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AN ITERATED AZÉMA–YOR TYPE EMBEDDING FOR FINITELY
MANY MARGINALS

BY JAN OBŁÓJ1 AND PETER SPOIDA2

University of Oxford

We solve the n-marginal Skorokhod embedding problem for a contin-
uous local martingale and a sequence of probability measures μ1, . . . ,μn

which are in convex order and satisfy an additional technical assumption.
Our construction is explicit and is a multiple marginal generalization of the
Azéma and Yor [In Séminaire de Probabilités, XIII (Univ. Strasbourg, Stras-
bourg, 1977/78) (1979) 90–115 Springer] solution. In particular, we recover
the stopping boundaries obtained by Brown, Hobson and Rogers [Probab.
Theory Related Fields 119 (2001) 558–578] and Madan and Yor [Bernoulli 8
(2002) 509–536]. Our technical assumption is necessary for the explicit em-
bedding, as demonstrated with a counterexample. We discuss extensions to
the general case giving details when n = 3.

In our analysis we compute the law of the maximum at each of the n

stopping times. This is used in Henry-Labordère et al. [Ann. Appl. Probab.
26 (2016) 1–44] to show that the construction maximizes the distribution of
the maximum among all solutions to the n-marginal Skorokhod embedding
problem. The result has direct implications for robust pricing and hedging of
Lookback options.

1. Introduction. We consider here an n-marginal Skorokhod embedding
problem (SEP). We construct an explicit solution which has desirable optimal
properties. The classical (one-marginal) SEP consists in finding a stopping time
τ such that a given stochastic process (Xt) stopped at τ has a given distribution μ.
For the solution to be useful (and nontrivial), one further requires τ to be mini-
mal (cf. Obłój [20], Section 8). When X is a continuous local martingale and μ

is centred in X0, this is equivalent to (Xt∧τ : t ≥ 0) being a uniformly integrable
martingale. The problem dates back to the original work in Skorokhod [24] and has
remained an active field of research since. New solutions often either considered
new classes of processes X or focused on finding stopping times τ with additional
optimal properties. This paper contributes to the latter category. We are motivated,
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as was the case for several earlier works in the field, by questions arising in math-
ematical finance which we highlight below.

The problem and main results. To describe the problem of interest, consider a
standard Brownian motion B and a sequence of probability measures μ1, . . . ,μn.
A solution to the n-marginal SEP is a sequence of stopping times τ1 ≤ · · · ≤ τn

such that Bτi
∼ μi , 1 ≤ i ≤ n, and (Bt∧τn)t≥0 is a uniformly integrable martingale.

It follows from Jensen’s inequality that a solution may exist only if all μi are
centred and the sequence is in convex order. And then it is easy to see how to solve
the problem: it suffices to iterate a solution to the classical case n = 1 developed
for a nontrivial initial distribution of B0, of which several exist.

In contrast, the question of optimality is much more involved. In general, there
is no guarantee that a simple iteration of optimal embeddings would be globally
optimal. Indeed, this is usually not the case. Consider the embedding of Azéma and
Yor [1] which consists of a first exit time for the joint process (Bt , B̄t )t≥0, where
B̄t = sups≤t Bs . More precisely, their solution τAY = inf{t ≥ 0 : Bt ≤ ξμ(B̄t )}
leads to a functional relation BτAY = ξμ(B̄τAY). This then translates into the opti-
mal property that the distribution of B̄τAY is maximized in stochastic order amongst
all solutions to SEP for μ, that is, for all y,

P[B̄τAY ≥ y] = sup
{
P[B̄ρ ≥ y] : ρ s.t. Bρ ∼ μ, (Bt∧ρ) is UI

}
.

It is not hard to generalize the Azéma–Yor embedding to a nontrivial starting law;
see Obłój [20], Section 5. Consequently, we can find ηi such that τi = inf{t ≥
τi−1 : Bt ≤ ηi(supτi−1≤s≤t Bs)} solve the n-marginal SEP. However, this construc-
tion will maximize stochastically the distributions of supτi−1≤t≤τi

Bt , for each

1 ≤ i ≤ n, but not of the global maximum B̄τn . The latter is achieved with a new
solution which we develop here.

Our construction involves an interplay between all n-marginals, and hence is
not an iteration of a one-marginal solution. However, it preserves the spirit of
the Azéma–Yor embedding in the following sense. Each τi is still a first exit for
(Bt , B̄t )t≥τi−1 which is designed in such a way as to obtain a “strong relation” be-
tween Bτi

and B̄τi
, ideally a functional relation. Under our technical assumption

about the measures μ1, . . . ,μn, Assumption �, we describe this relation in detail
in Lemma 3.1.

For n = 2, we recover the results of Brown, Hobson and Rogers [5]. We also
recover the trivial case τi = τAY

μi
which happens when ξμi

≤ ξμi+1 , we refer to
Madan and Yor [18] who in particular then investigate properties of the arising
time-changed process. However, as a counterexample shows, our construction does
not work for all laws μ1, . . . ,μn which are in convex order. Assumption � fails
when a special interdependence between the marginals is present and the analysis
then becomes more technical and the resulting quantities are, in a way, less explicit.
We only sketch the appropriate arguments for the case n = 3.

We stress that the problem considered in this paper is significantly more com-
plex that the special case n = 1. For n = 1, several solutions to SEP exist with
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different optimal properties. For n = 2, only one such construction, the general-
ization of the Azéma–Yor embedding obtained by Brown, Hobson and Rogers [4],
seems to be known. To the best of our knowledge, the solution we present here is
the first one to deal with the general n-marginal SEP.3

Motivation and applications. Our results have direct implications for, and were
motivated by, robust pricing and hedging of lookback options. In mathematical fi-
nance, one models the price process S as a martingale and specifying prices of call
options at maturity T is equivalent to fixing the distribution μ of ST . Understand-
ing no-arbitrage price bounds for a functional O , which time-changes appropri-
ately, is then equivalent to finding the range of E[O(B)τ ] among all solutions to
the Skorokhod embedding problem for μ. This link between SEP and robust pric-
ing and hedging was pioneered by Hobson [16] who considered Lookback options.
Barrier options were subsequently dealt with by Brown, Hobson and Rogers [5].
More recently, Cox and Obłój [7, 8] considered the case of double touch/no-touch
barrier options, Hobson and Neuberger [15] looked at forward starting straddles
and analysis for variance options was undertaken by Cox and Wang [10]. We re-
fer to Hobson [14] and Obłój [21] for an exposition of the main ideas and more
references. However, all the previous works considered essentially the case of call
options with one maturity, that is, a one-marginal SEP, while in practice prices for
many intermediate maturities may also be available. This motivated our investiga-
tion.

We started our quest for a general n-marginal optimal embedding by computing
the value function supE[φ(supt≤τn

Bt )] among all solutions to the n-marginal SEP.
This was achieved using stochastic control methods, developed first for n = 1 by
Galichon, Henry-Labordère and Touzi [11], and is reported in a companion paper
Henry-Labordère et al. [13]. Knowing the value function, we could start guessing
the form of the optimizer and this led to the present paper. Consequently, the opti-
mal properties of our embedding, namely that it indeed achieves the value function
in question, are shown in Henry-Labordère et al. [13]. In fact, we give two proofs
in that paper, one via stochastic control methods and another one by construct-
ing appropriate pathwise inequalities and exploiting the key Lemma 3.1 below; cf.
Henry-Labordère et al. [13], Section 4.

Organization of the paper. The remainder of the paper is organized as follows.
In Section 2, we explain the main quantities for the embedding and state the main
result. We also present the restriction on the measures μ1, . . . ,μn which we require
for our construction to work (Assumption �). In Section 3, we prove the main
result and Section 4 provides a discussion of extensions together with comments
on Assumption �. The proof of an important but technical lemma is relegated to
the Appendix.

3We note that recently an n-fold version of the Root solution was announced in Cox, Obłój and
Touzi [9].
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2. Main results. Let (�,F,F,P), where F = (Ft ), be a filtered probabil-
ity space satisfying the usual hypotheses and B a continuous F-local martingle,
B0 = 0, 〈B〉∞ = ∞ a.s. and B has no intervals of constancy a.s. We denote
B̄t := sups≤t Bt . We are primarily interested in the case when B is a standard
Brownian motion and it is convenient to keep this example in mind, hence the no-
tation. We allow for more generality as this introduces no changes to the statements
or the proofs.

2.1. Definitions. We introduce below the fundamental objects of our study:
the stopping boundaries ξ1, . . . , ξn for our iterated Azéma–Yor type embedding
together with quantities K1, . . . ,Kn which will be later linked to the law of the
maximum at subsequent stopping times. We define various quantities assuming
that a family of probability measures (μi)1≤i≤n is given. Later, appropriate as-
sumptions on (μi) will be made to ensure all objects are well defined. We think of
n as a parameter: definitions below are recursive in n and the proofs will be mostly
done by induction on n. We denote the left and right endpoints of the support of
the measure μi by

lμi
:= sup

{
x : μi

([x,∞)
) = 1

}
, rμi

:= inf
{
x : μi

(
(x,∞)

) = 0
}
,(2.1)

respectively, and, for 1 ≤ i ≤ n, we let

ci(ζ ) :=
∫
R

(x − ζ )+μi(dx), ζ ∈ R and(2.2)

K̄n(ζ1, . . . , ζn, y) :=
n∑

i=1

ci(ζi) − ci−1(ζi)

y − ζi

,

(2.3)
y ≥ 0, ζ1, . . . , ζn ∈ (−∞, y],

where c0 ≡ 0 and the values of K̄n for ζi = y are understood as limits for ζi ↗ y.
We sometimes refer to ci as “call prices,” a nomenclature borrowed from mathe-
matical finance.

DEFINITION 2.1 (Stopping boundaries). Set the initial values as

(2.4) c0 ≡ 0, K0 ≡ 0, ξ0 ≡ −∞.

For n ∈ N, having previously defined ξ1(y), . . . , ξn−1(y), we write

(2.5) ζ k
i (y) := min

i≤j≤k
ξj (y), y ≥ 0,1 ≤ i ≤ k,

for k ≤ n − 1, and define the subsequent stopping boundary by ξn(0) = lμn ,

(2.6) ξn(y) := sup
{
arg min

ζ≤y

K̄n

(
ζ n−1

1 (y)∧ζ, . . . , ζ n−1
n−1 (y)∧ζ, ζ, y

)}
, y > 0.

Finally, we let ζ n
i be given by (2.5) with k = n and define

(2.7) Kn(y) := K̄n

(
ζ n

1 (y), . . . , ζ n
n (y), y

)
, y ≥ 0.
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FIG. 1. We illustrate possible stopping boundaries ξ1, ξ2, ξ3. The horizontal lines represent a
sample path of the process (Bt , B̄t ) where the x-axis is the value of B and the y-axis the value
of B̄ . Each horizontal segment is an excursion of B away from its maximum B̄ . According to
the definition of the embedding, the first stopping time τ1 is found when the process first hits ξ1.
Since ξ1(B̄τ1) > ξ2(B̄τ1) the process continues and targets ξ2. The stopping time τ2 is found when
the process first hits ξ2. Since ξ2(B̄τ2) ≤ ξ3(B̄τ2), we get τ3 = τ2. For the y we fixed, we have
ı3(x1, y) = 0, ı3(x2, y) = 1, ı3(x3, y) = 2; see (2.12).

We show below in Remark 2.8 that when ci ≥ ci−1 then the optimization in
(2.6) is well posed and setting ξn(0) = lμn is consistent.

DEFINITION 2.2 (Embedding). Given stopping boundaries ξ1, . . . , ξn define
the associated stopping times by setting τ0 ≡ 0 and

(2.8) τi := inf
{
t ≥ τi−1 : Bt ≤ ξi(B̄t )

}
, i = 1, . . . , n.

