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ON STRUCTURE OF REGULAR DIRICHLET SUBSPACES FOR
ONE-DIMENSIONAL BROWNIAN MOTION

BY LIPING LI1 AND JIANGANG YING2

Fudan University

The main purpose of this paper is to explore the structure of regular
Dirichlet subspaces of one-dimensional Brownian motion. As stated in [Os-
aka J. Math. 42 (2005) 27–41], every such regular Dirichlet subspace can
be characterized by a measure-dense set G. When G is open, F = Gc is the
boundary of G and, before leaving G, the diffusion associated with the reg-
ular Dirichlet subspace is nothing but Brownian motion. Their traces on F

still inherit the inclusion relation, in other words, the trace Dirichlet form
of regular Dirichlet subspace on F is still a regular Dirichlet subspace of
trace Dirichlet form of one-dimensional Brownian motion on F . Moreover,
we shall prove that the trace of Brownian motion on F may be decomposed
into two parts; one is the trace of the regular Dirichlet subspace on F , which
has only the nonlocal part and the other comes from the orthogonal comple-
ment of the regular Dirichlet subspace, which has only the local part. Actu-
ally the orthogonal complement of regular Dirichlet subspace corresponds to
a time-changed absorbing Brownian motion after a darning transform.

1. Introduction. A Dirichlet form is an analytic characterization of a sym-
metric Markov process and its structure means roughly its Beurling–Deny decom-
position with its domain. The main purpose of the current paper is to describe the
structure of a regular Dirichlet subspace and its orthogonal complement for one-
dimensional Brownian motion using the “trace” method developed by [2], through
which, we may more easily observe that a Dirichlet subspace differs from the orig-
inal form not only in their domains but also in Beurling–Deny decompositions,
which give more information about the structure.

Roughly speaking, a regular Dirichlet subspace of a Dirichlet form is a sub-
space, which is also a regular Dirichlet form on the same state space. Since a
regular Dirichlet subspace corresponds to a unique symmetric Markov process,
the problem of existence and characterization of regular Dirichlet subspaces of a
Dirichlet form is a basic and interesting problem for us to explore in the theory of
Dirichlet forms. This problem was raised and discussed by the second author and

Received February 2016; revised April 2016.
1Supported in part by China Postdoctoral Science Foundation (No. 2016M590145 and No.

2015LH0043).
2Supported in part by NSFC No. 11271240.
MSC2010 subject classifications. Primary 31C25, 60J55; secondary 60J60.
Key words and phrases. Regular Dirichlet subspaces, trace Dirichlet forms, time-changed Brow-

nian motions.

2631

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/16-AOP1121
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2632 L. LI AND J. YING

his co-authors in [4], in which a complete characterization for regular Dirichlet
subspaces of one-dimensional Brownian motion was given. In fact, such a regular
Dirichlet subspace may be characterized by a measure-dense set G, by which we
mean that G ∩ (a, b) has positive measure for any nonempty interval (a, b) ⊂ R

and the Markov process associated with the regular Dirichlet subspace is the one-
dimensional diffusion with scaling function

s(x) =
∫ x

0
1G(y)dy

and speed measure being Lebesgue measure. By the way, a complete characteriza-
tion of regular Dirichlet subspaces even for multi-dimensional Brownian motions
has not been obtained due to lack of something like scaling functions in the one-
dimensional case.

With the characterization at hand, it is natural to be curious about the structure
of regular Dirichlet subspaces. It is not intuitive how a regular Dirichlet subspace
differs and how the corresponding process moves because, by observing the forms,
the subspace seems to be only different from the original form in their domains.
However, in the case of one-dimensional Brownian motion, we may see from its
scaling function that the process corresponding to the regular Dirichlet subspace
moves like Brownian motion on G more or less but spends almost no time on Gc

though it runs all over Gc, which has positive measure. We aim to find a more
intuitive picture to describe the precise structure of regular Dirichlet subspaces of
one-dimensional Brownian motion.

As mentioned, the approach we use to explore the structure is the method of
trace. Generally, a Dirichlet form may be decomposed into a minimal process on
an open subset G and its orthogonal complement, which is called the trace of
Dirichlet form on Gc. Usually the trace is the Dirichlet form corresponding to
the process obtained by the original process through a time change induced by a
positive continuous additive functional. How to describe the trace of a form dates
back to J. Douglas who gave a complete characterization of the trace of the form,
associated to Brownian motion living on closed unit disc, on its boundary in [3].
The similar characterization has been done for general symmetric Dirichlet form
by the second author and his co-authors in [1] and [2]. In the current article, we
shall prove that when the measure-dense G is open and F = Gc has positive mea-
sure, the trace X̌ of 1-dim Brownian motion X on F = Gc is nontrivial and (its
Beurling–Deny decomposition) has both diffusion part and jump part as expected,
the trace X̌(s) of the regular Dirichlet subspace X(s) of X is a regular Dirichlet sub-
space of the trace Brownian motion X̌, which has only the jump part and finally
the remaining part is the orthogonal complement of the regular Dirichlet subspace
whose Beurling–Deny decomposition has only the diffusion part. In addition, we
show that the regular representation of the orthogonal complement is the darning
transform of Brownian motion. From this result, we can see that though the pro-
cess X(s) corresponding to the regular Dirichlet subspace moves continuously on
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F , it looks like it is jumping due to the special structure of F . In other words, it
“flies like the wind and leaves no shadow.”

Let E be a locally compact separable metric space and ξ a Radon measure
fully supported on E. We refer the terminologies of Dirichlet forms on the Hilbert
space L2(E, ξ) to [1] and [9]. Assume that (E1,F1) and (E2,F2) are two regular
Dirichlet forms on L2(E, ξ). Then (E1,F1) is called a regular Dirichlet subspace
of (E2,F2) if

(1.1) F1 ⊂ F2, E2(u, v) = E1(u, v), u, v ∈ F1.

If in addition F1 is a proper subset of F2, then we say (E1,F1) is a proper regular
Dirichlet subspace of (E2,F2).

We denote the Lebesgue measure on R by m. It is well known that the one-
dimensional Brownian motion is symmetric with respect to m and its associated
Dirichlet form on L2(R) is (E,F) := (1

2D,H 1(R)), where H 1(R) is the 1-Sobolev
space and for any u, v ∈ H 1(R),

D(u, v) =
∫
R

u′(x)v′(x) dx.

As stated in [4] and [5], fix a strictly increasing and absolutely continuous function
s on R satisfying

(1.2) s′(x) = 0 or 1 a.e.

and define a symmetric bilinear form (E (s),F (s)) on L2(R) by

(1.3)
F (s) :=

{
u ∈ L2(R) : u � s,

∫
R

(
du

ds

)2
ds < ∞

}
,

E (s)(u, v) := 1

2

∫
R

du

ds

dv

ds
ds, u, v ∈ F (s),

where u � s means u is absolutely continuous with respect to s. Then (E (s),F (s))

is a regular Dirichlet subspace of (E,F) and s is called the scaling function of
(E (s),F (s)). The associated diffusion of (E (s),F (s)) is denoted by X(s). Denote by
Fe and F (s)

e the extended Dirichlet spaces of (E,F) and (E (s),F (s)), respectively.
Note that

Fe = H 1
e (R) := {

u : u is absolutely continuous on R and u′ ∈ L2(R)
}
.

