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TAIL ESTIMATES FOR MARKOVIAN ROUGH PATHS

BY THOMAS CASS1 AND MARCEL OGRODNIK2

Imperial College London

The accumulated local p-variation functional [Ann. Probab. 41 (213)
3026–3050] arises naturally in the theory of rough paths in estimates both
for solutions to rough differential equations (RDEs), and for the higher-order
terms of the signature (or Lyons lift). In stochastic examples, it has been ob-
served that the tails of the accumulated local p-variation functional typically
decay much faster than the tails of classical p-variation. This observation has
been decisive, for example, for problems involving Malliavin calculus for
Gaussian rough paths [Ann. Probab. 43 (2015) 188–239].

All of the examples treated so far have been in this Gaussian setting that
contains a great deal of additional structure. In this paper, we work in the
context of Markov processes on a locally compact Polish space E, which
are associated to a class of Dirichlet forms. In this general framework, we
first prove a better-than-exponential tail estimate for the accumulated local
p-variation functional derived from the intrinsic metric of this Dirichlet form.
By then specialising to a class of Dirichlet forms on the step �p� free nilpotent
group, which are sub-elliptic in the sense of Fefferman–Phong, we derive a
better than exponential tail estimate for a class of Markovian rough paths.
This class includes the examples studied in [Probab. Theory Related Fields
142 (2008) 475–523]. We comment on the significance of these estimates
to recent papers, including the results of Ni Hao [Personal communication
(2014)] and Chevyrev and Lyons [Ann. Probab. To appear].

1. Introduction. Lyons’s rough path theory has allowed a pathwise interpre-
tation to be given to stochastic differential equations of the form

dYt = V (Yt ) dXt , Y0 = y0,

where the vector fields V = (V 1, . . . , V d) are driven along an R
d -valued rough

random signal X. An important feature of Lyons’ approach—as compared, say, to
the classical framework of Itô—is the relaxation of the condition that X be a semi-
martingale. There is typically no way of accommodating this feature within Itô’s
or any comparable theory. Furthermore, there are fundamental classes of random
signals where the semimartingale property is either absent, or only present in spe-
cial cases, for example, Markov processes, fractional Brownian motions and, more
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broadly, the family of Gaussian processes. Study of the Gaussian-driven RDEs us-
ing rough path analysis has been especially prolific over recent years; we reference
[16, 27, 29, 34, 36, 50] and [4] as an illustrative, although by no means exhaustive,
list of applications.

Semimartingales have a well-defined quadratic variation process. It is widely
appreciated, at least for continuous semimartingales, that control of the quadratic
variation provides insight on the moments, tails and deviations of the semi-
martingale itself. The exponential martingale inequality (see, e.g., [51]) and the
Burkhölder–Davis–Gundy inequalities (see, e.g., [14]) are prime examples of this
principle in practice. The latter result, in particular, allows one to control the mo-
ments of linear differential equations

dYt = AYt dXt , Y0 = y0,

where A is in Hom(Rd,Re) and X is a semimartingale. A more sophisticated
example to which this idea applies is the case when Y is the derivative of the flow
of an SDE, which is well known to solve an SDE with linear growth vector fields.
In many applications, such as Malliavin calculus, it is crucial to show that this
derivative process (and its inverse) has finite moments of all orders.

In rough path theory, by contrast, one deliberately postpones using probabilistic
features of X. Indeed, a key advantage is the separation between the deterministic
theory, which is used to solve the differential equation, and the probability, which
is used to enhance the driving path to a rough path. This separation, however,
can—and often, does—introduce complications in probabilistic applications. For
instance, in trying to prove moment estimates of the type discussed in the last para-
graph using a rough path approach, it is reasonable to try to integrate the natural
growth estimate for the solution, which in this case has the form (see [31])

(1) ‖Y‖p-var,[0,T ] ≤ C exp
(
C‖X‖p

p-var,[0,T ]
)
,

where ‖X‖p-var,[0,T ] denotes p-variation of the rough path enhancement of X.
In the case when X is the Gaussian (even Brownian) rough path, this inequality is
useless for proving moment estimates because the right-hand side is not integrable;
‖X‖p-var,[0,T ] has only Gaussian tail. Nevertheless, it is possible to surmount this
problem, as demonstrated by [18]. The key idea is to use a slight sharpening of the
estimate (1) to one of the form (see [18])

‖Y‖p-var,[0,T ] ≤ C exp

⎛
⎜⎜⎝ sup

D=(ti )‖X‖p-var,[ti ,ti+1]≤1

∑
i:ti∈D

‖X‖p
p-var,[ti ,ti+1]

⎞
⎟⎟⎠

(2)
:= C exp

[
CM

(
X, [0, T ])].

The functional M is called the accumulated local p-variation. Later we will use
the term ρ-accumulated local p-variation if X is not necessarily a rough path but
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any path X with values in a metric space (E,ρ); in this case, the accumulated local
p-variation will be measured with respect to the underlying metric ρ.

While it may not appear on first inspection that this estimate helps much, in
fact, it considerably improves the tail analysis mentioned above. The main result
of [18] is the following tail estimate for Gaussian rough paths X:

(3) P
(
M

(
X, [0, T ]) > x

) ≤ exp
(−cx2/q),

where q ∈ [1,2) is a parameter related to the Cameron–Martin Hilbert space of X.
It follows as a consequence that the left-hand side of (2) has moments of all orders.

The strategy for proving the estimate (3) in the Gaussian setting is somewhat
subtle. The first step is to introduce the so-called p-variation greedy partition by
setting

τ0 = 0 and τn+1 = inf
{
t ≥ τn : ‖x‖p-var,[τn,t] = 1

}∧ T .

An integer-valued random variable defined by

(4) Np-var
(
x, [0, T ]) = sup

{
n ∈N∪ {0} : τn < T

}
then counts the number of distinct intervals in the partition (τn)

∞
n=0. Second, a

relatively simple argument gives

Np-var
(
x, [0, T ]) ≤ M

(
x, [0, T ]) ≤ 2Np-var

(
x, [0, T ])+ 1,

and hence the tail of the random variable M(X, [0, T ]) can be deduced from that of
Np-var(X, [0, T ]). Third, the estimate (3) is proved for Np-var(X, [0, T ]) in place of
M(X, [0, T ]); the two key tools in doing this are (Borell’s) Gaussian isoperimetric
inequality (see, e.g., [1, 13]), and the Cameron–Martin embedding theorem of [31].

In this paper, we study this problem for a different class of rough paths: the
Markovian rough paths. Rough paths which are themselves Markov, or which
are the lifts of such processes, have been studied previously. In [3], for exam-
ple, the authors start with a reversible R

d -valued continuous Markov process X

having a stationary probability measure μ. By assuming a moment condition on
the increments of X and by starting X in its stationary distribution, they construct
a Lévy-area process as a limit of dyadic piecewise linear approximations to X.
The argument uses a forward-backward martingale decomposition, in the spirit of
[46], which is applied to a natural sequence of approximations to the area. The
reversibility of X and the anti-symmetry of the Lévy-area are used in an attractive
way to realise suitable cancellations in this approximating sequence. Earlier work
by Lyons and Stoica (see [42]) has also exploited the forward-backward martin-
gale decomposition in the construction of the Lévy-area. An alternative approach,
which we will follow in our presentation, was proposed in [28] and [31]. Here
X =(X,A) is constructed not by enhancing X as in the initially mentioned ap-
proach, but directly as the Markov process associated with (the Friedrich’s exten-
sion of) a Dirichlet form (see Section 3 for a review of this idea).
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There are big obstacles to implementing the Gaussian approach of [18] in this
setting. The most important is the lack of a usable substitute for the isoperimetric
inequality and, relatedly, the Cameron–Martin embedding theorem (indeed, there
is no longer any Cameron–Martin space). Analogous results which exist in the
literature (e.g., [1, 15]) do not seem easy to implement here. As a consequence,
we have to re-think the whole strategy upon which [18] is founded. In so doing,
we gain important insights into the general principles for proving estimates of the
type (3). In summary, these are:

1. That it can be useful to determine the greedy partition (σn)
∞
n=0 from a metric

topology which is weaker than the p-variation rough path topology. Let d denote
the metric, and Nd(x, [0, T ]) the integer corresponding to the greedy partition un-
der this metric. Then, clearly, Nd(x, [0, T ]) ≤ Np-var(x, [0, T ]). This has the im-
mediate advantage of making the proof of the tail estimate for Nd(X, [0, T ]) easier
to prove than for Np-var(X, [0, T ]). The price one pays is that it is no longer true
that

‖X‖p-var,[σn,σn+1] ≤ 1 for all n = 0,1,2, . . . .