Figure 1 illustrates a set of possible stopping boundaries ξ1, ξ2, ξ3 in the case of
n = 3. If Assumption � is in place (see Sections 2.2 and 2.4), we will show that the
stopping boundaries are continuous (except possibly for ξ1) and nondecreasing; cf.
Section 2.6. Note that the nth stopping boundary ξn is obtained from an optimiza-
tion problem which features ξ1, . . . , ξn−1 and c1, . . . , cn. Kn(y) is the value of
the objective function at the optimal value ξn(y). The previously defined stopping
boundaries ξ1, . . . , ξn−1 and the quantities K1, . . . ,Kn−1 remain unchanged. This
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gives an iterative structure allowing to “add one marginal at a time” and enables
us to prove our results by induction on n.

2.2. The main result. We start by imposing an important restriction on the
given measures (μ1, . . . ,μn).

ASSUMPTION � (Restriction on measures). We assume that μ1, . . . ,μn are
probability measures which satisfy:

(i) for all 1 ≤ i ≤ n,
∫ |x|μi(dx) < ∞ with

∫
xμi(dx) = 0 and ci−1 ≤ ci with

strict inequality ci−1 < ci on (lμi
, rμi

);
(ii) for all 2 ≤ i ≤ n and all 0 < y < rμi

the mapping

ζ �→ K̄n

(
ζ n−1

1 (y) ∧ ζ, . . . , ζ n−1
n−1 (y) ∧ ζ, ζ, y

)
(2.9)

admits a unique minimizer ζ 	 on (lμi
, y).

We discuss below in detail the significance of the above assumption. However,
first we state our main result giving an n-fold embedding of (μ1, . . . ,μn) in the
spirit of Azéma and Yor [1] and Brown, Hobson and Rogers [4].

THEOREM 2.3. Recall Definitions 2.1 and 2.2. Let n ∈ N and assume
μ1, . . . ,μn are given and satisfy Assumption � above.

Then τi < ∞ a.s., Bτi
∼ μi for all i = 1, . . . , n and (Bτn∧t )t≥0 is a uniformly

integrable martingale. In addition, we have for y ≥ 0 and i = 1, . . . , n,

P[B̄τi
≥ y] = Ki(y),(2.10)

where Ki is defined in (2.7).

REMARK 2.4 (Minimality). Since τi ≤ τi+1, it follows that (Bt∧τi
)t≥0 is a

uniformly integrable martingale for any 1 ≤ i ≤ n and all τi are minimal (in the
sense of Monroe [19]).

REMARK 2.5 (Uniqueness). In general, two sets of nondecreasing boundaries
(ξi) could give the same distributions for Bτi

, with τi in (2.8). This is due to the
fact that parts of ξi may be never “seen by the embedding.” For example, suppose
ξ1(y) = · · · = ξn(y) for y ∈ [0, y0]. The embedding is then not affected by any
change of boundaries ξi , 2 ≤ i ≤ n, on [0, y0] which satisfies ξi ≥ ξ1 on [0, y0]
and preserves global monotonicity. To obtain unicity in all generality, one would
have to define “regular” stopping barriers, analogously to the way Loynes [17]
defined regular Root’s stopping barriers.

However, for measures satisfying Assumption �, there is essentially a one-to-
one correspondence between measures and (suitably nice) stopping boundaries.
This is due to the strict inequality between potentials. Let us argue this briefly.
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Clearly, because of the embedding property, different sets of target measures can-
not generate the same stopping boundaries. Reversely, consider a set of continuous
nondecreasing stopping boundaries (ξ̃i) with the associated stopping times (τ̃i) in
(2.8) such that (Bτ̃n∧t : t ≥ 0) is uniformly integrable. Denote (μi) the embedded
measures, μi ∼ Bτ̃i

, and suppose (μi) satisfy Assumption �. For unicity, we need
to assume that ξ̃i (y) = y for y ≥ rμi

as these values are never seen by the embed-
ding. Suppose now that (ξi), as obtained in Theorem 2.3, are different from (ξ̃i).
Then, using continuity and monotonicity of (ξi) (see Section 2.6 below), we may
assume that ξj = ξ̃j for j < i and that on some interval [y0, y1) we have ξi < ξ̃i

(or the reverse inequality), for some i ≤ n. Note that

P(Bτ̃i−1 ≤ x,Bτ̃i
> x) > 0, ∀x ∈ (lμi−1, rμi−1),

and likewise for τi−1, τi , as otherwise we would have ci−1(x) = ci(x). In conse-
quence, Bτi

has a positive probability of stopping by hitting the boundary ξi on
any interval. Together with (Bτ̃i

, B̄τ̃i
) = (Bτi

, B̄τi
), an explicit excursion theoreti-

cal computation shows that the distributions of Bτ̃i
and Bτi

have to differ which
establishes a contradiction.

2.3. Alternative characterization of the stopping boundaries. Let us investi-
gate in more detail the optimization problem in (2.6). First, note that it is a con-
strained version of the global minimization problem

(2.11) Cn(y) := inf
ζ1(y)≤···≤ζn(y)<y

K̄n

(
ζ1(y), . . . , ζn(y), y

)
in that the minimization is over ζn and the first n − 1 coordinates are taken to be
ζ n−1
i (y) ∧ ζn(y). In particular, Cn(y) ≤ Kn(y). The above global minimization

appears as (3.5) in [13]. Theorem 3.3 therein, or more directly the simple pathwise
inequality in Proposition 3.1, together with our Theorem 2.3 above, show that

Kn(y) = P(B̄τn ≥ y) ≤ C(y)

from which it follows that Kn(y) = Cn(y) and ζ n
1 , . . . , ζ n

n solve (2.11). We exploit
this further in Example 2.14 below.

It is useful and insightful to derive a representation of (2.6) by exhibiting ex-
plicitly the terms which collapse in the telescoping sum in (2.3). Let

ın(·, y) : (−∞, y] → {0,1, . . . , n − 1}, y ≥ 0, be given by
(2.12)

ın(ζ, y) := max
{
k ≤ n − 1 : ξk(y) < ζ

} = max
{
k : ζ n−1

k (y) < ζ
}
.

Note that ζ n−1
i = ζ

ın(ζ,y)
i for i ≤ ın(ζ, y) and ζ n−1

i ∧ ζ = ζ for ın(ζ, y) < i ≤ n.
By considering the summands for i ≤ ın(ζ, y) and i > ın(ζ, y) in (2.3), it follows
that

K̄n

(
ζ n−1

1 (y) ∧ ζ, . . . , ζ n−1
n−1 (y) ∧ ζ, ζ, y

)
(2.13)

= Kın(ζ,y)(y) + cn(ζ ) − cın(ζ,y)(ζ )

y − ζ
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and for future reference it will be useful to define

cn(·, y) :(−∞, y] → R∪ {∞}, y ≥ 0,

cn(ζ, y) : = (y − ζ )Kın(ζ,y)(y) + cn(ζ ) − cın(ζ,y)(ζ )

= K̄n

(
ζ n−1

1 (y) ∧ ζ, . . . , ζ n−1
n−1 (y) ∧ ζ, ζ, y

)
(y − ζ ).

(2.14)

It follows that the minimization problem in (2.6) is equivalent to the following
minimization problem:

ξn(y) = sup
{

arg min
ζ≤y

cn(ζ, y)

y − ζ

}
, y > 0.(2.15)

Finally, we let

jn(y) := ın
(
ξn(y), y

)
,(2.16)

which is the index of the last marginal μi, i < n, which represents, locally at the
level of the maximum y, a binding constraint for the embedding. Observe that

Kn(y) = Kjn(y)(y) + cn(ξn(y)) − cjn(y)(ξn(y))

y − ξn(y)
.(2.17)

To close this section, let us explain the relation of the above construction to the
(one-marginal) classical Azéma–Yor embedding. Denote the barycentre function
of μi by

bi(x) :=
∫
[x,∞) uμi(du)

μi([x,∞))
1{lμi

<x<rμi
} + x1{x≥rμi

}, x ∈ R.(2.18)

As shown by Brown, Hobson and Rogers [5], the right-continuous inverse of bi ,
denoted by b−1

i , can be represented as

b−1
i (y) = sup

{
arg min

ζ≤y

ci(ζ )

y − ζ

}
.(2.19)

In particular, from Definition 2.1, we have ξ1 = b−1
1 . It is clear, and was studied in

more detail by Madan and Yor [18], that if the sequence of barycentre functions is
increasing in i, then the intermediate law constraints do not have an impact on the
corresponding iterated Azéma–Yor embedding. However, in general the barycentre
functions will not be increasing in i (cf. Brown, Hobson and Rogers [4]), and hence
will affect the embedding. As compared to the optimization from which b−1

n is
obtained [cf. (2.19)], the optimization from which ξn is obtained [cf. (2.15)] has a
penalty term.
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2.4. Restrictions on measures. We turn to the discussion of our key assump-
tion on the marginals (μi). We proceed via a series of remarks.

REMARK 2.6 [Assumption �(i)]. The condition that the call prices are non-
decreasing in maturity

ci ≤ ci+1, i = 1, . . . , n − 1,(2.20)

can be rephrased by saying that μ1, . . . ,μn are nondecreasing in the convex order.
It is the necessary and sufficient condition for a uniformly integrable martingale
with these marginals to exist, as shown by Strassen [25], Theorem 2. Condition
(i) in Assumption � is stronger in that we require a strict inequality inside the
support.

REMARK 2.7 (Discontinuity of ξ1). Note that Assumption �(ii) does not re-
quire that the mapping

ζ �→ c1(ζ, y)

y − ζ
= c1(ζ )

y − ζ
(2.21)

has a unique minimizer. It may happen that there is an interval of minimizers and
then ξ1 is discontinuous at such y.

REMARK 2.8 [Well-posedness of optimization (2.6)]. First, observe that

K̄n

(
ζ n−1

1 (y)∧ζ, . . . , ζ n−1
n−1 (y)∧ζ, ζ, y

) = cn(ζ, y)

y − ζ
= cn(ζ )

y − ζ
for ζ ≤ ζ n−1

1 (y).

With a fixed y > 0, for ζ small enough, this is smaller than one. Also, under (2.20),
K̄n ≥ 0 so in consequence

(2.22) 0 ≤ Kn(y) ≤ 1, y ≥ 0.

Further, the function cn(ζ )
y−ζ

is nonincreasing on (−∞, b−1
n (y)], where b−1

n denotes
the right-continuous inverse of the barycentre function bn; cf. (2.19). It follows by
induction that

min
1≤i≤n

b−1
i (y) ≤ ξn(y) ≤ y, y ≥ 0,(2.23)

so minimization in (2.6) is over a compact interval. Also, we see that under (2.20),
the limit of ci(ζ )−ci−1(ζ )

y−ζ
, as ζ ↗ y, is well defined and under the strict inequalities

in Assumption �(i) it is equal to +∞. Existence of a minimizer ζ 	 in (2.6) now
follows from the continuity of K̄n and by the above ζ 	 < y.

Finally, we also note that for y = 0, and assuming ξi(0) = lμi
for 1 ≤ i ≤ n− 1,

we have

K̄n

(
ζ n−1

1 (y) ∧ ζ, . . . , ζ n−1
n−1 (y) ∧ ζ, ζ, y

) = 1 + cn(ζ ) − cn−1(ζ )

−ζ
,
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which on (−∞,0] is minimized for ζ = lμn (where it is understood as an asymp-
totic statement for lμi

= −∞) showing our convention ξn(0) = lμn is consistent.
We then have Kn(0) = 1.