To the contrary, if (E ′,F ′) is a regular Dirichlet subspace of (E,F), there always
exists a strictly increasing and absolutely continuous function s on R satisfying
(1.2) such that (E ′,F ′) = (E (s),F (s)). To see this, we refer the recurrent case to
Theorem 2.1 of [4]. Generally, since (E,F) is strongly local and irreducible, it
follows from Theorem 4.6.4 of [9] and Theorem 1 of [11] that (E ′,F ′) is also
strongly local and irreducible. The irreducibility of (E ′,F ′) implies that

P ′
x(σy < ∞) > 0, x, y ∈ R,
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where (P ′
x)x∈R is the class of probability measures of associated diffusion X′ of

(E ′,F ′) and σy is the hitting time of {y} relative to X′; see Theorem 4.7.1 of [9].
Then from [5], we can deduce that X′ can be characterized by a scaling function s

and symmetric measure m. In particular, it corresponds to Dirichlet form (1.3).
Fix a regular Dirichlet subspace (E (s),F (s)) of (E,F) and its scaling function s.

Let

G := {
x ∈R : s′(x) = 1

}
.

Then G is defined in the sense of almost everywhere and it holds that

(1.4) m
(
G ∩ (a, b)

)
> 0 ∀(a, b) ⊂ R.

Note that the condition (1.4) of G is equivalent to that s is strictly increasing. In
particular, (E (s),F (s)) is a proper regular Dirichlet subspace of (1

2 D,H 1(R)) if
and only if the Lebesgue measure of F := Gc is positive, that is, m(F) > 0. On
the other side, if we have a subset G of R such that (1.4) holds for any open interval
(a, b), then

(1.5) ds := 1G(x)dx

defines a class of scaling functions satisfying (1.2), whereas they only differ up to
a constant. In other words, the subset G satisfying (1.4) is one-to-one correspond-
ing to the scaling function s with condition (1.2) up to a constant. Thus, G is an
essential characteristic of (E (s),F (s)).

In this paper, we shall always make the following assumption on G:

(H) G is an open set satisfying (1.4) and m(F) > 0.

In fact, the typical example of F is a generalized Cantor set, which is actually
closed. Hence, this assumption is very natural. But we still want to point out that
this assumption is not trivial. An example of a set G satisfying (1.4) but having
no open version can be constructed as follows. Take a set J ⊂ R such that for any
finite open interval I ; it holds that

0 < m(J ∩ I ) < m(I).

We refer the existence of J to Section 1.5 of [6]. But J has no open a.e. version. To
this end, assume that G is an open a.e. version of J , that is, m(J�G) = 0 and G

is open. Take a finite open interval I ⊂ G and it follows that m(I) = m(I ∩ G) =
m(I ∩ J ) < m(I) which conduces to a contradiction.

When G satisfies (H), we may always assume without loss of generality that F

has no isolated points. In fact, let

f (x) :=
∫ x

0
1F (y) dy

and

G̃ := {
x : there exists δ > 0 such that f (x − δ) = f (x + δ)

}
.
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Then G̃ is an open a.e. version of G and the complement of it has no isolated
points. In the sequel, we shall impose this assumption.

Since G is open, we can write

(1.6) G =
∞⋃

n=1

In,

where {In = (an, bn) : n ≥ 1} is a series of disjoint open intervals. Clearly, at most
two of them are infinite. Denote all finite endpoints of {In : n ≥ 1} by

(1.7) H := {an, bn : n ≥ 1} \ {−∞,∞}
and let dn := |bn − an| for any n ≥ 1. Note that H ⊂ F and any point in F \ H

is a limitation of a subsequence of H . Clearly, any two different intervals In and
Im cannot share a common endpoint due to our assumption that F has no isolated
points.

The structure of this paper is as follows. In Section 2, we shall first prove that
before leaving G, the diffusion X(s) is equivalent to one-dimensional Brownian
motion; see Lemma 2.2. Then, as stated in Theorem 2.1, we find that the trace
Dirichlet form of (E (s),F (s)) on F is a regular Dirichlet subspace of trace Dirichlet
form of (E,F) on F . Moreover, the former Dirichlet form is a nonlocal Dirichlet
form whereas the latter one is a mix-type Dirichlet form. Their common jumping
measure U is supported on countable points in F × F \ d:{

(an, bn), (bn, an) : an > −∞, bn < ∞, n ≥ 1
}
,

where an, bn are endpoints of In in (1.6). In particular,

U
(
(an, bn)

) = U
(
(bn, an)

) = 1

2dn

.

Thus, we write the precise expressions of these two trace Dirichlet forms in Theo-
rem 2.1.

Since the smaller trace Dirichlet form only inherits the nonlocal part of bigger
one, our concern in Section 3 is whether and how we can describe the remaining in-
formation, that is, the strongly local part of trace Dirichlet form of one-dimensional
Brownian motion on F . In order to do that, we first characterize the orthogonal
complement of regular Dirichlet subspace. Although Fe is not a Hilbert space rel-
ative to the quadratic form E , we can still define the orthogonal complement G(s)

of F (s)
e in Fe relative to E in form, that is,

G(s) := {
u ∈ Fe : E(u, v) = 0 for any v ∈ F (s)

e
}
.

In Theorem 3.1 we shall describe the decomposition of any u ∈ Fe related to F (s)
e

and G(s). In particular, if m(G) = ∞, then (E,G(s)) is a Dirichlet space in wide
sense, that is, its satisfies all conditions of Dirichlet form except for the denseness
in L2(I ); see Lemma 3.2. A Dirichlet form in wide sense is also called a D-space
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in the terminologies of [7]. By a darning transform which regards each component
In of G as a new point, G(s) can actually be realized as a regular strongly local
Dirichlet form and this regular Dirichlet form is a regular representation of G(s)

in the context of [7]; see Theorem 3.2. Similarly, we can define the orthogonal
complement of trace Dirichlet space, say (3.15). This orthogonal complement ex-
actly inherits the strongly local part of trace Brownian motion on F , which will be
stated in Theorem 2.1. Moreover, a similar darning transform makes it be a regular
strongly local Dirichlet form, which is also equivalent to the darning transform of
G(s). Their associated diffusion is called the orthogonal darning process, which is
actually a time-changed absorbing Brownian motion; see Theorems 3.2 and 3.3.

2. Traces of Brownian motion and their regular Dirichlet subspaces. We
first prove a useful lemma.

LEMMA 2.1. F (s) = {u ∈ H 1(R) : u′ = 0 a.e. on F }.

PROOF. For any u ∈ F (s), there exists an absolutely continuous function φ

such that u(x) = φ(s(x)). Then

u′(x) = φ′(s(x)
) · s′(x) = φ′(s(x)

)
1G(x),

and hence u′ = 0 a.e. on F . To the contrary, let u ∈ H 1(R) and u′ = 0 a.e. on F .
Then

u(x) − u(0) =
∫ x

0
u′(y) dy =

∫ x

0
u′(y)1G(y)dy =

∫ x

0
u′(y) ds(y).

Thus, u is absolutely continuous with respect to s and du/ds = u′(x), ds-a.e. It
follows from u′ ∈ L2(R) ⊂ L2(R, ds) that u ∈ F (s). �

From the above lemma, we can deduce a simple but very interesting prop-
erty of regular Dirichlet subspace (E (s),F (s)). We first give some notes about the
part Dirichlet forms. The part Dirichlet form of (E (s),F (s)) on G, denoted by
(E (s)

G ,F (s)
G ), is defined by

F (s)
G := {

u ∈ F (s) : u(x) = 0, x ∈ F
}
,

E (s)
G (u, v) := E (s)(u, v), u, v ∈ F (s)

G .