Nevertheless, the control of X in some topology—even a weaker one than
p-variation—is often sufficient to dramatically improve the tail behaviour of the
random variable ‖X‖p-var,[σn,σn+1]. Similar observations to this have been made
before in other contexts, for example, [43] and in support theorems, [9, 25, 41].

2. A natural choice of metric in the regime of this paper is the supremum of the
intrinsic metric induced by the Dirichlet form. In the present setting, we can control
the tails on N using a combination of large deviations estimates, Gaussian heat
kernel bounds and exponential Tauberian theorems. For other examples, a different
way of obtaining these bounds will be needed. But the study of tail estimates for
the maximum of a stochastic process is a much more widely addressed subject than
the corresponding study for p-variation; see, for example, [57]. There are likely to
be many more examples which can be approached by adapting these methods.

We have already mentioned some applications. Without giving an exhaustive
list, or trying to anticipate all future uses of this work, we briefly summarise what
we believe will be the most immediately obvious sources of impact. The chief
application of [18] has been in Gaussian Hörmander theory to prove, for example,
smoothness and other properties of the density for Gaussian RDEs (see, e.g., [5–
7, 17, 34]). A similar approach might be attempted with Markovian signals, but
one has to be careful—unlike in the Gaussian setting, the driving Markov process
will no longer have a smooth density in general. Nevertheless, it is interesting
to consider whether the Itô map preserves the density (and its derivatives—if it
has any) under Hörmander’s condition. Here, the Malliavin method will radically
break down; abstract Wiener analysis will need to be replaced by analysis of the
Dirichlet form.
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Second, growth estimates involving the accumulated p-variation occur natu-
rally and generically in rough path theory; see [26] for a range of examples. We
therefore expect uses of our results to be widespread. In [19], it was observed that
M(X, [0, T ]) appears in optimal Lipschitz-estimates on the rough path distance
between two different RDE solutions. This has uses in fixed-point arguments, for
example, in studying interacting McKean–Vlasov-type RDEs.

Another illustration of the use of our result can be found in very interesting
recent papers [35] and [20]. In these papers, the authors prove criteria for the law
of a geometric rough path to be determined by its expected signature. These criteria
are formulated in terms of the power series

(5)
∞∑

n=1

λn
∣∣E[Xn

0,T

]∣∣
n,

where S(X)0,T = ∑∞
k=0 Xk

0,T denotes the signature of a geometric rough path X,

and | · |n is a suitable norm on (Rd)⊗n. An important result in [20] is that the
radius of convergence of (5) being infinite is sufficient for E[S(X)0,T ] to deter-
mine the law of X uniquely over [0, T ]. The work of Ni Hao [35] and Friz and
Riedel [26] complements this result by proving an upper bound on the signature
S(X)0,T in terms of Np-var(X, [0, T ]). In [35], these estimates are then used to
show that if Np-var(X, [0, T ]) has a Gaussian tail then the radius of convergence
of the series (5) is infinite. In [20], this statement is refined to show that any better-
than-exponential tail of Np-var(X, [0, T ]) suffices for the same conclusion, and
that a somewhat weaker determination of the law of X is possible when the tail
is only exponential. One example cited in [20] is the class of Markovian rough
paths stopped on leaving a domain (the domain is required to have some bounded-
ness properties in order for it to have a well-defined diameter). For this class, they
are able to show exponential integrability of Np-var(X, [0, T ]). Our main result,
Theorem 5.4, imposes no restriction on the domain of X and we prove a stronger
tail-estimate; more exactly, we prove one which is better-than-exponential in the
sense that

P
(
M

(
X; [0, T ]) > R

) ≤ C exp
(−CR2(1−1/p)) for any p > 2, where C = Cp.

This is obviously better than just exponential decay, and it has the consequence
that one may verify the stronger criterion mentioned in the above work. One im-
mediate application of our results therefore is to broaden substantially the range of
examples to which the results of Chevyrev–Lyons–Ni Hao [20, 35] are known to
apply.

The outline of the article is as follows. In Section 2, we give a general overview
of the results of rough path theory required for our analysis. In Section 3, we re-
view the theory and key results for symmetric Markov processes associated to a
certain class of Dirichlet forms. In Section 4, we use large deviations techniques
and exponential Tauberian theorems to prove that under the intrinsic metric the
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integer associated to the greedy partition of the just mentioned Markov processes
has a Gaussian tail. The main work is done in Section 5, where we prove a crucial
bound on the ρ-accumulated local p-variation in terms of the aforementioned inte-
ger of the greedy partition and the accumulated p-variation of the Markov process
between the points of this partition. This result in concert with heat kernel esti-
mates and the results of Section 3 allows us to prove our main theorem, that is, the
ρ-accumulated local p-variation of a Markov process has better-than-exponential
tails provided that ρ is locally controlled by the intrinsic metric. In Section 6, we
gather several examples of Markovian rough paths, that is, Markov processes as-
sociated to certain Dirichlet forms that are also rough paths, for which the main
result holds.

2. Rough paths. There are now many texts which outline the core content
of rough path theory (e.g., [31, 44, 45] and [30]). Here, we focus on gathering
together relevant notation.

To start with, assume V is a d-dimensional real vector space. Then a basic role
in the theory is played by the truncated tensor algebra which for N ∈ N is the set

T N(V ) := {
g = (

g0, g1, . . . , gN ) : gk ∈ V ⊗k, k = 0,1, . . . ,N
}

equipped with the truncated tensor product. Two subsets of T N(V ) of particular
interest are

T̃ := T̃ N (V ) := {
h ∈ T N(V ) : g0 = 1

}
and

t̃ := t̃N(V ) := {
A ∈ T N(V ) : A0 = 0

}
.

It is easy to see that T̃ is a group under truncated tensor multiplication. In fact,
it is a Lie group and the vector space t̃ is its Lie algebra Lie(T̃ ), that is, t̃ is tangent
space to T̃ at the group identity 1. The diffeomorphisms log : T̃ → t̃ and exp : t̃ →
T̃ defined respectively by the power series

log(g) =
N∑

k=1

(−1)k−1

k
(g − 1)k and exp(A) =

N∑
k=0

1

k!A
k

are mutually inverse, and log defines a global chart on T̃ . The map exp coincides
with the Lie group exponential, that is, for every A, exp(A) = γA(1) where γA :
R→ T̃ is the unique integral curve through the identity of the left-invariant vector
field associated with A.