REMARK 2.9 (Asymptotic behavior of ξn and Kn). Observe that, un-
der (2.20), if rμi

< ∞ then ξn(y) = y and Kn(y) = 0 for y ≥ rμn and otherwise ξn

is unbounded and Kn(y) → 0 as y → ∞. For n = 1, these are known properties
of the barycentre function in (2.19). For the general case, let us reason by con-
tradiction. Suppose n > 1 is the first index where the above property is violated.
If rμn < ∞ then, noting that (2.20) implies rμi

≤ rμi+1 , we have, for y ≥ rμn ,
ζ n−1
i (y) = y and

K̄n

(
ζ n−1

1 (y) ∧ ζ, . . . , ζ n−1
n−1 (y) ∧ ζ, ζ, y

) = cn(ζ )

y − ζ
,

which attains its minimum equal to zero at any ζ ∈ [rμn, y] giving, by (2.6),
ξn(y) = y. Similarly, if rμn = +∞ but ξn is bounded, say ξn < λ, then for y large
enough ζ n−1

i (y) > λ, and hence for ζ < λ

K̄n

(
ζ n−1

1 (y) ∧ ζ, . . . , ζ n−1
n−1 (y) ∧ ζ, ζ, y

) = cn(ζ )

y − ζ
,

which would be minimized by taking ζ = λ giving a contradiction.

REMARK 2.10 [Assumption �(ii)]. By Remark 2.8 above, Assumption �(i)
implies that the function in (2.9) admits a minimizer ζ 	 on (lμi

, y] which satisfies
ζ 	 < y. Assumption �(ii) then states that this minimizer is unique. We note how-
ever that in general, only assuming (2.20), the minimizer might not be unique
and/or might satisfy ζ 	 = y. The latter fact has been overlooked in [4] where
ζ 	 < y is required for the arguments to hold; see Section 4.1 for details. Our as-
sumption ensures in particular that we may rely on results in [4].

2.5. Examples. We turn now to examples. The first two, Examples 2.11 and
2.12, respectively, show that we recover the stopping boundaries obtained by
Madan and Yor [18] and by Brown, Hobson and Rogers [4]. In particular, the
case n = 1 corresponds to the solution of Azéma and Yor [1]. Example 2.14 serves
to construct rich family of examples of marginals which satisfy Assumption �.

EXAMPLE 2.11 (Madan and Yor [18]). Recall the definition of the barycen-
tre function bi from (2.18). Madan and Yor [18] consider the “increasing mean
residual value” case, that is,

b1 ≤ b2 ≤ · · · ≤ bn.(2.24)

We will now show that our main result reproduces their result if Assumption � is
in place. In fact, as can be seen below, our definitions of ξi and Ki [cf. (2.6) and



2220 J. OBŁÓJ AND P. SPOIDA

(2.7)], respectively, reproduce the correct stopping boundaries in the general case,
showing that Assumption � is not necessary; cf. also Section 4. More precisely,
we have

(2.25) ξi = b−1
i , Ki(y) = ci(b

−1
i (y))

y − b−1
i (y)

=: μHL
i

([y,∞)
)
, i = 1, . . . , n,

where b−1
i denotes the right-continuous inverse of bi and μHL

i is the Hardy–
Littlewood transform of μi ; cf. Carraro, El Karoui and Obłój [6].

We argue the claim by induction on n. For n = 1, it holds by definition. Now
assume the claim holds for all i ≤ n − 1. By (2.24), ζ n−1

i = ξn−1 for all i ≤ n − 1.
The optimization problem for ξn in (2.6) then becomes

ξn(y) ∈ arg min
ζ≤y

{
cn(ζ )

y − ζ
− 1{ζ>b−1

n−1(y)}
[
cn−1(ζ )

y − ζ
− cn−1(b

−1
n−1(y))

y − b−1
n−1(y)

]}

∈ arg min
ζ≤y

{
min

ζ≤b−1
n−1(y)

cn(ζ )

y − ζ
,

min
ζ≥b−1

n−1(y)

(
cn(ζ )

y − ζ
−

[
cn−1(ζ )

y − ζ
− cn−1(b

−1
n−1(y))

y − b−1
n−1(y)

])}
.

It is clear that the first minimum is A1 = cn(b−1
n (y))

y−b−1
n (y)

since b−1
n (y) ≤ b−1

n−1(y).

As for the second minimum, we set

F(ζ ) := cn(ζ )

y − ζ
−

[
cn−1(ζ )

y − ζ
− cn−1(b

−1
n−1(y))

y − b−1
n−1(y)

]

and we see by direct calculation that for almost all ζ ∈ R

(y − ζ )2F ′(ζ )

= (
bn(ζ ) − y

)
μn

([ζ,∞)
) − (

bn−1(ζ ) − y
)
μn−1

([ζ,∞)
)

= cn(ζ )
bn(ζ ) − y

bn(ζ ) − ζ
− cn−1(ζ )

bn−1(ζ ) − y

bn−1(ζ ) − ζ
.

By (2.24), we conclude therefore

(y − ζ )2F ′(ζ ) ≥ (
cn(ζ ) − cn−1(ζ )

)bn−1(ζ ) − y

bn−1(ζ ) − ζ
≥ 0,

where the last inequality follows from the nondecrease of the μi ’s in the convex
order. Hence, F is nondecreasing, and it follows that it attains its minimum at the

left boundary, that is, A2 = cn(b−1
n−1(y))

y−b−1
n−1(y)

−[ cn−1(b
−1
n−1(y))

y−b−1
n−1(y)

− cn−1(b
−1
n−1(y))

y−b−1
n−1(y)

] = cn(b−1
n−1)(y)

y−b−1
n−1(y)

.

Consequently, by (2.19), min{A1,A2} = A1 and (2.25) follows.
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EXAMPLE 2.12 (Brown, Hobson and Rogers [4]). In the case of n = 2, our
definition of ξ1 and ξ2 clearly recovers the stopping boundaries in the main result
of Brown, Hobson and Rogers [4]. However, our embedding is not as general as
their embedding because we enforce Assumption �; see also the discussion in
Section 4.

EXAMPLE 2.13 (Locally no constraints). In general, we have

Kn(y) ≤ μHL
n

([y,∞)
)
,(2.26)

which holds by the fact that the distribution of the maximum in the n-marginal
problem cannot be larger (in stochastic order) than in the 1-marginal problem
where it is bounded by μHL

n . However, if for some y ≥ 0

ξn(y) = b−1
n (y) and ın

(
ξn(y), y

) = 0(2.27)

then it follows from Theorem 2.3 that

Kn(y) = cn(b
−1
n (y))

y − b−1
n (y)

= μHL
n

([y,∞)
)
,(2.28)

that is, locally at level of maximum y the intermediate laws have no impact on
the distribution of the terminal maximum as compared with the (one marginal)
Azéma–Yor embedding.

EXAMPLE 2.14 (Generic measures). We provide now a method to produce
generic families of marginals satisfying Assumption � based on a reversed pro-
cedure: first draw suitable boundaries, then run embedding and read off the
marginals.

Let n ∈ N and consider a family of stopping boundaries ξi , i ≤ n, which are
continuous, strictly increasing on [0,∞) with ξi(y) = y for all y ≥ inf{y : ξi(y) =
y}. Further, we assume that for some fixed y0 > 0

ξn(y) < · · · < ξ1(y) ∀y ∈ (0, y0).(2.29)

It follows that ζ n
i , as defined in (2.5), are given by ξn on [0, y0]. Let τi be the

stopping times defined in (2.8). We assume τn is such that (Bt∧τn : t ≥ 0) is a
uniformly integrable martingale and denote μi the distribution of Bτi

. A simple
sufficient condition for the uniform integrability is that ξn(0) > −∞ and inf{y :
ξi(y) = y} < ∞, i ≤ n, since then, by construction, (Bt∧τn : t ≥ 0) is a bounded
martingale and all μi are compactly supported, more precisely lμi

= ξi(0) and
rμi

= inf{y : ζ n
1 (y) = y}.4 Assumption �(i), except the strict inequality between

4More generally, an excursion theoretical computation shows that it is sufficient to impose condi-

tions on the asymptotic behavior of ζn
1 , for example, that, for some α ∈ (0,1), ζn

1 (y) ≥ −y−1/(1−α)

for y small enough and ζn
1 (y) ≥ αy for y large enough.
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the call prices, follows from uniform integrability of (Bt∧τn : t ≥ 0). The strict
inequality ci > ci−1 on (lμi

, rμi
) follows from properties of ξi in (2.29) giving, for

any 2 ≤ i ≤ n,

P(Bτi−1 ≤ x,Bτi
> x) ≥ P

(
Bτi−1 ≤ min{x, y0},Bτi

> x
)
> 0, x ∈ (lμi

, rμi
).

It remains to argue that Assumption �(ii) holds and that the stopping boundaries
obtained in (2.6), say ξ̃i , are in fact the original ones: ξ̃i = ξi , 1 ≤ i ≤ n. Our proof
relies on the optimality properties obtained in Henry-Labordère et al. [13] and
some further results in Obłój, Spoida and Touzi [22].

We can argue by induction on n since adding subsequent boundaries does not
change the previous ones nor the embedded marginals. For n = 1, this problem is
(2.19) and is known to have a unique solution b−1

1 (y) = ξ̃1(y) which then equals
ξ1(y). Suppose, by induction, that ξ̃i = ξi for all i < n. Let (Zt : t ≤ tn) be a
continuous time change of (Bt∧τn : t ≥ 0) with Zti = Bτi

, for example,

Zt := B
τi∧(τi−1∨ t−ti−1

ti−t
)

for ti−1 < t ≤ ti , i = 1, . . . , n.

It follows from Lemma 4.1 and Theorem 3.3 in Henry-Labordère et al. [13] that
ζ n

1 ≤ · · · ≤ ζ n
n solve the global minimization problem (2.11) for 0 < y < rμn . The

optimization problem (2.19) is a subproblem of (2.11) with the first n − 1 coordi-
nates taken to be ζ n−1

i ∧ ζn. By the global optimization property above, ζ n
n = ξn

is necessarily a solution. It remains to show that it is the only minimizer. Suppose
that for some y ∈ (0, rμn) there is another one, say ξ̃n(y) �= ξn(y). Let ζ̃ n

i be the
associated functions in (2.5), in particular ζ̃ n

n (y) �= ζ n
n (y), and consider the path-

wise inequality in [13], Proposition 3.1, associated with (ζ̃ n
i )i≤n. Evaluating this

inequality on Z, inspecting Proposition 3.2 in [22] and its proof, we see that there
is a positive probability of the inequality being strict. This means ζ̃ n

i do not solve
the global optimization problem (2.11), which is a contradiction since ζ n

i do but
both attain the same value.

2.6. Properties of ξn and Kn. Under Assumption �, we establish the continu-
ity of ξn for n ≥ 2 (cf. Lemma 2.15), and prove monotonicity of ξn for n ≥ 1; cf.
Lemma 2.16. In Lemma 2.18, we derive an ODE for Kn which will be later used
to identify the distribution of the maximum of the embedding from Definition 2.2.
Recall from Section 2.1 that the main quantities are defined in an iterative man-
ner, that is, the embedding of the first n1 marginals in the n2-marginals embedding
problem, n2 > n1, coincides with the n1-marginals embedding problem. Hence, it
is natural to prove our results by induction over the number of marginals n.

LEMMA 2.15 (Continuity of cn and ξn). Let n ≥ 2 and let Assumption � hold.
Then the mappings

cn : {
(x, y) ∈ R×R+ : x < y

} →R,

ξn : R+ →R

are continuous.
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PROOF. We prove the claim by induction over n. Let us start with the induc-
tion basis n = 1,2. Continuity of c1 is the same as continuity of c1 and continuity
of c2 is proven by Brown, Hobson and Rogers [4]; cf. Lemma 3.5 therein. As for
continuity of ξ2, we note that our Assumption �(ii) precisely rules out discontinu-
ities of ξ2 as shown by Brown, Hobson and Rogers [4], Section 3.5. By induction
hypothesis, we assume continuity of c1, . . . , cn−1 and ξ2, . . . , ξn−1.