It is regular on L2(G) and corresponds to the Markov process (X
(s)
t )

t<τ
(s)
G

on G

with the life time τ
(s)
G , where τ

(s)
G is the first exit time of G relative to X(s). Sim-

ilarly, we can write (EG,FG) or (1
2DG,H 1

0 (G)) for the part Dirichlet form of
(E,F) on G. The following lemma indicates that before leaving G, the process
X(s) is equivalent to one-dimensional Brownian motion.
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LEMMA 2.2. It holds that (E (s)
G ,F (s)

G ) = (1
2 DG,H 1

0 (G)).

PROOF. Clearly, F (s)
G ⊂ H 1

0 (G) and for any u, v ∈ F (s)
G , EG(u, v) = E (s)

G (u,

v). Thus, it suffices to prove that F (s)
G = H 1

0 (G). Fix u ∈ H 1
0 (G). Since u is ab-

solutely continuous, it is a.e. differentiable. Thus, for a.e. x ∈ F at where u is dif-
ferentiable, take a sequence {xn : n ≥ 1} ⊂ F which is convergent to x as n → ∞.
Note that u = 0 on F . Then we have

u′(x) = lim
n→∞

u(xn) − u(x)

xn − x
= 0.

Hence, it follows from Lemma 2.1 that u ∈ F (s) whereas u = 0 on F . Therefore,
u ∈F (s)

G . �

Recall that the scaling function s of X(s) satisfies that s′ = 1 a.e. on G. That
means X(s) has the same scale (up to a constant) as one-dimensional Brownian
motion on In for any n ≥ 1, where

⋃
n≥1 In = G. From this aspect, we can see that

the above theorem is natural and reasonable.
Set

Fe,G = H 1
e (G) := {u ∈ Fe : u = 0 on F }

and

F (s)
e,G := {

u ∈ F (s)
e : u = 0 on F

}
.

Note that if s(−∞) > ∞ [resp. s(∞) < ∞] then F is not bounded below (resp.,
above), in other words, there exists a sequence {xn} ⊂ F such that xn → −∞
(resp., xn → ∞). Hence, if u ∈ Fe such that u = 0 on F , it follows that
limx→−∞ u(x) = 0 [resp., limx→∞ u(x) = 0]. As a consequence, we have the fol-
lowing result.

LEMMA 2.3. It holds that Fe,G = F (s)
e,G.

Set further

HF := {
u ∈ Fe : E(u,w) = 0 for any w ∈Fe,G

}

and

H(s)
F := {

u ∈ F (s)
e : E (s)(u,w) = 0 for any w ∈ F (s)

e,G
}
.

Then every u ∈ Fe can be expressed uniquely as (see Exercise 4.6.4 of [9])

u = u1 + u2, u1 ∈ Fe,G, u2 ∈HF .
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We denote the HF -part u2 of u by HF u. Similarly, every v ∈ F (s)
e can be expressed

uniquely as

(2.1) v = v1 + v2, v1 ∈ F (s)
e,G, v2 ∈ H(s)

F .

Denote the H(s)
F -part v2 of v by H

(s)
F v. Note that if (E (s),F (s)) is transient, then

H(s)
F is the orthogonal complement of F (s)

e,G with respect to the inner product E (s),
that is,

F (s)
e =F (s)

e,G ⊕E(s) H(s)
F .

We now turn to trace Dirichlet forms. Let X = (Xt : t ≥ 0) be the one-
dimensional Brownian motion on R corresponding to (E,F). As stated in
Lemma 2.2, the part Dirichlet form of (E (s),F (s)) on G is the same as the part
of (E,F) on G. That means that before leaving G, X(s) is equivalent to X. Since
(E (s),F (s)) is a proper regular Dirichlet subspace of (E,F), we guess that their
trace Dirichlet forms on the boundary F may inherit the inclusion relation between
(E,F) and (E (s),F (s)).

Let μ be a Radon (smooth) measure on F . A set K is called the support of μ if
K is the smallest closed set outside of which μ vanishes. We refer the definition of
the quasi-support of μ [relative to (E,F) or (E (s),F (s))] to [1]. Note that an E (s)-
quasi-continuous function is always E-quasi-continuous, hence it is continuous. It
follows that an (E (s) or E)-quasi-closed set is always closed. Hence, we know that
the support of μ is also the quasi-support of μ. In this section, we always assume
that the support of μ is F . The following lemma indicates that 1F (x) dx is an
example of such a measure μ on R.

LEMMA 2.4. Assume that μ(dx) = 1F (x) dx. Then μ is a Radon smooth
measure with respect to X and X(s). Moreover, the support and quasi-support
of μ are both F .

PROOF. Clearly, μ is Radon. Since the m-polar set of X and X(s) must be an
empty set, it follows that μ is smooth with respect to X and X(s). Let K be the
support of μ. Then K ⊂ F . If K �= F , take x ∈ F \ K . Since K is closed, we have

d(x,K) = inf
y∈K

|x − y| > 0.

Fix a constant ε < d(x,K)/2. Let Hε := F ∩ (x − ε, x + ε). Clearly, Hε ⊂ F \ K

and m(Hε) > 0. Thus, μ(Kc) = m(F \ K) > m(Hε) > 0, which conduces to a
contradiction. Therefore, K = F . �

Denote the time-changed processes of X and X(s) with respect to μ by X̌ and
X̌(s), respectively. Then X̌ and X̌(s) are both μ-symmetric on F and their corre-
sponding Dirichlet forms are both regular on L2(F,μ). Denote these two associ-
ated Dirichlet forms, that is, the traces of (E,F) and (E (s),F (s)) on F , by (Ě, F̌)
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and (Ě (s), F̌ (s)), respectively. Precisely, let σF and σ
(s)
F be the hitting time of F

relative to K and X(s) and, in fact, we have

HF u(x) = Exu(XσF
), x ∈R

for any u ∈ Fe and

H
(s)
F u(x) = Exu

(
X

(s)

σ
(s)
F

)
, x ∈ R

for any u ∈ F (s)
e . Then

F̌ = {
ϕ ∈ L2(F,μ) : ϕ = u μ-a.e. on F for some u ∈Fe

}
,

Ě(ϕ,ϕ) = E(HF u,HF u), ϕ ∈ F̌, ϕ = u μ-a.e. on F,u ∈ Fe

and

F̌ (s) = {
ϕ ∈ L2(F,μ) : ϕ = u μ-a.e. on F for some u ∈ F (s)

e
}
,

Ě (s)(ϕ,ϕ) = E (s)(H(s)
F u,H

(s)
F u

)
, ϕ ∈ F̌ (s), ϕ = u μ-a.e. on F,u ∈ F (s)

e .

Note that since (E (s),F (s)) is a regular Dirichlet subspace of (E,F), it follows
from Lemma 2 of [11] that F (s)

e is a proper subset of Fe. Thus, F̌ (s) ⊂ F̌ . We
shall prove later that (Ě (s), F̌ (s)) is actually a proper regular Dirichlet subspace of
(Ě, F̌) on L2(F,μ).

Note that the global property (recurrent or transient) of (Ě (s), F̌ (s)) [resp.,
(Ě, F̌)] is the same as that of (E (s),F (s)) [resp. (E,F)]. In particular, (Ě, F̌) is
recurrent. On the other hand (Ě, F̌) is irreducible. In fact, for any ϕ = u|F ∈ F̌e

such that Ě(ϕ,ϕ) = 0 for some u ∈ Fe, it follows that

E(HF u,HF u) = 0.