In the paper, it will be useful to realise the group structure of T̃ on the set t̃.
To do this, we define a product ∗: t̃ × t̃ → t̃ using the functions exp and log as
follows:

A ∗ B := log
(
exp(A) exp(B)

)
for all A,B ∈ t̃.
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Under this definition, (t̃,∗) is again a Lie group with identity element 0, and exp
is then a Lie group isomorphism from (t̃,∗) to T̃ . The differential of exp at 0 then
pushes forward tangent vectors in T0t̃ to elements of the vector space t̃. This linear
isomorphism is easily seen to be the identity map on t̃, hence Lie(t̃,∗) = t̃ as a
vector space. The Lie group exponential map Lie(t̃,∗) → (t̃,∗) also equals the
identity map on t̃, and the Campbell–Baker–Hausdorff formula (see [22, 52]) can
be used to show that the Lie bracket induced by (t̃,∗) agrees with AB − BA, the
commutator Lie bracket derived from the original truncated tensor multiplication.

We let gN := g=Lie(V ) be the Lie algebra generated by V . The vector space
g is an embedded submanifold of t̃ and is also a subgroup of (t̃,∗) under the
product ∗. It follows that (g,∗) is a Lie group, which we call the step-N nilpotent
Lie group with d generators. The Lie algebra associated with (g,∗) is the vector
space g.

DEFINITION 2.1. For any a ∈ V , we define Ba to be the unique left-invariant
vector field on (g,∗) associated with (0, a,0, . . . ,0) ∈ g. Given A ∈ g we then
define the horizontal subspace HA at A ∈ g to be the vector subspace of g given
by

HA = span
{
Ba(A) : a ∈ V

}
.

An absolutely continuous curve γ : [0, T ] → g is then said to be horizontal if
γ̇ (t) ∈ Hγ (t) for almost every t ∈ [0, T ].

REMARK 2.2. For example, when N = 2 a simple calculation shows that

Ba(A) = a + 1

2

[
A1, a

]
, where A = (

A1,A2).
We will equip V with a norm and consider paths x belonging to

C1-var([0, T ],V ), the space of continuous V -valued paths of finite 1-variation
‖x‖1-var;[0,T ]. The truncated signature SN(x) of x is defined by

SN(x)0,· := 1 +
N∑

k=1

∫
0<t1<···<tk<·

dxt1 ⊗ · · · ⊗ dxtk =: 1 +
N∑

k=1

xk
0,· ∈ T̃ N (V ).

It is well known (see [31]) that logSN(x)0,· is a path which takes values in the
group (g,∗). Any horizontal curve starting from 0, the identity in (g,∗), can be
realised as the unique solution to

dγt = Bdxt (γt ), γ0 = 0.

This so-called horizontal lift of x is easily shown to equal logSN(x)0,·.
A classical theorem of Chow (see, e.g., [33, 48]) shows that any distinct points in

g can be connected by a horizontal curve (which is smooth in the case N = 2). This
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gives rise to the Carnot–Carathéodory norm on (g,∗) as the associated geodesic
distance

(6) ‖g‖CC := inf
{‖x‖1-var;[0,T ] : x ∈ C1-var([0, T ],V )

and logSN(x)0,T = g
}
.

The function ‖ · ‖CC has the property of being a homogeneous norm on (g,∗). By
this, we mean a map ‖ · ‖ : (g,∗) → R≥0 which vanishes at the identity and is
homogeneous in the sense that

‖δrg‖ = |r|‖g‖ for every r ∈R,

wherein δr : g → g is the restriction to g of the scaling operator δr : T N(V )→
T N(V ) defined by

δr : (g0, g1, g2, . . . , gN ) → (
g0, rg1, r2g2, . . . , rNgN )

.

In finite dimensions it is a basic fact ([31]) that all such homogeneous norms are
Lipschitz equivalent, and the subset of symmetric and subadditive homogeneous
norms gives rise to metrics on (g,∗). The one which we will use most often is the
left-invariant Carnot–Carathéodory metric dCC determined from (6) by

dCC(g,h) = ∥∥g−1 ∗ h
∥∥

CC, g, h ∈ g.

For any path x : [0, T ] → (g,∗), the group structure provides us with a natu-
ral notion of increment given by xs,t := x−1

s ∗ xt . For each α in (0,1] and p in
[1,∞), we can then let Cα-Höl([0, T ],g) and Cp-var([0, T ],g) be the subsets of
the continuous g-valued paths such that the following, respectively, are finite real
numbers:

‖x‖α-Höl;[0,T ] := sup
[s,t]⊆[0,T ],

s �=t

‖xs,t‖CC

|t − s|α ,(7)

‖x‖p-var;[0,T ] :=
(

sup
D=(tj )

∑
j :tj∈D

‖xtj ,tj+1‖p
CC

)1/p

,(8)

where, in the latter, the supremum runs over all partitions D of the interval [0, T ].

DEFINITION 2.3. For p ≥ 1, we let

WG	p(V ) := WG	p

([0, T ],V ) := Cp-var([0, T ],g�p�).
We call WG	p(V ) the set of weakly2 geometric p-rough paths.

REMARK 2.4. Note that C1/p-Höl([0, T ],g�p�) ⊂ WG	p(V ).

2The prefix weakly here is really a misnomer; what are customarily called weakly geometric rough
paths really ought to be called geometric rough paths. We persist with it for the sake of consistency
with the literature.
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The definitions (7) and (8) can be easily extended for any compact subset I ⊂ R

by simply replacing [0, T ] by I . We will also consider the case where I = [0,∞),
by which we mean the following.

DEFINITION 2.5. For p ≥ 1, we define Cp-var([0,∞),g) to be the subset of
the continuous g-valued paths, C([0,∞),g) as follows:

Cp-var([0,∞),g
) := {

x ∈C
([0,∞),g

) : ∀T ≥ 0,x|T ∈ Cp-var([0, T ],g)},
where x|T denotes the restriction of a path x on [0,∞) to one on [0, T ]. We define
C1/p-Höl([0,∞),g) similarly.

We will later need the fact that for x ∈ Cp-var([0, T ],g) the map

(9) ωx(s, t) := ‖x‖p
p-var;[s,t]

is a control; by this we mean it is a continuous, nonnegative, super-additive func-
tion on the simplex �T := {(s, t) ∈ [0, T ] × [0, T ] : 0 ≤ s ≤ t ≤ T } which is zero
on the diagonal (see [31], page 80).

3. Markov processes induced by Dirichlet forms. We now recall some basic
facts from the theory of Dirichlet forms and the corresponding probabilistic study
of symmetric Markov processes. The most prominent references for our setting
include [10, 24, 32, 38, 53–56] and [47].

We will consider Markov processes constructed on a locally compact Polish
space E. When working with examples from rough paths theory, we will specialise
to E = g= gN , as considered in the last section.

We assume throughout that E is equipped with a Radon measure μ that has full
support. We let E denote a Dirichlet form with domain D(E) ⊆ L2(E,μ) = L2(μ),
which we assume to be symmetric, strongly local and strongly regular in the sense
of [56]. For suitable f,g ∈ D(E), a Dirichlet form of this type can be written as

E(f, g) =
∫
E

d�(f,g),

where � is a positive semidefinite bilinear form on D(E) taking values in the space
of signed Radon measure, and is called the energy measure associated with E .

To every such Dirichlet form E, one can associate a nonpositive self-adjoint
operator L. Classical theory then provides the route from L to a semi-group of
contractions on L2(μ), which we will denote (Pt )t≥0, and thence to an associated
E-valued Markov process. The assumption of strong regularity implies that the
intrinsic metric, which we recall below, associated with E is a genuine metric on E,
and that the metric topology coincides with the original topology on E. We denote
this intrinsic metric by d; it is defined for all x, y ∈ E by

d(x, y)
(10)

= sup
{
f (x) − f (y) : f ∈ Floc, f : E →R continuous, d�(f,f ) ≤ dμ

}
,
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wherein Floc := {f ∈ L2(μ) : �(f,f ) is a Radon measure}. The following list
enumerates the basic conditions we impose on the Dirichlet space (E,D(E),

L2(E,μ)).

