

(D.1) lim
N→∞ GSN = −E0, almost surely.

The fact that (D.1) holds was already proved in [5] based on fact that pure mod-
els are 1-RSB. The proof below is based on the equivalence of second and first
moment squared only on the exponential level—a fact which may be useful when
investigating general mixed models which are not known to exhibit 1-RSB.

The Borell-TIS inequality [9, 17] (see also [1], Theorem 2.1.1) gives, for ε > 0,

(D.2) P
{∣∣GSN −E

{
GSN}∣∣> ε

}≤ exp
{−ε2N/2

}
.
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From the Borel–Cantelli lemma that in order to prove (D.1), it is sufficient to show
that

(D.3) lim
N→∞E

{
GSN}= −E0.

Note that

(D.4) GSN < u ⇐⇒ CrtN
(
(−∞, u)

)≥ 1.

Thus, by Markov’s inequality, Theorem 10, and the definition of E0,

lim sup
N→∞

P
{
GSN < −E0 − ε

}= lim sup
N→∞

P
{
CrtN

(
(−∞,−E0 − ε)

)≥ 1
}

≤ lim
N→∞ e−NCε = 0,

(D.5)

for any ε > 0, where Cε > 0 is a constant depending on ε.
Now, assume toward contradiction that, for some δ > 0, Nk → ∞,

lim inf
N→∞ E

{
GSN}= lim

k→∞E
{
GSNk

}≤ −E0 − δ.

Then, from (D.2),

lim
k→∞P

{
GSNk < −E0 − δ/2

}≥ lim
k→∞P

{∣∣GSNk −E
{
GSNk

}∣∣≤ δ/4
}= 1,

which contradicts (D.5).
Next, assume toward contradiction that, for some δ > 0, Nk → ∞,

lim sup
N→∞

E
{
GSN}= lim

k→∞E
{
GSNk

}≥ −E0 + δ.

Then, from (D.2),

lim sup
k→∞

1

Nk

log
(
P
{
GSNk < −E0(p) + δ/2

})
≤ lim

k→∞
1

Nk

log
(
P
{∣∣GSNk −E

{
GSNk

}∣∣> δ/4
})≤ −δ2/32.

On the other hand, from the Paley–Zygmund inequality and (D.4),

lim inf
k→∞

1

Nk

log
(
P
{
GSNk < −E0(p) + δ/2

})
= lim inf

k→∞
1

Nk

log
(
P
{
CrtNk

(
(−∞,−E0 + δ/2)

)≥ 1
})

= lim inf
k→∞

1

Nk

log
(

(E{CrtNk
((−∞,−E0(p) + δ])})2

E{(CrtNk
((−∞,−E0(p) + δ]))2}

)
= 0,

which, of course, contradicts the previous inequality. Hence, (D.3) and, therefore,
(D.1) follow.



3448 E. SUBAG

Acknowledgements. I am grateful to my adviser Ofer Zeitouni for introduc-
ing to me the problem of computing the second moment and for his help through
all stages of the work. I would also like to thank Gérard Ben Arous for helpful
discussions.

REFERENCES

[1] ADLER, R. J. and TAYLOR, J. E. (2007). Random Fields and Geometry. Springer, New York.
MR2319516

[2] ANDERSON, G. W., GUIONNET, A. and ZEITOUNI, O. (2010). An Introduction to Random
Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press,
Cambridge. MR2760897

[3] ASPELMEIER, T., BRAY, A. J. and MOORE, M. A. (2004). Complexity of Ising spin glasses.
Phys. Rev. Lett. 92 Art. ID 087203.

[4] AUFFINGER, A. and BEN AROUS, G. (2013). Complexity of random smooth functions on the
high-dimensional sphere. Ann. Probab. 41 4214–4247. MR3161473
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