Thus, HF u ≡ C for some constant C and ϕ = u|F = (HF u)|F ≡ C. From The-
orem 5.2.16 of [1], we obtain that (Ě, F̌) is irreducible. For (Ě (s), F̌ (s)), we can
also deduce similarly that every ϕ ∈ F̌ (s)

e with Ě (s)(ϕ,ϕ) = 0 is also a constant
function. Hence, if (E (s),F (s)) is recurrent then (Ě (s), F̌ (s)) is irreducible and re-
current. Moreover, the μ-polar set with respect to X̌ or X̌(s) is only the empty set
(see Theorem 5.2.8 of [1]).

Let us present the main result of this section, which tells that a Dirichlet form
with nontrivial local part may have a regular Dirichlet subspace having no local
part. Recall that G can be written as (1.6) by assumption (H).

THEOREM 2.1. Let (Ě, F̌) and (Ě (s), F̌ (s)) be the traces of (1
2D,H 1(R)) and

(E (s),F (s)) on F relative to μ, respectively:

(1) The Dirichlet form (Ě (s), F̌ (s)) is a proper regular Dirichlet subspace of
(Ě, F̌) on L2(F,μ).
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(2) The Dirichlet form (Ě, F̌) is a mixed-type Dirichlet form with the jumping
part and for any ϕ ∈ F̌e,

Ě(ϕ,ϕ) = 1

2

∫
F

ϕ′(x)2 dx + 1

2

∑
n≥1

(ϕ(an) − ϕ(bn))
2

|an − bn| .

Its regular Dirichlet subspace (Ě (s), F̌ (s)) is a nonlocal Dirichlet form whose
jumping measure is the same as above and for any ϕ ∈ F̌ (s)

e ,

Ě (s)(ϕ,ϕ) = Ě(ϕ,ϕ) = 1

2

∑
n≥1

(ϕ(an) − ϕ(bn))
2

|an − bn| .

PROOF. (1) Since F (s)
e is a subset of Fe, it follows that F̌ (s) is also a subset

of F̌ . Note that it is a proper subset because

f (x) := x, x ∈ F

is locally in F̌ but not locally in F̌ (s). Thus, it suffices to prove that for any u ∈
F (s)

e ⊂ Fe, it holds that HF u = H
(s)
F u. In fact, H(s)

F u is the unique function in F (s)
e

such that

E(u,w) = 0

for any w ∈ F (s)
e,G. It follows from Lemma 2.3 that H

(s)
F u is in Fe and

E(u,w) = 0

for any w ∈ Fe,G. Thus, H
(s)
F u = HF u.

(2) At first, we assert that they both have no killing inside. In fact, since (Ě, F̌)

is recurrent it is also conservative. Thus, its lifetime ζ̌ is always infinite. In par-
ticular, (Ě, F̌) has no killing inside. It follows that its regular Dirichlet subspace
(Ě (s), F̌ (s)) also has no killing inside.

We refer the Feller measures of trace Dirichlet forms to Section 5.5 of [1]
and [2]. From Theorem 1 of [11], we can deduce that (E,F) and (E (s),F (s))

have the same Feller measures for F because they are exactly the jumping mea-
sures of (Ě, F̌) and (Ě (s), F̌ (s)). Denote the common Feller measure on F × F by
U(dx dy). Then for any ϕ ∈ F̌e (see (5.6.7) of [1]),

Ě(ϕ,ϕ) = 1

2
μ〈HF ϕ〉(F ) + 1

2

∫
F×F

(
ϕ(x) − ϕ(y)

)2
U(dx dy),

where μ〈HF ϕ〉 is the energy measure of (E,F) relative to HF ϕ and for any φ ∈
F̌ (s)

e ,

Ě (s)(φ,φ) = 1

2
μ

(s)

〈H(s)
F φ〉(F ) + 1

2

∫
F×F

(
φ(x) − φ(y)

)2
U(dx dy),
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where μ
(s)

〈H(s)
F φ〉 is the energy measure of (E (s),F (s)) relative to H

(s)
F φ. Note that

the first terms in the right-hand sides of above two equations are the strongly local
part of corresponding Dirichlet forms.

We claim that for any u ∈Fe, the energy measure

(2.2) μ〈u〉 = u′(x)2 dx

and for any v ∈ F (s)
e , the energy measure

μ
(s)
〈v〉 =

(
dv

ds

)2
ds.

In particular, μ
(s)
〈v〉(F ) = 0 for any v ∈ F (s)

e .

In fact, for any f ∈ C1
c (R) we have (see Section 3.2 of [9])∫

R

f dμ〈u〉 = 2E(uf,u) − E
(
u2, f

) =
∫
R

f (x)u′(x)2 dx.

Thus, μ〈u〉 = u′(x)2 dx. Similarly, we can prove that μ
(s)
〈v〉 = (dv/ds)2 ds. In par-

ticular, it follows from (1.5) that for any v ∈ F (s)
e ,

μ
(s)
〈v〉(F ) =

∫
F

(
dv

ds

)2
ds =

∫
F

(
dv

ds

)2
1G(x)dx = 0.

Moreover, fix ϕ ∈ F̌e. Since HF ϕ = ϕ on F , similar to the proof of Lemma 2.2
we have

(HF ϕ)′ = ϕ′ a.e. on F.

Then it follows from (2.2) that

μ〈HF ϕ〉(F ) =
∫
F

(
(HF ϕ)′

)2
dx =

∫
F

ϕ′(x)2 dx.

Finally, we shall compute the Feller measure U . Recall that in Section 1 we set
G = ⋃

n≥1 In, where {In = (an, bn) : n ≥ 1} is a series of disjoint open intervals
without common endpoints. Fix two non-negative and bounded functions ϕ and
φ on F such that ϕ · φ ≡ 0. We set ϕ(−∞) = ϕ(∞) = φ(−∞) = φ(∞) = 0 for
convenience. It follows from (5.5.13) and (5.5.14) of [1] that

U(ϕ ⊗ φ) =↑ lim
α↑∞α

(
Hα

F ϕ,HF φ
)
G =↑ lim

α↑∞
∑
n≥1

α
(
Hα

F ϕ,HF φ
)
In

,

where Hα
F ϕ(x) := Ex(e−ασF ϕ(XσF

)) for any x ∈ R. Fix a finite component In of
G and x ∈ In. Since the trajectories of Brownian motion are continuous, it follows
that

XσF
= an or bn, P x-a.s.
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Hence,

HF φ(x) = φ(an) · P x(XσF
= an) + φ(bn) · P x(XσF

= bn)

= φ(an) · bn − x

bn − an

+ φ(bn) · x − an

bn − an

and

Hα
F ϕ(x) = ϕ(an) · Ex(

e−ασF ,XσF
= an

)
+ ϕ(bn) · Ex(

e−ασF ,XσF
= bn

)
.

Otherwise, if In is infinite, that is, an = −∞ or bn = ∞, then XσF
is located at the

finite endpoint of In P x -a.s. for any x ∈ In. However, ϕ(an)φ(an) = ϕ(bn)φ(bn) =
0. It follows that (Hα

F ϕ,HF φ)In = 0. Set

rn(x) := bn − x

bn − an

,

pn(x) := Ex(
e−ασF ;XσF

= an

)
,

qn(x) := Ex(
e−ασF ;XσF

= bn

)
.