CONDITION 3.1. Let E be a symmetric strongly local, strongly regular
Dirichlet form. Denote by Bd(x, r) = B(x, r) the ball of radius r around x ∈ E

with respect to d , the intrinsic metric associated to E . We will assume that the
following properties are satisfied:

(I) (Completeness property) The metric space (E,d) is complete.
(II) (Doubling property) There exists M > 0 such that

∀r > 0, x ∈ E : μ(
B(x,2r)

) ≤ 2Mμ
(
B(x, r)

)
.

(III) (Weak Poincaré inequality) There exists CP > 0 such that for all r > 0,
x ∈ E and f ∈ D(E) we have∫

B(x,r)
|f − f̄r |2 dμ ≤ CP r2

∫
B(x,2r)

d�(f,f ),

where

f̄r = μ
(
B(x, r)

)−1
∫
B(x,r)

f dμ.

With our later applications in mind, it is fruitful to note that these conditions are
satisfied, for example, by the Dirichlet form (see [31, 56])

Ea(f, g) :=
d∑

i,j=1

∫
RN

aij (x)
∂

∂xi

f (x)
∂

∂xj

g(x) dμ(x),

where a is a measurable map from R
N to a class of symmetric uniformly elliptic

matrices and μ is chosen to be the usual Lebesgue measure. Uniform ellipticity is
not necessary: If μ is a smooth measure and a is a smooth map with values in the
class of symmetric positive semi-definite matrices such that Ea is sub-elliptic in
the Fefferman–Phong sense, then, too, the above conditions are satisfied (see [8,
12, 38, 56])—they are even satisfied for Eb if b is merely uniformly sub-elliptic
with respect to such an Ea .

We will revisit these examples later when we discuss the applications of our
results in the rough paths framework; for now we will continue in the more general
setting of a Dirichlet space that satisfies the above conditions.

Under the assumptions (I), (II), (III), the semi-group (Pt )t≥0 referred to above
is easily seen by Sobolev estimates (see, e.g., [21]) to admit a kernel representation
so that

(Ptf )(x) =
∫

f (y)p(t, x, y)μ(dy).

The heat kernel p can be shown to satisfy the following upper bound.
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THEOREM 3.2 (Sturm [56], Corollary 4.2). The heat kernel p associated with
the Dirichlet form E satisfies, for ε > 0 fixed,

(11) p(t, x, y) ≤ C√
μ(B(x, t1/2))μ(B(y, t1/2))

exp
(
−d(x, y)2

(4 + ε)t

)
,

for some constant C that only depends on the doubling and Poincaré constants
of E .

REMARK 3.3. As commented in [56], Corollary 4.2, it follows by apply-
ing the doubling property that μ(B(x,

√
t)) ≤ μ(B(y,

√
t))2M(1 + d(x,y)√

t
)M and,

therefore, the previous theorem also gives

(12) p(t, x, y) ≤ CU

μ(B(x, t1/2))
exp

(
−d(x, y)2

(4 + ε)t

)
.

The constant CU here only depends on ε, M and CP .

The heat kernel p allows for a consistent family of finite-dimensional distribu-
tions, and thus determines an E-valued (strong) Markov process Xx = (Xx

t )t≥0
with Xx

0 = x. An important observation using Kolmogorov’s criterion (see [28],
Theorem 13) is that, for any p > 2, Xx has a version with sample paths in
C

1/p-Höl
d ([0,∞),E); that is, for every T < ∞

∣∣Xx
∣∣
1/p-Höl;[0,T ],d := sup

s �=t∈[0,T ]
d(Xx

s ,Xx
t )

|t − s|1/p
< ∞

μ-almost surely. This, in the usual way, also implies that the p-variation is finite
almost surely

∣∣Xx
∣∣
p-var;[0,T ],d := sup

D={0=t0<t1<···<tn=T }

(
n∑

i=1

d
(
Xx

ti−1
,Xx

ti

)p)1/p

< ∞.

In fact, much more can be shown; the following theorem is an assembly of results
from [31], Proposition E.19, which we will need subsequently.

THEOREM 3.4. Suppose E is a Dirichlet form satisfying Condition 3.1. Let
x ∈ E and p > 2. There exists a version Xx of the Markov processes associated
with E which belongs to C1/p-Höl([0,∞),E). If Px denotes the probability mea-
sure on C([0,∞),E) given by the law of Xx , then for any T > 0 there exists a
finite constant C = C(CP ,CD,T ) such that

sup
x∈E

P
x

(
sup

[s,t]⊆[0,T ]
d(Xs,Xt)

|t − s|1/p
> r

)
≤ C exp

(
−r2

C

)
,

wherein Xt : C([0,∞),E) → E denotes the canonical evaluation map Xt(ω) =
ω(t).
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PROOF. The proof in [31] of the second statement works in the case where μ

coincides with the Haar measure on g. The proof in the general setting works along
the same lines; however, one needs to note that it is by exploiting the doubling
property later in the calculation that one eliminates the dependence on the starting
point in the constant. To be more precise, one easily sees that for fixed s < t in
[0,1] and η > 0 we have

E
x

[
exp

(
η
d(Xs,Xt)

2

t − s

)]
≤ sup

x∈E

E
x[exp

(
ηd̃(x, X̃1)

2)],
where X̃· ≡ X(t−s)· and d̃ = d√

t−s
. Writing p̃(t, x, y) for the heat kernel associated

with X̃, and B̃ for the balls associated with d̃ , we find that for η ∈ (0,1/4)

E
x[exp

(
ηd̃(x, X̃1)

2)] =
∫
E

exp
(
ηd̃(x, y)2)p̃(1, x, y)μ(dy)

≤ Cu

∫ ∞
0

μ(B̃(x, r))

μ(B̃(x,1))

d

dr

(
− exp

(
−
(

1

(4 + ε)
− η

)
r2
))

dr

≤ Cu

∫ 1

0

d

dr

(
− exp

(
−
(

1

(4 + ε)
− η

)
r2
))

dr

+ Cu

∫ ∞
1

(2r)M
d

dr

(
− exp

(
−
(

1

(4 + ε)
− η

)
r2
))

dr

< ∞,

where we used the heat kernel bound in (12), a change-of-variables, integration by
parts, the doubling property and again integration by parts. �

Henceforth, we always work with the version of the process given by this theo-
rem. An important further remark is that for r > 0 we can scale the time-parameter
of Xx to form a new process Xr,x = (Xx

rt )t≥0. This new process is the Markov pro-
cess associated to the Dirchlet form E r := rE ; its intrinsic distance equals r−1/2d

and E r again satisfies the doubling property and weak Poincaré inequality with the
same constants as E .

REMARK 3.5. When we wish to highlight the dependence of the law of Xx

on E we will write P
x,E ,Ex,E etc. The scaling property then in particular shows

that the P
x,E distribution of (Xrt )t≥0 equals the P

x,rE distribution of (Xt)t≥0.

4. A large deviations result. Throughout this section, we fix a Dirichlet form
E satisfying Condition 3.1, and again use d to denote its intrinsic metric. Given
a path x in C([0,∞),E) and r > 0 we can define inductively a nondecreasing
sequence (σ r

n )∞n=0 = (σ r
n (x))∞n=0 by setting σ r

0 = 0, and then

(13) σ r
n := inf

{
t ≥ σ r

n−1 : d(xσr
n−1

, xt ) ≥ r
}

for n ∈ N.
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DEFINITION 4.1. For any T ≥ 0, we define the functional Nr
0 (·) =

Nr
0 (·, [0, T ]) : C([0,∞),E) →N∪ {0} by

Nr
0
(
x, [0, T ]) = sup

{
n : σ r

n < T
}
.

