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A STRUCTURE THEOREM FOR POORLY ANTICONCENTRATED
POLYNOMIALS OF GAUSSIANS AND APPLICATIONS TO THE

STUDY OF POLYNOMIAL THRESHOLD FUNCTIONS1

BY DANIEL KANE

University of California

We prove a structural result for degree-d polynomials. In particular, we
show that any degree-d polynomial, p can be approximated by another poly-
nomial, p0, which can be decomposed as some function of polynomials
q1, . . . , qm with qi normalized and m = Od(1), so that if X is a Gaussian
random variable, the probability distribution on (q1(X), . . . , qm(X)) does not
have too much mass in any small box.

Using this result, we prove improved versions of a number of results
about polynomial threshold functions, including producing better pseudoran-
dom generators, obtaining a better invariance principle, and proving improved
bounds on noise sensitivity.
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1. Introduction.

1.1. Anticoncentration of Gaussian polynomials. In this paper, we study low
degree polynomials of Gaussian random variables, especially with regards to their
anticoncentration properties, that is the extent to which they cluster probability
mass into small intervals (or more particularly, the extent to which they fail to do
so). The most that can be said along these lines for general polynomials is given
to us by a result of Carbery and Wright in [3]. Namely, they show that for p a
degree-d polynomial in n variables and X an n-dimensional Gaussian random
variable, then

(1) Pr
(∣∣p(X)

∣∣ ≤ ε|p|2) = O
(
dε1/d)

.

While this bound does tell us that the probability of p(X) lying in a small interval
goes to zero as the length of the interval does, it leaves much to be desired from
a quantitative standpoint. In particular, the ε1/d -dependence in equation (1) tends
to produce poor bounds if d is moderately large. In particular, one might expect
that the probability of p(X) lying in an interval of length ε should be proportional
to ε rather than ε1/d . Unfortunately, while this is true for most polynomials, there
are cases in which it fails. For example, if p(X) is given by the dth power of
a linear polynomial L(X), then |p(X)| ≤ ε if and only if |L(X)| ≤ ε1/d , which
happens with probability proportional to ε1/d . While equation (1) implies that this
is approximately the worst case in terms of poor anticoncentration, it is far from
the only case where the naive bound fails. For example, if p(X) is given by the
sum of dth powers of a small number of linear polynomials q1(X), . . . , qm(X),
then if |qi(X)| < (ε/m)1/d for all i, |p(X)| ≤ ε. This happens with probability
roughly εm/d . There are also a number of more complicated counter-examples.
For example, if

p(X) = q1(X)7 + q2(X)7 + q1(X)2q2(X)2 + ε2/3q3(X)
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for any polynomials q1, q2, q3 then as long as |q1(X)| � ε1/4, |q2(X)| � ε1/4,
|q3(X)| � ε1/3, an event that we expect to take place with probability roughly
ε5/6, then |p(X)| ≤ ε.

A common theme in the above examples seems to be that if p(X) is poorly
anticoncentrated it is because p can be decomposed in such a way that makes
this poor anticoncentration apparent. In particular, in all of the above examples we
were able to write p(X) as h(q1(X), . . . , qm(X)) for some polynomials h,qi in
such a way that even if the qi were assumed to be jointly Gaussian distributed,
the anticoncentration properties of p are already accounted for in the structure
of h. In fact, as we will show, this is true in general. Any polynomial p may be
approximately decomposed in terms of other polynomials qi such that the qi are
nearly as well anticoncentrated as one might hope. This provides us with a useful
structural result for polynomials of Gaussian inputs. In order to produce a rigorous
statement of this result, we must first introduce some terminology.

DEFINITION 1. Given a degree-d polynomial p : Rn → R, we say that a
sequence of polynomials (h, q1, . . . , qm) is a decomposition of p of size m if
qi :Rn → R, and h :Rm → R are polynomials so that:

• p(x) = h(q1(x), . . . , qm(x)).
• For every monomial c

∏
x

ai

i appearing in h, we have that
∑

a1 deg(qi) ≤ d .

In other words, a decomposition of p is a way of writing p as a compo-
sition of a simple polynomial, h, with another polynomial Q = (q1, . . . , qm).
The second condition above tells us that if we expanded out the polynomial
h(q1(x), . . . , qm(x)), we would never have to write any terms of degree more
than d .

DEFINITION 2. We say that a tuple of polynomials (q1, . . . , qm) : Rn → Rm,
is an (ε,N)-diffuse set if for every (a1, . . . , am) ∈ Rm and standard Gaussian ran-
dom variable X we have that

PrX
(∣∣qi(X) − ai

∣∣ ≤ ε for all i
) ≤ εmN,

and E[|qi(X)|2] ≤ 1 for all i.

We note that while an anticoncentration result need only tell us that the probabil-
ity distribution of p(X) contains no point masses, an (ε,N)-diffuse set of polyno-
mials will have the probability density function of the vector (q1(X), . . . , qm(X))

average no more than N on any small box. This provides a much stronger notion
of anticoncentration. Combining the two definitions above, we define the notion of
a diffuse decomposition.

DEFINITION 3. Given a polynomial p we say that (h, q1, . . . , qm) is an
(ε,N)-diffuse decomposition of p of size m if (h, q1, . . . , qm) is a decomposition
of p of size m and if (q1, . . . , qm) is an (ε,N)-diffuse set.
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It is not obvious that diffuse decompositions should exist in any useful cases.
The main result of this paper will be to show that not only can any polynomial be
approximated by a polynomial with a diffuse decomposition, but that the parame-
ters of this decomposition are sufficient for use in a wide variety of applications.

THEOREM 1 (The diffuse decomposition theorem). Let ε, c and N be positive
real numbers and d a positive integer. Let p(X) be a degree-d polynomial. Then
there exists a degree-d polynomial p0 with |p −p0|2 < Oc,d,N (εN)|p|2 so that p0
has an (ε, ε−c)-diffuse decomposition of size at most Oc,d,N (1).

It should be noted that if p is a polynomial with a diffuse decomposition,
(h, q1, . . . , qm), then the distribution of p(X) will be determined in large part by
the polynomial h, as the distribution for (q1(X), . . . , qm(X)) is controlled by the
diffuse property. Thus, Theorem 1 may be thought of as a structural result for poly-
nomials of Gaussians. Theorem 1 may also be thought of as a continuous analogue
of theorems of Green-Tao ([10]) and Kaufman–Lovett ([15]) which say that a poly-
nomial over a finite field can be decomposed in terms of lower degree polynomials
whose output distributions on random inputs are close to uniform.

REMARK 1. The bound on the size of the decomposition in Theorem 1 is
effective, but may be quite large. Working through the details of the proof would
lead to a bound of A(d + O(1),N/c), where A(m,n) is the Ackermann function.
The author believes that a polynomial in (dN/c) should be sufficient, but does not
know of a proof for this improved bound.

1.2. Applications to the study of polynomial threshold functions. A number of
results such as the invariance principle (see [18]) or various pseudorandom gen-
erators for polynomial threshold functions (see [13, 17]) compare the output dis-
tributions of a polynomial evaluated at different input distributions. An important
technique for dealing with such issues is the replacement method of Lindeberg (see
[7, 16]). While the replacement method is well adapted to comparing the expecta-
tions of smooth functions at different inputs, it is less well adapted to comparing
the outputs of threshold functions [i.e., functions of the form f (x) = sgn(p(x))],
which are often required for this analysis. The standard method for resolving this
issue is approximating the threshold function, f , in question by a smooth func-
tion g. Unfortunately, this will itself introduce a substantial error if there is a large
discrepancy between f and g. Since a continuous function must fail to approx-
imate a discontinuous one near the locus of discontinuity, bounding this source
of error will generally depend on proving an appropriate anticoncentration result,
showing that X has a small probability of lying near this locus of discontinuity.

For example, in previous applications, g was often taken to be of the form
g(x) = ρ(p(x)) for some suitable smooth function ρ. In these cases, g(x) would
equal f (x) except when the absolute value of p(x) was small. Unfortunately,
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in this context, the relatively weak anticoncentration bounds provided by equa-
tion (1) have proven to be a major bottleneck in terms of the bounds that have
been obtainable. By making use of Theorem 1, we will be able to make substantial
improvements to several of these results by making a better choice of the func-
tion g. In particular, if f (x) = sgn(p(x)) where p is approximated by a p0 with
an appropriate diffuse decomposition (h, q1, . . . , qm), we can approximate f (x)

by g(x) = ρ(q1(x), . . . , qm(x)) for a suitable smooth function ρ. The error intro-
duced by this approximation is now bounded by the anticoncentration properties
of (q1, . . . , qm), which are controlled by the diffuse property. This technique pro-
duces an improvement over several previous results.

The existence of diffuse decompositions allows us to make better use of the
replacement method and achieve a tighter analysis of the pseudorandom genera-
tors for polynomial threshold functions presented in [13] and [17]. We can also use
this theory to improve on the invariance principle of [18]. In particular, we come up
with a new notion of regularity for a polynomial, so that for highly regular polyno-
mials their evaluation at random Gaussian variables and at random Bernoulli vari-
ables are close in c.d.f. distance. We then show that an arbitrary polynomial can
be written as a decision tree of small depth almost all of whose leaves are either
regular or have constant sign with high probability. These theorems of ours will
produce a qualitative improvement over the analogous theorems of [18] and [6].
Finally, we make use of this technology to prove bounds on the noise sensitivity
of polynomial threshold functions, although this result has since been superseded
by [14]. Each of these applications will be discussed in more detail in the relevant
section of this paper.

1.3. Overview of the paper. In Section 2, we introduce a number of basic con-
cepts that will be used throughout the paper. Section 3 will contain the proof of
Theorem 1 along with some associated lemmas. In Section 4, we discuss some
basic facts about diffuse decompositions that will prove useful to us later on. In
Section 5, we discuss our application to pseudorandom generators for polynomial
threshold functions of Gaussians. In Section 6, we state and prove our versions
of the invariance principle and regularity lemma. In Section 7, we discuss our re-
sults relating to noise sensitivity problems. In Section 8, we discuss our results
for pseudorandom generators for polynomial threshold functions with Bernoulli
inputs. Finally, in Section 9, we provide some closing remarks.

2. Basic results and notation.

2.1. Basic notation. We will use the notation Oa(N) to denote a quantity
whose absolute value is bounded above by N times some constant depending only
on a.

Throughout this paper, the variables G,X,Y,Z,Xi, Y i,Zi, etc. will be used to
denote standard Gaussian random vectors unless stated otherwise. The coordinates
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of these variables will be denoted using subscripts. Thus, Xi
j will denote the j th

coordinate of the variable Xi .
We also recall here the definition of a polynomial threshold function.

DEFINITION 4. A function f :Rn → {±1} is a (degree-d) polynomial thresh-
old function (or PTF) if it is of the form f (x) = sgn(p(x)) for some (degree-d)
polynomial p.

2.2. Basic facts about polynomials of Gaussians. We recall some basic facts
about polynomials of Gaussians. We begin by recalling the Lt -norm of a function.

DEFINITION 5. For a function p :Rn →R, we let

|p|t = (
EX

[∣∣p(X)
∣∣t ])1/t

.

We now recall some basic distributional results about polynomials evaluated at
random Gaussians.

LEMMA 2 (Carbery and Wright). If p is a degree-d polynomial then

Pr
(∣∣p(X)

∣∣ ≤ ε|p|2) = O
(
dε1/d)

,

where the probability is over X, a standard Gaussian random vector.

We will make use of the hypercontractive inequality.

LEMMA 3. If p is a degree-d polynomial and t > 2, then

|p|t ≤ √
t − 1

d |p|2.
The proof follows from Theorem 2 of [19], or more directly from Theorem 1.6.2

of [1] by setting the values of p,q, t, f that appearing in that theorem (which
we call p′, q ′, t ′, f ′ to avoid confusion) to p′ = 2, q ′ = t, t ′ = log(q − 1)/2 and
f ′ = T −1

t ′ (p).
In particular, this implies the following corollary.

COROLLARY 4 (Weak anticoncentration). Let p be a degree-d polynomial in
n variables. Let X be a standard Gaussian random vector, then

Pr
(∣∣p(X)

∣∣ ≥ |p|2/2
) ≥ 9−d/2.

PROOF. This follows immediately from the Paley—Zygmund inequality
([20]) applied to p2. �

We also have the following concentration bound.
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COROLLARY 5. If p is a degree-d polynomial and N > 0, then

PrX
(∣∣p(X)

∣∣ > N |p|2) = O
(
2−(N/2)2/d )

.

PROOF. Apply the Markov inequality and Lemma 3 with t = (N/2)2/d . �

Note that we will often need to apply a version of Lemma 2 or Corollary 5 when
p is a vector valued polynomial. This can be achieved by applied the appropriate
result to the degree-2d polynomial q(X) := |p(X)|2.

2.3. Multilinear algebra. The conventions and results discussed in the re-
mainder of this section will be used primarily in Section 3, and sparingly in the
rest of the paper.

We will later need to make some fairly complicated constructions making use
of multilinear algebra. We take this time to review some of the basic definitions
and go over some of the notation that we will be using. We recall that a k-tensor is
an element of a k-fold tensor product of vector spaces A ∈ V1 ⊗ · · · ⊗ Vk . Equiv-
alently, it may be thought of as the k-linear form V1 × · · · × Vk → R given by
(v1, . . . , vk) → 〈A,v1 ⊗ · · · ⊗ vk〉 (assuming that each of the Vi come equipped
with an inner product). If the Vi come with isomorphisms to Rni , then we can
associate A with the sequence of coordinates Ai1···ik = A(ei1, . . . , eik ).

We recall Einstein summation notation which says that if we are given a product
of tensors with stated indices that it is implied that we sum over any shared indices.
In particular, if A is a k1-tensor and B a k2-tensor then the expression

Ai1,i2,...,im,j1,j2,...,jk1−m
Bi1,i2,...,im,jk1−m+1,jk1−m+2,...,jk1+k2−2m

denotes the (k1 + k2 − 2m)-tensor C with coordinates

Cj1,j2,...,jk1+k2−2m

= ∑
i1,i2,...,im

Ai1,i2,...,im,j1,j2,...,jk1−m
· Bi1,i2,...,im,jk1−m+1,jk1−m+2,...,jk1+k2−2m

.

Note that if there are no overlapping indices that this product simply denotes the
tensor product of A and B . If on the other hand, all indices overlap, this denotes
the dot product of A and B . We will also sometimes group several coordinates into
a single coordinate of larger dimension. We will try to use upper case letters for
indices to indicate that this is happening.

We define the L2 norm of a tensor A to be the square root of the sum of the
squares of its coordinates. If A is a k-tensor, we have the equivalent definitions:

|A|22 = 〈A,A〉
= ∑

i1,...,ik

|Ai1,...,ik |2

= EX1,...,Xk

[∣∣Ai1,...,ikX
1
i1
X2

i2
· · ·Xk

ik

∣∣2]
.
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For tensor-valued functions A(X), we define the L2-norm by

|A|22 := EX

[∣∣A(X)
∣∣2
2

]
.

We will also need the notion of a wedge product of tensors over some subset of
their coordinates. In particular, if A is a rank-(k + m) tensor with its first k indices
corresponding to spaces of the same dimension, we define∧

i1,...,ik

Ai1,...,ik,j1,...,jm := ∑
σ∈Sk

(−1)σAiσ(1),...,iσ (k),j1,...,jm.

Note the important special case here where A is a tensor product of k different
1-tensors Ai1,...,ik = A1

i1
· · ·Ak

ik
. It is then the case that( ∧

i1,...,ik

A1
i1

· · ·Ak
ik

)
B1

i1
· · ·Bk

ik
= det

(〈
Ai,Bj 〉)

.

We will think of the derivative operator as taking functions on Rn whose values
are k-tensors to functions on Rn whose values are (k + 1)-tensors. In particular,
given a tensor valued function AS(x), we define the tensor ∇iAS(x) to have (i, S)-
coordinate ∂AS(x)

∂xi
. For example, for a function f , we have that ∇if is the gradient

of f , ∇i∇jf is the Hessian matrix, and ∇i∇if is the Laplacian. Furthermore, if
X is a vector, then Xi∇if is the standard directional derivative DXf .

Lastly, note that if p is a homogeneous, degree-d polynomial that it has an
associated d-tensor A given by Ai1,...,id := ∇i1 · · ·∇id p (note that this dth order
derivative is independent of the point at which it is being evaluated). Note that A

is determined by the property that it is a symmetric tensor (it is invariant under any
permutation of coordinates) so that for any vector X, A(X,X, . . . ,X) = d!p(X).

2.4. Strong anticoncentration. Strong anticoncentration was an idea first es-
poused by the author in [13]. It is a heuristic which states that a polynomial is
generally not much smaller than its derivative. We will need to make use of a gen-
eralization of this to sets of several tensor-valued polynomials. In particular, we
will prove the following proposition.

PROPOSITION 6 (Strong anticoncentration). For 1 ≤ i ≤ k, let Ai
Si

(x) (for
multiindices Si ) be a degree-di , tensor-valued polynomial on Rn (i.e., a tensor
whose coefficients are degree-di polynomials on Rn). Let 1/2 > ε > 0. We have
that

Pr

(
k∏

j=1

∣∣Aj
Sj

(X)
∣∣
2 < ε

∣∣∣∣∣
∧

i1,...,ik

k∏
j=1

∇ij A
j
Sj

(X)

∣∣∣∣∣
2

)

≤ ε2O(d1+d2+···+dk)O(
√

k)k+1 log
(
ε−1)k

.

In order to prove Proposition 6, we will need to following lemma.
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LEMMA 7. For 1 ≤ i ≤ k let pi be a degree di polynomial on Rn and let
δ, εi > 0. Then

PrX,Y 1,...,Y k

(∣∣pi(X)
∣∣ < εi for all i, and

∣∣det
(
DYj p

i(X)
)∣∣ > δ

)
≤ 2k+1 ∏k

i=1 di

∏k
i=1 εi

δVk

,

where Vk = 2πk+1/2

�((k+1)/2)
is the volume of the unit k-sphere.