Then we have

U(ϕ ⊗ φ) = ↑ lim
α↑∞

∑
n≥1

α

(
ϕ(an)φ(bn)

∫
In

pn(x)
(
1 − rn(x)

)
dx

+ ϕ(bn)φ(an)

∫
In

qn(x)rn(x) dx

)

and U is supported on a set of R2 containing countable points{
(an, bn), (bn, an) : an > −∞, bn < ∞, n ≥ 1

}
.

Let ϕ = 1an, φ = 1bn , where an > −∞ and bn < ∞. Note that

pn(x) = sinh
√

2α(bn − x)

sinh
√

2α(bn − an)

and

qn(x) = sinh
√

2α(x − an)

sinh
√

2α(bn − an)
;

see Problem 6 in Section 1.7 of [10]. Then we obtain that

U
(
(an, bn)

) = lim
α↑∞α

∫ bn

an

pn(x)
(
1 − rn(x)

)
dx = 1

2dn

,

where dn = |bn − an|. Clearly,

U
(
(bn, an)

) = U
(
(an, bn)

) = 1

2dn

.
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When an = −∞ or bn = ∞, we still denote U((an, bn)) := 1
2dn

= 0. That com-
pletes the proof. �

REMARK 2.1. (1) The open set G in (1.5) is an essential characteristic of
regular Dirichlet subspace (E (s),F (s)) of (E,F). As stated in Lemma 2.2, before
leaving G, X(s) is equivalent to X. The above theorem shows that the difference
between X(s) and X is located on their traces on the boundary F of G. In fact,
the trace Dirichlet form (Ě (s), F̌ (s)) is still a proper regular Dirichlet subspace of
(Ě, F̌).

(2) Denote the extended Dirichlet spaces of (Ě (s), F̌ (s)) and (Ě, F̌) by F̌ (s)
e and

F̌e. Clearly,

(2.3) F̌ (s)
e =F (s)

e |F , F̌e = Fe|F .

Here, for a class C of functions on R,

C|F := {u|F : u ∈ C},
where u|F is the restriction of u on F . Note that the extended Dirichlet spaces
are independent of the choice of μ. More precisely, for any Radon measure μ on
R with the support F , their extended Dirichlet spaces are always given by (2.3).
Thus, the results of Theorem 2.1(1) can essentially be expressed as

F̌ (s)
e ⊂ F̌e, Ě(u, v) = Ě (s)(u, v), u, v ∈ F̌ (s)

e .

In particular, F̌ (s)
e is a proper subset of F̌e.

(3) In Corollary 2 of [11], we have proved that if (E,F) is a Lévy type Dirichlet
form whose strongly local part does not vanish, then neither does the strongly local
part of any regular Dirichlet subspace of (E,F). The above theorem implies that
this fact is not always right.

3. Orthogonal complement and darning processes. As stated in Theo-
rem 2.1, the regular Dirichlet subspace (Ě (s), F̌ (s)) only contains the nonlocal
information of (Ě, F̌). An interesting question is whether (and how) the “orthog-
onal complement” of (Ě (s), F̌ (s)) contains the remaining information, that is, the
strongly local part, of (Ě, F̌).

3.1. Orthogonal complement. Note that F̌e (resp., F̌ (s)
e ) is the restriction of

Fe (resp., F (s)
e ) on F , say (2.3). In order to determine the orthogonal complement

of trace subspace, we shall first consider the orthogonal complement of F (s)
e in Fe

relative to the quadratic form E(·, ·). Although Fe is not a Hilbert space relative to
the quadratic form E(·, ·), we can still define the orthogonal complement of F (s)

e
in Fe formally by

(3.1) G(s) := {
u ∈ Fe : E(u, v) = 0 for any v ∈ F (s)

e
}
.



2644 L. LI AND J. YING

Before characterizing G(s), we need to make some discussions on F (s)
e . Both ∞

and −∞ are nonregular boundaries of R for the Dirichlet form (E (s),F (s)) on
L2(R). Hence, by virtue of Theorem 2.2.11(ii) of [1],

F (s)
e =

{
u : u � s,

∫
R

(
du

ds

)2
ds < ∞,

u(∞) = 0 if s(∞) < ∞ and u(−∞) = 0 if s(−∞) > −∞
}
.

We can make the following classification of the boundaries ∞,−∞:

Case I. s(−∞) = −∞, s(∞) = ∞,
Case II. s(−∞) > −∞, s(∞) = ∞ or s(−∞) = −∞, s(∞) < ∞,
Case III. s(−∞) > −∞, s(∞) < ∞.

Note that (E (s),F (s)) is recurrent in Case I but transient in Cases II and III. Note
further that, for Cases I and II, we have m(G) = ∞.

We have the following lemma similar to Lemma 2.1 to characterize F (s)
e .

LEMMA 3.1. It holds that

F (s)
e = {

u ∈ Fe : u′ = 0 a.e. on F,

u(∞) = 0 if s(∞) < ∞ and u(−∞) = 0 if s(−∞) > −∞}
.

Now we shall give a useful expression of G(s) and an “orthogonal” decompo-
sition of Fe relative to F (s)

e and G(s). The decomposition (3.4) indicates that the
definition of G(s) in (3.1) is reasonable.

THEOREM 3.1. The class G(s) has the following characterization:

(3.2) G(s) = {
u ∈ Fe : u′ is a constant a.e. on G

}
.

In particular, for Cases I and II, equivalently m(G) = ∞, it holds that

(3.3) G(s) = {
u ∈ Fe : u′ = 0 a.e. on G

}
.

Moreover, any u ∈Fe can be expressed as

(3.4) u = u1 + u2, u1 ∈ F (s)
e , u2 ∈ G(s).

This decomposition is unique if (E (s),F (s)) is transient and unique up to a constant
if (E (s),F (s)) is recurrent.

PROOF. First, we shall prove the characterization (3.2) of G(s). Take a function
u ∈ Fe such that u′ = C a.e. on G, where C is a constant. For Cases I and II, since
m(G) = ∞ it follows that C = 0. Then for any v ∈ F (s)

e we have

E(u, v) = 1

2

∫
R

u′(x)v′(x) dx.
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From Lemma 3.1, we know that v′ = 0 a.e. on F whereas u′ = 0 a.e. on G. Hence,
we obtain that E(u, v) = 0. For Case III, since (E (s),F (s)) is transient we know that
C1

c ◦ s := {ϕ ◦ s : ϕ ∈ C1
c (s(R))} is E-dense in F (s)

e . For any function v ∈ C1
c ◦ s,

clearly v′ = 0 a.e. on F . Thus, we have

E(u, v) = 1

2

∫
G

u′(x)v′(x) dx = C

2

∫
R

v′(x) dx = 0.

Generally, for v ∈ F (s)
e we can take a sequence {vn : n ≥ 1} in C1

c ◦ s such
that E(vn − v, vn − v) → 0 as n → ∞. Since E(u, vn) = 0, we can deduce that
E(u, v) = 0.

To the contrary, take a function u ∈ G(s). Since C1
c ◦ s ⊂ F (s)

e , it follows that

E(u, v) = 0, v ∈ C1
c ◦ s.

Let t be the inverse function of s, that is, t = s−1. Then∫
s(R)

u′(t (x)
)
ϕ′(x) dx = 0

for any ϕ ∈ C1
c (s(R)). It follows that u′ ◦ t is a constant a.e. on s(R). Denote all

of such x ∈ s(R) by J , that is, u′ ◦ t is a constant on J . Let J̃ := t (J ). Then u′ is
a constant on J̃ . On the other hand,

m(G \ J̃ ) =
∫
J̃ c

1G(x)dx =
∫
J̃ c

ds(x) = m
(
s(R) \ J

) = 0.