REMARK 4.2. When r = 1, we will omit the superscripts and write σn,N0(·)
and so forth. Note that Nr

0 (x, [0, T ]) < ∞ implies that the set

{
σj : j = 0,1, . . . ,Nr

0
(
x, [0, T ])}∪ {T }

forms a partition of the interval [0, T ].

It is our goal in this section to analyse the tail behaviour of the integer valued
random variables Nr

0 (Xx, [0, T ]), when Xx is the Markov process associated to
E described in Section 3. Our approach will be motivated by the following well-
known example.

EXAMPLE 4.3 (Brownian motion). Let E = R and B = (Bt )t≥0 a one-
dimensional standard Brownian motion on some probability space (	,F,P). In
this setting, the sequence in (13) is given by

σ0 := 0, σn+1 := inf
{
t ≥ σn : |Bt − Bσn | ≥ 1

}
.

It is a classical result (see, e.g., [40]) that the Laplace transform of σ := σ1 satisfies

(14) E
[
e−λσ ] = cosh(

√
2λ)−1 ≤ 2e−√

2λ.

If we let ξk := σk −σk−1 for k = 1, . . . , n and note that {ξk : k = 1, . . . , n} are i.i.d.
with each ξk equal in distribution to σ , then using

∑n
k=1 ξk = σn, it follows that for

all θ > 0

P
(
N0

(
B, [0,1]) ≥ n

) = P(σn < 1) ≤ eθ
E
[
e−θσ ]n ≤ 2neθe−n

√
2θ .

The last expression can be minimized by the choice θ = 2−1n2, which immediately

yields the estimate P(N0(B, [0,1]) ≥ n) ≤ 2ne− n2
2 ≤ c1e

−c2n
2
, for some c1 and c2

in (0,∞) which do not depend on n.

This example makes clear the importance of the Laplace transform when
analysing the tail behaviour of Nr

0 (x, [0, T ]). What is important is not to have a
closed-form expression as in (14), but instead to have an upper bound controlling
its asymptotic behaviour as λ → ∞.
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4.1. Tails for Nr
0 (x, [0, T ]). We will adopt the notation of Theorem 3.4, that

is, P
x will be the law of Xx on C([0,∞),E) and E

x the corresponding ex-
pectation operator. For t ≥ 0, we continue to denote the evaluation maps by
Xt : C([0,∞),E) → E so that Xt(ω)= ω(t). Let σ =: σ1(X), the random vari-
able in (13) with r = 1, and denote its Laplace transform under the probability
measure P

x by

(15) M(λ;x) := M(λ;E, x) := E
x[e−λσ ] =

∫
C([0,∞),E)

e−λσ(ω)
P

x(dω).

We will now state a version of De Bruijn’s exponential Tauberian theorem. This
well-known result relates the asymptotic behaviour of the log Laplace transform,
logM(λ;E, x) as λ → ∞ and the log short-time probability logPE,x(σ ≤ t) as
t → 0+.

LEMMA 4.4 (Exponential Tauberian theorem). Let c > 0. The following two
statements are equivalent:

1. − logM(λ;x) ∼ c
√

λ, as λ → ∞;

2. − logPx(σ ≤ t) ∼ c2

4t
, as t → 0+.

PROOF. This is an immediate consequence of applying Theorem 4.12.9 in
[11], making the choice B = c2

4 and φ(λ) = 1
λ

in the notation of that theorem. �

We will not need the full strength of this equivalence. Instead, we will need the
following statement which relates the asymptotic oscillations of the two functions.
We give a short proof for completeness and refer the reader to [11] for much greater
detail on results of this type.

LEMMA 4.5. Suppose there exists c > 0 for which

(16) lim sup
t→0+

t sup
x∈E

logPx(σ ≤ t) ≤ −c,

then

lim sup
λ→∞

λ− 1
2 sup

x∈E

logM(λ;x) ≤ −√
c.

PROOF. Set Px(σ ≤ t) =: μx(t). First, note that it is sufficient to show that the
assumption (16) implies

lim sup
λ→0+

λ sup
x∈E

logM

(
1

λ2 ;x
)

≤ −√
c.
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Second, we observe that for ξ, λ > 0,

M

(
1

λ2 ;x
)

=
∫ λ

ξ

0
exp

(
− t

λ2

)
dμx(t) +

∫ ∞
λ
ξ

exp
(
− t

λ2

)
dμx(t)

(17)

≤ μx

(
λ

ξ

)
+ exp

(
− 1

ξλ

)
.

Finally, we use this bound and exploit the well-known fact that for any two se-
quences (an)

∞
n=1 and (bn)

∞
n=1 of positive real numbers we have

lim sup
n→∞

1

n
log(an + bn) = max

{
lim sup
n→∞

1

n
logan, lim sup

n→∞
1

n
logbn

}
.

In the setting of (17), this gives

lim sup
λ→0+

λ sup
x∈E

logM

(
1

λ2 ;x
)

≤ lim sup
λ→0+

λ log
(

sup
x∈E

μx

(
λ

ξ

)
+ exp

(
− 1

ξλ

))

≤ max
{−ξc,−ξ−1},

where the last line uses the hypothesis (16). Because the function (0,∞) � ξ �→
max{−ξc,−ξ−1} attains its global minimum −√

c at ξ� = c− 1
2 , we obtain

lim sup
λ→0+

λ sup
x∈E

logM

(
1

λ2 ;x
)

≤ −√
c

which completes the proof. �

The following lemma will make the previous result applicable to our setting.

LEMMA 4.6. Denote by P
x and σ , respectively, the probability measure and

stopping time defined in the statement of Lemma 4.5. There exist constants c1, c2 ∈
(0,∞), which depend only on the doubling and Poincaré constants associated with
E such that for all t ∈ (0,1/4]

P
x(σ ≤ t) ≤ c1 exp

(
−4c2

t

)
.

We defer the proof for a moment to note a useful consequence, namely that

lim sup
t→0+

t sup
x∈E

logPx(σ ≤ t) = −4c2 < 0.

This allows us to apply Lemma 4.5 and immediately deduce the following corol-
lary.
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COROLLARY 4.7. Let M(λ;x) denote the Laplace transform (15) of the stop-
ping time σ . Then under the condition of Lemma 4.6 we have

lim sup
λ→∞

√
λ

−1
sup
x∈E

logM(λ;x) ≤ −2
√

c2.

There consequently exists a constant λ0 ∈ (0,∞) such that

(18) sup
x∈E

M(λ;x) ≤ exp(−√
c2λ) for all λ ≥ λ0.

PROOF OF LEMMA 4.6. We follow [2], Proposition 6.5, where a similar up-
per bound is obtained in the case of uniformly elliptic diffusions. By using the
Gaussian upper estimate in Theorem 3.2, we will adapt the proof for the class of
Markov processes introduced earlier. First, we note that

P
x(σ ≤ t) ≤ P

x

(
σ ≤ t, d(Xt , x) <

1

2

)
+ P

x

(
d(Xt , x) ≥ 1

2

)
.