PROOF. Define the function f : Sk →Rk by letting

f (a0, a1, . . . , ak)i := pi(a0X + a1Y
1 + a2Y

2 + · · · + akY
k).

Notice that the matrix with coefficients DYj pi(X) is simply the Jacobian of
f at the point (1,0,0, . . . ,0). Notice that if we replace the random variables
X,Y 1, . . . , Y k by linear combinations of each other by making an orthonormal
change of coordinates, that they are still independent Gaussians, and thus, the prob-
ability in question is unchanged. We claim that for any fixed values of X,Y i that
the probability over a random such change of variables that∣∣pi(X)

∣∣ < εi for all i, and
∣∣det

(
DYj

pi(X)
)∣∣ > δ

is at most
2k ∏k

i=1 di
∏k

i=1 εi

δVk
. Such a statement would clearly imply our lemma.

Note that making such a random change of variables is equivalent to precompos-
ing f with a random element of the orthogonal group O(k + 1). Thus, it suffices
to bound

Prx∈Sk

(
f (x) ∈ R, and

∣∣det
(
Jac

(
f (x)

))∣∣ > δ
)
,

where R ⊂ Rk is given by
∏

i[−εi, εi]. Let T be the set of x ∈ Sk so that f (x) ∈
R, and |det(Jac(f (x)))| > δ. We know by the change of variables formula for
integration that

(2)
∫
T

∣∣det
(
Jac

(
f (x)

))∣∣dx =
∫
R

∣∣f −1(y)
∣∣dy.

We note that the right-hand side of equation (2) is
∫
R |f −1(y)|dy. We note that

f −1(y) is at most the number of isolated points in the intersection of the roots
polynomials of degree d1, . . . , dk and

∑
x2
i − 1 in Rk+1. Applying Bezout’s the-

orem (see [8], Example 12.3.1) to the homogenized versions of these polynomi-
als, we find that the integrand above is at most 2

∏k
i=1 di . Thus,

∫
R |f −1(y)|dy ≤

2k+1 ∏k
i=1 di

∏k
i=1 εi . On the other hand, the left-hand side of equation (2) is at

least δ Vol(T ) = δVk Prx∈Sk (x ∈ T ). Thus,

Prx∈Sk (x ∈ T ) ≤ 2k+1 ∏k
i=1 di

∏k
i=1 εi

δVk

. �
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COROLLARY 8. For polynomials pi : Rn → R of degree di for 1 ≤ i ≤ k and
for 1/2 > ε > 0,

PrX,Y 1,...,Y k

(
k∏

i=1

∣∣pi(X)
∣∣ < ε

∣∣det
(
DYip

j )∣∣)

≤ ε2O(d1+d2+···+dk)O(
√

k)k+1 log
(
ε−1)k

.

PROOF. We note that the problem in question is invariant under scalings of
the pi and, therefore, we may assume that |pi |2 = 1 for all i. We note by Lemma 2
and Corollary 5 that we may ignore the case where some |pi(X)| < εdi or where
some |pi(X)| > ε−1 [as the probability that such an event happens for any i

is at most O(
∑

i diε)]. For each i, we may partition the interval [εdi , ε−1] into
O(di log(ε−1)) many intervals each of whose endpoints differ by at most a fac-
tor of 2. Up to a factor of O(log(ε−1))k

∏
i di , it suffices to bound the probability

that each of the |pi(X)| lies in a specified such interval and that
∏k

i=1 |pi(X)| <

ε|det(DY ipj )|. If the upper endpoints of these intervals are εi , then this probabil-
ity, is at most the probability that∣∣pi(X)

∣∣ < εi for all i, and
∣∣det

(
DYj p

i(X)
)∣∣ >

(
2kε

)−1 ∏
εi .

By Lemma 7, the above probability is at most ε2O(d1+d2+···+dk)O(
√

k)k+1. Multi-
plying by O(log(ε−1))k

∏
i di , yields our bound. �

PROOF OF PROPOSITION 6. For Z, a tensor of the same dimension as Aj , let
f

j
Z :Rn →R be the function f

j
Z(x) = 〈Aj(x),Z〉. Note that∣∣∣∣∣

∧
i1,...,ik

k∏
j=1

∇ij A
j
Sj

(X)

∣∣∣∣∣
2

2

= EY 1,...,Y k,Z1,...,Zk

[∣∣det
(
DYif

j

Zj (X)
)∣∣2]

.

Furthermore, (
k∏

j=1

∣∣Aj
Sj

(X)
∣∣
2

)2

= EZ1,...,Zk

[∣∣∣∣∣
k∏

j=1

f
j

Zj (X)

∣∣∣∣∣
2]

.

Now suppose that for some choice of X that

(3)
k∏

j=1

∣∣Aj
Sj

(X)
∣∣2
2 < ε2

∣∣∣∣∣
∧

i1,...,ik

k∏
j=1

∇ij A
j
Sj

(X)

∣∣∣∣∣
2

2

.

We have by Corollary 4 that with probability at least 2O(k) over the random Gaus-
sians Y 1, . . . , Y k and Z1, . . . ,Zk that the left-hand side of equation (3) is at least∣∣∣∣∣

k∏
j=1

f
j

Zj (X)

∣∣∣∣∣
2/

2.
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By the Markov bound, we have that except for a probability of at most 2−	(k) the
right-hand side of equation (3) is at most

ε22O(k)
∣∣det

(
DYif

j

Zj (X)
)∣∣2.

Thus, whenever equation (3) holds, with probability at least 2O(k) over Y i and Zi

we have that ∣∣∣∣∣
k∏

j=1

f
j

Zj (X)

∣∣∣∣∣ ≤ ε2O(k)
∣∣det

(
DYif

j

Zj (X)
)∣∣.

But by Corollary 8, the probability of this happening (even for fixed Zi) is at most

ε2O(d1+d2+···+dk)O(
√

k)k+1 log
(
ε−1)k

.

Thus, the probability of equation (3) holding is at most 2O(k) times as much, which
is still

ε2O(d1+d2+···+dk)O(
√

k)k+1 log
(
ε−1)k

. �

2.5. Orthogonal polynomials. Here, we review some basic facts about orthog-
onal polynomials. Recall that the Hermite polynomials are an orthonormal basis
for polynomials in one variable with respect to the Gaussian inner product. In par-
ticular, they are defined by the properties that:

• Hn :R →R is a degree-n polynomial.
• E[Hn(X)Hm(X)] = δn,m where X is a one-dimensional Gaussian random vari-

able.

Furthermore, we have the relation that H ′
n(x) = √

nHn−1(x). We can extend this
theory to polynomials in n variables as follows. For a = (a1, . . . , an), a vec-
tor of nonnegative integers, we define the corresponding polynomial Ha(x) =∏n

i=1 Hai
(xi) on Rn. It is easy to check that the total degree of Ha is |a|1 :=∑n

i=1 ai and that E[Ha(X)Hb(X)] = δa,b.
Given a polynomial p in n variables, we can always write p as a linear combi-

nation of Hermite polynomials. In fact, it is easy to check that

p(X) = ∑
|a|1≤deg(p)

ca(p)Ha(X),

where

ca(p) = E
[
p(X)Ha(X)

]
.

We define the kth harmonic component of p to be

p[k] := ∑
|a|1=k

ca(p)Ha(X).
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We say that p is harmonic of degree k if it equals its kth harmonic part.
Note that we can compute the derivative of Ha as

∂Ha(X)

∂Xi

= √
aiHa−ei

(X).

Thus, ∇iHa(X) is a vector of polynomials that are harmonic of degree |a|1 − 1.
Furthermore, we have that

E
[(∇iHa(X)

)(∇iHb(X)
)] = ∑

i

E
[√

aibiHa−ei
(X)Hb−ei

(X)
]

= ∑
i

√
aibiδa−ei ,b−ei

= δa,b

∑
i

√
aibi

= δa,b

∑
i

ai

= |a|1δa,b.

Additionally, for a �= b each of the components of ∇iHa is a Hermite polynomial
orthogonal to the corresponding component of ∇iHb. Iterating this, we can see that

E
[(∇i1∇i2 · · ·∇ikHa(X)

)(∇i1∇i2 · · ·∇ikHb(X)
)]

= |a|1(|a|1 − 1
) · · · (|a|1 − k + 1

)
δa,b.

Hence, we have

LEMMA 9. For p a polynomial of degree d ,

|∇i1 · · ·∇ikp|22 ≤ d(d − 1) · · · (d − k + 1)|p|22
with equality if and only if p is harmonic of degree d .

3. Proof of the decomposition theorem.

3.1. Overview of the proof. The proof of Theorem 1 comes in two steps. The
first is Proposition 10 (below), which states roughly that if p is a degree-d polyno-
mial so that for a random Gaussian X, |p′(X)| is small with nonnegligible proba-
bility, then p can be decomposed as a polynomial with smaller L2 norm, plus a sum
of products of lower degree polynomials. Given this proposition, the proof of The-
orem 1 is relatively straightforward. We begin by writing a trivial decomposition of
p as p(x) = Id(p(x)). If this is a diffuse decomposition, we are done. Otherwise,
by Proposition 6, there must be a reasonable probably that |p′(X)| is small. Thus,
Proposition 10 allows us to decompose p in terms of lower-degree polynomials.
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This gives us a new decomposition of p. If it is diffuse, we are done, otherwise it
is not hard to show that at least one of the polynomials in this decomposition can
be decomposed further. We show that this procedure will eventually terminate by
demonstrating an ordinal monovariant which decreases with each step.

In Section 3.2, we state and prove Proposition 10, and in Section 3.3 complete
the proof of Theorem 1.

3.2. The decomposition lemma. In this section, we will prove the following
important proposition that will allow us to write a nondiffuse polynomial in terms
of lower-degree polynomials.

PROPOSITION 10. Let p(X) be a degree d polynomial with |p|2 ≤ 1 and let
ε, c,N > 0 be real numbers so that

PrX
(∣∣∇ip(X)

∣∣
2 < ε

)
> εN.

Then there exist polynomials ai(X), bi(X) of degree strictly less than d with
|ai(X)|2|bi(X)|2 ≤ ON,c,d(ε−c)|p[d]|2 and so that∣∣∣∣∣

(
p(X) −

k∑
i=1

ai(X)bi(X)

)[d]∣∣∣∣∣
2

< ON,c,d

(
ε1−c),

where k = ON,c,d(1). Furthermore, this can be done in such a way that for each i,
deg(ai) + deg(bi) = d .

REMARK 2. Unlike the constants implied in Theorem 1, the implied constants
in Proposition 10 are primitive recursive functions of the parameters. Although we
do not bound them explicitly, our techniques show that they are at worst an iterated
exponential.

Our proof of Proposition 10 will proceed in stages. First, we will show
that for such polynomials p, there is a reasonable probability (over X,Y i) that
∇iDY 1DY 2 · · ·DYd−1p(X) will be small. This is easily seen to reduce to a state-
ment about the rank-d tensor, Ai1···id = ∇i1 · · ·∇id p. In particular, we know that
Ai1···id Y 1

i1
· · ·Yd−1

id−1
has a reasonable probability of being small. We then prove a

structure theorem telling us that such tensors can be approximated as a sum of
tensor products of lower-rank tensors. This in turn will translate into our being
able to approximate the degree-d part of p by a sum of products of lower degree
polynomials.

We begin with the following proposition.

PROPOSITION 11. Let c,N > 0 be real numbers and d a positive integer. Let
ε > 0 be a real number that is sufficiently small given c, d and N . Suppose that p

is a degree-d polynomial so that

PrX
(∣∣∇ip(X)

∣∣
2 < ε

)
> εN.
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Then we have that

PrX,Y

(∣∣∇iDY p(X)
∣∣
2 < ε1−c) > εON,c,d (1).

We begin with the following lemma.

LEMMA 12. Let N > 0 be a real number and let d and k be positive inte-
gers. Suppose that Ai(X) is a degree-d , tensor-valued polynomial so that for some
1/2 > ε > 0,

PrX
(∣∣Ai(X)

∣∣
2 < ε

) ≥ εN .

Then the probability over Gaussian X that |Ai(X)|2 < ε and∣∣∣∣ ∧
i1···ik

(∇j1Ai1(X)
) · · · (∇jk

Aik (X)
)∣∣∣∣

2
< Od,k,N

(
εk−N )

log
(
ε−1)k

is at least εN/2.

PROOF. Note that by decreasing N , we may assume that

PrX
(∣∣Ai(X)

∣∣
2 < ε

) = εN .

Note that for any tensor Bij∧
i1,...,ik

Bi1j1 · · ·Bikjk
= ∑

σ∈Sk

(−1)σBiσ(1)j1 · · ·Biσ(k)jk

= ∑
σ∈Sk

(−1)σBi1jσ−1(1)
· · ·Bikjσ−1(k)

= ∧
j1,...,jk

Bi1j1 · · ·Bikjk
.

Thus, for fixed X, we have by Lemma 2 that with a probability of at least 9/10
over Y 
 we have that∣∣∣∣ ∧

i1,...,ik

(∇j1Ai1(X)
) · · · (∇jk

Aik (X)
)∣∣∣∣

2

=
∣∣∣∣ ∧
j1,...,jk

(∇j1Ai1(X)
) · · · (∇jk

Aik (X)
)∣∣∣∣

2

> 	(1/kd)kd

∣∣∣∣Y 1
i1

· · ·Y k
ik

∧
j1,...,jk

(∇j1Ai1(X)
) · · · (∇jk

Aik (X)
)∣∣∣∣

2
.

Therefore, it suffices to show that with probability at least 3εN/5 that |Ai(X)|2 < ε

and∣∣∣∣Y 1
i1

· · ·Y k
ik

∧
j1,...,jk

(∇j1Ai1(X)
) · · · (∇jk

Aik (X)
)∣∣∣∣

2
< Od,k,N

(
εk−N )

log
(
ε−1)k

.
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For fixed X, by Corollary 5 we have that with probability at least 9/10 that for
random Y 1, . . . , Y k that |Y j

i Ai(X)| < Ok(1)|Ai(X)|2 for all 1 ≤ j ≤ k. Thus, with

probability at least 9εN/10 over X and the Y j , we have that |Y j
i Ai(X)| < Ok(ε)

for all j .
On the other hand, Proposition 6 implies that with probability at least 1−εN/10

that

(4)

∣∣∣∣∣
∧

j1,...,jk

k∏

=1

∇j

Y 


i

Ai
(X)

∣∣∣∣∣
2

≤ Ok,d(1)ε−N (
log

(
ε−1))k k∏


=1

∣∣Y 

i Ai(X)

∣∣.
Recall that with probability at least 9εN/10 we have that |Ai(X)|2 < ε and
|Y j

i Ai(X)| < Ok(ε). When this holds, the right-hand side of equation (4) is at
most

Ok,d(1)εk−N logk(ε−1)
.

Hence, with probability at least 4εN/5, we have that |Ai(X)|2 < ε and∣∣∣∣∣
∧

j1,...,jk

k∏

=1

∇j

Y 


i

Ai
(X)

∣∣∣∣∣
2

< Ok,d(1)εk−N logk(ε−1)
,

as desired. �

Lemma 12 tells us some very strong information about the tensor ∇jAi(X). In
order to understand this better, we will study what it means for a 2-tensor Bij to
have |∧i1,...,ik

Bi1,j1 · · ·Bik,jk
|2 small. Recall that a 2-tensor can be thought of as a

matrix. We will show that this condition implies that Bij is approximately a matrix
of rank at most k.

LEMMA 13. Suppose that Bij is a tensor and suppose that for some integer k

and some ε > 0 that ∣∣∣∣ ∧
i1,...,ik

Bi1,j1 · · ·Bik,jk

∣∣∣∣
2
< εk.

Then there exist some vectors V 

i ,W


j so that∣∣∣∣∣Bij −
k−1∑

=1

V 

i W


j

∣∣∣∣∣
2

< Ok(ε).

PROOF. We proceed by induction on k. If k = 1, we have by assumption that
|Bij |2 < ε, so we are done.

For larger values of k, we may assume that∣∣∣∣ ∧
i1,...,ik−1

Bi1,j1 · · ·Bik−1,jk−1

∣∣∣∣
2
≥ εk−1,
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or otherwise we would be done by the inductive hypothesis.
Consider random Gaussians X1, . . . ,Xk . We have that

E

[∣∣∣∣ ∧
i1,...,ik−1

Bi1,j1 · · ·Bik−1,jk−1X
1
j1

· · ·Xk−1
jk−1

∣∣∣∣2
2

]

=
∣∣∣∣ ∧
i1,...,ik−1

Bi1,j1 · · ·Bik−1,jk−1

∣∣∣∣2
2
≥ ε2k−2.

Similarly,

E

[∣∣∣∣ ∧
i1,...,ik

Bi1,j1 · · ·Bik,jk
X1

j1
· · ·Xk

jk

∣∣∣∣2
2

]

=
∣∣∣∣ ∧
i1,...,ik

Bi1,j1 · · ·Bik,jk

∣∣∣∣2
2
≤ ε2k.

By Lemma 2, we have that with probability at least 1/2 that∣∣∣∣ ∧
i1,...,ik−1

Bi1,j1 · · ·Bik−1,jk−1X
1
j1

· · ·Xk−1
jk−1

∣∣∣∣
2
≥ 	k

(
εk−1)

.

Furthermore, by the Markov bound, we can find such X1, . . . ,Xk−1 so that

EXk

[∣∣∣∣ ∧
i1,...,ik

Bi1,j1 · · ·Bik,jk
X1

j1
· · ·Xk

jk

∣∣∣∣2
2

]
≤ 2ε2k.

Let V 

i be the vector BijX



j . We have that

∣∣∣∣ ∧
i1,...,ik−1

V 1
i1

· · ·V k−1
ik−1

∣∣∣∣2
2
= 	k

(
ε2k−2)

and

EXk

[∣∣∣∣ ∧
i1,...,ik

V 1
i1

· · ·V k
ik

∣∣∣∣2
2

]
≤ 2ε2k.