Thus, u′ is a constant a.e. on G. Thus, (3.2) is proved.
Note that any function u ∈ Fe satisfies u′ ∈ L2(R). In particular, if m(G) = ∞,

then it follows that any function u in G(s) satisfies that u′ = 0 a.e. on G, that is,
(3.3) is proved.

Finally, we shall construct the decomposition (3.4) for any u ∈ Fe. Assume
C0 = u(0). For any x ∈ R,

u(x) − C0 =
∫ x

0
u′(y) dy =

∫ x

0
u′(y)1G(y)dy +

∫ x

0
u′(y)1F (y) dy.

First, for Case I, define

(3.5) u1(x) =
∫ x

0
u′(y)1G(y)dy, x ∈ R

and u2 = u−u1. It follows from Lemma 3.1 and the first assertion of Theorem 3.1
that u1 ∈ F (s)

e and u2 ∈ G(s). Second, for Case II without loss of generality assume
that s(−∞) > −∞ but s(∞) = ∞. Then

∣∣∣∣
∫ 0

−∞
u′(y)1G(y)dy

∣∣∣∣
2
≤

∫ 0

−∞
u′(y)2 dy · (

s(0) − s(−∞)
)
< ∞.



2646 L. LI AND J. YING

Let M−∞ := ∫ 0
−∞ u′(y)1G(y)dy which is a finite constant and define

u1(x) :=
∫ x

0
u′(y)1G(y)dy + M−∞, x ∈ R

and u2 := u − u1. It follows that

lim
x→−∞u1(x) = −

∫ 0

−∞
u′(y)1G(y)dy + M−∞ = 0.

Thus, we can also deduce that u1 ∈ F (s)
e and u2 ∈ G(s). Finally, for Case III we can

similarly deduce that

M :=
∫ ∞
−∞

u′(y)1G(y)dy

is finite. Let C1 := M/(s(∞) − s(−∞)) and

C2 :=
∫ 0

−∞
(
u′(y) − C1

)
1G(y)dy,

which are both finite constants. Define

u1(x) :=
∫ x

0

(
u′(y) − C1

)
1G(y)dy + C2, x ∈ R

and u2 := u − u1. Note that

lim
x→−∞u1(x) = −

∫ 0

−∞
(
u′(y) − C1

)
1G(y)dy + C2 = 0

and

lim
x→∞u1(x) =

∫ ∞
−∞

(
u′(y) − C1

)
1G(y)dy = 0.

Hence, it follows that u1 ∈ F (s)
e . We claim that u2 ∈ G(s). In fact for a.e. x ∈ G,

u′
2(x) = u′(x) − u′

1(x) = u′(x) − (
u′(x) − C1

)
1G(x) = C1.

It follows from Theorem 3.1 that u2 ∈ G(s).
Now assume u ∈ F (s)

e ∩ G(s). It follows from (3.1) that E(u,u) = 0. Thus,
u ≡ C for some constant C. If (E (s),F (s)) is transient, since u ∈ F (s)

e we have
limx→−∞ or ∞ u(x) = 0. Thus, C = 0 and u ≡ 0. Otherwise, (E (s),F (s)) is recur-
rent, C is not necessarily 0. In fact, when defining u1 for this case, the decomposi-
tion is still valid if we add any constant to right-hand side of (3.5). Therefore, the
decomposition (3.4) is unique up to a constant when (E (s),F (s)) is recurrent. �

COROLLARY 3.1. Let u ∈ Fe and u2 the function in the decomposition (3.4).
Then u′ = u′

2 a.e. on F .

We present the following decomposition similar to (3.4) for the functions in HF .
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PROPOSITION 3.1. Any u ∈ HF can be expressed as

u = u1 + u2

for some u1 ∈ H(s)
F and u2 ∈ G(s). This decomposition is unique if (E (s),F (s)) is

transient and unique up to a constant if (E (s),F (s)) is recurrent. In particular,

(3.6) G(s) = {
u ∈ HF : E(u, v) = 0 for any v ∈ H(s)

F

}
.

PROOF. We first prove (3.6). Since Fe,G = F (s)
e,G ⊂ F (s)

e and H(s)
F ⊂ F (s)

e , it

follows that for any u ∈ G(s), u ∈ HF and E(u, v) = 0 for any v ∈ H(s)
F . To the

contrary, let u be a function in the right-hand side of (3.6) and w a function in
F (s)

e . Suppose that w = w1 +w2 is the decomposition of w in (2.1). Since u ∈ HF

and w1 ∈ F (s)
e,G = Fe,G, we have E(u,w1) = 0. Moreover, E(u,w2) = 0 is also

clear.
Now for any u ∈ HF ⊂ Fe, it can be expressed as

u = u1 + u2

for some u1 ∈ F (s)
e and u2 ∈ G(s). We claim that u1 ∈ H(s)

F . To this end, since

u2 ∈ G(s) ⊂ HF it follows that u1 ∈ HF . Thus, for any w ∈ F (s)
e,G = Fe,G we can

deduce that

E (s)(u1,w) = E(u1,w) = 0.

Hence, u1 ∈ H(s)
F . The uniqueness can be proved through the similar way to The-

orem 3.1. �

REMARK 3.1. Note that if (E (s),F (s)) is transient then any u ∈ Fe can be
expressed uniquely as

u = u1 + u2 + u3,

where u1 ∈ F (s)
e,G = Fe,G, u2 ∈ H(s)

F , u3 ∈ G(s) and û2 := u2 + u3 ∈ HF . This
decomposition is similar to the orthogonal decomposition with respect to the
quadratic form E whereas Fe is not a Hilbert space. Otherwise, when (E (s),F (s))

is recurrent we also have such kind of decomposition. In particular, u1 and û2 are
unique but u2 and u3 are only unique up to a constant.

3.2. Regular representation via darning transform. In the rest of this section,
we always assume that m(G) = ∞, that is,

s(−∞) = −∞ or s(∞) = ∞.

It follows from Theorem 3.1 that

G(s) = {
u ∈ Fe : u′ = 0 a.e. on G

}
.
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That means for any function u ∈ G(s) and In a component of G, u is a constant
on In. Let G(s)

0 := G(s) ∩ L2(R) = {u ∈ F : u′ = 0 a.e. on G}. In fact, G(s)
0 is very

close to a Dirichlet space.
Let r− = inf{x : x ∈ F }, r+ := sup{x : x ∈ F } and

(3.7) I := (r−, r+).

If r− > −∞ (resp., r+ < ∞), then u = 0 on (−∞, r−] (resp., [r+,∞)) for any
u ∈ G(s)

0 . Hence, the quadratic form (E,G(s)
0 ) on L2(R) can be identified with the

one on L2(I,mI ), where mI is the restriction to I of the Lebesgue measure and
G(s)

0 can be written as

G(s)
0 = {

u ∈ H 1
0,e(I ) ∩ L2(I,mI ) : u′ = 0 a.e. on G ∩ I

}
,

where

H 1
0,e = {

u ∈ H 1
e (I ) : u(r±) = 0 whenever r± is finite

}
.

Then we have the following lemma.

LEMMA 3.2. The form (E,G(s)
0 ) is a Dirichlet form on L2(I,mI ) in the wide

sense, that is, it satisfies all conditions of Dirichlet form except for the denseness
of G(s)

0 in L2(I,mI ).