Second, using Theorem 3.2 (with fixed ε > 0) and the remark which follows it, we
see that the second term satisfies

P
x

(
d(Xt , x) ≥ 1

2

)
=

∫
B(x, 1

2 )c
p(t, x, y)μ(dy)

≤
∫
B(x, 1

2 )c

C

μ(B(x,
√

t))
exp

(
−d(x, y)2

(4 + ε)t

)
μ(dy)

=
∫ ∞

1/2

C

μ(B(x,
√

t))
exp

(
− r2

(4 + ε)t

)
dμ

(
B(x, r)

)

≤
∫ ∞

1/2

Cμ(B(x, r))

μ(B(x,
√

t))

2r

(4 + ε)t
exp

(
− r2

(4 + ε)t

)
dr(19)

≤
∫ ∞

1/2
C2M+1 1√

t

(
r√
t

)M+1
exp

(
− 1

(4 + ε)

(
r√
t

)2)
dr

=
∫ ∞

1
2
√

t

c1v
M+1 exp

(−c2v
2)dv

≤ c3e
− c4

t ,
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where the constants c3 and c4 depend only on the doubling and Poincaré constants
of E . For the first term, observe that

P
x

(
σ ≤ t, d(Xt , x) <

1

2

)
≤

∫ t

0
P

x

(
σ ∈ ds, d(Xt ,Xσ1) ≥ 1

2

)

=
∫ t

0
E

x

[
1{σ∈ds}PXσ

(
d(Xt−σ ,X0) ≥ 1

2

)]

≤
∫ t

0
E

x

[
1{σ∈ds}PXs

(
d(Xt−s,X0)

) ≥ 1

2

]
.

By the same argument as in (19), we know there exist constants c5 and c6 which,
again, depend only on the doubling and Poincaré constants of E , such that

sup
r≤t

P
x

(
d(Xr,X0) ≥ 1

2

)
≤ c5e

− c6
t .

Together these bounds imply the desired result. �

REMARK 4.8. We draw the reader’s attention to a similar result which has
been proved in [8]. There are important differences, both in the statement of the
result and the proof techniques, which are significant for the later applications in
the paper. For example, our main theorem, Theorem 5.4, will be based on a fam-
ily of estimates derived from the above. The proof will rely on a delicate scaling
argument, for which it is necessary to track carefully the dependence of the esti-
mates on the parameters such as the starting point x and the Poincaré and doubling
constants. The proof in [8] relies crucially on Takeda’s inequality and properties
of subsolutions to equations associated to the herein presented Dirichlet forms.
Our proof by contrast is more elementary as it only relies on the upper heat kernel
bound associated with the symmetric Markov process.

We can now prove the needed tail estimates for the random variables
Nr

0 (X, [0, T ]) under P
x . To do so we make the following simplifying observa-

tion.

REMARK 4.9. The distribution of σ r = σ r
1 under PE,x equals the distribution

of r2σ = r2σ 1
1 under Pr2E,x . This is a consequence of the scaling property high-

lighted in Remark 3.5.

PROPOSITION 4.10. Let E be the Dirichlet form introduced in Section 3, and
assume that Xx is the E-valued Markov process, defined on some probability
space, associated with this form. Let Px = P

E,x be the (Borel) probability mea-
sure on C([0,∞),E) which is the law of the Markov Xx associated to E , and
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let c2, λ0 ∈ (0,∞) be the constants in (18). For every r > 0, the random variable
Nr

0 (·, [0, T ]): C([0,∞),E) →N∪ {0} in Definition 4.1 satisfies

(20) P
x(Nr

0
(
X, [0, T ]) ≥ n

) ≤ exp
(
−c2n

2r2

4T

)

for all n ≥ 2T λ
1/2
0 r−2c

−1/2
2 .

PROOF. As previously, we write σ r
n = ∑n

k=1 ξ r
k , where ξ r

k = σ r
k − σ r

k−1 and
we aim to estimate the probability in (20). To do so, we first note that for λ > 0 we
have

(21) P
x(Nr

0
(
X, [0, T ]) ≥ n

) ≤ eλT
E
E,x[e−λ

∑n
k=1 ξ r

k
]
.

Using the scaling property in the manner of Remark 4.9 gives

Mr(λ;E, x) := E
E,x[e−λξr

1
] = E

E,x[e−λσ r
1
] = E

r2E,x[e−λr2σ ] = M
(
λr2; r2E, x

)
,

where, for clarity, we have emphasised the dependence on the Dirichlet form. The
inequality (18) in Corollary 4.7 then yields

(22) sup
x∈E

Mr(λ;E, x) ≤ exp(−√
c2λr) for all λ ≥ λ0r

−2;

the same constant c2 features here because the doubling and Poincaré constants
for r2E are the same as those for E . Combining the strong Markov property at the
stopping time σ r

n−1 with an easy induction yields the estimate

E
E,x[e−λ

∑n
k=1 ξ r

k
] = E

E,x[e−λ
∑n−1

k=1 ξ r
k E

E,Xσr
n−1

[
e−λσ r

1
]]

≤ E
E,x[e−λ

∑n−1
k=1 ξ r

k
]

sup
x∈E

Mr(λ;E, x)(23)

≤ sup
x∈E

Mr(λ;E, x)n.

Using (23) together with (22) and (21) gives that

P
x(Nr

0
(
X, [0, T ]) ≥ n

) ≤ exp(λT − n
√

c2λr),

for all λ ≥ λ0r
−2. The right-hand side of this bound is minimized by the choice

λ = T −24−1c2n
2r2, resulting in the optimized bound

P
x(Nr

0
(
X, [0, T ]) ≥ n

) ≤ exp
(
−c2n

2r2

4T

)
,

which holds provided T −24−1c2n
2r2 ≥ λ0r

−2, that is, if n ≥ 2T λ
1/2
0 r−2c

−1/2
2 .

�
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5. Tail estimates for the accumulated local p-variation. The law P
x of the

Markov process Xx constructed in Section 3 is, for any p > 2 and T ≥ 0, sup-
ported in C

1/p-Höl
d ([0, T ],E) ⊂ C

p-var
d ([0, T ],E) ⊂ C([0, T ],E). This observa-

tion allows us to go beyond the analysis of the previous section and address the
tail behaviour of the accumulated local p-variation. We first recall the definition
of this functional (cf. [18]). Later we will wish to compare this functional for dif-
ferent metrics on E, so we reference the metric in the definition.

DEFINITION 5.1 (Accumulated local p-variation). Let p ≥ 1 and suppose ρ

is a metric on E. We define the accumulated local p-variation to be the function
M(·, [0, T ], ρ) = M(·) : Cp-var

ρ ([0,∞),E) →R≥0 given by

(24) M
(
x, [0, T ], ρ) := sup

D={0=t0<t1<···<tn=T }
ωx(ti ,ti+1)≤1

n∑
i=1

ωx(ti−1, ti),

where ωx is the control induced by the p-variation of x w.r.t. ρ, that is, for s ≤ t

ωx(s, t) = |x|pp-var;[s,t],ρ.

The supremum in (24) is taken over the set of all partitions D of the interval [0, T ]
such that ωx , when evaluated between two consecutive points in D, is bounded
above by unity.

We will now show that the accumulated local p-variation of a path x over [0, T ]
can be bounded by the number of points in an arbitrary partition of that interval
and the accumulated p-variation between the points of this partition.

LEMMA 5.2. Let p ≥ 1, T > 0, suppose ρ is a metric on E and assume x ∈
C

p-var
ρ ([0,∞),E). We use ωx to denote the control induced by the p-variation of

x w.r.t. ρ as introduced in Definition 5.1. If {0 = σ0 < σ1 < · · · < σN = T } is an
arbitrary partition of [0, T ], then we can bound M(x, [0, T ], ρ) from above using
the following estimate:

(25) M
(
x, [0, T ], ρ) ≤ N − 1 +

N∑
j=1

ωx(σj−1, σj ).