Notice that the wedge products above are simply standard wedges of vectors.
Note that if we have vectors u1, . . . , uk that

u1 ∧ u2 ∧ · · · ∧ uk = u1 ∧ u2 ∧ · · · ∧ uk−1 ∧ uk,⊥,

where uk⊥ is the projection of uk onto the space perpendicular to 〈u1, u2, . . . ,

uk−1〉. From here, it is easy to see that we have

|u1 ∧ u2 ∧ · · · ∧ uk|2
|u1 ∧ u2 ∧ · · · ∧ uk−1|2 = ∣∣uk,⊥∣∣

2.
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Therefore, we have that

EXk

[∣∣V k,⊥
i

∣∣2
2

] = Ok

(
ε2)

.

On the other hand, we have that

V
k,⊥
i = B⊥

ij Xk
j ,

where B⊥ is the tensor obtained from B by replacing each row Bij ej with
its projection onto 〈V 1,V 2, . . . , V k−1〉⊥. In particular, this means that each
row of B⊥ can be written as the corresponding row of B plus an element of
〈V 1,V 2, . . . , V k−1〉. This means that for some appropriate vectors W
, we have
that B⊥

ij = Bij − ∑k−1

=1 V 


i W

j . On the other hand, we note that∣∣B⊥∣∣2

2 = E
[∣∣B⊥

ij Xj

∣∣2
2

]
= E

[∣∣V ⊥
i

∣∣2
2

]
= Ok

(
ε2)

.

Thus, |B⊥|2 = Ok(ε), completing our proof. �

We are now prepared to prove Proposition 11.

PROOF. Suppose we are given c, d,N and ε > 0 sufficiently small. Suppose
that we have a degree-d polynomial p so that

PrX
(∣∣∇ip(X)

∣∣
2 < ε

)
> εN.

Applying Lemma 2 to the polynomial x → |∇ip(x)|2, this implies that
EX[|∇ip(X)|22] ≤ Od(ε−2dN), and hence that EX[|∇i∇jp(X)|22] ≤ Od(ε−2dN).

Let k be an integer so that k > 2N/c. By Lemma 12 applied to ∇ip(X), we
have that with probability at least εN/2 that∣∣∣∣∣

∧
i1,...,ik

k∏

=1

∇i
∇j

p(X)

∣∣∣∣∣
2

< Oc,d,N

(
εk(1−c/2)).

Let Bij (X) be the tensor ∇i∇jp(X). By the above and Corollary 5 we have that
with probability at least εN/3 over X that |B(X)|2 < Od(ε−2dN) and∣∣∣∣∣

∧
i1,...,ik

k∏

=1

Bi
j


∣∣∣∣∣
2

< Oc,d,N

(
εk(1−c/2)).

Applying Lemma 13 to B at such values of X, we have that there are vectors
V 
,W
 so that ∣∣∣∣∣Bij −

k−1∑

=1

V 

i W


j

∣∣∣∣∣
2

= Oc,d,N

(
ε1−c/2)

.
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We note that we can replace the V 
 in such a decomposition with an orthonormal
basis for the space that they span by adjusting the W
 accordingly. We then have
that

k∑

=1

∣∣W

j

∣∣2
2 =

∣∣∣∣∣
k−1∑

=1

V 

i W


i

∣∣∣∣∣
2

2

≤ (|B|2 + Oc,d,N (1)
)2

≤ Oc,d,N

(
ε−4dN )

.

Therefore, |W

j |2 ≤ Oc,d,N (ε−2dN) for each 
.

Now given a standard Gaussian random vector, Y , there is a probability of at
least 	k(ε

2dkN+k) that |YiV


i | ≤ ε2dN+1 for each 
. Furthermore, by Corollary 5,

for ε sufficiently small the probability that∣∣∣∣∣
(
Bij −

k−1∑

=1

V 

i W


j

)
Yi

∣∣∣∣∣
2

> ε1−3c/4

is much less than this. Hence, for such X (which occur with probability at least
εN/2), there is a probability of at least εOc,d,N (1) over Y that∣∣∣∣∣

(
Bij −

k−1∑

=1

V 

i W


j

)
Yi

∣∣∣∣∣
2

< ε1−3c/4

and ∣∣YiV


i

∣∣ ≤ ε2dN+1

for each 
. The latter implies that |YiV


i W


j |2 ≤ ε for each 
, and thus,

|BijYi |2 ≤
∣∣∣∣∣
(
Bij −

k−1∑

=1

V 

i W


j

)
Yi

∣∣∣∣∣
2

+
k−1∑

=1

∣∣YiV


i W


j

∣∣
2 < ε1−c.

Thus, with probability at least εOc,d,N (1),∣∣∇iDY p(X)
∣∣
2 < ε1−c. �

Iterating Proposition 11 will tell us that a polynomial with a reasonable chance
of having a small derivative will also have partial higher order derivatives that
are small. Considering the dth order derivatives, this reduces to a statement about
the rank-d tensor corresponding to our polynomial. We would like to claim that
such tensors can be approximately decomposed as a sum of products of lower
rank tensors. In order to conveniently talk about such products we introduce some
notation. If S = {a1, . . . , ak} is a set of natural numbers, we let UiS denote a tensor
on the indices ia1, ia2, . . . , iak

.
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PROPOSITION 14. Let d be an integer, and let c,N, ε > 0 be real numbers.
Then for all rank-d tensors A with |A|2 ≤ 1 and

PrX1,...,Xd−1
(∣∣Ai1,...,id X

1
i1

· · ·Xd−1
id−1

∣∣
2 < ε

)
> εN.

Then there exist tensors U
,V 
, 1 ≤ 
 ≤ k = Oc,d,N (1) and sets

∅� S(
)� {1,2, . . . , d}, S(
) = {1,2, . . . , d} − S(
)

such that |U
|2|V 
|2 ≤ Oc,d,N (ε−c) for all 
 and∣∣∣∣∣Ai1,...,id −
k∑


=1

U

iS(
)

V 

iS(
)

∣∣∣∣∣
2

= Oc,d,N

(
ε1−c).

PROOF. We will instead prove the stronger claim that given c, d,N, ε that
there exists a probability distribution over sequences of tensor-valued polynomials
U
, V 
 of degree Oc,d,N(1) in the coefficients of A, so that for any tensor A

satisfying the hypothesis of the proposition that with probability at least εOc,d,N (1)

over our choice of U
,V 
 in this family that∣∣U
(A)
∣∣
2

∣∣V 
(A)
∣∣
2 ≤ Oc,d,N

(
ε−c)

for all 
, and ∣∣∣∣∣Ai1,...,id −
k∑


=1

U

iS(
)

(A)V 

iS(
)

(A)

∣∣∣∣∣
2

= Oc,d,N

(
ε1−c).

Given this statement, our proposition can be recovered by picking an appropriate
set of U
 and V 
 for our A. We assume throughout this proof that ε is at most a
sufficiently small function of c, d and N , since otherwise there would be nothing
to prove.

We prove this statement by induction on d . For d = 1, we already have that
|Ai1 |2 < ε, and there is nothing to prove. Hence, we assume that our statement
holds for rank-(d − 1) tensors. The basic idea of our proof will be as follows. By
assumption with reasonable probability over X, AX will satisfy the inductive hy-
pothesis for a rank-(d −1) tensor. This means that we can write U
 and V 
 as poly-
nomials in X so that with reasonable probability over X, |AX −∑

U
(X)V 
(X)|2
is small. Applying Lemmas 12 and 13, we can show that the derivative of this ten-
sor with respect to X is approximately low-rank. This means that the tensor

A − ∑



(∇i1U

(X)

)
V 
(X) + U
(X)

(∇i1V

(X)

)

is approximated by a small sum of products of rank-1 tensors with rank-(d − 1)

tensors. By making some random guesses, these remaining tensors can be written
as polynomials in the coefficients of A with reasonable probability.
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Suppose that A is a rank-d tensor satisfying the hypothesis of our proposition.
Then with probability at least εN/2 over a choice of X1, there is a probability of
at least εN/2 over our choice of X2, . . . ,Xd−1 that∣∣Ai1,...,id X

1
i1

· · ·Xd−1
id−1

∣∣
2 < ε.

Furthermore, by Corollary 5, with probability at least 1 − εN/4 we have that
|Ai1,...,id X

1
i1
|2 < ε−c/20. Hence, with probability at least εN/4 over our choice of

X1, εc/20Ai1,...,id X
1
i1

satisfies the hypotheses of our proposition as a rank-(d − 1)

tensor. For each such X1, the induction hypothesis implies that there is a probabil-
ity of εOc,d,N (1) over our choice of U
, V 
 that the appropriate conclusion holds.
Therefore, there must be some particular choice of U
,V 
 so that with probability
at least εOc,d,N (1) over our choice of X1 we have that∣∣U
(εc/20AX1

i1

)∣∣
2

∣∣V 
(εc/20AX1
i1

)∣∣
2 ≤ Oc,d,N

(
ε−c/20)

and ∣∣∣∣∣εc/20AX1
i1

−
k∑


=1

U

iS(
)

(
εc/20AX1

i1

)
V 


iS(
)

(
εc/20AX1

i1

)∣∣∣∣∣
2

= Oc,d,N

(
ε1−c/20)

.

Letting U ′
(X1) := ε−c/40U
(εc/20AX1) and V ′
(X1) := ε−c/40V 
(εc/20AX1),
we can rephrase the last two equations as∣∣U ′
(X1)∣∣

2

∣∣V ′
(X′)∣∣
2 ≤ Oc,d,N

(
ε−c/10)

and ∣∣∣∣∣AX1
i1

−
k∑


=1

U ′

iS(
)

(
X1)

V ′

iS(
)

(
X1)∣∣∣∣∣

2

= Oc,d,N

(
ε1−c/10)

.

We will demonstrate that given a correct choice of such U ′
 and V ′
 we can con-
struct new polynomials U
(A), V 
(A) that satisfy the necessary conditions with
probability at least εOc,d,N (1).

Let Ti(X
1) be the tensor-valued polynomial whose coefficients are the concate-

nation of the coefficients of

AX1
i1

−
k∑


=1

U ′

iS(
)

(
X1)

V ′

iS(
)

(
X1)

and the coefficients of the εU ′
(X1) and εV ′
(X1). We have that for some N1 =
Oc,d,N (1) that with probability at least εN1 that |Ti(X

1)|2 < Oc,d,N (ε1−c/10). We
apply Lemma 12 with k′ > 10N1/c and then Lemma 13 (as in the proof of Propo-
sition 11) to show that there exist tensors W
,Z
 so that∣∣∣∣∣∇jTi

(
X1) −

k′−1∑

=1

W

i Z


j

∣∣∣∣∣
2

≤ Oc,d,N

(
ε1−3c/20)

.



1632 D. KANE

Note that by considering only the coordinates of T that correspond to entries of
A − ∑

U ′V ′, we have that for appropriate values of X1 that∣∣∣∣∣A −
[

k∑

=1

V ′

iS(
)

(
X1)∇id U

′

iS(
)

(
X1) + U ′


iS(
)

(
X1)∇id V

′

iS(
)

(
X1)

(5)

+
k′−1∑

=1

W

i1,...,id−1

Z

id

]∣∣∣∣∣
2

is Oc,d,N (ε1−3c/20). This is nearly enough to complete our proof as we have shown
that A can be approximated by a sum of a bounded number of products of lower
rank tensors. However, for our inductive hypothesis to hold, we need to verify that
the above can be obtained with reasonable probability while taking W
 and Z


to be probabilistic polynomials in the coefficients of A. In order to analyze this,
let Sij be ∇iTj (X

1) restricted to the coordinates j for which Tj corresponds to a
coordinate of A(X1).

We know that with probability εOc,d,N (1) over the choice of X1 that for some
Z
,W
 that

(6)

∣∣∣∣∣Sij −
k′−1∑

=1

Z

i W



j

∣∣∣∣∣
2

= Oc,d,N

(
ε1−3c/20)

and that |T (X1)|2 = Oc,d,N (ε1−3c/20). The latter implies that |U
|2, |V 
|2 =
Oc,d,N(ε−3c/20) and, therefore, that |Sij |2 = O(ε−c).

We wish to show that for such S, we can satisfy equation (6) with decent prob-
ability by taking Z
 and W
 to be specific random polynomials in the coefficients
of S. In particular, we show the following.

LEMMA 15. There exists an explicit probability distribution over vector val-
ued polynomials Z
(S) and W
(S) so that for any tensor S with |S|2 = O(ε−c)

and so that equation (6) holds for some vectors Z
 and W
, then

∣∣∣∣∣Sij −
k′−1∑

=1

Z

i W



j

∣∣∣∣∣
2

= Oc,d,N

(
ε1−c/5)

,

and |Z
(S)|2, |W
(S)|2 = O(ε−c) with probability at least εOc,d,N (1).

PROOF. First, we note that we may write

Sij =
k′−1∑

=1

Z

i W



j + Eij ,
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where |Eij |2 = Oc,d,N(ε1−3c/20). Replacing the W
’s and Z
’s by linear combi-
nations and employing the theory of singular values we may instead write

Sij =
k′−1∑

=1

C
Z

i W



j + Eij ,

where now {Z
} and {W
} are orthonormal sets and C
 are some nonnegative
integers. We note that |Sij |2 ≥ C
 − |Eij |, and thus C
 = O(ε−1) for all 
. Fur-
thermore, if C
 < ε1−3c/20 for any 
, we may remove that term from the sum and
add it to Eij . Thus, we may assume that C
 > ε1−3c/20 for all 
.

Our basic strategy is as follows: by taking dot products of S with random vec-
tors, there is a decent probability that we get very close approximations to Z
 and
W
. Taking an appropriate combination gives our result. In particular, let X


i and
Y 


j be Gaussian random vectors and let C′
 be random numbers chosen uniformly

from [0, ε−2]. With probability εOk′ (1), all of the following hold:

• For all a, b, we have |Xa
i Zb

i − δa,b| = O(ε5).
• For all a, b, we have |Ya

j Wb
j − δa,b| = O(ε5).

• For all 
, we have |C
 − C′
| = O(ε5).
• For all 
, |EijX



i |2, |EijY



j |2 = O(ε1−c/5).

This holds because all of the first three types of events listed [for each possible
value of (a, b) or 
] are independent and occur with probability εO(1), and the last
holds with high probability. We let

Z

i (S) = SijY



j

(
C′
)−1/2

,

and

W

j (S) = SijX



i

(
C′
)−1/2

.

Given the assumptions above, this means that

Z

i (S) = SijY



j

(
C′
)−1/2

=
(

k′−1∑
l=1

ClZl
iW

l
jY



j + EijY



j

)(
C′
)−1/2

=
(

k′−1∑
l �=


ClZl
iO

(
ε5) + Z


i

(
1 + O

(
ε5)) + O

(
ε1−c/5))(

C
)−1/2(
1 + O

(
ε4))

= (
C
)1/2

Z

i + O

(
ε1−c/5(

C
)−1/2)
.

Similarly,

W

j (S) = (

C
)1/2
W


j + O
(
ε1−c/5(

C
)−1/2)
.
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Thus,

k′−1∑

=1

Z

i (S)W


j (S) =
k′−1∑

=1

C
Z

i W



j + O

(
ε1−c/5) = Sij + Ok′

(
ε1−c/5)

.

Furthermore, under the given assumptions |Z
(S)|2, |W
(S)|2 satisfy appropriate
bounds. This completes the proof. �

Using Z
(S) and W
(S) in equation (5), completes the inductive step and thus
completes the proof. �

We are finally ready to prove Proposition 10.

PROOF. Assume that ε is sufficiently small as a function of c, d and N (for
otherwise there is nothing to prove).

Consider such a polynomial p. We claim that for any k < d and any c′ > 0 that

PrX,Y 1,...,Y k

(∣∣∇i∇Y 1 · · ·∇Y kp(X)
∣∣
2 < ε1−c′)

> εOk,c′,d,N (1).

This is proved by induction on k. The k = 0 case is given and the inductive step
follows immediately from Proposition 11. Applying this statement for k = d − 1,
we note that

∇i∇Y 1 · · ·∇Y kp(X)

is independent of X. Let Ai1,...,id = ∇i1 · · ·∇id p(X) be the symmetric d-tensor
associated to p. We have by Lemma 9 that |A|2 = √

d!|p[d]|2 ≤ √
d!, and thus,

A/d! satisfies the hypothesis of Proposition 14. Hence, we can find tensors U


and V 
 with the properties specified by that proposition so that |U
|2|V 
|2 ≤
Oc,d,N(ε−c)|p[d]|2. Since A is symmetric, we have that

(7)

∣∣∣∣∣A − ∑
σ∈Sd

k∑

=1

U

iσ(S(
))

V 

iσ(S(
))

∣∣∣∣∣
2

= Oc,d,N

(
ε1−c).

Note that in the above since the sum over σ has already added the permutations of
U
 over its indices, we may replace U
 and V 
 by their symmetrizations without
affecting the above sum. Let U
 be rank d
 and V 
 be rank d − d
. Let a
(X)

be the degree-d
 harmonic part of the polynomial X → U
(X,X, . . . ,X). De-
fine b
(X) similarly with respect to V 
. By Lemma 9, we have that |a
|2|b
|2 ≤
d!|U
|2|V 
|2 = Oc,d,N(ε−c)|p[d]|2. Now consider the tensor given by

∇i1∇i2 · · ·∇id

[
p(X) −

k∑

=1

a
(X)b
(X)

]
.
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This is easily seen to be the tensor given in equation (7), and hence has size
Oc,d,N (ε1−c). On the other hand by Lemma 9, this can be seen to be

√
d! times

the size of the degree-d harmonic part of the polynomial

p(X) −
k∑


=1

a
(X)b
(X).

This completes our proof. �

3.3. Proof of the main theorem. We are now prepared to prove the diffuse de-
composition theorem. The basic idea of the proof is fairly simple. We maintain
decompositions of polynomials approximately equal to p. We show using Propo-
sition 10 that if this decomposition is not diffuse that we can replace it by a simpler
one by introducing at most a small error. This new decomposition is simpler in the
sense that an associated ordinal number is smaller, and we will use transfinite in-
duction to prove that this process will eventually terminate, yielding an appropriate
decomposition.