The closeness and Markovian property of (E,G(s)
0 ) on L2(I,mI ) can be deduced

directly from the definitions. So the proof of Lemma 3.2 is trivial.
We shall now find the regular representation of (E,G(s)

0 ). The notion of regu-
lar representation of Dirichlet space was introduced by M. Fukushima in his cor-
nerstone paper [7]. In his terminologies, a Dirichlet form in wide sense is also
called a D-space and he denoted it by (E, ξ,F,E), where (E, ξ) is the state
space with a measure and (E,F) is the Dirichlet form on L2(E, ξ) in wide sense.
Due to Lemma 3.2, (I,mI ,G(s)

0 ,E) is a D-space. Two D-spaces (E, ξ,F,E) and
(E′, ξ ′,F ′,E ′) are called equivalent if there is an algebraic isomorphism � from
F ∩ L∞(E) onto F ′ ∩ L∞(E′) and � preserves three kinds of metrics:

‖u‖∞ = ‖�u‖∞, E(u,u) = E ′(�u,�u) and (u,u)ξ = (�u,�u)ξ ′ .

For a given D-space (E, ξ,F,E), another D-space (E′, ξ ′,F ′,E ′) is called a reg-
ular representation of (E, ξ,F,E) if they are equivalent and (E ′,F ′) is a regular
Dirichlet form on L2(E′, ξ ′). By using Gelfand representations of subalgebras of
L∞, Fukushima proved that regular representations always exist for any D-space
in Theorem 2 of [7], but to find it is another story.

We shall introduce the “darning” transform on D-space (I,mI ,G(s)
0 ,E) to find

its regular representation. This transform is in fact darning each finite component
In of G and its endpoints into a whole part and regarding this whole part as a new
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FIG. 1. Darning.

“point” in the fresh state space. To be more precise, fix a point z ∈ F \ H , where
H is given by (1.7) and a surjective mapping j from I to R

∗
0 := j (I ) is defined

through the following way: for any x ∈ I ,

(3.8) j (x) :=
∫ x

z
1F (t) dt.

Note that j (z) = 0 and j is nondecreasing. Recall that I = (r−, r+) is given
by (3.7).

LEMMA 3.3. Let r∗+ := j (r+) and r∗− := j (r−). Then R
∗
0 = (r∗−, r∗+). Further-

more, j (x) = j (y) if and only if x, y ∈ Īn for some finite component In of G, where
Īn is the closure of In.

PROOF. The first assertion is obvious. For the second assertion, the “if part”
is also clear. For the “only if” part, let x, y ∈ F such that x < y and (x, y) is not
contained in a component of G, we claim that j (x) < j (y). In fact, it follows that
F ∩ (x, y) is not empty. Take w ∈ F ∩ (x, y) and let d = |x −w| ∧ |w − y|. Recall
that for 0 < ε < d/2, we have m(F ∩ (w − ε,w + ε)) > 0. Thus, we can deduce
that

j (y) − j (x) =
∫ y

x
1F (t) dt ≥

∫ w+ε

w−ε
1F (t) dt > 0.

That completes the proof. �

By Lemma 3.3, we can denote

p∗
n := j (Īn).

Then {p∗
n : n ≥ 1} is dense in R

∗
0, and j |F\H is a bijective mapping from F \ H to

R
∗
0 \ {p∗

n : n ≥ 1}. See Figure 1 for an intuitive illustration.

REMARK 3.2. Note that G may have no infinite components. For example,
let K be a generalized Cantor set on [0,1] such that m(K) = λ > 0 and define

F := ⋃
k∈Z

(K + 2k),
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where K +2k := {x+2k : x ∈ K}. Then G := Fc is an open set whose components
are all finite but m(G) = ∞. In this case, we have I = R,R∗

0 = (r∗−, r∗+).

Define a measure m∗
0 on R

∗
0 by

(3.9) m∗
0 = mI ◦ j−1,

which is a Radon measure on R
∗
0. Heuristically, R∗

0 endowed with the measure m∗
0

is transformed from R with m by darning the closure of each finite component of
G into a single point and getting rid of the (possible) infinite component of G.

Since j collapses each Īn into a “point”, say p∗
n, and any function u in G(s)

0 is
exactly a constant on each Īn, this function u determines a unique function û on
R

∗
0 through a “darning” method:

(3.10) û ◦ j = u.

Precisely, û is expressed as û(p∗
n) := u(an) or u(bn) for any n ≥ 1 and

û|R∗
0\{p∗

n:n≥1} := u|F\H ◦ j−1.

Further, define

(3.11) G(s)∗
0 := {

û : u ∈ G(s)
0

}
.

Clearly, u �→ û is a linear bijection between G(s)
0 and G(s)∗

0 . For any û, v̂ ∈ G(s)∗
0 ,

define a form E∗ by

(3.12) E∗(û, v̂) := E(u, v) = 1

2

∫
R

u′(x)v′(x) dx.

The form (E∗,G(s)∗
0 ) is called the darning transform of (E,G(s)

0 ) induced by j .

The following theorem mentions that (E∗,G(s)∗
0 ) is truly a Dirichlet form on

L2(R∗
0,m

∗
0).

THEOREM 3.2. The quadratic form (E∗,G(s)∗
0 ) defined by (3.11) and (3.12)

can be expressed as

(3.13)

G(s)∗
0 = H 1

0,e
(
R

∗
0
) ∩ L2(

R
∗
0,m

∗
0
)
,

E∗(û, v̂) = 1

2

∫
R

∗
0

û′(x)v̂′(x) dx ∀û, v̂ ∈ G(s)∗
0 ,

where

H 1
0,e

(
R

∗
0
) = {

û ∈ H 1
e
(
R

∗
0
) : û(

r∗±
) = 0 whenever r∗± is finite

}
.

Furthermore, a regular representation of D-space (I,mI ,G(s)
0 ,E) can be realized

by the regular local Dirichlet form (E∗,G(s)∗
0 ) on L2(R∗

0,m
∗
0). Its associated dif-

fusion process is an absorbing Brownian motion on R
∗
0 being time changed by its

positive continuous additive functional with the Revuz measure m∗
0.
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PROOF. We first prove G(s)∗
0 = H 1

0,e(R
∗
0) ∩ L2(R∗

0,m
∗
0). Take a function û in

the right-hand side and let u := û ◦ j . To prove û ∈ G(s)∗
0 , it suffices to prove that

u ∈ G(s)
0 . Since j (In) = p∗

n, it follows that u is a constant on any component In of
Gn. On the other hand, take any x ∈ I , we have

u(x) − u(z) = û
(
j (x)

) − û
(
j (z)

) =
∫ x

z
û′ ◦ j (t)1F (t) dt,

where z is the starting point when defining j in (3.8). It follows from û′ ∈ L2(R∗
0)

that û′ ◦ j · 1F ∈ L2(I ). Thus, u is absolutely continuous and u′ = û′ ◦ j · 1F

(in sense of a.e.) is in L2(I ). In other words, u ∈ Fe and u′ = 0 a.e. on G. That
indicates u ∈ G(s). Note that limx→r∗± û(x) = 0. Then from û ∈ L2(R∗

0,m
∗
0) and

(3.9), we can obtain u ∈ L2(I ). Thus, u ∈ G(s) ∩ L2(I ) = G(s)
0 .