PROOF. Suppose D = {0 = t0 < t1 < · · · < tn = T } is an arbitrary partition of
[0, T ], such that any two consecutive points s < t in D satisfy ωx(s, t) ≤ 1. We
define the function � : {0,1, . . . , n} → {0,1, . . . ,N} by

�(i) = max
{
k ∈ N∪ {0} : σk ≤ ti

}
for i = 0,1, . . . , n,

and then let A denote the subset

A = {
k < N − 1 : ∃i with �(i) = k

} ⊆ {0,1, . . . ,N − 2}.
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For each k ∈ A, we define

mk = min
{
i : �(i) = k

}
and nk = max

{
i : �(i) = k

}
,

whereupon it is an easy consequence that we have σk ≤ tmk
< tmk+1 < · · · < tnk

<

σk+1, and hence
nk∑

j=mk

ωx(tj , tj+1) ≤ ωX(σk, σk+1) + 1.

To finish, we note that
n∑

i=1

ωx(ti−1, ti) ≤ ∑
k∈A

nk∑
j=mk

ωx(tj , tj+1) + ωx(σN−1, σN)

≤ ∑
k∈A

[
ωx(σk, σk+1) + 1

]+ ωx(σN−1, σN)

≤
N−2∑
k=0

[
ωx(σk, σk+1) + 1

]+ ωx(σN−1, σN)

≤
N∑

k=1

ωx(σk−1, σk) + N − 1,

and since the right-hand side of the previous estimate no longer depends on D, we
can take the supremum over all D satisfying the constraint in Definition 5.1. The
conclusion (25) then follows immediately. �

We are now ready to prove the main result. Before doing so, we introduce the
following notion.

CONDITION 5.3. Let d and ρ be two metrics on E. We say that ρ is locally
controlled by d if there exist r0 > 0 and C > 0 such that for every e ∈ E we have
Bd(e, r) ⊆ Bρ(e,Cr). for all r < r0.

In other words, d and ρ satisfying this condition have the property that

(26) ρ(x, y) ≤ Cd(x, y) for all x, y ∈ E such that d(x, y) < r0.

THEOREM 5.4. Let E be the Dirichlet form satisfying Condition 3.1 of Sec-
tion 3, with associated intrinsic distance d . Given x ∈ E and p > 2, assume
Xx is the E-valued Markov process associated to E which is described in The-
orem 3.4, and let PE,x = P

x be the (Borel) probability measure on C([0,∞),g)

under which the canonical process X has the same distribution as Xx . We con-
tinue to use c2, λ0 ∈ (0,∞) to denote the constants in (18). Suppose ρ is any met-
ric on E which is locally controlled by d (Condition 5.3) with C, r0 > 0 such that
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Bd(e, r) ⊆ Bρ(e,Cr) for all e ∈ E, and all r ≤ r0. Then there exist finite constants
C1,C2,C3 > 0, which depend only on p, N , T , and on the doubling and Poincaré
constants associated to E , such that for any r <

r0
2 we have

(27) P
E,x(M(

X, [0, T ], ρ) > R
) ≤ exp

(−C1r
2R2)+ Rr−pC2 exp

(−C3Rr2−p)
for all R ≥ (16λ0c

−1
2 )1/2r−2. In particular, by choosing r := R−1/p <

r0
2 in (27),

this yields a better-than-exponential tail for the accumulated local p-variation
functional; that is for some finite C > 0, which depends only on p, N , T and on
the doubling and Poincaré constants associated to E , we have

(28) P
E,x(M(

X, [0, T ], ρ) > R
) ≤ C exp

(−CR2(1−1/p))
for all R ≥ max{(16λ0c

−1
2 )p(2p−4)−1

, (
r0
2 )−p}.

REMARK 5.5. At first glance, the reader may be surprised that the quality of
the tail seems to improve for larger p. This comes about because of the specific
way in which scaling is used in the proof (see below). This does not give rise to
a contradiction because, unlike for p-variation, there is no way of ordering the
accumulated p and q variation for different values of p and q . Indeed, if 1 ≤ p <

q , while it is true that

n∑
i=1

|X|qq-var;[ti−1,ti ],ρ ≤
n∑

i=1

|X|pp-var;[ti−1,ti ],ρ

if |X|p-var;[ti−1,ti ],ρ ≤ 1 for i = 1, . . . , n,

the set of partitions over which one optimises these functionals to form the accu-
mulated variation is larger for q than for p.

As p tends to infinity, the tail approaches Gaussian. If E = g, ρ = dCC and
E(f, g) = ∑d

i=1
∫
g Bif Big dm, then X = B is the Brownian rough path. For this

example, we know from [18] that Borell’s inequality yields the full Gaussian tail
for the accumulated p-variation for any p. The decay rate here is, in all cases, bet-
ter than exponential, and hence suffices for the important examples referred to in
the introduction. But it remains open and unclear whether isoperimetric arguments
can be used in this setting of general Markov processes to obtain a Gaussian tail.

PROOF. We will prove the main estimate (27) by using the family of estimates
in Lemma 5.2, when the partition is taken to be{

0 = σ r
0 < σr

1 < · · · < σr
N0(X,[0,T ]) < σ r

N0(X,[0,T ])+1 := T
}

with the σ r
j ’s given as (13) and we have re-defined σ r

N0(X,[0,T ])+1 := T for nota-
tional convenience. We will assume that T = 1 and write M(X;ρ) and Nr

0 (X)

in lieu of M(X; [0, T ], ρ) and Nr
0 (X, [0, T ]), respectively. The assumption T = 1
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involves no loss of generality because of the scaling property. First, note from
Lemma 5.2 that we can bound M(X;ρ) by

Nr
0 (X) +

Nr
0 (X)∑
j=0

ωX

(
σ r

j , σ r
j+1

)
.

It follows that for any R > 0 and r > 0{
ω : M(

X(ω);ρ) > R
}

⊂
{
ω : Nr

0
(
X(ω)

)
>

R

2

}
∪
{
ω :

Nr
0 (X(ω))∑
j=0

ωX

(
σ r

j , σ r
j+1

)
>

R

2

}
.

A simple estimate then gives

(29) P
x(M(X;ρ) > R

) ≤ P
x

(
Nr

0 (X) >
R

2

)
+ P

x

(Nr
0 (X)∑
j=0

ωX

(
σ r

j , σ r
j+1

)
>

R

2

)

for all R > 0 and r > 0.
By Proposition 4.10,

P
x

(
Nr

0 (X) >
R

2

)
≤ exp

(
−c2R

2r2

16

)

for all R ≥ (16λ0c
−1
2 )1/2r−2. It remains to treat the second term on the right-hand

side in (29). To this end, we note the following elementary inequality:

ωX

(
σ r

i , σ r
i+1

) ≤ |X|p1/p-Höl;[σ r
i ,σ r

i+1],ρ
(
σ r

i+1 − σ r
i

)
.