Note that the only way ξ1 enters into the definition of cn is through ζ n−1
1 and

that c1(ξ1(y)∧x)
y−ξ1(y)∧x

is a continuous function. Continuity of cn then follows from its
definition and the assumed continuity of ξ2, . . . , ξn−1.

It remains to argue continuity of ξn, which we prove by contradiction. Suppose
ξn is discontinuous at some y > 0 and let yk → y with ξn(yk) → ξ̃ �= ξn(y). Re-
calling (2.23), we note that ξ̃ is finite. By Assumption �(ii), we necessarily have
ξn(y) < y and

cn(ξ̃ , y)

y − ξ̃
>

cn(ξn(y), y)

y − ξn(y)
.(2.30)

If ξ̃ < y then using continuity of cn, we obtain a contradiction with optimality of
ξn(yk) for k large enough. If ξ̃ = y then, by Assumption �(i) and continuity of cn

and cn−1, we have cn > cn−1 + ε on a small neighborhood of y and some ε > 0. It
follows that we can make the term cn(ζ )−cn−1(ζ )

y−ζ
in the sum in (2.3) uniformly large

in ζ . Then the convergence ξn(yk) → ξ̃ = y again contradicts optimality of ξn(yk)

for k large enough. �

LEMMA 2.16 (Monotonicity of ξn). Let n ∈ N and let Assumption � hold.
Then

y �→ ξn(y) is nondecreasing on [0,∞).(2.31)

PROOF. The claim for n = 1,2 follows from Brown, Hobson and Rogers [4].
Assume by induction hypothesis that we have proven monotonicity of ξ1, . . . , ξn−1.

We prove monotonicity locally and note that we may exclude the set of y’s
which are discontinuity points of ξ1 and that it is enough to consider y < rμn .
Let us then fix a y < rμn where ξ1, . . . , ξn are continuous and recall that ξn(y) <

y. The reasoning is similar to the arguments of Brown, Hobson and Rogers [4],
Lemma 3.2.

It suffices then to argue that ξn(y + δ) ≥ ξn(y) for δ small enough. We will first
consider the case when ξn(y) �= ξj (y) for all j < n. By continuity of ξn it follows
that there is an ε > 0 such that

(2.32) ξn(ỹ) �= ξj (ỹ) and jn(y) = jn(ỹ) ∀ỹ ∈ [y − ε, y + ε] and j < n.

Consider the image of I := [y − ε, y + ε] via ξn, that is, let δ± ≥ 0 be such that
[ξn(y) − δ−, ξn(y) + δ+] = {ξn(ỹ) : ỹ ∈ I }. If δ− = 0, then the statement is auto-
matically true so assume δ− > 0. Consider ỹ ∈ I and ζ± < ỹ with ξn(y) − δ− ≤
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ζ− < ξn(ỹ) < ζ+ ≤ ξn(y) + δ+ and λζ− + (1 − λ)ζ+ = ξn(ỹ). Then, using (2.15)
and Assumption �(ii), we have

λcn(ζ−, ỹ) + (1 − λ)cn(ζ+, ỹ)

> λ(ỹ − ζ−)
cn(ξn(ỹ), ỹ)

ỹ − ξn(ỹ)
+ (1 − λ)(ỹ − ζ+)

cn(ξn(ỹ), ỹ)

ỹ − ξn(ỹ)

= cn(
ξn(ỹ), ỹ

)
.

Further, from (2.14) and (2.32), for ζ ∈ [ξn(y) − δ−, ξn(y) + δ+], the difference

cn(ζ, ỹ) − cn(ζ, y) = ζ
(
Kjn(y)(y) − Kjn(y)(ỹ)

) + ỹKjn(y)(ỹ) − yKjn(y)(y)

is a linear function in ζ . It follows that cn(·, y), and hence also any cn(·, ỹ), is
a (strictly) convex function for ζ ∈ (ξn(y) − δ−, ξn(y) + δ+). By definition, the
supporting tangent at ξn(y) to cn(·, y) intersects the x-axis in y and is given by

l1(ζ ) = cn(
ξn(y), y

) − cn(ξn(y), y)

y − ξn(y)

(
ζ − ξn(y)

)
.

Consequently, the supporting tangent to cn(·, ỹ) at ξn(y) is given by

l2(ζ ) = cn(
ξn(y), y

) − cn(ξn(y), y)

y − ξn(y)

(
ζ − ξn(y)

)
+ ỹKjn(y)(ỹ) − yKjn(y)(y) + ζ

(
Kjn(y)(y) − Kjn(y)(ỹ)

)
.

Taking ỹ = y + δ, δ < ε, evaluating at ζ = ỹ and simplifying we obtain

l2(ỹ) = −cn(ξn(y), y)

y − ξn(y)
δ + δKjn(y)(y) = −δ

cn(ξn(y)) − cjn(y)(ξn(y))

y − ξn(y)
≤ 0.

By local (strict) convexity of cn(·, ỹ), the supporting tangent in any ζ ∈ [ξn(y) −
δ−, ξn(y)) is strictly negative when evaluated at ỹ. By definition, ξn(ỹ) is such
that the supporting tangent at that point is zero in ỹ. It follows, since ξn(ỹ) ∈
[ξn(y) − δ−, ξn(y) + δ+], that ξn(ỹ) ≥ ξn(y) as required.

Now we relax the assumption (2.32). Assume that there exists a δ > 0 such
that ξn(y) > ξn(y + δ). We derive a contradiction to the special case as follows.
Set y0 := y and yn := y + δ. Recall that ξn is continuous. Now we can choose
y0 < y1 < · · · < yn−1 < yn such that ξn(y0) > ξn(y1) > · · · > ξn(yn−1) > ξn(yn).
Set xi := ξn(yi), i = 0, . . . , n. Observe that by monotonicity of ξk , k < n the graph
of ξk intersects with at most one rectangle (xi, xi−1) × (yi−1, yi), i = 1, . . . , n.
Consequently, there must exist at least one integer j such that the rectangle R :=
(xj , xj−1) × (yj−1, yj ) is disjoint with the graph of every ξk , k < n. By construc-
tion and continuity of y �→ ξn(y) R is not disjoint with the graph of ξn. Inside this
rectangle R, the conditions of the special case (2.32) are satisfied. Recalling that
ξn(yj ) = xj < xj−1 = ξn(yj−1) and by continuity of y �→ ξn(y), we can find two
points s1 < s2 such that z1 = ξn(s1) > ξn(s2) = z2 and (z1, s1) ∈ R, (z2, s2) ∈ R,
which gives the desired contradiction. �
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REMARK 2.17 (Properties of ın). Observe that, from the definition ın in (2.12)
and the above monotonicity result, both ın(·, y) and ın(x, ·) are piecewise constant
with at most n − 1 jumps and further for all y ≥ 0

ın(·, y) is left-continuous and nondecreasing(2.33)

and for all x ∈ R

ın(x, ·) is right-continuous and nonincreasing.(2.34)

LEMMA 2.18 (ODE for Kn). Let n ∈ N and let Assumption � hold. Then

y �→ Kn(y) is locally Lipschitz continuous and nonincreasing

on (0, rμn) and in particular is a.e. differentiable. We have

K ′
n(y) + Kn(y)

y − ξn(y)
= K ′

j (y) + Kjn(y)(y)

y − ξn(y)
for j = jn(y),(2.35)

for almost all y ≥ 0. Further,

Kn(y) + c′
n

(
ξn(y)

) − c′
j

(
ξn(y)

) − Kj(y) = 0 for j = jn(y),(2.36)

for all y such that ξn(y) is not an atom of μ1, . . . ,μn.

PROOF. The proof is reported in the Appendix. �

3. Proof of the main result. In this section, we prove the main result, Theo-
rem 2.3. The key step is the identification of the distribution of the maximum; cf.
Proposition 3.4.

Let n ∈ N. For convenience, we set

M0 := 0, Mi := Bτi
, M̄i := B̄τi

, i = 1, . . . , n,(3.1)

where τi , given in Definition 2.2, can be represented according to two cases:

τi =
{

inf
{
t ≥ τi−1 : Bt ≤ ξi(B̄t )

}
, if Bτi−1 > ξi(B̄τi−1),(3.2a)

τi−1, else.(3.2b)

In the results which follow, we say that ξn(y) is strictly increasing at y if either
y = 0 or else for any y′ < y we have ξn(y

′) < ξn(y). Put differently, these are the
points y such that the left continuous inverse ξ−1

n satisfies ξ−1
n (ξn(y)) = y. We

note that if a property holds for all such y then it holds dξn(y)-a.e.
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3.1. Basic properties of the embedding. Our first result shows that there is a
“strong relation” between M and M̄ .

LEMMA 3.1 (Relations between M and M̄). Let n ∈ N and suppose Assump-
tion � holds. Then the following implications hold:

Mn > ξn(y) =⇒ M̄n ≥ y,(3.3)

Mn ≥ ξn(y) =⇒ M̄n ≥ y if ξn is strictly increasing at y.(3.4)

For y ≥ 0 such that jn(y) �= 0, we have

Mjn(y) ≥ ξn(y) > ξjn(y)(y) =⇒ Mn ≥ ξn(y),(3.5)

M̄jn(y) < y, M̄n ≥ y =⇒ Mn ≥ ξn(y),(3.6)

M̄jn(y) ≥ y,Mjn(y) < ξn(y) =⇒ Mn < ξn(y).(3.7)

If ξn is strictly increasing at y ≥ 0 and jn(y) = 0, then the following holds:

Mn ≥ ξn(y) ⇐⇒ M̄n ≥ y.(3.8)

PROOF. The results are easily verified for n = 1, so we consider n ≥ 2. Write
j = jn. We have

ξj (y)(y) < ξn(y) ≤ ξi(y), i = j (y) + 1, . . . , n.

In the following, we are using monotonicity of ξ1 and continuity and mono-
tonicity of ξ2, . . . , ξn; cf. Lemmas 2.15 and 2.16.

Case j (y) �= 0. As for implication (3.3) assume that Mn > ξn(y) and M̄n < y

holds. In this case, Mn cannot be at the boundary ξn. There has to be a j < n such
that Mn = Mj, M̄n = M̄j and Mj = ξj (M̄j ) = ξj (y

′) for some y′ < y. However,
this cannot be true because ξn(y

′) ≤ ξn(y) < ξj (y
′) = Mn, and hence case (3.2a)

of the definition of τ1, . . . , τn would have been triggered.
Implication (3.4) follows by the same arguments as for implication (3.3).
Implication (3.5) now follows from implication (3.3) applied for j (y) and the

fact that either Mn = Mj(y) [case (3.2b)] or M moves to a point at the boundary
ξi(y

′) ≥ ξn(y) for some i = j (y) + 1, . . . , n, y′ ≥ y [case (3.2a)].
Implication (3.6) holds because if M increases its maximum at time j (y), which

is < y, to some y′ ≥ y at time n, it will hit a boundary point ξi(y
′) ≥ ξn(y) for some

i = j (y) + 1, . . . , n.
Implication (3.7) holds because from M̄j (y) ≥ y and Mj(y) < ξn(y) it follows

that Mj(y) = ξi(y
′) < ξn(y) ≤ ξj (y

′) for some i ≤ j (y), y′ ≥ y, j > j (y). From
this, it follows that M will stay where it is until time n; cf. case (3.2b).