PROOF OF THEOREM 1. We assume for convenience that N and c−1 are in-
tegers. Throughout we will assume that N,c, d and ε are fixed.

We define a partial decomposition of our polynomial p to be a set of the fol-
lowing data:

• A positive integer m.
• A polynomial h :Rm →R.
• A sequence of polynomials (q1, . . . , qm) each on Rn with |qi |2 = 1 for each i.
• A sequence of integers (a1, . . . , am) with ai between 0 and 4 · 3i (N + 1)/c − 1.

Furthermore, we require that each qi is nonconstant, and that for any monomial∏
x

α1
i appearing in h that

∑
αi deg(qi) ≤ d .

We say that such a partial decomposition has complexity at most C if the fol-
lowing hold:

• m ≤ C.
• |h|2 ≤ Cε−1+C−1

.
• |p(X) − h(εa1c/(2·31)q1(X), εa2c/(2·32)q2(X), . . . , εamc/(2·3m)qm(X))|2 ≤ CεN .

Finally, we define the weight of a partial decomposition as follows. First, we
define the polynomial

w(x) =
m∑

i=1

xdeg(qi )
(
4 · 3i (N + 1)/c − ai

)
.

We then let the weight of the decomposition be w(ω).
Our result will follow from the following lemma.
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LEMMA 16. Let p be a degree-d polynomial with a partial decomposition of
weight w and complexity at most C. Then there exists a polynomial p0 with an
(ε, ε−c)-diffuse decomposition of size at most Oc,d,N,w,C(1) so that |p − p0|2 ≤
Oc,d,N,w,C(εN).

PROOF. We prove this by transfinite induction on w. In particular, we show
that either (h, q1, . . . , qm) provides an appropriate diffuse decomposition of a poly-
nomial approximately equal to p or that p has another partial decomposition of
complexity Oc,d,N,C,w(1) and weight strictly less than w (with finitely many pos-
sibilities for the new weight). The inductive hypothesis will imply that we have an
appropriate diffuse decomposition in the latter case.

First, note that if some ai at least 2(N + 1)3i/c that the sum of the coefficients
of qi appearing in

h
(
εa1c/(2·31)q1(X), εa2c/(2·32)q2(X), . . . , εamc/(2·3m)qm(X)

)
is OC(εN). Thus, these terms can be thrown away without introducing an error of
more than OC,d(εN). Doing so to the largest such qi and shifting all of the larger
indices down, perhaps changing the ai , and modifying h appropriately will lead to
a new partial decomposition with a new value of C dependent only on d and the
old one, and a strictly smaller weight. Hence, we assume that ai < 2(N + 1)3i/c

for all i.
If deg(qi+1) > deg(qi) for some i, we may swap qi and qi+1 (making a similar

adjustment to h and modifying ai and ai+1 as necessary) to get a partial decom-
position of complexity C and strictly smaller weight. Hence, we may assume that
deg(q1) ≥ deg(q2) ≥ · · · ≥ deg(qm).

Were it the case that for all x1, . . . , xm that

Pr
(∣∣qi(X) − xi

∣∣ < ε for all i
)
< εm−c,

then we would already have an appropriate diffuse decomposition and would be
done. Hence, we may assume that there is a set of xi so that the above does not
hold. By Proposition 6, we have that with probability at least 1 − εm−c/2 that

m∏
i=1

∣∣qi(X) − xi

∣∣ ≥ 	C,d

(
εm−c/2)∣∣∣∣∣

∧
j1,...,jm

m∏
i=1

∇ji
qi(X)

∣∣∣∣∣
2

.

Thus, with probability at least εm−c/2 both of the above hold, which would imply
that ∣∣∣∣∣

∧
j1,...,jm

m∏
i=1

∇ji
qi(X)

∣∣∣∣∣
2

= OC,d

(
εc/2)

.

Now the wedge product above is a wedge product of vectors, and hence its size is
unchanged by making a determinant 1 change of basis to the vectors ∇ji

qi . Hence,



DIFFUSE DECOMPOSITIONS 1637

letting V i be the projection of ∇qi onto the orthogonal compliment of the space
spanned by the ∇qj for j > i we have that the size of the wedge product equals∏m

i=1 |V i |2. This means that for some i that |V i |2 ≤ OC,d(εc/3i
). Hence, for some

i, we have with probability at least 	C,d(εm) over X that |V i(X)|2 ≤ OC,d(εc/3i
),

and that this is the largest i for that X for which this holds. Furthermore, by
Lemma 9 and Corollary 5 we know that when this happens with high probabil-
ity we also have that the first derivatives of all the qi have size OC,d(log(ε−1)d).

When the above happens, V j is given by the derivative of qj minus an appro-
priate linear combination of the V k for k > j . Note that for each coefficient, the
size of the coefficient times the size of V k is at most the size of the derivative of
qj . Hence, for k > i, the size of the coefficient is at most OC,d(ε−c/3k

logd(ε−1)).
From this, it is easy to see that V i is given by a linear combination of the derivatives
of the qj with j ≥ i such that the ith coefficient is 1 and that all other coefficients
have size at most

m∏
k=i+1

OC,d

(
ε−c/3k

logd(
ε−1)) = OC,d

(
ε−c/(2·3i )+c/(2·3m)).

Hence, for each such X, there are constants Cj = OC,d(ε−c/(2·3i )+c/(2·3m)) (for

j > i) so that the derivative of qi + ∑
j Cjqj at X has size at most OC,d(εc/3i

).
Note that this statement still holds if the Cj are rounded to the nearest multiple
of ε. Since there are ε−OC(1) such possible roundings, there is some set of Cj so
that for the polynomial q(X) = qi(X) + ∑

j Cjqj (X), we have that |∇j q(X)|2 ≤
OC,d(εc/3i

) with probability at least εOC,d (1) over X.
We now can apply Proposition 10 to 	C,d(εc/(2·3i )−c/(4·3m))q(X). Let D =

deg(qi). Let Q(X) be the degree-D harmonic part of 	C,d(εc/(2·3i )−c/(2·3m))q(X).
Proposition 10 tells us that there are polynomials A
,B
 of degree strictly less
than D with |A
|2|B
|2 at most Oc,C,d(ε−1/(2C2d))|Q|2 for each 
, and so that
Q − ∑


 A
B
 equals a polynomial of degree less than D plus an error of L2 norm
at most Oc,C,d(εc/3i−c/(2·3m)). Note that the lower degree polynomial has size at
most

|Q|2 + ∑ |A
B
|2.
By Corollary 5 and Hölder’s inequality, we have that

|A
B
|2 ≤ |A
|4|B
|4 ≤ Od

(|A
|2|B
|2) = Oc,C,d

(|Q|2ε−1/(2C)).
Consider the j among those for which deg(qj ) = D for which Cjε

−aj c/(2·3j )

is the largest. Q(X) is then some multiple of the degree-D harmonic part of
qj ε

aj c/(2·3j ) plus smaller multiples of the degree-D harmonic parts of other

qkε
akc/(2·3k).
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We are now ready to modify our partial decomposition to obtain one of smaller
weight. First, we take each of the qi of degree equal to D and replace qi by the
sum of its harmonic degree-D part and the remainder, introducing each as a new
qj . This increases the complexity by at most a factor of 2D , and increases the
weight by an ordinal less than ωD .

Next, we note that qj ε
aj c/(2·3j ) can be written as a linear combination of the

other qkε
akc/(2·3k) (with coefficients less than 1) plus a sum of A
(X)B
(X) plus

a polynomial of degree less than D plus a degree-D polynomial of size at most

Oc,C,d(ε(aj+1)c/(2·3j )). Replacing qj by a normalized version of this error polyno-
mial, and adding new q’s corresponding to the normalized versions of A
 and
B
 and the remaining part of degree less than D and modifying h appropri-
ately, we find that we have a new partial decomposition of weight smaller by
ωD − Oc,C,d(ωD−1). Thus, our new decomposition has smaller weight since the
coefficient of ωD is strictly smaller than before and the higher degree coefficients
are no bigger.

The last thing that we need to check is that this new decomposition has com-
plexity bounded solely in terms of C,c, d and N . It is clear from the construction
that m increases by at most a bounded amount and that the error between p and
h(εaic/(2·3i )qi) remains the same. However, we need to show that the size of h does
not increase by too much. For this we need to analyze more carefully what we are
doing to the function h. The idea is that we have a relation of the form

εaj c/(2·3j )qj = ∑
akε

akc/(2·3j )qk + ε(aj+1)c/(2·3j )q ′
j +

K∑

=1

A
B
,

where the first sum is over k �= j with deg(qk) = D, q ′
j is the error term and

|A
|2, |B
|2 ≤ 1. The new version of h is now obtained from the old by replacing
every occurrence of the j th coordinate, xj , by xj +∑

akxk +∑

 s
xm+2
−1xm+2
,

where s
 = |A
|2|B
|2. We note that this replacement increases the size of h by
at most O(1 + ∑ |ak| + ∑ |s
|)d . Thus, it suffices to show that

∑ |ak| + ∑ |s
| =
Oc,C,d(ε−1/2C2d). On the one hand, it should be noted that |ak| ≤ 1 by assumption.
Thus,

∑ |ak| ≤ C. We have left to deal with the |s
| terms. By assumption, each
|s
| is Oc,C,d(ε−1/2C2d) and the number of them is Oc,C,d(1). Thus, the sum is
appropriately bounded, and the complexity of the new decomposition is at most
Oc,C,d(1). This completes the proof. �

Our theorem follows from applying Lemma 16 to the partial decomposition m =
1, h(x1) = |p|2x1, q1(X) = p(X)/|p|2 and a1 = 0 of complexity 1 and weight
[6(N + 1)/c]ωd . �

4. Basic facts about diffuse decompositions. The primary use of a diffuse
decomposition will be that the existence of a diffuse decomposition will allow
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us to approximate the corresponding threshold function by a smooth function. In
particular, we show the following.

PROPOSITION 17. Let (h, q1, . . . , qm) by an (ε,N)-diffuse decomposition of a
degree-d polynomial p for 1/2 > ε > 0. There exists a function f :Rm → [−1,1]
so that:

1. f (q1(x), q2(x), . . . , qm(x)) ≥ sgn(p(x)) pointwise.
2.

E
[
f

(
q1(X), q2(X), . . . , qm(X)

)] −E
[
sgn

(
p(X)

)]
= Om,d

(
εN log(ε−1)dm/2+1)

.

3. For any k ≥ 0, |f (k)|∞ = Om,k(ε
−k), where |f (k)|∞ denotes the largest kth

order mixed partial derivative of f at any point.

In order to prove this and for some other applications, we will also need the
following statement about the distribution of values of (qi(X)) in a diffuse decom-
position.

LEMMA 18. Let (h, q1, . . . , qm) be an (ε,N)-diffuse decomposition of a
degree-d polynomial for some 1/2 > ε > 0. Letting Q = (q1(X), q2(X), . . . ,

qm(X)) for X a random Gaussian we have that with probability 1 −
Om,d(Nε log(ε−1)dm/2+1) that

(8)
∣∣h(Q)

∣∣ ≥ ε
∣∣∇i1h(Q)

∣∣
2 ≥ ε2∣∣∇i2∇i2h(Q)

∣∣
2 ≥ · · · ≥ εd

∣∣∇i1 · · ·∇id h(Q)
∣∣
2.

PROOF. First, we note that for some B = Om(log(ε−1)d/2) that by Corollary 5
that |qi(X)| ≤ B for all i with probability at least 1− ε. Hence, it suffices to bound
the probability that equation (8) fails while |qi(X)| ≤ B for all i. We let R ⊂ Rm

be the region for which this fails. We bound the probability that x ∈ R by covering
R by axis aligned boxes of side length 2ε and using the fact that (q1, . . . , qm) is a
diffuse set. In particular, consider the union of all axis aligned boxes of side length
2ε whose endpoints are integer multiples of 2ε and which contain some point of
R. Call the union of all such boxes R′. Note that since R′ is a disjoint union of
boxes so that for each such box the probability that x lies in this box is at most
N times its volume, we have that Pr(x ∈ R) ≤ Pr(x ∈ R′) ≤ NVol(R′). Let R′′ be
the set of points y ∈ Rm so that y is within 2

√
mε of some point in R. Note that

R′′ ⊃ R′. Thus, it suffices to prove that

Vol
(
R′′) = Om,d

(
ε log

(
ε−1)dm/2+1)

.

Let Y be an m-dimensional Gaussian. Note that R′′ is contained in a ball of
radius Om(B). Hence, since the probability density function of BY is at least
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	m(B−m dV ) on this region, we have that Vol(R′′) = Om(Bm Pr(BY ∈ R′′)). De-
fine the polynomial H(x) = h(Bx). It now suffices to show that with probability
at most Od,m(ε log(ε−1)) that Y is within Om(ε) of a point, x for which∣∣H(x)

∣∣ ≥ ε
∣∣∇i1H(x)

∣∣
2 ≥ ε2∣∣∇i2∇i2H(x)

∣∣
2 ≥ · · · ≥ εd

∣∣∇i1 · · ·∇id H(x)
∣∣
2

fails to hold.
Note that by Proposition 6 for k = 1 we have that for any 1/2 > δ > 0 that with

probability 1 − Od,m(δ log(δ−1)),∣∣H(Y)
∣∣ ≥ δ

∣∣∇i1H(Y)
∣∣
2 ≥ δ2∣∣∇i2∇i2H(Y)

∣∣
2 ≥ · · · ≥ δd

∣∣∇i1 · · ·∇id H(Y )
∣∣
2.

If the above holds and x = Y + z for |z|2 = Om(ε), we have by Taylor’s theorem
that

∇i1 · · ·∇ikH(x) = ∇i1 · · ·∇ikH(Y ) +
d−k∑
t=1

(∇i1 · · ·∇ik+t
H (Y ))zik+1 · · · zik+t

t ! .

Hence, we have that∣∣∇i1 · · ·∇ikH(x) − ∇i1 · · ·∇ikH(Y )
∣∣
2

≤
d−k∑
t=1

∣∣∣∣(∇ik+1 · · ·∇ik+t
H (Y ))zik+1 · · · zik+t

t !
∣∣∣∣
2

≤
d−k∑
t=1

|(∇i1 · · ·∇ik+t
H (Y ))|2|z|t2

t !

≤
d−k∑
t=1

|∇i1 · · ·∇ikH(Y )|2(|z|2/δ)t
t !

≤ ∣∣∇i1 · · ·∇ikH(Y )
∣∣
2

(
exp

(
Om

(|z|2/δ)) − 1
)
.

Thus, if δ = 4
√

mε and the above holds [which it does with probability 1 −
Od,m(ε log(ε−1))], then for any point x within 2

√
mε of Y we have that∣∣∇i1 · · ·∇ikH(x) − ∇i1 · · ·∇ikH(Y )

∣∣
2 ≤ ∣∣∇i1 · · ·∇ikH(Y )

∣∣
2

(
e1/2 − 1

)
,

and thus, equation (8) holds. Thus, Pr(BY ∈ R′′) ≤ Od,m(ε log(ε−1)), so
Vol(R′′) = Od,m(ε log(ε−1)dm/2+1), completing our proof. �

COROLLARY 19. Let (h, q1, . . . , qm) be an (ε,N)-diffuse decomposition of a
degree-d polynomial for 1/2 > ε > 0. Letting Q = (q1(X), q2(X), . . . , qm(X)) for
X a random Gaussian, the probability that Q is within ε of a point y for which
h(y) = 0 is Od,m(Nε log(ε−1)dm/2+1).
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PROOF. Note that by the analysis given above, if equation (8) holds for 2ε

then for any y with |Q − y| ≤ ε∣∣h(Q) − h(y)
∣∣ ≤ ∣∣h(Q)

∣∣(e1/2 − 1
)
<

∣∣h(x)
∣∣.

Thus, as long as h(Q) �= 0 (which happens with probability 1) h(y) �= 0. Since
an (ε,N)-diffuse decomposition is also an (2ε,2mN)-diffuse decomposition, this
happens with probability at least 1 − Od,m(Nε log(ε−1)dm/2+1) by Lemma 18.

�

PROOF OF PROPOSITION 17. We construct f in a straightforward manner.
Let ρ : Rm → R be any smooth, nonnegative-valued, function supported on the
ball of radius 1 so that ∫

Rm
ρ(x) dx = 1.

Let ρε(x) = ε−mρ(ε−1x). We note that∫
Rm

ρε(x) dx = 1.

Let g : Rm →R be the function

g(x) =
{

1, if there exists a y ∈Rn so that |x − y| < ε and h(y) ≥ 0,

−1, otherwise.

We let f be the convolution g ∗ ρε .
f takes values in [−1,1] because

f (x) =
∫
Rm

ρε(y)g(x − y)dy ≤
∫
Rm

ρε(y) dy = 1

and similarly f (x) ≥ −1.
f (q1, . . . , qm) is a point-wise upper bound for sgn◦p = sgn(h(q1, . . . , qm))

since if h(x) ≥ 0 then

f (x) =
∫
Rm

ρε(y)g(x − y)dy

∫
B(ε)

ρε(y)g(x − y)dy =
∫
B(ε)

ρε(y) dy = 1.

Bounds on the derivatives of f come from the fact that∣∣f (k)
∣∣∞ = ∣∣g ∗ ρ(k)

ε

∣∣∞ ≤ |g|∞
∣∣ρ(k)

ε

∣∣
1 = Om,k

(
ε−k).

The fact that f and sgn◦p have similar expectations follows from the fact that
f (x) = sgn(h(x)) unless x is within 2ε of a point y for which h(y) = 0. Not-
ing that an (ε,N)-diffuse decomposition of size m, is also a (2ε,2mN)-diffuse
decomposition; this happens with probability Od,m(Nε log(ε−1)dm/2+1). Since
|f (x) − sgn(h(x))| is never more than 2, this provides the necessary bound. �
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Another lemma that will be useful to us is the following.

LEMMA 20. Let (h, q1, . . . , qm) be an (ε,N)-diffuse decomposition of a
degree-d polynomial p for 1/2 > ε > 0 and Nε log(ε−1) less than a sufficiently
small function of m and d . Then |h|2 ≤ Om,d(Nd |p|2).