We assume r < r0 so that in particular we have ρ(Xs,Xt) ≤ Cd(Xs,Xt) whenever
[s, t] ⊂ [σ r

i , σ r
i+1]. We then notice that for any h > 0

|X|p1/p-Höl;[σ r
i ,σ r

i+1],ρ ≤ sup
s �=t,|t−s|≤h,

[s,t]⊂[σ r
i ,σ r

i+1]

ρ(Xs,Xt)
p

|t − s| + sup
s �=t,|t−s|>h,

[s,t]⊂[σ r
i ,σ r

i+1]

ρ(Xs,Xt)
p

|t − s|

≤ sup
s �=t,|t−s|≤h,

[s,t]⊂[σ r
i ,σ r

i+1]

Cpd(Xs,Xt)
p

|t − s| + (2Cr)p

h
,

where the last line uses the definition of σ r
i and σ r

i+1. Using the equality∑Nr
0 (X)

i=0 (σ r
i+1 − σ r

i ) = 1, we thus have for any h > 0

Nr
0 (X)∑
i=0

ωX

(
σ r

i , σ r
i+1

) ≤
Nr

0 (X)∑
i=0

[
sup

s �=t,|t−s|≤h,
[s,t]⊂[σ r

i ,σ r
i+1]

Cpd(Xs,Xt)
p

|t − s|
(
σ r

i+1 − σ r
i

)]+ 2pCprp

h

≤ sup
s �=t,|t−s|≤h,
[s,t]⊂[0,1]

Cpd(Xs,Xt)
p

|t − s| + 2pCprp

h
.
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Applying this estimate with the choice h = 2p+2R−1rpCp , we obtain

Nr
0 (X)∑
i=0

ωX

(
σ r

i , σ r
i+1

) ≤ sup
s �=t,|t−s|≤h,
[s,t]⊂[0,1]

Cpd(Xs,Xt)
p

|t − s| + R

4

and consequently it suffices to bound

P
x

(
sup

s �=t,|t−s|≤h,
[s,t]⊂[0,1]

d(Xs,Xt)
p

|t − s| ≥ R

4Cp

)
.

To do so, note that if the interval [s, t] ⊆ [0,1] satisfies |t − s| < h, it must be
contained in at least one interval of the form[

(k − 1)h, (k + 1)h
]

for some k = 1, . . . ,
⌈
h−1⌉.

Therefore,

P
x

(
sup

s �=t,|t−s|≤h,
[s,t]⊂[0,1]

d(Xs,Xt)
p

|t − s| ≥ R

4Cp

)

(30)

≤
�h−1�∑
k=1

P
x

(
sup

[s,t]⊆[(k−1)h,(k+1)h]
d(Xs,Xt)

p

|t − s| ≥ R

4Cp

)
.

We will now show that each term in this sum possesses the desired bound, that is,
there exists a positive constant c > 0 such that

(31) P
x

(
sup

[s,t]⊆[(k−1)h,(k+1)h]
d(Xs,Xt)

p

|t − s| ≥ R

4Cp

)
≤ c exp

(
−Rr2−p

c

)
.

Because there are only �h−1� ≤ Rr−p terms in the sum, it will follow that we can
bound the left-hand side of (30) by

Rr−pc exp
(
−1

c
Rr2−p

)
.

To prove (31), we exploit the scaling property in Remark 3.5 to see that

sup
[s,t]⊆[(k−1)h,(k+1)h]

dE(Xs,Xt)
p

|t − s| under PE,x

(32)
D= sup

[s,t]⊆[(k−1),(k+1)]
dhE(Xs,Xt)

p

|t − s| · hp/2−1 under PhE,x,

where D= denotes equality in distribution, and we have again emphasized the de-
pendency on E of Px and the intrinsic metric d . We then conclude by applying (32)
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with h = 2p+2R−1rpCp to give

sup
y∈E

P
E,y

(
sup

[s,t]⊆[(k−1)h,(k+1)h]
dE(Xs,Xt)

p

|t − s| ≥ R

4Cp

)

= sup
y∈E

P
hE,y

(
sup

[s,t]⊆[(k−1),(k+1)]
dhE(Xs,Xt)

p

|t − s| ≥ Rp/2rp−p2/2

(2C)p
2/2

)

≤ c3 exp
(
−Rr2−p

c32p

)
.

The last step here results from applying Theorem 3.4 and noting that c3 is inde-
pendent of h as it only depends on the doubling and Poincaré constants associated
with hE . These constants coincide with those of E for each h > 0. �

6. Examples: g-valued Markovian rough paths. As we discussed in the In-
troduction, the motivation for this paper comes from estimates which arise natu-
rally in the theory of rough paths. In this section, we specialise the results we have
derived to this setting. The state space E is henceforth taken to be g= gN(Rd), as
presented in Section 2, and we construct our processes there. The Dirichlet form
we work with is given by

E(f, g) =
d∑

i,j=1

∫
g
aij (x)Bif (x)Bjg(x)μ(dx)

(33)

=
d∑

i,j=1

∫
g
aij (x)Bif (x)Bjg(x)v(x)m(dx).

In this formula, a : g → Sd is a fixed measurable map into the space of d × d

positive semi-definite matrices and Bi : i = 1, . . . , d denotes the canonical left-
invariant vector fields which coincide with the standard basis vectors at the origin.
The measure μ on g is assumed to be absolutely continuous with respect to the
Haar measure, and to possess a smooth positive density v.

Our natural regularity assumption on E is that it is sub-elliptic. This means that
there exist constants C > 0 and ε > 0 such that for every open subset U ⊂ g and
every f ∈ C∞

c (U)

(34) ‖f ‖2
ε ≤ C

[
E(f, f ) + ‖f ‖2

L2(μ)

]
,

where, for s > 0, ‖f ‖2
s := ∫

U |f̂ (u)|2(1 +|u|2)sμ(du) denotes the usual fractional
Sobolev norm of order s and f̂ is the Fourier transform of f . The authors of [23]
have shown, for the case of smooth a, that E is sub-elliptic if and only if the balls
with respect to the intrinsic metric d of E and the Euclidean metric | · |Euc on R

m,
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where m = dimgN(Rd), are locally equivalent. More precisely, for some positive
constants C and r0 and for all x ∈ E, we have that

(35) Bd

(
x,C−1r

) ⊂ B|·|Euc(x, r) ⊂ Bd

(
x,Crε) for all 0 < r < r0.

The case of nonsmooth a is discussed in [12, 56], where it is also shown that
Condition 3.1, our basic set of three conditions, is satisfied for this sub-elliptic
class. We refer the reader to the important references [8, 12, 24, 37–39, 49] for
further discussion of sub-elliptic operators. By applying our main theorem in this
setting, we obtain the following as an immediate corollary.

COROLLARY 6.1. Assume that E is the Dirichlet form satisfying the
Fefferman–Phong sub-ellipticity condition (34) on g, which satisfies Condition 3.1.
For x ∈ g, let Xx be the g-valued Markov process associated to E which starts
from x. Then, for any p > 2, the accumulated local p-variation of Xx with respect
to the intrinsic metric of E on g has better than exponential tails. Using (35), the
same conclusion holds for the accumulated local p-variation of Xx with respect
to the metric induced by | · |Euc on g.

An important special case of the above set of examples is the class of Dirichlet
forms for which the matrix a in (33) is assumed to satisfy the upper bound

(36) ∀y ∈ R
d : sup

x∈g
yT a(x)yv(x) ≤ �|y|2,

for some � ≥ 1. This generalizes the class of processes studied by Friz and Victoir
in [28], where v ≡ 1 and (36) is assumed to be complemented by a commensu-
rate lower bound. The correct assumption is the Fefferman–Phong sub-ellipticity
condition identified above. Note that (36) implies

dCC(x, y) ≤ �1/2d(x, y) for all x, y ∈ g.

In particular, dCC is locally controlled by d . As a result, we obtain the following
corollary.

COROLLARY 6.2. Assume that the Dirichlet form E in (33) satisfies the
Fefferman–Phong condition (34) and that a is bounded above in the sense of (36)
on g = gN . For x ∈ g let Xx be the g-valued Markov process associated to E which
starts from x. Then, for any p > 2, the accumulated local p-variation of Xx with
respect to the Carnot–Carathéodory metric on g has better than exponential tails.
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