Case j (y) = 0. Assume that ξn is strictly increasing at y and that M̄n ≥ y holds.
In this case, Mn must be at a boundary point ξi(y

′) ≥ ξn(y) for some i = 1, . . . , n,
y′ ≥ y. The converse direction is just (3.4), together giving (3.8). �

As an application of Lemma 3.1, we obtain the following result.
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LEMMA 3.2 (Contributions to the maximum). Let n ∈ N and suppose As-
sumption � holds. Fix y ≥ 0 and assume ξn is strictly increasing at y. Then, if
jn(y) �= 0,

P[M̄n ≥ y] = P
[
Mn ≥ ξn(y)

] − P
[
Mjn(y) ≥ ξn(y)

]
(3.9)

+ P[M̄jn(y) ≥ y](3.10)

and if jn(y) = 0,

P[M̄n ≥ y] = P
[
Mn ≥ ξn(y)

]
.(3.11)

PROOF. Write j = jn.
Case j (y) �= 0. First, let us compute

P[M̄n ≥ y] − P
[
Mn ≥ ξn(y)

]
(3.4)= P[M̄n ≥ y] − P

[
Mn ≥ ξn(y), M̄n ≥ y

]
= P

[
M̄n ≥ y,Mn < ξn(y)

]
= P

[
M̄n ≥ y,Mn < ξn(y), M̄j (y) ≥ y

]
+ P

[
M̄n ≥ y,Mn < ξn(y), M̄j (y) < y

]
(3.5)=
(3.6)

P
[
Mn < ξn(y), M̄j (y) ≥ y,Mj(y) < ξn(y)

]
.

Second, let us compute

P[M̄j (y) ≥ y] − P
[
Mj(y) ≥ ξn(y)

]
= P

[
M̄j (y) ≥ y,Mj(y) ≥ ξn(y)

]
+ P

[
M̄j (y) ≥ y,Mj(y) < ξn(y)

]
− P

[
Mj(y) ≥ ξn(y)

]
(3.3)= P

[
M̄j (y) ≥ y,Mj(y) < ξn(y)

]
(3.7)= P

[
Mn < ξn(y), M̄j (y) ≥ y,Mj(y) < ξn(y)

]
.

Comparing these two equations yields the claim.
Case j (y) = 0. The claim follows directly from (3.8). �

3.2. Law of the maximum. Our next goal is to identify the distribution of Mn.
We will achieve this by deriving an ODE for P[M̄n ≥ ·] using excursion theoretical
results (cf. Lemma 3.3), and link it to the ODE satisfied by Kn; cf. Lemma 2.18.
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LEMMA 3.3 (ODE for the maximum). Let n ∈ N and suppose Assumption �
holds. Then the mapping

y �→ P[M̄n ≥ y]
is locally Lipschitz continuous on (0, rμn) and a.e. differentiable with

∂P[M̄n ≥ y]
∂y

+ P[M̄n ≥ y]
y − ξn(y)

(3.12)

= P[M̄jn(y) ≥ y]
y − ξn(y)

+ ∂P[M̄j ≥ y]
∂y

∣∣∣
j=jn(y)

.

PROOF. Write j = jn. The cases n = 1,2 are true by Brown, Hobson and
Rogers [4]. Assume by induction hypothesis that we have proven the claim for
i = 1, . . . , n − 1.

Case j (y) �= 0. We have

P[M̄n ≥ y + δ, M̄j (y) < y + δ] − P[M̄n ≥ y, M̄j (y) < y]
= P[M̄n ≥ y + δ, M̄j (y) < y] − P[M̄n ≥ y, M̄j (y) < y](3.13)

+ P[M̄n ≥ y + δ, y ≤ M̄j (y) < y + δ]︸ ︷︷ ︸
=0 for δ > 0 small enough by definition of j (y)

since, by right-continuity of ξ1 and continuity of ξi , for j = j (y), we have ξj < ξn

on some open neighborhood of y.
For r > 0, we define

ξ̄j (r) := max
k:j<k≤n

{
ξk(r) : ξk(y) = ξn(y)

}
,

ξ
j
(r) := min

k:j<k≤n

{
ξk(r) : ξk(y) = ξn(y)

}
and note that

ξ̄j (y)(r) → ξn(y), ξ
j (y)

(r) → ξn(y) as r → y(3.14)

by continuity of ξi at y for i = 2, . . . , n.
Let δ > 0. We have by excursion theoretical result (cf., e.g., Rogers [23]),

P[M̄n ≥ y, M̄j (y) < y] exp
(
−

∫ y+δ

y

dr

r − ξ̄j (y)(r)

)

≤ P[M̄n ≥ y + δ, M̄j (y) < y]

≤ P[M̄n ≥ y, M̄j (y) < y] exp
(
−

∫ y+δ

y

dr

r − ξ
j (y)

(r)

)
.

(3.15)
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Combining the above gives

P[M̄n ≥ y + δ, M̄j (y) < y + δ] − P[M̄n ≥ y, M̄j (y) < y]
δ

(3.13),(3.15)≤ P[M̄n ≥ y, M̄j (y) < y]
exp(− ∫ y+δ

y
dr

r−ξ
j (y)

(r)
) − 1

δ
(3.16)

by (3.14)−−−−−→
as δ↓0

−P[M̄n ≥ y, M̄j (y) < y]
y − ξn(y)

and analogously

P[M̄n ≥ y + δ, M̄j (y) < y + δ] − P[M̄n ≥ y, M̄j (y) < y]
δ

(3.13),(3.15)≥ P[M̄n ≥ y, M̄j (y) < y]
exp(− ∫ y+δ

y
dr

r−ξ̄j (y)(r)
) − 1

δ
(3.17)

by (3.14)−−−−−→
as δ↓0

−P[M̄n ≥ y, M̄j (y) < y]
y − ξn(y)

.

Hence, from (3.16) and (3.17) it follows that the right-derivative of

y �→P[M̄n ≥ y, M̄j < y]|j=j (y)(3.18)

exists. Similar arguments for δ < 0 show that the left-derivative exists and is the
same as the right-derivative. In particular, (3.18) is locally Lipschitz continuous.

Observe the obvious equality

P[M̄n ≥ y] = P[M̄j ≥ y] + P[M̄n ≥ y, M̄j < y].(3.19)

Taking j = j (y) in (3.19) and fixing it, we conclude by induction hypothesis that
y �→ P[M̄n ≥ y] is locally Lipschitz continuous and a.e. differentiable with

∂P[M̄n ≥ y]
∂y

= ∂P[M̄j ≥ y]
∂y

∣∣∣
j=jn(y)

+ P[M̄jn(y) ≥ y] − P[M̄n ≥ y]
y − ξn(y)

.

Case j (y) = 0. For δ > 0, we have by excursion theoretical results

P[M̄n ≥ y + δ, M̄1 < y + δ] − P[M̄n ≥ y, M̄1 < y]
= P[M̄n ≥ y + δ, M̄1 < y + δ] − P[M̄n ≥ y + δ, M̄1 < y]

+ P[M̄n ≥ y + δ, M̄1 < y] − P[M̄n ≥ y, M̄1 < y](3.20)

≤
∫ y+δ

y
P[M̄1 ∈ ds](ξ1(s) − ξ

1
(s))+

s − ξ
1
(s)

exp
(
−

∫ y+δ

s

dr

r − ξ
1
(r)

)

+ P[M̄n ≥ y, M̄1 < y]
[
exp

(
−

∫ y+δ

y

dr

r − ξ
1
(r)

)
− 1

]
.
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Similarly, we have

P[M̄n ≥ y + δ, M̄1 < y + δ] − P[M̄n ≥ y, M̄1 < y]

≥
∫ y+δ

y
P[M̄1 ∈ ds](ξ1(s) − ξ̄1(s))

+

s − ξ̄1(s)
exp

(
−

∫ y+δ

s

dr

r − ξ̄1(r)

)
(3.21)

+ P[M̄n ≥ y, M̄1 < y]
[
exp

(
−

∫ y+δ

y

dr

r − ξ̄1(r)

)
− 1

]
.

From (3.20) and (3.21), it follows that the right-derivative of

y �→ P[M̄n ≥ y, M̄1 < y](3.22)

exists. Similar arguments for δ < 0 show that the left-derivative exists and is the
same as the right-derivative except possibly when ξ1(y−) �= ξ1(y). Local Lipschitz
continuity of (3.22) then follows from (3.20) and (3.21). Now we can conclude
from (3.19)–(3.21) applied with j = 1 that y �→ P[M̄n ≥ y] is locally Lipschitz
continuous and a.e. its derivative reads

∂P[M̄n ≥ y]
∂y

(3.14)= ∂P[M̄1 ≥ y]
∂y

− ∂P[M̄1 ≥ y]
∂y

(ξ1(y) − ξn(y))+

y − ξn(y)

− P[M̄n ≥ y] − P[M̄1 ≥ y]
y − ξn(y)

,

which implies by induction hypothesis

P[M̄n ≥ y]
y − ξn(y)

+ ∂P[M̄n ≥ y]
∂y

= 0.

This completes the proof. �

Finally, we argue that P[M̄n ≥ y] = Kn(y) holds for all y ≥ 0.

PROPOSITION 3.4 (Law of the maximum). Let n ∈ N and let Assumption �
hold. Then, for all y ≥ 0, we have

P[M̄n ≥ y] = Kn(y).(3.23)

PROOF. The case n = 1 holds by the Azéma–Yor embedding. Assume by in-
duction hypothesis that

Ki(y) = P[M̄i ≥ y], i = 1, . . . , n − 1;y ≥ 0.

In Lemmas 2.18 and 3.3, we derived an ODE for Kn and P[M̄n ≥ ·], respectively,
in terms of K1, . . . ,Kn−1 and P[M̄1 ≥ ·], . . . ,P[M̄n−1 ≥ ·], respectively. Taking
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the difference between the two ODEs and using the induction hypothesis and the
equality Kn(0) = P[M̄n ≥ 0] = 1 (cf. Remark 2.8), we see that(

P[M̄n ≥ y] − Kn(y)
)′

= −P[M̄n ≥ y] − Kn(y)

y − ξn(y)
, y ∈ (0, rμn),

subject to P[M̄n ≥ 0] − Kn(0) = 0. Continuity of ξn and Gronwall’s lemma imply
that the above equation has a unique absolutely continuous solution given by 0.
This means the desired equality holds for y < rμi

. This concludes the proof when
rμn = +∞ and otherwise we conclude using Remark 2.9. �

3.3. Embedding property. In this section, we prove that the stopping times
τ1, . . . , τn from Definition 2.2 embed the laws μ1, . . . ,μn if Assumption � is in
place. This allows us to complete the proof of our main theorem.

PROOF OF THEOREM 2.3. The case n = 1 is just the Azéma–Yor embedding.
For the induction hypothesis, assume that the claim holds for all i ≤ n − 1.

Recall from Remark 2.8 that ξn(0) = lμn and ξn(rμn) = rμn . By continuity, it
follows that ξn maps [0, rμn] onto [lμn, rμn]. Further, by continuity and mono-
tonicity, for a given ζ , the set of y such that ξn(y) = ζ is a closed interval and is
dξn negligible. It follows that the set of y such that ξn(y) is an atom of μ1, . . . ,μn

is dξn negligible. We then have

P
[
Mn ≥ ξn(y)

] − P
[
Mjn(y) ≥ ξn(y)

] + P[M̄jn(y) ≥ y]
Lemma 3.2= P[M̄n ≥ y]
Proposition 3.4= Kn(y)

(2.36)= −c′
n

(
ξn(y)

) + c′
jn(y)

(
ξn(y)

) + Kjn(y)(y), dξn-a.e.

This implies by the induction hypothesis that

P
[
Mn ≥ ξn(y)

] = −c′
n

(
ξn(y)

) = μn

([
ξn(y),∞))

, dξn-a.e.

The embedding property follows.
Given Proposition 3.4 above, it remains to show the required uniform integra-

bility property. We apply a result from Azéma, Gundy and Yor [2] which states
that if

lim
x→∞xP

[ ¯|B|τn
≥ x

] = 0 where ¯|B|t = sup
s≤t

|Bs |,(3.24)

then (Bτn∧t )t≥0 is uniformly integrable.
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Let us verify (3.24). Set Hx = inf{t > 0 : Bt = x} and let ξ−1
i denote the left-

continuous inverse of ξi with ξ−1
i (x) = 0 for x ≤ lμi

. Then

P
[ ¯|B|τn

≥ x
] ≤ P[H−x < Hmaxi≤n ξ−1

i (−x)
] + P[B̄τn ≥ x]

= maxi≤n ξ−1
i (−x)

x + maxi≤n ξ−1
i (−x)

+ Kn(x).