PROOF. Consider the probability that |p(X)| > 2|p|2. On the one hand, it is at
most 1/4 by the Markov bound. We will show that if |h|2 is more than a sufficiently
large constant times Nd |p|2, then the probability must be more than this.

We note by Corollary 5 that with probability at least 7/8 that each qi(X) is
Od(log(m)d/2). We consider the probability that each qi(X) is at most this size
and that |p(X)| ≤ 2|p|2. We bound this probability above by coving the set of
x ∈ Rm with each |xi | = Od(log(m)d/2) so that |h(x)| ≤ 2|p|2 with boxes of side
length ε. The probability is at most N times the volume of the union of these
boxes. Furthermore, the union of these boxes is contained in the set of x ∈ Rm

with |xi | ≤ Od(log(m)d/2) for each i and so that x is within εm of some point
y with |h(y)| ≤ 2|p|2. Call this region R. We note that since R is contained in a
ball of radius Om(1) that the volume of R is bounded by some constant times the
probability that a random Gaussian X lies in R.

By Proposition 6, we have that with probability 1 − Od,m(ε log(ε−1)) over
Gaussian X that∣∣h(X)

∣∣ > 4εm
∣∣∇i1h(X)

∣∣
2 > · · · > (4εm)d

∣∣∇i1 · · ·∇id h(X)
∣∣
2.

This would imply that for any y within mε of X that |h(X) − h(y)| ≤ |h(X)|/2
by means of the Taylor series for h(y). On the other hand, |h(X)| ≥ 4|p|2 with
probability at least 1 −Od((|p|2/|h|2)1/d) by Lemma 2. Thus, the probability that
|h(X)| ≤ 2|p|2 is at most

Od,m

(
ε log

(
1 + ε−1) + (|p|2/|h|2)1/d) + 1/8.

Hence, we have that

3/4 ≤ Pr
(∣∣p(X)

∣∣ < 2|p|2) ≤ Od,m

(
Nε log

(
1 + ε−1) + N

(|p|2/|h|2)1/d) + 1/8.

Thus, if Nε log(ε−1) is less than some sufficiently small function of d,m, then
|h|2 = Od,m(Nd). �

Fundamentally, having a diffuse decomposition is useful because it allows us
to improve our application of the replacement method. The following proposition
presents this technique in fair generality.

PROPOSITION 21. Let p0 :Rn →R be a degree-d polynomial with an (ε,N)-
diffuse decomposition (h, q1, . . . , qm) for some 1/2 > ε > 0. Let ni be positive in-
tegers so that n = ∑


i=1 ni . We can then consider p0 and each of the qi as functions
on Rn1 × · · · ×Rn
 .



DIFFUSE DECOMPOSITIONS 1643

Let X1, . . . ,X
 and Y 1, . . . , Y 
 be independent random variables, where Xj

and Y j take values in Rnj and Y j is a random Gaussian. Furthermore, assume
that for some integer k > 1 that for any polynomial g in m variables of degree less
than k, any 1 ≤ j ≤ 
 and any zi that

E
[
g
(
qi

(
z1, . . . , zj−1,Xj , zj+1, . . . , z
))]

= E
[
g
(
qi

(
z1, . . . , zj−1, Y j , zj+1, . . . , z
))].

For each 1 ≤ i ≤ m and each 1 ≤ j ≤ 
, define

Qi,j

(
x1, . . . , xj−1, xj+1, . . . , x
) := EY j

[
qi

(
x1, . . . , xj−1, Y j , xj+1, . . . , x
)].

Define Ti,j to be

E
[∣∣qi

(
Y 1, . . . , Y j ,Xj+1, . . . ,X
) − Qi,j

(
Y 1, . . . , Y j−1,Xj+1, . . . ,X
)∣∣k]

+E
[∣∣qi

(
Y 1, . . . , Y j−1,Xj , . . . ,X
)

− Qi,j

(
Y 1, . . . , Y j−1,Xj+1, . . . ,X
)∣∣k].

And let

T :=
m∑

i=1


∑
j=1

Ti,j .

Then we have that∣∣Pr
(
p0

(
X1, . . . ,X
) ≤ 0

) − Pr
(
p0

(
Y 1, . . . , Y 
) ≤ 0

)∣∣
≤ Od,m,k

(
ε−kT + εN log

(
ε−1)dm/2+1)

.

If furthermore, p is a degree-d polynomial so that for some parameters δ, η > 0

Pr
(∣∣p(X) − p0(X)

∣∣ < δ|p|2)
, Pr

(∣∣p(Y ) − p0(Y )
∣∣ < δ|p|2) ≥ 1 − η

then ∣∣Pr
(
p

(
X1, . . . ,X
) ≤ 0

) − Pr
(
p

(
Y 1, . . . , Y 
) ≤ 0

)∣∣
≤ Od,m,k

(
ε−kT + εN log

(
ε−1)dm/2+1 + δ1/d + η

)
.

When considering Proposition 21, it might be useful to keep the intended appli-
cations in mind. In Section 5, we will consider the case where the Xj are chosen
from dk-independent families of Gaussians. In Section 6, we will consider the case
where the Xj are Bernoulli random variables. Finally, in Section 8, we will con-
sider the case where the Xj are chosen from 4d-independent families of random
Bernoullis.
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PROOF. We begin by proving the first of the two bounds, and will then use
it to prove the second. By rescaling p0, we may assume that |p0|2 = 1. Let X =
(X1, . . . ,X
) and Y = (Y 1, . . . , Y 
). Let q denote the vector valued polynomial
(q1, . . . , qm). We will show that

Pr
(
p0(X) ≤ 0

) ≤ Pr
(
p0(Y ) ≤ 0

) + Od,m,k

(
ε−kT + εN log

(
ε−1)dm/2+1)

.

The other inequality will follow analogously.
By Proposition 17, there exists a function f : Rm → [0,1] so that:

1. f (x) = 1 for all x where h(x) ≤ 0.
2. E[f (q(Y ))] = Pr(p0(Y ) ≤ 0) + Od,m(εN log(ε−1)dm/2+1).
3. |f (k)|∞ = Om,k(ε

−k).

We note that

Pr
(
p0(X) ≤ 0

) ≤ E
[
f

(
q(X)

)]
and that

E
[
f

(
q(Y )

)] ≤ Pr
(
p0(Y ) ≤ 0

) + Od,m

(
εN log

(
ε−1)dm/2+1)

.

Hence, it suffices to prove that

(9)
∣∣E[

f
(
q(X)

)] −E
[
f

(
q(Y )

)]∣∣ = Od,m,k

(
ε−kT

)
.

For 0 ≤ j ≤ 
, let

Z(j) := (
Y 1, . . . , Y j ,Xj+1, . . . ,X
).

In particular, Z(0) = X, Z(
) = Y , and Z(j) is obtained from Z(j−1) by changing
the j th block of coordinates from Xj to Y j . We will attempt to bound the left-hand
side of equation (9) by bounding

(10)
∣∣E[

f
(
q
(
Z(j)))] −E

[
f

(
q
(
Z(j−1)))]∣∣

for each j .
Consider the expression in equation (10) for fixed values of Y 1, . . . , Y j−1,

Xj+1, . . . ,X
. We approximate f (q(Z(j))) and f (q(Z(j−1))) by Taylor expand-
ing f about (q1, . . . , qm) where

qi

(
Y 1, . . . , Y j−1,Z,Xj+1, . . . ,X
)

:= Qi,j

(
Y 1, . . . , Y j−1,Xj+1, . . . ,X
)

= E
[
qi

(
Z(j))]

= E
[
qi

(
Z(j−1))].
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Thus, for some polynomial g of degree k − 1 we have that

f
(
q(Z)

) = g
(
q(Z)

) + O

( ∑
i1,...,ik

∂kf

∂qi1 · · · ∂qik

k∏
a=1

(
qia (Z) − qia (Z)

))

= g
(
q(Z)

) + Od,m,k

( ∑
i1,...,ik

ε−k
k∑

a=1

∣∣qia (Z) − qia (Z)
∣∣k)

= g
(
q(Z)

) + Od,m,k

(
ε−k

m∑
i=1

∣∣qi(Z) − qi(Z)
∣∣k).

By assumption,

E
[
g
(
q
(
Z(j)))] = E

[
g
(
q
(
Z(j−1)))].

Thus, the expression in equation (10) is at most

ε−kOd,m,k

(
m∑

i=1

E
[∣∣qi

(
Z(j)) − qi

(
Z(j))∣∣k] +E

[∣∣qi

(
Z(j−1)) − qi

(
Z(j−1))∣∣k])

= Od,m,k

(
ε−k

m∑
i=1

Ti,j

)
.

Summing over j yields equation (9), proving the first part of this proposition.
Changing our normalization so that |p|2 = 1, we have that

Pr
(
p(X) ≤ 0

) ≤ Pr
(
p0(X) − δ ≤ 0

) + O(η).

Notice that p0 − δ has the diffuse decomposition (h − δ, q1, . . . , qm). Therefore,
applying our previous result to this decomposition of p0 − δ, we have that

Pr
(
p0(X) − δ ≤ 0

) ≤ Pr
(
p0(Y ) − δ ≤ 0

) + Od,m,k

(
ε−kT + εN log

(
ε−1)dm/2+1)

.

On the other hand, we have that

Pr
(
p0(Y ) − δ ≤ 0

) ≤ Pr
(
p(Y ) − 2δ ≤ 0

) + O(η).

Finally, by Lemma 2 we have that

Pr
(
p(Y ) − 2δ ≤ 0

) ≤ Pr
(
p(Y ) ≤ 0

) + O
(
dδ1/d)

.

Combining the above inequalities, we find that

Pr
(
p(X) ≤ 0

) ≤ Pr
(
p(Y ) ≤ 0

) + Od,m,k

(
ε−kT + εN log

(
ε−1)dm/2+1 + δ1/d + η

)
.

The other direction of the inequality follows analogously, and this completes our
proof. �
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5. Application to PRGs for PTFs with Gaussian inputs. In [13], the author
introduced a new pseudorandom generator for polynomial threshold functions of
Gaussian inputs. In particular, for appropriately chosen parameters N and k he lets

X = 1√
N

N∑
i=1

Xi,

where the Xi are independently chosen from k-independent families of Gaussians.
He shows that for some k = O(d/c) and N = 2Oc(d)ε−4−c that for any such X, if
Y is a random Gaussian and f any degree-d polynomial threshold function then

(11)
∣∣E[

f (X)
] −E

[
f (Y )

]∣∣ < ε.

The proof of this is by the replacement method. In particular, f is replaced by a
smooth approximation g, and bounds are proved on the change in the expectation
of g(X) as the Xi are replaced by random Gaussians one at a time. The power
of this method is highly dependent on one’s ability to find a g that is close to f

with high probability and yet has relatively small higher derivatives. If f (x) =
sgn(p(x)), a naive attempt to use the replacement method would use g = ρ(p(x))

for ρ a smooth approximation to the sign function. Unfortunately, this approach
will have difficulty proving equation (11) unless N > ε−2d . In [13], the author uses
a version of Proposition 6 and constructs a g which approximates f as long as an
appropriate analogue of∣∣g(x)

∣∣ ≥ ε
∣∣∇i1g(x)

∣∣
2 ≥ ε2∣∣∇i1∇i2g(x)

∣∣
2 ≥ · · ·

holds. The analysis of this is somewhat complicated, involving the development of
the theory of the so-called “noisy derivative.” Furthermore, for technical reasons
this method has difficulty dealing with N smaller than ε−4. As a first application
of our theory of diffuse decompositions, we provide a relatively simple analysis
of this generator that works with N as small as ε−2−c. In particular, we show the
following.

THEOREM 22. Given, an integer d > 0 and real numbers 1 > c, ε > 0, there
exist integers k = O(d/c) and N = Oc,d(ε−2−c) so that for any random variable

X = 1√
N

N∑
i=1

Xi,

where the Xi are chosen independently from k-independent distributions of Gaus-
sians, and for any degree-d polynomial threshold function f ,∣∣E[

f (X)
] −EY∼N

[
f (Y )

]∣∣ < ε.



DIFFUSE DECOMPOSITIONS 1647

PROOF. We begin by making a few reductions to produce a more amenable
case. We assume throughout that ε is sufficiently small. Note that it is sufficient to
prove that for N = ε−2−c that the error is Oc,d(ε1−2c), since making appropriate
changes to c and ε will yield the necessary result. Secondly, we may let f (x) =
sgn(p(x)) for p a degree-d polynomial with |p|2 = 1.

By Theorem 1, there exists a degree-d polynomial p0 with |p − p0|2 =
Oc,d(εd+1), and so that p0 has an (ε, ε−c/2)-diffuse decomposition (h, q1, . . . ,

qm). It should be noted that by 2d-independence,

E
[∣∣p(X) − p0(X)

∣∣2] = E
[∣∣p(Y ) − p0(Y )

∣∣2] = Oc,d

(
ε2d+2)

.

Therefore, by the Markov bound we have with probability at least 1 − ε2 that∣∣p(X) − p0(X)
∣∣, ∣∣p(Y ) − p0(Y )

∣∣ < εd.

We note that we may write Y = 1√
N

∑N
j=1 Y j , where the Y j are independent

Gaussians. We define the polynomial

p′(Y 1, . . . , YN ) := p

(
1√
N

N∑
j=1

Y j

)
.

We note that

p(X) = p′(X1, . . . ,XN )
and

p(Y ) = p′(Y 1, . . . , YN )
.

It is clear that if we define p′
0 and q ′

i analogously, that p′
0 has an (ε, εc/2)-diffuse

decomposition (h, q ′
1, . . . , q

′
m), and that with probability at least 1 − ε2 that∣∣p′(Xi) − p′

0
(
Xi)∣∣, ∣∣p′(Y i) − p′

0
(
Y i)∣∣ < εd.

We may thus apply Proposition 21 to p′,p′
0 with η = ε2 and δ = εd .

Let K be an even integer less than k/d and more than 6/c. By k-independence
of the Xj , any polynomial g of degree less than K in the q ′

i will have the same
expectation evaluated at X1, . . . ,XN as at Y 1, . . . , YN . Hence, by Proposition 21,∣∣E[

f (X)
] −E

[
f (Y )

]∣∣
= 2

∣∣Pr
(
p

(
X1, . . . ,XN ) ≤ 0

) − Pr
(
p

(
Y 1, . . . , YN ) ≤ 0

)∣∣(12)

= Od,m,c

(
ε1−c log

(
ε−1)dm/2+1 + ε−KT + ε

)
.

Where by the dK-independence of X, the T above is

2
m∑

i=1

N∑
j=1

E
[(

qi(Y ) −EY j

[
q ′
i

(
Y 1, . . . , YN )])K ]

.
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By Lemma 3, this is

Oc,d

(
m∑

i=1

N∑
j=1

E
[(

qi(Y ) −EY j

[
q ′
i

(
Y 1, . . . , YN )])2]K/2

)
.

Letting Z = 1√
N−1

∑
i �=j Y i (which is a random Gaussian), the expectations in

question are

EZ

[
VarY

(
qi

(√
N − 1

N
Z + 1√

N
Y

))]
.

This in turn is at most

E

[(
qi

(√
N − 1

N
Z + 1√

N
Y

)
− qi(Z)

)2]
.

We bound this with the following lemma, which follows immediately from
Claim 4.1 of [5].

LEMMA 23. For q any degree-d polynomial, we have that

E

[∣∣∣∣q(Z) − q

(√
N − 1

N
Z + 1√

N
Y

)∣∣∣∣2
]

= O
(
d2|q|22/N

)
.

Thus, T is at most

Oc,d

(
m∑

i=1

N∑
j=1

N−K/2

)
= Oc,d,m

(
N−K/2+1)

= Oc,d,m

(
εK−2+Kc/2−c)

= Oc,d,m

(
εK+1−c).

Thus, by equation (12),∣∣E[
f (X)

] −E
[
f (Y )

]∣∣ ≤ Oc,d,m

(
ε1−2c),

as desired. �

6. The diffuse invariance principle and regularity lemma. While the case
of Gaussian inputs is very convenient for proving theorems such as the decompo-
sition theorem, many interesting questions involve evaluation of polynomials on
random variables from other distributions. Perhaps the most studied of these is the
Bernoulli, or hypercube distribution.

DEFINITION 6. The n-dimensional Bernoulli distribution is the probability
distribution on Rn where each coordinate is randomly and uniformly chosen from
the set {−1,1}. Equivalently, it is the uniform distribution on the set {−1,1}n.
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As we have been using X,Y,Z, etc. to represent Gaussian random variables, we
will attempt to use A,B, etc. for Bernoulli random variables.

A powerful tool for dealing with Bernoulli variables is the use of invariance
principles. These are theorems which state that if p is a sufficiently regular polyno-
mial (for some definition of regularity) that the distributions of p(X) and p(B) are
similar to each other (generally that they are close in c.d.f. distance). This allows
one to make use of results in the Gaussian setting and apply them to the Bernoulli
setting (at least for sufficiently regular polynomials). Since not all polynomials
will be regular, in order to make use of this idea in a more general context, one
also needs a regularity lemma. These are structural results that allow us to write
arbitrary polynomials of Bernoulli random variables in terms of regular ones.

In this section, we will discuss some of the existing invariance principles and
regularity lemmas, and make use of the theory of diffuse decompositions to pro-
vide some new ones that will deal better with high degree polynomials. In Sec-
tion 6.1, we discuss some background information about polynomials of Bernoulli
random variables and give a brief overview of existing invariance principles and
regularity lemmas. In Section 6.2, we state and prove the diffuse invariance prin-
ciple, and in Section 6.3 prove the corresponding regularity lemma.

6.1. Basic facts about Bernoulli random variables.

6.1.1. Multilinear polynomials. For a Bernoulli random variable B , we have
that any coordinate, bi , satisfies b2

i = 1 with probability 1. This, of course, does
not hold in the Gaussian case. Thus, if there is going to by any hope of comparing
polynomials on Gaussian and Bernoulli inputs, we must restrict ourself to polyno-
mials that have no term that is degree more than 1 in any variable. In particular, we
must restrict ourselves to the case of multilinear polynomials.