To the contrary, take û ∈ G(s)∗
0 and let u be given by (3.10). Since u ∈ L2(I ),

it follows that û ∈ L2(R∗
0,m

∗
0) and limx→r∗± û(x) = 0. We only need to prove û

is absolutely continuous on R
∗
0 and û′ ∈ L2(R∗

0). Note that R∗
0 \ {p∗

n : n ≥ 1} and
F \ H have a one-to-one correspondence. Moreover, the Lebesgue measure on
R

∗
0 \{p∗

n : n ≥ 1} corresponds to 1F (x) dx on F \H via the transform j . Since u′ =
0 on G, we can define an a.e. defined function u′ ◦ j−1 through darning method.
Precisely, u′ ◦ j−1(p∗

n) := 0 and u′ ◦ j−1(x̂) := u′(j−1(x̂)) for a.e. x̂ ∈ R
∗
0 \ {p∗

n :
n ≥ 1} such that u is differentiable at x := j−1(x̂). Clearly, u′ ◦ j−1 ∈ L2(R∗

0).
Without loss of generality, take a point ŷ ∈ R

∗
0 with ŷ > 0. Let y := j−1(ŷ) if ŷ /∈

{p∗
n : n ≥ 1} and set y to be the left endpoint of interval j−1(ŷ) if ŷ ∈ {p∗

n : n ≥ 1}.
Then

û(ŷ) − û(0) = u(y) − u(z) =
∫ y

z
u′(t)1F (t) dt =

∫ y

z
u′ ◦ j−1(

j (t)
)
dj (t)

and it follows that

û(ŷ) − û(0) =
∫ j (y)

j (z)
u′ ◦ j−1(t̂) dt̂ =

∫ ŷ

0
u′ ◦ j−1(t̂) dt̂ .

Since u′ ◦ j−1 ∈ L2(R∗
0), we can conclude that û is absolutely continuous on R

∗
0

and

(3.14) û′ = u′ ◦ j−1 a.e. on R
∗
0.

Therefore, û ∈ H 1
0,e(R

∗
0) ∩ L2(R∗

0,m
∗
0).

For any û, v̂ ∈ G(s)∗
0 , let u, v be given by (3.10), respectively. Note that u′ =

v′ = 0 on G. Thus, we have

E∗(û, v̂) = 1

2

∫
R

u′(x)v′(x) dx = 1

2

∫
R

u′ ◦ j−1(
j (x)

)
v′ ◦ j−1(

j (x)
)
dj (x).
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From (3.14), we can obtain that

E∗(û, v̂) = 1

2

∫
R

∗
0

u′ ◦ j−1(x)v′ ◦ j−1(x) dx = 1

2

∫
R

∗
0

û′(x)v̂′(x) dx.

In other words, (3.13) is proved.
Clearly, (E∗,G(s)∗

0 ) is a regular local Dirichlet form on L2(R∗
0,m

∗
0), whose as-

sociated diffusion process is an absorbing Brownian motion on R
∗
0 being time

changed by its positive continuous additive functional with the Revuz measure m∗
0

by virtue of Theorem 4.2 of [8] applied to s(x) = x.
Finally, we shall prove that the D-space (R∗

0,m
∗
0,G

(s)∗
0 ,E∗) is equivalent to

(I,mI ,G(s)
0 ,E). Clearly, the map

� : u �→ û,

G(s)
0 ∩ L∞(I ) → G(s)∗

0 ∩ L∞(
R

∗
0
)
,

is an algebraic isomorphism, where û is given by (3.10). From (3.9) and (3.10), we
can conclude that (u,u)mI

= (û, û)m∗
0

and ‖u‖∞ = ‖û‖∞. Moreover, E∗(û, û) =
E(u,u) is direct from the definition of E∗ in (3.12). That completes the proof. �

3.3. On the traces. In this section, we return to the question raised at the be-
ginning of Section 3. Similarly to (3.1), the orthogonal complement of F̌ (s)

e in F̌e

relative to the quadratic form Ě can be defined as

(3.15) Ǧ(s) := {
u ∈ F̌e : Ě(u, v) = 0 for any v ∈ F̌ (s)

e
}
.

From Theorem 3.1 and (2.3), we can deduce that

Ǧ(s) = G(s)|F
and every u ∈ F̌e can be expressed as

u = u1 + u2

for some u1 ∈ F̌ (s)
e and u2 ∈ Ǧ(s). This decomposition is unique if (E (s),F (s)) is

transient and unique up to a constant if (E (s),F (s)) is recurrent.
In Theorem 2.1, we assert that the regular Dirichlet subspace (Ě (s), F̌ (s)) con-

tains exactly the information of nonlocal part of trace Brownian motion (Ě, F̌)

on F . Actually the following lemma shows that Ǧ(s) only contains the strongly
local information of (Ě, F̌).

LEMMA 3.4. For any u, v ∈ Ǧ(s), it holds that

Ě(u, v) = 1

2

∫
F

u′(x)v′(x) dx.
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PROOF. Note that Ǧ(s) = G(s)|F . For any finite component In = (an, bn) of G,
it follows from (3.3) that u(an) = u(bn) for any u ∈ G(s). Hence, from Theorem 2.1
we can complete the proof. �

Take a smooth measure μ introduced in Section 2 as

μ(dx) = 1F (x) dx + ∑
n≥1,dn<∞

dn

2
(δan + δbn),

where {In = (an, bn) : n ≥ 1} is the set of components of G and δp is the mass of
p. Let

F0 := F ∩ I, μ0 := μ|F0, Ǧ(s)
0 := Ǧ(s) ∩ L2(F,μ),

where I = (r−, r+) is given by (3.7). Similarly to Lemma 3.2, (Ě, Ǧ(s)
0 ) is a Dirich-

let form on L2(F,μ) in the wide sense. A regular representation of (F,μ, Ǧ(s)
0 , Ě)

can be achieved by the similar darning method to Section 3.2. By the darning trans-
form j |F , we may similarly define F ∗

0 ,μ∗
0, Ǧ

(s)∗
0 and Ě∗. After a little computation,

we have

F ∗
0 = R

∗
0, μ∗

0 = m∗
0, Ǧ(s)∗

0 = G(s)∗
0 , Ě∗ = E∗.

Hence, we have the following theorem by Theorem 3.2.

THEOREM 3.3. The quadratic form (Ě∗, Ǧ(s)∗
0 ) defined above is a regular

strongly local Dirichlet form on L2(F ∗
0 ,μ∗

0), whose associated diffusion process
is a time-changed absorbing Brownian motion on F ∗

0 with the speed measure μ∗
0.

Furthermore, the D-spaces (I,mI ,G(s)
0 ,E) and (F,μ, Ǧ(s)

0 , Ě) are equivalent, and

(
R

∗
0,m

∗
0,G

(s)∗
0 ,E∗) = (

F ∗
0 ,μ∗

0, Ǧ
(s)∗
0 , Ě∗)

is their common regular representation.

In a word, the trace Brownian motion on F may be decomposed as a regu-
lar Dirichlet subspace which contains its nonlocal part and the orthogonal com-
plement which contains its local part and has a regular representation. The time-
changed absorbing Brownian motion in Theorem 3.3 is called the orthogonal darn-
ing process of F̌ (s)

e relative to μ. If we replace μ with another Radon measure μ′
on R with support F , it is similar to obtain that the orthogonal darning process of
F̌ (s)

e relative to μ′ is an absorbing time-changed Brownian motion on R
∗
0 whose

speed measure is μ′. In particular, if μ′(dx) = 1F (x) dx, then it is actually an ab-
sorbing Brownian motion on R

∗
0. Note that they are equivalent up to a time-change

transform.
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