From the definition of ξn (cf. Remark 2.8), we have

0 ≤ max
i≤n

ξ−1
i (−x) −→

x→∞ 0

and hence, recalling the definition of μHL
n in (2.25),

lim
x→∞xP

[ ¯|B|τn
≥ x

] ≤ lim
x→∞xKn(x) ≤ lim

x→∞x
cn(b

−1
n (x))

x − b−1
n (x)

= lim
x→∞xμHL

n

([x,∞)
) = 0.

This completes the proof. �

4. Discussion of Assumption � and extensions. In this section, we focus
on our main technical assumption so far: the condition (ii) in Assumption �. We
construct a simple example of probability measures μ1,μ2,μ3 which violate the
condition and where the stopping boundaries ξ1, ξ2, ξ3, obtained via (2.6), fail to
embed (μ1,μ2,μ3). It follows that the assumption is not merely technical but
does rule out certain type of interdependence between the marginals. If it is not
satisfied, then it may not be enough to perturb the measures slightly to satisfy it.
The example also provides a counterexample to Brown, Hobson and Rogers [4]
showing a silent assumption, which is not automatically satisfied, that ξ2(y) < y

for y < rμ2 was used in the proofs therein.
We then present an extension of our embedding, in the case n = 3, which works

in greater generality. More precisely, we show how to modify the optimization
problem from which ξ3 is determined in order to obtain the embedding property.
The general embedding, as compared to the embedding in the presence of As-
sumption �(ii), gains an important degree of freedom and becomes less explicit.
In consequence, it is also much harder to implement in practice, to the point that
we do not believe this is worth pursuing for n > 3. This is also why, as well as for
the sake of brevity, we keep the discussion in the section rather formal.

4.1. Counterexamples for Assumption �(ii). In Figure 2, we define measures
via their potentials

Uμ : R→R, x �→ Uμ(x) := −
∫
R

|u − x|μ(du).(4.1)
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FIG. 2. Potentials of μ1,μ2, μ3, ν2 and ν3.

We refer to Obłój [20], Proposition 2.3, for useful properties of Uμ.
The measures with potentials illustrated in Figure 2 are given as

μ1
({−1}) = 2

3
, μ1

({2}) = 1

3
,(4.2a)

μ2
({−3}) = 2

7
, μ2

({
1

2

})
= 18

35
, μ2

({3}) = 1

5
,(4.2b)

μ3
({−3}) = 2

7
, μ3

({−2}) = 9

35
, μ3

({3}) = 16

35
.(4.2c)

Observe that the embedding for (μ1,μ2,μ3) is unique: We write Ha,b for the exit
time of [a, b] and denote Ha,b ◦ θτ := inf{t > τ : Bt /∈ (a, b)}. Then the embedding
(τ1, τ

′
2, τ3) can be written as

τ1 = H−1,2, τ ′
2 = H−3, 1

2
◦ θτ11{Bτ1=−1} + H 1

2 ,3 ◦ θτ11{Bτ1=2},
(4.3)

τ3 = H−2,3 ◦ θτ ′
2
.
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FIG. 3. We illustrate the (unique) boundaries ξ1, ξ2, η3 required for the embedding of (μ1,μ2,μ3)

from (4.2a)–(4.2c) and the stopping boundary ξ3 obtained from (2.6). In order to ensure the embed-
ding for μ2, the mass stopped at τ2 in −1 on the event {B̄τ2 ∈ (1/2,2)} is diffused to −3 or to 1/2
at τ ′

2, without affecting the maximum: B̄τ2 = B̄τ ′
2
. Note that the case ξ2(y) = y, here for y = 1/2,

is possible and required to define the embedding. After τ ′
2, we need to define τ3 which embeds μ3

which here is implied directly by (4.3). In Section 4.2, we develop arguments which generalize this.

As mentioned earlier, our construction yields the same first two stopping bound-
aries as the method of Brown, Hobson and Rogers [4]. In this case (cf. Figure 3),

ξ1(y) :=
{−1, if y ∈ [0,2),

y, else,
ξ2(y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−3, if y ∈
[
0,

1

2

)
,

1

2
, if y ∈

[
1

2
,3

)
,

y, else.

This already shows that our embedding fails to embed μ2. This is easily seen com-
paring the definition of τ2 in (2.8) which uses ξ2 above with (4.3). In Section 4.2,
we will recall from Brown, Hobson and Rogers [4] how the stopping time τ2 has
to be modified into τ ′

2, giving the stopping time in (4.3).
In consequence, the optimization problem (2.6), or equivalently (2.15), is set

up wrongly and does not return the third (unique) stopping boundary which is
required for the embedding of (μ1,μ2,μ3). Indeed, a direct computation shows

that c3(ζ,y)
y−ζ

is minimized for ζ < ξ1(y) ∧ ξ2(y) which turns the problem into the
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FIG. 4. Example of boundaries ξ1, ξ2, ξ3 for which the associated stopping times (τ1, τ ′
2, τ3) give

measures (μ1,μ2,μ3) which satisfy Assumption �(i) but not Assumption �(ii).

minimization of ζ �→ c3(ζ )
y−ζ

which is attained by ξ3(y) = −3 < −2, for y ∈ [0,1.2)

due an atom of μ3 at −3. Consequently, there will be a positive probability to hit
−3 after τ ′

2. This contradicts (4.2c). This, together with the correct third boundary
η3, is illustrated in Figure 3. The error is coming from the fact that our optimization
problem fails to account for the additional diffusion of mass between τ2 and τ ′

2
which was necessary to embed μ2 correctly.

The above example is singular with the measures violating both Assump-
tion �(i), since the call prices are not strictly ordered, as well as �(ii), and further
the embedding being unique. Small modifications lead to more “regular” examples
and also show that a “small perturbation” to (μ1,μ2,μ3) may not be enough to
remove the problem. Indeed, first consider measures (μ1, ν2, ν3) defined by their
potentials in Figure 2. The embedding is no longer unique but a similar reason-
ing to the one above holds and our optimization procedure still returns ξ3 which
embeds an incorrect marginal. Second, consider boundaries (ξ1, ξ2, ξ3) given in
Figure 4 and let τ1, τ2 be defined by (2.8),

τ ′
2 = inf

{
t ≥ τ2 : Bt ∈ {−3,0}} on

{
B̄τ1 = B̄τ2 ∈ (0.5,2)

}
and τ ′

2 = τ2 elsewhere. We put τ3 = inf{t ≥ τ ′
2 : Bt ≤ ξ3(B̄t )} and let μ1, μ2, μ3

be the distributions of Bτ1 , Bτ ′
2

and Bτ3 , respectively. By construction we see that
the measures satisfy Assumption �(i). However, using Definition 2.1 to derive
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stopping boundaries will reproduce ξ1 and ξ2 but will still yield a wrong ξ3 as
the optimization problem will not account for mass embedded in −3 by τ ′

2. In
Section 4.2, we develop arguments which generalize (2.6) accordingly.

Finally, we note that in the first example with (μ1,μ2,μ3) in (4.2a)–(4.2c),
where the embedding is unique, we have ξ2(1/2) = 1/2 and one can verify that
P(M̄2 = 1/2) = 4/21, where we use the notation in (3.1). It particular, the function
y → P(M̄2 ≥ y) is not locally Lipschitz continuous at y = 1/2, and hence Lemmas
3.4 and 3.6 in Brown, Hobson and Rogers [4] cannot hold true.5

4.2. Sketch for general embedding in the case n = 3. In the example of the
measures (μ1,μ2,μ3) from (4.2a)–(4.2c), the (unique) embedding could still be
seen as a type of “iterated Azéma–Yor type embedding” although it does not satisfy
the relations from Lemma 3.1. Consequently, one might conjecture that a modifi-
cation of the optimization problem (2.6) and a relaxation of Lemma 3.1 might lead
to a generally applicable embedding. We now explain in which sense this is true.
Our aim is to outline new ideas and arguments which are needed. The technical
details quickly become very involved and lengthy. In the sake of brevity, but also
to better illustrate the main points, we restrict ourselves to a formal discussion and
the case n = 3.

Consider now a case of general measures (μ1,μ2,μ3) where Assumption �(ii)
is possibly violated. Recall from Brown, Hobson and Rogers [4] that in general,
if M1 ≤ ξ2(M̄1), so that τ2 = τ1, but ξ2(y−) < M1 < ξ2(y) for some y ≤ M̄1 then
this mass is further diffused to a stopping time τ ′

2 ≥ τ2 with B̄τ2 = B̄τ ′
2
. In the case

of measures in (4.2a)–(4.2c), we have τ ′
2 > τ2 on B̄τ1 ∈ (1

2 ,2]. The existence of τ ′
2

is established by Brown, Hobson and Rogers [4] by showing that the relative parts
of the mass which are further diffused have the same mass, mean and are in convex
order. In general, there will be infinitely many such stopping times τ ′

2. Although
this is not true for measures in (4.2a)–(4.2c) because their embedding was unique,
it is true for measures (μ1, ν2, ν3) which are defined via their potentials in Figure 2.

Let ξ1 and ξ2 be defined as in (2.6) and let τBHR
2 = τ ′

2 be the general second
stopping time in [4]. We then redefine (3.1) putting M2 = BτBHR

2
and M̄2 = B̄τBHR

2
.

Now our goal is to define an embedding τ̃3 for the third marginal based on some
stopping boundary ξ̃3 as a first exit time,

τ̃3 :=
{

inf
{
t ≥ τBHR

2 : Bt ≤ ξ̃3(B̄t )
}
, if BτBHR

2
> ξ̃3(B̄τBHR

2
),

τBHR
2 , else,

(4.4)

5Upon inspection, one sees that the proof of Lemma 3.6 therein implicitly uses the fact that ξ2(y) <

y which does not hold in all generality. It seems that to complement the analysis in [4] one would
need to argue that y → P(M̄2 ≥ y) and Ky have the same jumps which becomes involved due to
different scenarios of ξ2 either jumping to the diagonal or “creeping” continuously to the diagonal.
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and prove that this is a valid embedding of μ3. We observe that now the choice of
τ ′

2 in the definition of τBHR
2 may matter for the subsequent embedding.6 Similarly,

as in the embedding of Brown, Hobson and Rogers [4], we expect that this will
be only possible if the procedure which produces ξ̃3 yields a continuous ξ̃3. Other-
wise, an additional step, producing a stopping time τ ′

3 ≥ τ̃3 would be required and
further complicate the presentation.

With this, a more canonical approach in the context of Lemma 3.1 is to write

P[M̄3 ≥ y] = P
[
M3 ≥ ξ̃3(y)

] + “error-term,”(4.5)

which we formalize in (4.23). As it will turn out, this “error-term” provides a
suitable “book-keeping procedure” to keep track of the masses in the embedding.
We proceed along the lines of the proof of our main result. For simplicity, we
further assume that ξ2 has only one discontinuity, that is, z := ξ2(y−) < ξ2(y+) :=
z̄ for some y ≥ 0 and we let ȳ := ξ−1

1 (z̄). As explained below, this is not restrictive
since our procedure is localized. If ȳ ≤ y, then μ1 can be “ignored” and the results
of Brown, Hobson and Rogers [4] apply. Hence, we assume ȳ > y.