DEFINITION 7. A polynomial p : Rn → R is multilinear if its degree with
respect to any coordinate variable is at most 1.

To clarify the relationship between general polynomials and multilinear poly-
nomials, we mention the following lemma.

LEMMA 24. For every polynomial p : Rn → R, there exists a unique multi-
linear polynomial q : Rn → R so that q agrees with p on {−1,1}n. Furthermore,
deg(q) ≤ deg(p).

PROOF. To prove the existence of q , it suffices to show that the result holds for
every monomial p = ∏

x
αi

i . It is clear that this monomial agrees on the hypercube

with the multilinear monomial
∏

x
αi (mod 2)
i .

Uniqueness will follow from the fact that any nonzero multilinear polynomial
on Rn is nonvanishing on the hypercube. This follows from the fact that the map
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from a multilinear polynomial to its vector of values on {−1,1}n is a surjective
linear map of vector spaces of dimension 2n. �

DEFINITION 8. For any polynomial p(x), let L(p(x)) be the corresponding
multilinear polynomial as described by Lemma 24.

6.1.2. Lp norms and hypercontractivity. As the Lp norms for polynomials
of Gaussians have been useful to us, the corresponding norms for the Bernoulli
distribution will also be useful.

DEFINITION 9. Let p :Rn →R we for t ≥ 1, we define |p|B,t as

|p|B,t = (
EB

[∣∣p(B)
∣∣t ])1/t

,

where above B is an n-dimensional Bernoulli random variable.

We also have the analogue of Lemma 3. In particular, we have the following.

LEMMA 25 (Bonami [2]). For p : Rn → R a degree-d polynomial, and t ≥ 2
we have that

|p|B,t ≤ √
t − 1

d |p|B,2.

From this we derive the following corollary.

COROLLARY 26. For p :Rn →R a degree-d polynomial N > 0, then

PrB
(∣∣p(B)

∣∣ > N |p|B,2
) = O

(
2−(N/2)2/d )

.

The proof is analogous to that of Corollary 5.
We will also need a result combining Lemmas 3 and 25.

LEMMA 27. Let p be a degree-d polynomial, B a Bernoulli random variable,
G a Gaussian random variable, and t ≥ 2 a real number. Then

E
[∣∣p(G,B)

∣∣t ] ≤ (t − 1)td/2E
[
p(G,B)2]t/2

.

PROOF. For integers N , let GN be a random variable defined by GN =
1√
N

∑N
j=1 Aj where the Aj are independent Bernoulli random variables. Clearly,

the coordinates of GN are independent and by the central limit theorem, as
N → ∞, their distributions converge to Gaussians in c.d.f. distance. This implies
that for and ε > 0 and for sufficiently large N that we can have correlated copies
of the random variables G and GN so that |G − GN | < ε with probability 1 − ε.
Furthermore, with probability 1 − ε, |G| = On(log(ε−1)) (here n in the number of
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coordinates of G). Therefore, for sufficiently large N we have that with probability
1 − O(ε) that |p(G,B) − p(GN,B)| = Op(ε log(ε−1)d) (this follows from con-
sidering every possible value of B separately). Therefore, the p(GN,B) converge
in law to p(G,B). Furthermore, since E[|p(GN,B)|2�t�] is uniformly bounded
[expand out p(GN,B)2�t� and note that each monomial has uniformly bounded
expectation], this implies that

lim
N→∞E

[∣∣p(
GN,B

)∣∣t ] = E
[∣∣p(G,B)

∣∣t ],
and

lim
N→∞E

[∣∣p(
GN,B

)∣∣2] = E
[∣∣p(G,B)

∣∣2]
.

The result now follows from applying Lemma 25 to p(GN,B) and taking a limit
as N → ∞. �

We also note the following relationship between the Gaussian and Bernoulli
norms.

LEMMA 28. If p :Rn →R is a multilinear polynomial then |p|2 = |p|B,2.

PROOF. This follows immediately after noting that the basis
∏

x
αi

i for α ∈
{0,1}n is an orthonormal basis of the set of multilinear polynomials with respect
to both the Bernoulli and Gaussian measures. �

6.1.3. Influence and regularity. The primary obstruction to a multilinear poly-
nomial behaving similarly when evaluated at Bernoulli inputs rather than Gaussian
inputs is when some single coordinate has undo effect on the output value of the
polynomial. In such a case, the fact that this coordinate is distributed as a Bernoulli
rather than a Gaussian may cause significant change to the resulting distribution.
In order to quantify the extent to which this can happen, we define the ith influence
of a coordinate as follows.

DEFINITION 10. For p : Rn → R, a function we define the ith influence of p

to be

Infi (p) :=
∣∣∣∣ ∂p

∂xi

∣∣∣∣2
2
.

It should be noted that for multilinear polynomials p, this is equivalent to the more
standard definition

Infi (p) = EA

[
Varai

(
p(A)

)]
.
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This is the expectation over uniform independent {−1,1} choices for the coordi-
nates other than the ith coordinate of the variance of the resulting function over a
Bernoulli choice of the ith coordinate. Equivalently, it is

1

4
E

[∣∣p(a1, . . . , ai−1,−1, ai+1, . . . , an) − p(a1, . . . , ai−1,1, ai+1, . . . , an)
∣∣2]

.

We now prove some basic facts about the influence.

LEMMA 29. If p : Rn → R is a polynomial Infi (p) is
∑

a ai |ca(p)|2, where
ca(p) are the Hermite coefficients of p.

PROOF. Recall that

p(x) = ∑
a

ca(p)ha(x).

Therefore, we have that

∂p

∂xi

= ∑
a

√
aica(p)ha−ei

(x).

Thus, ∣∣∣∣ ∂p

∂xi

∣∣∣∣2
2
= ∑

a

ai

∣∣ca(p)
∣∣2. �

From this, we have the following.

COROLLARY 30. For p a degree-d polynomial in n variables,

n∑
i=1

Infi (p) =
d∑

k=1

k
∣∣p[k]∣∣2

2 = �d

(
Var

(
p(X)

))
.

We now make the following definition [which agrees with the standard ones up
to changing τ by a factor of �d(1)].

DEFINITION 11. Let p be a degree-d multilinear polynomial. We say that p

is τ -regular if for each i

Infi (p) ≤ τ VarA(p).

In terms of this notion of regularity, the standard invariance principle, proved in
[18], can be stated as follows.
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THEOREM 31 (The invariance principle (Mossel, O’Donnell, and Oleszkie-
wicz)). If p is a τ -regular, degree-d multilinear polynomial, A and X are
Bernoulli and Gaussian random variables respectively and t ∈ R, then∣∣Pr

(
p(X) ≤ t

) − Pr
(
p(A) ≤ t

)∣∣ = O
(
dτ 1/(8d)).

It should be noted that the dependence on τ 1/d in the error of Theorem 31 is
necessary. In particular, if d is even and N is a sufficiently large integer consider
the polynomial p :Rn+1 →R defined by

p(x0, . . . , xN) = τx0 +
(

1√
N

N∑
i=1

xi

)d

.

Let q = L(p). It is not hard to see that by making N sufficiently large, one can
make |p − q|2 arbitrarily small, and thus, by Lemma 2 and Corollary 5, we can
make the probability distributions for p(X) and q(X) arbitrarily close. It is also
not hard to see that q is �d(τ 2) regular. This is because Inf0(q) = τ 2, Infi (q) =
Od(N−1) for i �= 0, and VarA(q(A)) = �d(1). On the other hand, it is clear that
for Bernoulli input A we have that

q(A) = p(A) ≥ −τ.

On the other hand, considering the distribution of values of p(X) [which as stated
can be arbitrarily close to that of q(X)], if we let y = 1√

N

∑N+1
i=2 xi , we note that

x0 and y are independent Gaussians. Thus, with probability �(τ 1/d) we have that
x0 < −2 and |y| ≤ τ 1/d . If these occur, then p(X) < −τ . Thus, for N sufficiently
large the difference between the probabilities that q(A) < −τ and that q(X) < −τ

can be as large as 	(τ 1/d).
The essential problem in the above example is that although the first coordinate

has low influence, there is a reasonable probability that the size of q(X) will be
comparable to τ , and in the case when |q(X)| is small, the relative effect of the
first coordinate is much larger. We get around this problem by introducing a new
concept of regularity involving the idea of a diffuse decomposition. The problem
above came from the fact that the probability distribution of q(X) was too clustered
near 0. Since the analogue of this cannot happen for a diffuse set of polynomials,
we expect to obtain better bounds.

DEFINITION 12. For p a degree-d multilinear polynomial, we say that p has
a (τ,N,m, ε)-regular decomposition if there exists a polynomial p0 of degree-d
so that:

• |p − p0|2B,2 ≤ ε2 Var(p0(X)).
• p0 has a (τ 1/5,N)-diffuse decomposition of size m, (h, q1, . . . , qm) so that qi is

multilinear for each i and Infj (qi) ≤ τ for each i, j .
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THEOREM 32 (The diffuse invariance principle). If p is a degree-d multilin-
ear polynomial that has a (τ,N,m, ε)-regular decomposition for 1/2 > ε, τ > 0,
A and X and random Bernoulli and Gaussian variables, respectively, and t is a
real number, then∣∣Pr

(
p(A) ≤ t

) − Pr
(
p(X) ≤ t

)∣∣
= Od,m

(
τ 1/5N log

(
τ−1)dm/2+1 + ε1/d log

(
ε−1)1/2)

.

REMARK 3. We can derive a statement very similar to that of Theorem 31
from Theorem 32. In particular, if p is multilinear, and τ -regular, we may nor-
malize p so that EX[p(X)] = 0,EX[p(X)2] = 1. Then by Lemma 2, we have that
for h = Id and q = p, (h, q) is a (τ 1/5,O(dτ (1/d−1)/5))-diffuse decomposition
of p. Furthermore, by assumption q is multilinear and has all influences at most τ .
Therefore, this is a (τ,O(dτ (1/d−1)/5),1,0)-regular decomposition of p. Thus, we
obtain ∣∣Pr

(
p(A) ≤ t

) − Pr
(
p(X) ≤ t

)∣∣ = Od

(
τ 1/(5d) log

(
τ−1)d/2+1)

.

Neither invariance principle on its own is very useful for dealing with general
polynomial threshold functions which might not satisfy the necessary regularity
conditions. Fortunately, in both cases if regularity fails it will be because some
small number of coordinates have undo effect on the value of the polynomial. If
this is the case, we can hope to make things better by fixing the values of these co-
ordinates and considering the resulting polynomial over the remaining coordinates,
hoping that it is regular. Theorems confirming this intuition have been known as
regularity lemmas.

Ideally, one would like a regularity lemma to say that for some small set S of
coordinates, if one takes a random restriction over the coordinates of S that with
high probability the resulting polynomial is either regular or nearly constant. Un-
fortunately, existing techniques are insufficient to prove such a result where the
coordinates of S are picked ahead of time. Instead most results instead use the idea
of a low depth decision tree. In particular, when we say that we write f as a de-
cision tree of depth D with nodes given by functions fρ , we are specifying f by
considering its restrictions on sets of at most D coordinates at a time, but rather
than declaring the coordinates to be fixed ahead of time, we allow them to be cho-
sen adaptively. In particular, if we are restricting on coordinates xi1, xi2, . . . , xiD

we allow ij to depend on the (±1) values assigned to xi1, . . . , xij−1 .
Making use of these ideas, several regularity lemmas have appear for the stan-

dard notion of regularity, for example, in [6] and [4] as well as other places. As an
example, [6] proved the following.

THEOREM 33 (Diakonikolas, Servedio, Tan, Wan). Let f (x) = sign(p(x)) be
any degree-d PTF. Fix any τ > 0. Then f is equivalent to a decision tree T , of
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depth

depth(d, τ ) = 1

τ
· (

d log
(
τ−1))O(d)

with variables at the internal nodes and a degree-d PTF fρ = sgn(pρ) at each leaf
ρ, with the following property: with probability at least 1 − τ , a random path from
the root reaches a leaf ρ such that fρ is τ -close to some τ -regular degree-d PTF.

Along similar lines, we prove the following.

THEOREM 34 (Diffuse regularity lemma). Let p be a degree-d polynomial
with Bernoulli inputs. Let τ, c,M > 0 with τ < 1/2. Then p can be written as a
decision tree of depth at most

Oc,d,M

(
τ−1 log

(
τ−1)O(d))

with variables at the internal nodes and a degree-d polynomial at each leaf, with
the following property: with probability at least 1 − τ , a random path from the
root reaches a leaf ρ so that the corresponding polynomial pρ either satisfies
Var(pρ) < τM |pρ |22 or pρ has an (τ, τ−c,Oc,d,M(1),Oc,d,M(τM))-regular de-
composition.

6.2. The diffuse invariance principle. In this section, we prove Theorem 32.
We begin with the following proposition.

PROPOSITION 35. Let p be a degree-d polynomial with a (τ 1/5,N)-diffuse
decomposition (for 1/2 > τ > 0) (h, q1, . . . , qm) with qi multilinear so that
Infi (qj ) ≤ τ for all i, j . Then if A is a Bernoulli random variable, X a Gaussian
random variable and t a real number then∣∣Pr

(
p(A) ≤ t

) − Pr
(
p(X) ≤ t

)∣∣ = Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1)

.

PROOF. It suffices to prove this statement for t = 0. We proceed via Proposi-
tion 21. We note that for each i the first three moments of Ai agree with the cor-
responding moments of Xi . Therefore, since the qi are multilinear, any degree-3
polynomial in the qi has the same expectation under A as under X. Thus, we may
apply Proposition 21 with k = 4. We have that

(13)
∣∣Pr

(
p(A) ≤ 0

)− Pr
(
p(X) ≤ 0

)∣∣ = Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1 + τ−4/5T

)
.

Recall that Ti,j is

E
[(

qi(X1, . . . ,Xj−1,Aj , . . . ,An) −EY

[
qi(X1, . . . ,Xj−1, Y,Aj+1, . . . ,An)

])4]
+E

[(
qi(X1, . . . ,Xj ,Aj+1, . . . ,An)

−EY

[
qi(X1, . . . ,Xj−1, Y,Aj+1, . . . ,An)

])4]
.
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By Lemma 27, this is at most

Od

(
EX1,...,Xj−1,Aj+1,...,An

[
VarY

(
qi(X1, . . . ,Xj−1, Y,Aj+1, . . . ,An)

)]2)
.

Since the polynomial in expectation is at most quadratic in each Xi , this is

Od

(
EA

[
VarY

(
qi(A1, . . . ,Aj−1, Y,Aj+1, . . . ,An)

)]2) = Od

(
Infj (qi)

2)
.

Thus,

T =
m∑

i=1

n∑
j=1

Ti,j

= Od

(
m∑

i=1

n∑
j=1

Infj (qi)
2

)

≤ Od

(
m∑

i=1

n∑
j=1

τ Infj (qi)

)

= Od

(
m∑

i=1

τ

)

= Od,m(τ).

Thus, by equation (13),∣∣Pr
(
p(A) ≤ 0

) − Pr
(
p(X) ≤ 0

)∣∣ = Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1)

,

as desired. �

Proposition 35 is the main analytic tool used in our proof of Theorem 32. From
it, we can quickly derive the following theorem.

THEOREM 36. Let p be a degree-d multilinear polynomial with a
(τ,N,m, ε)-regular decomposition (for 1/2 > ε, τ > 0) given by (h, q1, . . . , qm).
Let p0(x) := h(q1(x), . . . , qm(x)). Let A be a Bernoulli random variable, X a
Gaussian random variable, and t a real number. Then∣∣Pr

(
p(A) ≤ t

) − Pr
(
p0(X) ≤ t

)∣∣
= Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1 + ε1/d log

(
ε−1)1/2)

.

REMARK 4. For most applications, Theorem 36 will be as good as Theo-
rem 32 as it shows that the regular polynomial of Bernoullis behaves similarly to a
polynomial of Gaussians. As we shall see later, it will take some work to show that
it will necessarily behave like the same polynomial of Gaussians. This is because
although |p − p0|2,B is small, this does not immediately imply that |p − p0|2 is
sufficiently small for the proof to work.
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PROOF. As in the proof of Proposition 35, we may assume that t = 0 and
prove the inequality

Pr
(
p(A) ≤ 0

)
≤ Pr

(
p0(X) ≤ 0

) + Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1 + ε1/d log

(
ε−1)1/2)

.

By Corollary 26, we have with probability 1 − ε that∣∣p(A) − p0(A)
∣∣ ≤ O

(
ε log

(
ε−1)d/2)√

Var
(
p0(X)

) ≤ O
(
ε log

(
ε−1)d/2)|p0|2.

Thus, we have that

Pr
(
p(A) ≤ 0

)
≤ ε + Pr

(
p0(A) ≤ O

(
ε log

(
ε−1)d/2)|p0|2)

≤ Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1 + ε

) + Pr
(
p0(X) ≤ O

(
ε log

(
ε−1)d/2)|p0|2)

≤ Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1 + ε1/d log

(
ε−1)1/2) + Pr

(
p0(X) ≤ 0

)
.

The second line above is by Proposition 35 and the third is by Lemma 2.
The lower bound on Pr(p(A) ≤ 0) is proved analogously. �

In order to complete the proof of Theorem 32, we need the following.

PROPOSITION 37. If p is a degree-d polynomial with a (τ,N,m, ε)-regular
decomposition (for 1/2 > ε, τ > 0) given by p0(x) = h(q1(x), . . . , qm(x)), then
for X a Gaussian random variable, and t a real number,∣∣Pr

(
p(X) ≤ t

) − Pr
(
p0(X) ≤ t

)∣∣
≤ Od,m

(
τ 1/4N log

(
τ−1)d(m+1)/2+1 + ε1/d log

(
ε−1)1/2)

.

The biggest difficulty with proving this proposition will be dealing with the
discrepancy between p0 and L(p0). To deal with this, we make the following def-
inition.

DEFINITION 13. Let p1, . . . , pk be multilinear polynomials. Define

A(p1, . . . , pk) = ∑
S⊆{1,2,...,k}

(−1)|S|
(∏

i∈S

pi

)
L

(∏
i /∈S

pi

)
.