4.2.1. Redefining ξ3 and K3. Define the following auxiliary terms:

F
(
ζ, y; τ ′

2
) := 1{M̄1≥y}(ζ − M2)

+,(4.6)

f iAY(
ζ, y; τ ′

2
) := E

[
F

(
ζ, y; τ ′

2
)]

.(4.7)

As the notation underlines, these quantities may depend on the additional choice
of stopping time τ ′

2 between τ2 and τ3. Note that for ζ ∈ [z, z̄] and y ∈ [y, ȳ],
∂f iAY

∂ζ

(
ζ, y; τ ′

2
) = P[M̄1 ≥ y,M2 < ζ ](4.8)

and

∂f iAY

∂y

(
ζ, y; τ ′

2
) = −E

[1{M̄1∈dy,M2<ζ }
dy

]
ζ +E

[1{M̄1∈dy,M2<ζ }
dy

M2

]
(4.9)

= −(
ζ − α

(
ζ, y; τ ′

2
))P[M̄1 ∈ dy,M2 < ζ ]

dy
,

where

α
(
ζ, y; τ ′

2
) := E[M2|M̄1 = y,M2 < ζ ],(4.10a)

β
(
ζ, y; τ ′

2
) := E[M2|M̄1 = y,M2 ≥ ζ ].(4.10b)

6Appropriate choice of τ ′
2 will also be crucial to maintain optimality of the embedding along the

lines on Henry-Labordère et al. [13]. A natural conjecture will be to use first hitting times, with
boundaries depending on the level of M̄τ2 and exhibiting some monotonicity. A recent work of
Beiglböck, Cox and Huesmann [3], and also Guo, Tan and Touzi [12], provides new insights which
might allow to answer this question in all generality.
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With these definitions, we have by the properties of τ ′
2

α
(
ζ, y; τ ′

2
)P[M̄1 ∈ dy,M2 < ζ ]

dy
+ β

(
ζ, y; τ ′

2
)P[M̄1 ∈ dy,M2 ≥ ζ ]

dy
(4.11)

= ξ1(y)
P[M̄1 ∈ dy]

dy
.

We now redefine ξ3 and K3 from (2.15) and (2.7), respectively, and denote the new
definition by ξ̃3 and K̃3. To this end, introduce the function

c̃3(ζ, y) :=
⎧⎨
⎩ c3(ζ ) − f iAY(

ζ, y; τ ′
2
)
, if z ≤ ζ ≤ z̄, y ≤ y ≤ ȳ,(4.12a)

c3(ζ, y), else.(4.12b)

We have that c̃3 is continuous and c̃3 ≤ c3. The inequality follows from the prop-
erties of τ ′

2 since for ζ ∈ [z, z̄] and y ∈ [y, ȳ] we have

f iAY(
ζ, y; τ ′

2
) = E

[
(ζ − M2)

+1{M̄1≥y}
] = E

[{
(M2 − ζ )+ − (y − ζ )

}
1{M̄1≥y}

]
= E

[
(M2 − ζ )+1{M̄1≥y}

] − (y − ζ )K1(y)(4.13)

≥
{
c1(ζ ) − (y − ζ )K1(y), if ζ > ξ1(y),

0, else.

Continuity inside the region is clear and on the boundaries we check it as follows.
First, we have f iAY(z, y; τ ′

2) = 0 and f iAY(ζ, ȳ; τ ′
2) = 0, as required. For ζ = z̄,

we have

E
[
(M2 − ζ )+1{M̄1≥y}

] = E
[
(M1 − ζ )+

]
so by the above c̃3(z̄, y) = c3(z̄, y). Finally, for y = y, we compute

E
[
(ζ − M2)

+1{M̄2≥y}
] = E

[
(ζ − M2)

+1{M̄1≥y}
]

which then implies that

E
[
(M2 − ζ )+1{M̄1≥y}

] = c2(ζ ) − (y − ζ )
(
K2(y) − K1(y)

)
,

which combined with (4.13) and continuity of c3 establishes the claim.
As before, let

ξ̃3(y) := arg min
ζ≤y

c̃3(ζ, y)

y − ζ
(4.14)

and

K̃3(y) := c̃3(ξ̃3(y), y)

y − ξ̃3(y)
.(4.15)

It is clear that a discontinuity of ξ2 results in a local perturbation of c3 into c̃3

and in consequence of ξ3 into ξ̃3. If ξ2 has multiple discontinuities the construction
above applies to each of them giving a global definition of c̃3. Then K̃3 and ξ̃3 are
defined as above.
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4.2.2. Law of the maximum. In the following, we assume that y ∈ [y, ȳ] and

ξ̃3(y), ζ ∈ [z, z̄]. Otherwise, c̃3 = c3 and the arguments from Sections 2 and 3
apply. We have ξ̃3(y) < ξ2(y) and M̄1 = M̄2 on {M̄1 ∈ [y, ȳ]}.

Note the obvious decomposition

P[M̄3 ≥ y] = P[M̄1 < y,M̄3 ≥ y] + P[M̄1 ≥ y].
We compute by similar excursion theoretical arguments as in the proof of
Lemma 3.3,

∂P[M̄1 < y,M̄3 ≥ m]
∂y

∣∣∣
m=y

=: p(
ξ̃3(y), y; τ ′

2
)

(4.16)

= P[M2 ≥ ξ̃3(y), M̄1 ∈ dy]
dy

β(ξ̃3(y), y; τ ′
2) − ξ̃3(y)

y − ξ̃3(y)
.

In analogy to (3.13), and because ξ̃3(y) < ξ2(y),

∂P[M̄1 < m,M̄3 ≥ y]
∂y

∣∣∣
m=y

= −P[M̄3 ≥ y] − P[M̄1 ≥ y]
y − ξ̃3(y)

.

Hence, combining the above

∂

∂y
P[M̄3 ≥ y]

= p
(
ξ̃3(y), y; τ ′

2
) − P[M̄3 ≥ y] − P[M̄1 ≥ y]

y − ξ̃3(y)
+ ∂P[M̄1 ≥ y]

∂y
(4.17)

(3.12)= −P[M̄3 ≥ y]
y − ξ̃3(y)

− ξ̃3(y) − ξ1(y)

y − ξ̃3(y)

∂P[M̄1 ≥ y]
∂y

+ p
(
ξ̃3(y), y; τ ′

2
)
.

In the redefined domain the first-order condition for optimality of ξ̃3(y) reads

K̃3(y) + c′
3
(
ξ̃3(y)

) − ∂f iAY

∂ζ

(
ξ̃3(y), y; τ ′

2
) = 0.(4.18)

By similar calculations as in (A.9) below, we have

K̃ ′
3(y)

(4.18)= − K̃3(y)

y − ξ̃3(y)
−

∂f iAY

∂y
(ξ̃3(y), y; τ ′

2)

y − ξ̃3(y)

(4.9)= − K̃3(y)

y − ξ̃3(y)
+ ξ̃3(y) − α(ξ̃3(y), y; τ ′

2)

y − ξ̃3(y)

P[M̄1 ∈ dy,M2 < ξ̃3(y)]
dy

(4.11)= − K̃3(y)

y − ξ̃3(y)
+ ξ̃3(y) − ξ1(y)

y − ξ̃3(y)

P[M̄1 ∈ dy]
dy

(4.19)



2240 J. OBŁÓJ AND P. SPOIDA

+ β(ξ̃3(y), y; τ ′
2) − ξ̃3(y)

y − ξ̃3(y)

P[M̄1 ∈ dy,M2 ≥ ξ̃3(y)]
dy

(4.16)= − K̃3(y)

y − ξ̃3(y)
− ξ̃3(y) − ξ1(y)

y − ξ̃3(y)

∂P[M̄1 ≥ y]
∂y

+ p
(
ξ̃3(y), y; τ ′

2
)
.

Consequently, by comparing (4.17) and (4.19), and in conjunction with Proposi-
tion 3.4, we obtain

K̃3(y) = P[M̄3 ≥ y], ∀y ≥ 0.(4.20)

4.2.3. Embedding property. Having found the distribution of the maximum,
the final step is to prove the embedding property. To achieve this, we will need that
ξ̃3 is nondecreasing.

Recall the first-order condition of optimality of ξ̃3 in (4.18) and then the second-
order condition for optimality of ξ̃3(y) reads

c′′
3
(
ξ̃3(y)

) − ∂2f iAY

∂ζ 2

(
ξ̃3(y), y; τ ′

2
) ≥ 0.(4.21)

Now, differentiating (4.18) in y yields

K̃ ′
3(y) + c′′

3
(
ξ̃3(y)

)
ξ̃ ′

3(y) − ∂2f iAY

∂ζ 2

(
ξ̃3(y), y; τ ′

2
)
ξ̃ ′

3(y)

− ∂2f iAY

∂ζ ∂y

(
ξ̃3(y), y; τ ′

2
) = 0

or equivalently,

ξ̃ ′
3(y)

(
c′′

3
(
ξ̃3(y)

) − ∂2f iAY

∂ζ 2

(
ξ̃3(y), y; τ ′

2
))

︸ ︷︷ ︸
≥0 by (4.21)

= −K̃ ′
3(y) + ∂2f iAY

∂ζ ∂y

(
ξ̃3(y), y; τ ′

2
)
.

In order to formally infer

ξ̃ ′
3(y) ≥ 0

we require

−K̃ ′
3(y) + ∂2f iAY

∂ζ ∂y

(
ξ̃3(y), y; τ ′

2
) ≥ 0.(4.22)

Direct computation shows that

∂2f iAY

∂ζ ∂y

(
ζ, y; τ ′

2
) = −P[M̄1 ∈ dy,M2 < ζ ]

dy
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and by (4.20),

−K̃ ′
3(y) = P[M̄3 ∈ dy]

dy
,

which implies (4.22), and hence that ξ̃3 is nondecreasing.
By definition of the embedding in (4.4), and since ξ̃3 is nondecreasing, we have

P[M̄3 ≥ y] = P
[
M3 ≥ ξ̃3(y)

] + P
[
M̄3 ≥ y,M3 < ξ̃3(y)

]
= P

[
M3 ≥ ξ̃3(y)

] + P
[
M̄1 ≥ y,M2 < ξ̃3(y)

]
(4.23)

(4.8)= P
[
M3 ≥ ξ̃3(y)

] + ∂f iAY

∂ζ

(
ξ̃3(y), y; τ ′

2
)

and then, by (4.20), (4.18) and (4.23),

−c′
3
(
ξ̃3(y)

) = P
[
M3 ≥ ξ̃3(y)

]
,

which is the desired embedding property.
The above construction hinged on the appropriate choice of the auxiliary term

F in (4.6) whose expectation allows for the error book keeping, as suggested in
(4.5). We identified the correct F by analysing the “error terms” which cause strict
inequality for (Bu : u ≤ τ ′

2) in the pathwise inequality (4.1) of Henry-Labordère
et al. [13]. This is natural since this inequality is used to prove optimality of our
embedding. It gives an upper bound but fails to be sharp if condition (ii) in As-
sumption � does not hold. In order to recover a sharp bound one has to look at the
error terms causing strict inequality when Assumption � fails. The same principle
applies for n > 3. However, then interactions between discontinuities of bound-
aries ξ2, ξ̃3, etc. come into play and the relevant terms become very involved. The
construction would become increasingly technical and implicit and we decided to
stop at this point.

APPENDIX: PROOF OF LEMMA 2.18

In order to prove Lemma 2.18, we require to prove, inductively, several auxil-
iary results along the way. We now state and prove a Lemma which contains the
statement of Lemma 2.18.

LEMMA A.1. Let n ∈ N and let Assumption � hold.
For ζ ∈ R, the mapping

y �→ cn(ζ, y) is locally Lipschitz continuous and nondecreasing

on (ζ ∨ 0,∞). Further, for almost all y ≥ 0,

∂cn

∂y
(ζ, y)

∣∣∣
ζ=ξn(y)

= Kjn(y)(y) + (
y − ξn(y)

)
K ′

jn(y)(y),(A.1)
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where K ′
j denotes the derivative of Kj .

The mapping cn(·, y) is locally Lipschitz continuous on (−∞, y) and

Kn(y) + c′
n

(
ξn(y)

) − c′
j

(
ξn(y)

) − Kj(y) = 0 for j = jn(y)(A.2)

and all y such that ξn(y) is not an atom of μ1, . . . ,μn.
The mapping

y �→ Kn(y) is locally Lipschitz continuous and nonincreasing

on (0, rμn), Kn(y) = 0 for y > rμn , and for almost all y ≥ 0 we have

K ′
n(y) + Kn(y)

y − ξn(y)
= K ′

jn(y)(y) + Kjn(y)(y)

y − ξn(y)
.(A.3)

PROOF. We prove the claim by induction over n. The induction basis n = 1
holds by definition, representation of ξ1 in (2.18)–(2.19) and Lemma 2.6 of Brown,
Hobson and Rogers [4]. Now assume that the claim holds for all i = 1, . . . , n − 1.

Recall from Remark 2.17 that ın(ζ, ·) is piecewise constant with at most n − 1
jumps. Consider y from an interval of constancy of ın(ζ, ·) where i = ın(ζ, y). We
have, using (2.14),

(A.4) cn(ζ, y) = (y − ζ )Ki(y) + cn(ζ ) − ci(ζ ).

It follows by induction hypothesis that cn(ζ, ·) is locally Lipschitz continuous.
Further, y → cn(ζ, y)/(y − ζ ) is nonincreasing. These holds on each interval of
constancy of ın(ζ, ·), and hence, by continuity of cn(·, ·) in Lemma 2.15, for all
y > ζ . Analogous arguments show that cn(·, y) is locally Lipschitz continuous on
(−∞, y).

Analogously to the above, to show that cn(ζ, ·) is nondecreasing it suffices to
show cn(ζ, y) ≤ cn(ζ, ỹ) for y ≤ ỹ in an interval of constancy of ın(ζ, ·). We then
have ın(ζ, y) = ın(ζ, ỹ) = i and in particular ξi(ỹ) < ζ . It follows that

cn(ζ, y) − cn(ζ, ỹ) = (y − ζ )Ki(y) − (ỹ − ζ )Ki(ỹ)

= (
y − ξi(ỹ)

)
Ki(y) − (

ỹ − ξi(ỹ)
)
Ki(ỹ)

+ (
ζ − ξi(ỹ)

)(
Ki(ỹ) − Ki(y)

)
(2.15)≤ ci(ξi(ỹ), y

) − ci(ξi(ỹ), ỹ
)

+ (
ζ − ξi(ỹ)

)(
Ki(ỹ) − Ki(y)

) ≤ 0,

by the induction hypothesis, using monotonicity of ci(ξi(ỹ), ·) and the fact that Ki

is nonincreasing. This establishes monotonicity of cn(ζ, ·).
To prove (A.1), first note that by monotonicity, for any ζ ∈ R, the right and

left derivatives of cn(ζ, ·) exist everywhere on (ζ ∨ 0,∞) and agree almost every-
where. Recalling that ın(ζ, ·) is right-continuous [see (2.34)], the right-derivative
is computed directly from the above expression for cn(ζ, y) and is given by

Kjn(y)(y) + (y − ζ )K ′
jn(y)(y+),(A.5)
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where the last derivate, by induction hypothesis, is well defined everywhere. Not-
ing that K ′

jn(y)(y+) = K ′
jn(y)(y) a.e., we see that (A.1) specifies the right deriva-

tive dy-a.e. Similarly, for almost all y such that ỹ → ın(ξn(y), ỹ) does not jump in
ỹ = y the left derivative is also given by the same expression. Otherwise, we com-
pute the left derivative directly, writing k = limỹ↗y ın(ξn(y), ỹ) > ın(ξn(y), y) =
jn(y) = jk(y),

lim
δ↑0

1

δ

(−ck

(
ξn(y)

) + (
y + δ − ξn(y)

)
Kk(y + δ)

+ cjn(y)

(
ξn(y)

) − (
y − ξn(y)

)
Kjn(y)(y)

)
ξn(y)=ξk(y)= lim

δ↑0

1

δ

((
y + δ − ξn(y)

)
Kk(y + δ) − (

y − ξn(y)
)
Kk(y)

)
(A.6)

= Kk(y) + (
y − ξn(y)

)
K ′

k(y−)

(A.3)= Kjn(y)(y) + (
y − ξn(y)

)
K ′

jn(y)(y),

dy-a.e., by induction hypothesis since n > k > jn(y) = jk(y) and ξn(y) = ξk(y).
We conclude that for almost all y > 0, ỹ → cn(ξn(y), ỹ) is differentiable at ỹ = y

with derivative given by (A.1), as required.
We move to properties of Kn. As observed above, the mapping y �→ cn(ζ,y)

y−ζ
is

nonincreasing, and hence for δ > 0

Kn(y + δ) = inf
ζ≤y+δ

cn(ζ, y + δ)

y + δ − ζ
≤ inf

ζ≤y

cn(ζ, y + δ)

y + δ − ζ

≤ inf
ζ≤y

cn(ζ, y)

y − ζ
= Kn(y)

proving that Kn is nonincreasing.
Using that ξn is continuous, we may take δ small enough so ξn(y + δ) < y and

then, using monotonicity of cn(ζ, ·) we obtain

Kn(y) ≤ cn(ξn(y + δ), y)

y − ξn(y + δ)
≤ cn(ξn(y + δ), y + δ)

y − ξn(y + δ)

= Kn(y + δ)

(
1 + δ

y − ξn(y + δ)

)
,

from which the local Lipschitz continuity of Kn follows.
In order to prove (A.2), we consider y ≥ 0 such that ξn(y) is not an atom of

any μ1, . . . ,μn. In particular, we have that ci are differentiable at ξn(y). If y is
such that jn(y) = ın(ξn(y), y) = ın(ξn(y)+, y), that is, ξn(y) is in the interior of
an interval of constancy of ın(·, y), then the representation (A.4) holds for ζ in a
neighborhood of ξn(y). By its definition, ξn(y) is (the unique) minimizer in (2.15).
Using the first-order condition and (2.17) yields directly (A.2).
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Suppose now j := jn(y) = ın(ξn(y), y) < ın(ξn(y)+, y) =: k, which implies in
particular that ξj (y) < ξk(y) = ξn(y). Then the first-order condition for ξn(y) tells
us that

∂

∂ζ

cn(ζ, y)

y − ζ

∣∣∣
ζ=ξn(y)− ≤ 0 ≤ ∂

∂ζ

cn(ζ, y)

y − ζ

∣∣∣
ζ=ξn(y)+.

These can be written explicitly as

∂

∂ζ

cn(ζ, y)

y − ζ

∣∣∣
ζ=ξn(y)− = c′

n(ξn(y)) − c′
j (ξn(y))

y − ξn(y)
+ cn(ξn(y)) − cj (ξn(y))

(y − ξn(y))2

(2.17)= c′
n(ξn(y)) − c′

j (ξn(y))

y − ξn(y)
+ Kn(y) − Kj(y)

y − ξn(y)
≤ 0,

∂

∂ζ

cn(ζ, y)

y − ζ

∣∣∣
ζ=ξn(y)+ = c′

n(ξn(y)) − c′
k(ξn(y))

y − ξn(y)
+ cn(ξn(y)) − ck(ξn(y))

(y − ξn(y))2

(2.17)= c′
n(ξn(y)) − c′

k(ξn(y))

y − ξn(y)
+ Kn(y) − Kk(y)

y − ξn(y)
≥ 0.

Subtracting the two inequalities, we obtain

c′
k

(
ξn(y)

) − c′
j

(
ξn(y)

) + Kk(y) − Kj(y) ≤ 0.

However, this holds with equality by induction hypothesis since ξn(y) = ξk(y) and
jk(y) = j . Consequently, we see that equality also holds in the two inequalities
above. This establishes (A.2).

Finally, we prove the claimed ODE for Kn. By absolute continuity, Kn is dif-
ferentiable for almost all y ≥ 0 and we have

K ′
n(y) = lim

δ↘0

1

δ

[
cn(ξn(y + δ), y + δ)

y + δ − ξn(y + δ)
− cn(ξn(y), y)

y − ξn(y)

]

= lim
δ↘0

1

δ

[(
1

y + δ − ξn(y + δ)
− 1

y − ξn(y)

)
cn(

ξn(y + δ), y + δ
)

+ cn(ξn(y + δ), y + δ) − cn(ξn(y), y)

y − ξn(y)

]

= ξ ′
n(y+) − 1

y − ξn(y)
Kn(y)

+ 1

y − ξn(y)

(
lim
δ↘0

cn(ξn(y + δ), y + δ) − cn(ξn(y), y)

δ

)
.

The main technical difficulty comes from the possibility that ξn(y) = ξk(y) for
some k < n. We present the arguments for this case and leave the other (much
easier) case to the reader.
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By assumption the last limit exists, and hence we can compute it using some
“convenient” sequence δm ↓ 0 where δm is such that jn(y + δm) = l for all m ∈ N.
Note that by continuity of ξ1, . . . , ξn at y we have that either l = jn(y) or l is
such that ξl(y) = ξn(y) and then jn(y) = jl(y). In the latter case, by (2.17) and
continuity of cn (see Lemma 2.15), we obtain

(A.7)
cn(ξn(y)) − cjn(y)(ξn(y))

y − ξn(y)
+ Kjn(y)(y) = cn(ξn(y)) − cl(ξn(y))

y − ξn(y)
+ Kl(y).

Recall (2.34). For δm small enough such that ın(ξn(y), y + δm) = jn(y), we obtain

cn(
ξn(y + δm), y + δm

) − cn(
ξn(y), y + δm

)
= cn

(
ξn(y + δm)

) − cl

(
ξn(y + δm)

) + (
y + δm − ξn(y + δm)

)
Kl(y + δm)

− cn

(
ξn(y)

) + cjn(y)

(
ξn(y)

) − (
y + δm − ξn(y)

)
Kjn(y)(y + δm)

(A.7)= cn

(
ξn(y + δm)

) − cl

(
ξn(y + δm)

) + (
y + δm − ξn(y + δm)

)
Kl(y + δm)

− cn

(
ξn(y)

) + cl

(
ξn(y)

) − (
y − ξn(y)

)(
Kl(y) − Kjn(y)(y)

)
− (

y + δm − ξn(y)
)
Kjn(y)(y + δm).

From this, for almost all y ≥ 0, we obtain using the induction hypothesis

lim
m→∞

cn(ξn(y + δm), y + δm) − cn(ξn(y), y + δm)

δm

= ξ ′
n(y+)

[
c′
n

(
ξn(y)+) − c′

l

(
ξn(y)+) − Kl(y)

]
(A.8)

+ Kl(y) + (
y − ξn(y)

)
K ′

l (y) − Kjn(y)(y) − (
y − ξn(y)

)
K ′

jn(y)(y)

(A.2)=
(A.3)

−ξ ′
n(y+)Kn(y).

The use of (A.2) above is a priori only justified for y ≥ 0 such that ξn(y) is not
an atom of μ1, . . . ,μn. However, for a fixed atom ζ , the set {y : ξn(y) = ζ } is a
closed interval on whose interior ξ ′

n ≡ 0 and it follows that (A.8) extends to almost
all y ≥ 0. Together with (A.1) this yields, for almost all y ≥ 0,

K ′
n(y) = ξ ′

n(y) − 1

y − ξn(y)
Kn(y) + 1

y − ξn(y)

(
−Kn(y)ξ ′

n(y) + ∂cn

∂y

(
ξn(y), y

))
(A.9)

= − Kn(y)

y − ξn(y)
+ 1

y − ξn(y)

(
Kjn(y)(y) + (

y − ξn(y)
)
K ′

jn(y)(y)
)
,

which completes the proof. �
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