We note the following.

LEMMA 38. Let q1, . . . , qm be multilinear polynomials and let h be a degree-
d polynomial in m variables then L(h(q1(x), . . . , qm(x))) is

d∑
k=0

m∑
i1,...,ik=1

∂kh

∂qi1 · · · ∂qik

A(qi1, . . . , qik ).
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PROOF. As the above expression is linear in h, we may assume that h is a
monomial of degree d . In particular, we may assume that h = qi1qi2 · · ·qid (note
that some of the indices ij might coincide). The expression in question then be-
comes: ∑

T ={t1,...,tk}⊆{1,...,d}

( ∏
j /∈T

qij

)
A(qit1

, . . . , qitk
)

= ∑
T ⊆{1,...,d}

( ∏
j /∈T

qij

) ∑
S⊆T

(−1)|S|
(∏

i∈S

qi

)
L

( ∏
i∈T \S

qi

)

= ∑
S⊆T ⊆{1,...,d}

( ∏
j /∈T \S

qij

)
(−1)|S|L

( ∏
j∈T \S

qij

)
.

Letting R = T \S, this is∑
R⊆{1,...,d}

L

( ∏
j∈R

qij

)( ∏
j /∈R

qij

) ∑
S∈{1,...,d}\R

(−1)|S|

= ∑
R={1,...,d}

L

( ∏
j∈R

qij

)( ∏
j /∈R

qij

)

= L

( ∏
j∈{1,...,d}

qij

)

= L(h),

as desired. �

To control the discrepancy between p0 and L(p0) it now suffices to prove the
following.

PROPOSITION 39. Let p1, . . . , pk be multilinear, degree at most d polynomi-
als with Infi (pj ) ≤ τ for all i, j , |pj |2 ≤ 1 for all j . Then∣∣A(p1, . . . , pk)

∣∣
2 = Ok,d

(
τ k/4)

.

PROOF. We proceed by bounding the expected value of A(p1, . . . , pk)
2. In

particular, we show that if pj are multilinear degree-d polynomials of norm at
most 1 with all influences at most τ then

E
[
A(p1, . . . , pk)(X)A(pk+1, . . . , p2k)(X)

] = Ok,d

(
τ k/2)

.

We note that the above expression is linear in the pj . We may therefore rewrite it
as a sum over sequences of monomials m1, . . . ,m2k where mj is a monomial of
pj , of

E
[
A(m1, . . . ,mk)(X)A(mk+1, . . . ,m2k)(X)

]
.
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To each such sequence of monomials m1, . . . ,m2k we associate a repeat pat-
tern, which is the multiset of nonempty subsets of {1,2, . . . ,2k} whose elements
correspond to {j : xi appears in monomial mj } for all i so that xi appears in any
of the monomials mj . We break up the above sum into parts based on the repeat
pattern satisfied by m1, . . . ,m2k , since there are Ok,d(1) such possible patterns, it
suffices to prove our bound for the sum of all terms coming from each such pattern.
In particular, we need to show that for any repeat pattern P that∑

mj a monomial from pj

(m1,...,m2k) has repeat pattern P

E
[
A(m1, . . . ,mk)(X)A(mk+1, . . . ,m2k)(X)

]
(14)

= Ok,d

(
τ k/2)

.(15)

Note that if the repeat pattern contains any subset of odd size that the resulting
sum will be 0. This is because for any m1, . . . ,m2k with this repeat pattern, there
will be some xi appearing in an odd number of the mj . This means that the product
of the mj will be an odd function of xi . Since L of an odd polynomial is still odd,
this means that A(m1, . . . ,mk)A(mk+1, . . . ,m2k) will be an odd function of xi and
thus, have expectation 0.

Furthermore, suppose that given P , there is some 1 ≤ j ≤ 2k so that j does not
appear in any element of P of size greater than 2. We claim again that for any
m1, . . . ,m2k satisfying P that

E
[
A(m1, . . . ,mk)(X)A(mk+1, . . . ,m2k)(X)

] = 0.

To show this, we assume without loss of generality that j = 1. We expand out the
A’s to get that the expression in question is the expectation of∑

S⊆{1,2,...,k}

∑
T ⊆{k+1,...,2k}

(−1)|S|+|T |
( ∏

j∈S∪T

pj

)

× L

( ∏
j∈{1,...,k}\S

pj

)
L

( ∏
j∈{k+1,...,2k}\T

pj

)
.

We claim that if we toggle whether 1 is in S in the above sum, it has no effect on
the expectation of the resulting product other than to negate the (−1)|S|+|T | term.
This is because adding 1 to S can only have the effect of removing some x2

i terms
from the resulting monomial. On the other hand, since E[1] = E[X2

i ], this does
not effect the resulting expectation. Thus, the expectations of the terms with 1 in S

cancel the expectations of the terms with 1 not in S, leaving us with expectation 0.
It thus suffices to consider equation (14) when all elements of P have even

order and so that for each 1 ≤ j ≤ 2k there is some element of P of order at least
4 containing j . For such P , we upper bound the left-hand side of equation (14) by

(16)
∑

mj a monomial from pj

(m1,...,m2k) has repeat pattern P

Ok,d

( 2k∏
j=1

|mj |2
)
.
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We will now prove the following statement, which will imply our desired bound.
Let p1, . . . , p2k be multilinear polynomials with |pj | ≤ 1 and T ⊆ {1,2, . . . ,2k}
some set so that Infi pj ≤ τ for all i and all j ∈ T . Furthermore, let P be a repeat
pattern all of whose elements have even order and so that each element of T ap-
pears in some element of P of order at least 4, then the expression in equation (16)
is at most Ok,d(τ |T |/4). We prove this by induction on |P |. The base case where
|P | = 0 is trivial since then we are considering only the term where all of the mj

are constants.
If |P | > 0, we consider an element of P of maximal size. In particular, if T �= ∅,

this implies that this element is of size at least 4. Without loss of generality, this
element is {1,2, . . . ,2
}. We break our sum into pieces based on which coordinate
is shared by all of m1, . . . ,m2
 (if more than one coordinate is shared by each of
these elements we will count all of them leading to a strictly larger sum). If we
wish to compute the sum over all terms where they share a coordinate xi , we find
that it is

∑
mj a monomial from p′

j

(m1,...,m2k) has repeat pattern P ′

Ok,d

( 2∏
j=1

k|mj |2
)
.

Where above p′
j = pj for j > 2
 and for j ≤ 2
, p′

j consists of the sum of the
monomials in pj containing xi divided by xi , and P ′ is P minus {1,2, . . . ,2
}.
Furthermore, note that |p′

j |2 =
√

Infi (pj ) for j ≤ 2
. Letting p′′
j be the normalized

version of p′
j , the above is at most

2
∏
j=1

√
Infi (pj )

∑
mj a monomial from p′′

j

(m1,...,m2k) has repeat pattern P ′

Ok,d

( 2∏
j=1

k|mj |2
)
.

Letting T ′ = T \{1,2, . . . ,2
}, we note that this sum is of the form specified for the
value T ′, hence we have by the inductive hypothesis that the above sum is

Ok,d

(
τ |T ′|/4

2
∏
j=1

√
Infi (pj )

)
.

It thus suffices to prove that

∑
i

2
∏
j=1

√
Infi (pj ) = Ok,d

(
τ (|T |−|T ′|)/4) = Ok,d

(
τ (|T ∩{1,2,...,2
}|)/4)

.

We assume without loss of generality that T ∩ {1,2, . . . ,2
} = {1,2, . . . , a}. We
note by Cauchy–Schwarz that

∑
i

2
∏
j=1

√
Infi (pj ) ≤

(2
−2∏
j=1

max
i

√
Infi (pj )

)( 2
∏
j=2
−1

∑
i

Infi (pj )

)1/2

.
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We note that for each of the last two terms that∑
i

Infi (pj ) = Od

(|pj |22
) = Od(1).

Furthermore, we have that

2
−2∏
j=1

max
i

√
Infi (pj ) ≤

min(a,2
−2)∏
j=1

τ 1/2
2
−2∏

j=a+1

1 = τmin(a,2
−2)/2.

Thus, we have that

∑
i

2
∏
j=1

√
Infi (pj ) ≤ Od

(
τmin(a,2
−2)/2) = Od

(
τa/4)

.

With the last step following from the observation that either a = 0 or 
 ≥ 2. This
completes our inductive step and proves our proposition. �

We are now prepared to prove Proposition 37, and thus, Theorem 32.

PROOF. We may clearly assume that t = 0. We will give a series of high prob-
ability statements that together imply that

sgn
(
p(X)

) = sgn
(
p0(X)

)
.

Let V = Var(p0).
First, note that by assumption∣∣p − L(p0)

∣∣2
2 = |p − p0|22,B ≤ εV .

Thus, by Corollary 5 we have for some sufficiently large C that with probability
1 − ε that ∣∣p(X) − L(p0)(X)

∣∣ ≤ Cε log
(
ε−1)d/2

V.

Additionally, by Lemma 2, we have with probability 1 − O(dε1/d log(ε−1)1/2)

that ∣∣p0(X)
∣∣ ≥ 2Cε log

(
ε−1)d/2|p0|2 ≥ 2Cε log

(
ε−1)d/2√

V .

By Proposition 39 and Corollary 5, we have that for C a sufficiently large num-
ber given d that with probability 1 − Od,m(τ) that for all 1 ≤ i1, i2, . . . , ik ≤ m for
k ≤ d that ∣∣A(qi1, . . . , qik )(X)

∣∣ ≤ Cτk/4 log
(
τ−1)dk/2

.

Finally, by Lemma 18 we have that with probability

1 − Od,m

(
τ 1/4N log

(
τ−1)d(m+1)/2+1)
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that letting Q = (q1(X), . . . , qm(X)) that∣∣h(Q)
∣∣ ≥ 3Cmτ 1/4 log

(
τ−1)d/2∣∣∇i1h(Q)

∣∣
2

≥ 32C2m2τ 2/4 log
(
τ−1)d2/2∣∣∇i1∇i2h(Q)

∣∣
2

≥ · · · ≥ 3dCdmdτd/4 log
(
τ−1)d2/2∣∣∇i1 · · ·∇id h(Q)

∣∣
2.

Assuming that all of the above hold, then∣∣p(X) − p0(X)
∣∣ ≤ ∣∣p(X) − L(p0)(X)

∣∣ + ∣∣p0(X) − L(p0)(X)
∣∣

≤ ∣∣p0(X)
∣∣/2 + ∣∣p0(X) − L(p0)(X)

∣∣.
By Lemma 38, we have that letting Q = (q1(X), . . . , qm(X))

∣∣L(p0)(X) − p0(X)
∣∣ =

∣∣∣∣∣
d∑

k=1

m∑
i1,...,ik=1

A(qi1, . . . , qik )(Q)∇i1 · · ·∇ikh(Q)

∣∣∣∣∣
≤

d∑
k=1

m∑
i1,...,ik=1

Cτk/4 log
(
τ−1)dk/2∣∣∇i1 · · ·∇ikh(Q)

∣∣
2

≤
d∑

k=1

m∑
i1,...,ik=1

3−km−k
∣∣h(Q)

∣∣

≤
d∑

k=1

3−k
∣∣p0(X)

∣∣
<

∣∣p0(X)
∣∣/2.

Combining this with the above, we find that∣∣p(X) − p0(X)
∣∣ <

∣∣p0(X)
∣∣/2 + ∣∣p0(X)

∣∣/2 = ∣∣p0(X)
∣∣.

Thus, with probability at least

1 − Od,m

(
τ 1/4N log

(
τ−1)d(m+1)/2+1 + ε1/d log

(
ε−1)1/2)

that sgn(p(X)) = sgn(p0(X)). �

6.3. The regularity lemma. In this section, we will prove Theorem 34. Much
of it will be along the lines of the proof of Theorem 1 with some extra work being
done to ensure that the resulting qi are regular. We begin with a lemma on the
regularity of restrictions of polynomials.

LEMMA 40. Let p be a degree-d multilinear polynomial with |p|2 ≤ 1. Let
1/2 > ε > 0 be a real number. Then there exists an M = Od(ε−1 log(ε−1)d) so
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that for any set S of coordinates containing the M coordinates of highest influence
for p, if we let A be a random Bernoulli variable over the coordinates in S and let
pA be the polynomial over the remaining coordinates upon plugging these values
into the coordinates of S then with probability 1 − ε

max
i

(
Infi (pA)

) ≤ ε.

PROOF. We assume throughout that ε is sufficiently small. Note that the sum
of the influences of p is Od(1), therefore, if M is a sufficiently large multiple of
ε−1 log(ε−1)d , we have that the largest influence of a coordinate not in S is at most
a small constant times ε log(ε−1)−d . Note that for each i /∈ S, there is a polynomial
pi of degree at most d so that Infi (pA) = pi(A)2. Furthermore, it is easy to check
that E[pi(A)2] = Infi (p). Applying Corollary 5, we find that if M were chosen to
be sufficiently large, then with probability at most ε4/2 is any given Infi (pA) more
than ε. Taking a union bound over i, we find that with probability at most ε/2 is
some Infi (pA) > ε for any i with Infi (p) > dε3. Consider the polynomial

q(A) = ∑
j :Infj (p)≤dε3

Infj (pA)2.

Note that | Infj (pA)2|2 = Od(Infj (p)2) by Lemma 3. Thus,

|q|2 ≤ Od(1)
∑

j :Infj (p)≤dε3

Infj (p)2 ≤ Od

(
ε3) ∑

j :Infj (p)≤dε3

Infj (p) = Od

(
ε3)

.

Thus, by Corollary 5, q(A) > ε2 with probability at most ε/2. On the other hand,
if q(A) ≤ ε2, it implies that Infj (pA) ≤ ε for all j so that Infj (p) ≤ dε3. Thus,
with probability at most ε is any Infj (pA) more than ε. �

LEMMA 41. Let p be a degree-d multilinear polynomial. Let S be a set of
coordinates and A a Bernoulli random variable over those coordinates. Let pA be
the restricted polynomial when the coordinates of A are plugged into p. Then

Pr
(|pA|2 ≥ N |p|2) = Od

(
2−(N/2)1/d )

.

PROOF. Note that |pA|22 is a polynomial in A of degree at most 2d . Note that
the squared L2 norm of this polynomial is

EA

[
EB

[
p(A,B)2]2] ≤ EA,B

[
p(A,B)4] = |p|44,B ≤ Od

(|p|42
)
.

The result now follows from Corollary 26. �

The main parts of the proof of Theorem 34 are contained in the following propo-
sition.
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PROPOSITION 42. Let p be a degree-d multilinear polynomial and let
ε, c,M > 0 for 1/2 > ε. Then p can be written as a decision tree of depth

Oc,d,M

(
ε−1 log

(
ε−1)O(d))

with coordinate variables for internal nodes and polynomials for leaves so that for
a random leaf pρ we have with probability 1 − Oc,d,M(ε) that there exists a p0
with |p − p0|2,B ≤ εN |p|2 and so that p0 has an (ε, ε−c)-diffuse decomposition
(h, q1, . . . , qm) with m = Oc,d,N (1), qi multilinear and so that Infj (qi) ≤ ε for
each i, j .

PROOF. The proof is along the same lines as the proof of Theorem 1, with
some extra work done to ensure that the influences can be controlled. We assume
that |p|2 = 1 and assume throughout that ε is sufficiently small.

We define: a partial decomposition of our polynomial p to be a set of the fol-
lowing data:

• A positive integer m.
• A polynomial h :Rm →R.
• A sequence of multilinear polynomials (q1, . . . , qm) each on Rn with |qi |2 = 1

for each i.
• A sequence of integers (a1, . . . , am) with ai between 0 and 4 · 3i (N + 1)/c − 1.

Furthermore, we require that each qi is nonconstant, and that for any monomial∏
x

α1
i appearing in h that

∑
αi deg(qi) ≤ d .

We say that such a partial decomposition has complexity at most C if the fol-
lowing hold:

• m ≤ C.
• |h|2 ≤ Cε−1+C−1

.
• |p(A) − h(εaic/(2·3i )qi(A))|2,B ≤ CεN+1 log(ε−1)C .

We define the weight of a partial decomposition as follows. First, we define the
polynomial:

w(x) =
m∑

i=1

xdeg(qi )
(
4 · 3i (N + 1)/c − ai

)
.

We then let the weight of the decomposition be w(ω).
We prove by ordinal induction on w that if p has a partial decomposi-

tion of weight w and complexity C, then there is a decision tree of depth
Oc,C,d,N,w(ε−1 log(ε−1)O(d)) so that with probability 1 − Oc,C,d,w,N (ε) a ran-
dom leaf has such a p0 with a diffuse decomposition into multilinear polynomials
whose influences are at most ε.

Again the idea of the proof is to show that after a decision tree of appropriate
depth and with appropriate probability, that we either have such a p0 or that we
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have a partial decomposition with smaller weight. By Lemma 40, if we restrict to
random values of the Od(ε−1 log(ε−1)O(d)) highest influence coordinates of each
of the qi , we will have all influences of all of the qi at most ε with probability
1 − Od,m(ε). Applying Lemma 41 to the qi and p − h(q1, . . . , qm), we find that
with probability 1 − Od,m(ε) that the restricted values of qi have norm at most
log(ε−1)O(d) and that the L2 norm of p − h(q1, . . . , qm) increased by at most a
similar factor. Thus, rescaling the qi and modifying h appropriately, we find that
with probability 1 − Od,m(ε) over our restrictions, we have a new partial decom-
position of weight w and complexity OC(1) so that Infi (qj ) ≤ ε for each i and j .
As in Lemma 16, we show that either (h, q1, . . . , qm) is an (ε, ε−c)-diffuse set or
that we have a partial decomposition of strictly smaller weight and with complex-
ity Oc,C,d,N (1). The proof follows through identically to the proof in Lemma 16
with the additional caveat that the A
,B
 can be chosen to be multilinear. This is
because the qi are multilinear, so keeping only the multilinear parts of the A
,B


only reduces the error produced by the approximation. This completes the proof.
�

We will need one more lemma about decision trees of polynomials before we
proceed.

LEMMA 43. Let p be a multilinear, degree-d polynomial. Let T be some de-
cision tree over it’s coordinates. If T is evaluated making random, independent
choices at each step, and the restricted function is called pρ , then with probability
at least 2O(d) over these choices we have that

|pρ |2 ≥ |p|2/2.

PROOF. Given a partially filled-in decision tree T ′ define V (T ′) =
E[p(A)2|T ′]. It is clear that V is a martingale. Therefore, V 2 is a submartin-
gale. In particular, this means that the expectation of V 2 over some decision tree
is at most the expectation over an extended decision tree that eventually decides
values for all coordinates. This latter expectation is |p|44,B = 2O(d)|p|42. Therefore,
the expectation over fills of T of V is |p|22 and the expectation of V 2 is at most
2O(d)|p|42. Therefore, by the Paley–Zygmund inequality with probability at least
2O(d), we have that V ≥ |p|22/4, proving our lemma. �

We are now prepared to prove Theorem 34.

PROOF. We claim that for τ sufficiently small that a correctly constructed
decision tree of depth Oc,d,M(τ−1 log(τ−1)O(d)) yields a restriction with the
desired property with probability at least 2O(d). Repeating this process up to
2O(d) log(τ−1) many times upon failure will guarantee an aggregate success prob-
ability of 1 − τ .
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To do this, we construct the decision tree given by Proposition 42 for N =
M + d + 2 and ε = τ . We claim that if the restricted polynomial has L2 norm
at least |p|2/2 (which happens with probability 2O(d) by Lemma 43), then the
resulting polynomial has the desired property.

Let P be the resulting polynomial. We have a polynomial p0 with an appropri-
ate diffuse decomposition into multilinear polynomials with sufficiently small in-
fluences and so that |P −p0|2,B = Oc,d,M(τM+d+2)|P |2. If Var(p0) ≥ τM+d |P |22,
we have an appropriate regular decomposition. Otherwise, Var(p0) ≤ τM+d |P |22.
This implies that for some μ that |p0 − μ|22 ≤ τM+d |P |22. Thus, by Lemma 20 we
have that |h − μ|22 ≤ Oc,d,M(τM)|P |22. From this, it is easy to see that the sum of
the squares of the coefficients of h − μ is Oc,d,M(τM)|P |22. From this, it is easy to
verify that the variance of p0 over Bernoulli inputs is Oc,d,M(τM)|P |22. Therefore,
due to the small difference between p and p0 under Bernoulli inputs, we have that
Var(P ) ≤ Oc,d,M(τM)|P |22, which satisfies one of the necessary conditions. �

7. Application to noise sensitivity of polynomial threshold functions.

7.1. Background of noise sensitivity results.

7.1.1. Definitions. If f : Rn → {−1,1} is a boolean function, the noise sensi-
tivity of f is a measure of the likelihood that a small change in the input value to f

changes the output. There are several different notions of noise sensitivity, suitable
for slightly different contexts. We present their definitions here.

DEFINITION 14. For f : Rn → {−1,1} a Boolean function, we define its av-
erage sensitivity (also known as the total influence) to be

AS(f ) :=
n∑

i=1

PrA∼u{−1,1}n
(
f (A) �= f

(
A(i))),

where A(i) is obtained from A by flipping the sign of the ith coordinate. In other
words, the average sensitivity is the expected number of coordinates of A that
could be changed in order to change the value of f .

We also define the average sensitivity in the Gaussian setting.

DEFINITION 15. For f : Rn → {−1,1} a boolean function, we define its
Gaussian average sensitivity to be

GAS(f ) :=
n∑

i=1

Pr
(
f (X) �= f

(
X(i))),

where above X is a Gaussian random variable and X(i) is obtained from X by
replacing the ith coordinate by an independent random Gaussian.
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A related notion is that of noise sensitivity in the Bernoulli or Gaussian context.
Whereas average sensitivity counts the expected number of coordinates that could
be changed to alter the sign of f , noise sensitivity measures the probability that the
sign of f changes if each coordinate is changed by a small amount. In particular,
we define the following.

DEFINITION 16. For f :Rn → {−1,1} a Boolean function, and 1 ≥ δ ≥ 0 we
define the noise sensitivity of f with parameter δ to be

NSδ(f ) := Pr
(
f (A) �= f (B)

)
,

where A and B are Bernoulli random variables with B obtained from A by flipping
the sign of each coordinate randomly and independently with probability δ.

DEFINITION 17. For f :Rn → {−1,1} a Boolean function, and 1 ≥ δ ≥ 0 we
define the Gaussian noise sensitivity of f with parameter δ to be

GNSδ(f ) := Pr
(
f (X) �= f (Y )

)
,

where X and Y are Gaussian random variables that together form a joint Gaussian
with

Cov(Xi, Yj ) =
{
(1 − δ), if i = j,

0, otherwise.

7.1.2. Previous work. The main conjecture about the noise sensitivity of poly-
nomial threshold functions was given in [9].

CONJECTURE 44 (Gotsman–Linial). Let f be a degree-d polynomial thresh-
old function in n variables, then

AS(f ) ≤ 2−n+1
d−1∑
k=0

(
n⌊

(n − k)/2
⌋
)(

n − ⌊
(n − k)/2

⌋)
.

REMARK 5. It should be noted that the upper bound conjectured above is ac-
tually obtainable. In particular, if f is the polynomial threshold function associated
to the polynomial

d∏
i=1

(
n∑

j=1

Aj − d + 2i − 1/2

)

achieves this bound.

In particular, Conjecture 44 implies that

AS(f ) = O(d
√

n).
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By the work of [11], this implies bounds on other notions of sensitivity. In partic-
ular, it would imply that

NSδ(f ) = O(d
√

δ)

and

GNSδ(f ) = O(d
√

δ).

Furthermore, this would imply the following bound on the Gaussian average sen-
sitivity:

GAS(f ) = O(d
√

n).

In particular, we have the following.

LEMMA 45. The largest Gaussian average sensitivity of any degree-d poly-
nomial threshold function in n variables is at most the largest average sensitivity
of a degree-d polynomial threshold function in n variables.

PROOF. We will show that if f is a degree-d PTF in n variables, then GAS(f )

can be written as an expectation over the average sensitivities of certain other
degree-d PTFs in n variables. The key to this argument is to produce the cor-
rect distribution on pairs of Gaussians that differ in exactly one coordinate in an
unusual way. In particular, we define n-variable Gaussians Z and Z′ as follows:

Zi = 1√
2
(Xi + AiYi), Z′

i = 1√
2
(Xi + BiYi),

where Xi,Yi are independent Gaussian random variables, and A = (A1, . . . ,An),
B = (B1, . . . ,Bn) are Bernoulli random variables that differ only in a single ran-
dom coordinate and are independent of X and Y . It is clear that Z and Z′ are
random Gaussians that agree in all but one of their coordinates, and that they are
independent in the coordinate on which they differ. Thus,

GAS(f ) = Pr
(
f (Z) �= f

(
Z′)).

On the other hand, after fixing values of X and Y , we may define a new degree-d
PTF fX,Y by

fX,Y (A) := f

(
1√
2
(Xi + AiYi)

)
.

Therefore, we have that

GAS(f ) = Pr
(
f (Z) �= f

(
Z′))

= EX,Y

[
Pr

(
fX,Y (A) �= fX,Y (B)

)]
= EX,Y

[
AS(fX,Y )

]
.
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This is at most the maximum possible average sensitivity of a degree-d PTF in n

variables. �

Proving the conjectured bounds for the various notions of sensitivity has proved
to be quite difficult. The degree-1 case of Conjecture 44 was known to Gotsman
and Linial. The first nontrivial bounds for higher degrees were obtained indepen-
dently by [11] and [5], who later combined their papers into [4]. They essentially
proved bounds on average sensitivities of Od(n1−1/O(d)) and bounds on noise sen-
sitivities of Od(δ1/O(d)). For the special case of Gaussian noise sensitivity, the
author proved essentially optimal bounds in [12] of O(d

√
δ). Only recently were

better bounds obtained for the other cases. In this paper, we prove a bound on
AS(f ) of Oc,d(n5/6+c), though note that this bound has been superseded by [14],
which improved the bound to

√
n log(n)O(d log(d))2O(d2 log(d)).

In this section, we show how the theory of diffuse decompositions can be used to
obtain the bound AS(f ) = Oc,d(n5/6+c). Our basic technique will be to compare
NSδ(f ) to GNS2δ(f ) using an appropriate invariance principle. It should be noted
that this idea could have been applied using traditional means, but that the bound
obtained would not have been better than δ1−O(1/d).

7.2. Noise sensitivity bounds. In this section, we prove the following three
theorems.

THEOREM 46. If f is a degree-d polynomial threshold function, and if c, δ >

0, then

NSδ(f ) = Oc,d

(
δ1/6−c).

THEOREM 47. If f is a degree-d polynomial threshold function in n vari-
ables, and if c > 0, then

AS(f ) = Oc,d

(
n5/6+c).

THEOREM 48. For f a degree-d polynomial threshold function in n variables
and c > 0,

GAS(f ) = Oc,d

(
n5/6+c).

We begin with the proof of Theorem 46 in the case of regular polynomial thresh-
old function.

PROPOSITION 49. Let f = sgn◦p be a polynomial threshold function for p a
degree-d polynomial with a (τ,N,m, ε)-regular decomposition for 1/2 > ε, τ >

0. Let 1 > δ > 0, then

NSδ(f ) = O(d
√

δ) + O
(
dε1/2d log

(
ε−1)) + Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1)

.
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The proof of Proposition 49 will be to use the replacement method to show that
NSδ(f ) is approximately GNS2δ(f ), which we bound using the main theorem of
[12]. Unfortunately, we will not be able to apply Proposition 21 directly, but many
of the techniques will be similar.

PROOF. Let A1,A2 be a pair of Bernoulli random variables so that for each
coordinate i, A1

i and A2
i are equal with probability 1− δ independently over differ-

ent i. NSδ(f ) = Pr(f (A1) �= f (A2)) = 2 Pr(f (A1) = 1, f (A2) = −1). We wish
to bound this later probability.

Let X1 and X2 be Gaussian random variables so that the joint distribution
(X1,X2) is a Gaussian with

Cov
(
X1

i ,X
2
j

) =
{

1 − 2δ, if i = j,

0, otherwise.

Note that all of the first three moments of (A1,A2) are identical to the correspond-
ing moments of (X1,X2).

We are given that there exists a polynomial p0 with |p − p0|22,B < ε Var(p0) so
that p0 has a (τ 1/5,N)-diffuse decomposition (h, q1, . . . , qm) with qi multilinear
and Infi (qj ) ≤ τ for all i, j . After rescaling these polynomials, we may assume
that Var(p0) ≤ |p0|22 = 1. Note that by Corollary 26 that with probability 1 −O(ε)

that |p(Ai) − p0(A
i)| < ε1/2 log(ε−1)d for each of i = 1,2. By Proposition 17,

there exist functions f 1, f 2 : Rm → [0,1] so that:

• f 1(x) = 1 if h(x) + ε1/2 log(1 + ε−1)d > 0.
• f 2(x) = 1 if h(x) − ε1/2 log(1 + ε−1)d < 0.
• ∣∣E[

f 1(
q1

(
X1)

, . . . , qm

(
X1))]

−E
[
I(0,∞)

(
h
(
q1

(
X1)

, . . . , qm

(
X1)) + ε1/2 log

(
1 + ε−1)d)]∣∣

= Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1)

.

• ∣∣E[
f 2(

q1
(
X2)

, . . . , qm

(
X2))]

−E
[
I(−∞,0)

(
h
(
q1

(
X1)

, . . . , qm

(
X1)) − ε1/2 log

(
1 + ε−1)d)]∣∣

= Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1)

.

• |(f i)(k)|∞ = Om(τ−k/5) for 1 ≤ k ≤ 4.

We then have that

NSδ(f ) = 2 Pr
(
f

(
A1) = 1, f

(
A2) = −1

)
≤ 2E

[
f 1(

q1
(
A1)

, . . . , qm

(
A1))

f 2(
q1

(
A2)

, . . . , qm

(
A2))] + O(ε).
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We would like to relate

E
[
f 1(

q1
(
A1)

, . . . , qm

(
A1))

f 2(
q1

(
A2)

, . . . , qm

(
A2))]

to

E
[
f 1(

q1
(
X1)

, . . . , qm

(
X1))

f 2(
q1

(
X2)

, . . . , qm

(
X2))]

.

In particular, we have that with respect to the Gaussian distribution, f i(q1(X), . . . ,

qm(X)) differs from I(0,∞)(±(p0(X) − ε1/2 log(ε−1)d)) with L1 error at most
Od,m(Nτ 1/5 log(τ−1)dm/2+1). This in turn differs from I(0,∞)(±p0(X)) with
probability at most O(dε1/2d log(ε−1)) by Lemma 2. Hence, we have that

E
[
f 1(

q1
(
X1)

, . . . , qm

(
X1))

f 2(
q1

(
X2)

, . . . , qm

(
X2))]

= O
(
dε1/2d log

(
ε−1)) + Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1)

+E
[
I(0,∞)

(
p

(
X1))

I(−∞,0)

(
p

(
X2))]

= O
(
dε1/2d log

(
ε−1)) + Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1) +GNS2δ(f )

= O
(
dε1/2d log

(
ε−1)) + Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1) + O(d

√
δ),

where the bound on the Gaussian noise sensitivity comes from the main theorem
of [12].

Thus, we are left with the task of bounding the difference between
E[f 1(qi(A

1))f 2(qi(A
2))] and E[f 1(qi(X

1))f 2(qi(X
2))]. We do this with the

replacement method. We let Zi,
 be the random vector whose j th component is
Ai

j if j > 
 and Xi
j otherwise. We note that Zi,0 = Ai and Zi,n = Xi . We proceed

to bound the difference

(17)
∣∣E[

f 1(
qi

(
Z1,j−1))

f 2(
qi

(
Z2,j−1))] −E

[
f 1(

qi

(
Z1,j ))

f 2(
qi

(
Z2,j ))]∣∣.

We note that Zi,j−1 and Zi,j agree in all but the j th coordinate. Thus, in bound-
ing the difference above we may consider all but the j th coordinate fixed. We then
approximate the resulting function of Z1

j ,Z
2
j by it’s Taylor series. In particular, if

we let zi = Zi
j , then for appropriate functions g1 and g2 (depending on the other

coordinates of Z) we need to consider E[g1(z1)g2(z2)]. Taylor expanding about
(0,0), we have that g1(z1)g2(z2) equals a degree 3 polynomial in z1 and z2 plus
an error of at most

z4
1g

′′′′
1 (t1)g2(0)/24 + z3

1z2g
′′′
1 (t2)g

′
2(t3)/6 + z2

1z
2
2g

′′
1 (t4)g

′′
2 (t5)/4

+ z1z
3
2g

′
1(t6)g

′′′
2 (t7)/6 + z4

2g1(0)g′′′′
2 (t8)/24

for some points ti . Since the expectations of the degree 3 polynomials in z1 and z2
are the same in the Bernoulli and Gaussian case, and since the fourth moments are
bounded, we have that the difference in equation (17) is

O
(
E

[∣∣g′′′′
1

∣∣∞ + ∣∣g′′′
1 g′

2
∣∣∞ + ∣∣g′′

1g′′
2
∣∣∞ + ∣∣g′′′

1 g′
2
∣∣∞ + ∣∣g′′′′

2
∣∣∞])

.
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Now the kth derivative of gi can be written as

m∑
i1,...,ik=1

∂kf i

∂qi1 · · · ∂qik

k∏

=1

∂qi
(Z
i)

∂zj

.

On the other hand, by assumption, this partial derivative of f i is at most τ−k/5,
and the product is at most (

max



∂q


∂xj

)k

.

Thus, the total error in equation (17) is at most

O

(
m4τ−4/5E

[
m∑


=1

2∑
i=1

(
∂q
(Z

i)

∂zj

)4
])

.

It is clear that

E

[(
∂q
(Z

i)

∂zj

)2]
= Infj (q
).

Thus, ∂q
(Z
i)

∂zj
is a polynomial in independent Bernoulli and Gaussian random vari-

ables with second moment Infj (q
). Therefore, by Lemma 27 its fourth moment is
Od(Infj (q
)

2). Therefore, we have that the expression in equation (17) is at most

Od,m

(
τ−4/5

∑



Inf2
j (q
)

)
.

Therefore, summing this over j , we get that∣∣E[
f 1(

qi

(
A1))

f 2(
qi

(
A2))] −E

[
f 1(

qi

(
X1))

f 2(
qi

(
X2))]∣∣

is at most

Od,m

(
τ−4/5

∑
j,


Inf2
j (q
)

)
.

On the other hand, for fixed 
 we have that
∑

j Infj (q
) = Od(1) by Corollary 30
and that for each j that Infj (q
) ≤ τ . Therefore,

∑
j Inf2

j (q
) = Od(τ). Thus, we
have that∣∣E[

f 1(
qi

(
A1))

f 2(
qi

(
A2))] −E

[
f 1(

qi

(
X1))

f 2(
qi

(
X2))]∣∣ = Od,m

(
τ 1/5)

.

Recall though that

NSδ ≤ E
[
f 1(

qi

(
A1))

f 2(
qi

(
A2))] + O(ε)
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and that

E
[
f 1(

qi

(
X1))

f 2(
qi

(
X2))]

= O
(
dε1/2d log

(
1 + ε−1)) + Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1) + O(d

√
δ).

Combining these yields our result. �

We are now prepared to prove Theorem 46.

PROOF. Write f = sgn◦p for p a degree-d polynomial. We will reduce to the
case of Proposition 49 by use of Theorem 34. In particular, we may write p as a
decision tree of depth Oc,d(δ−5/6 log(δ−1)O(d)) so that a 1 − δ5/6 fraction of the
leaves are polynomials with either a (δ5/6, δ−c/2,Oc,d(1), δ2d)-regular decompo-
sition or with variance less than δ2 times their squared mean.

Consider A1 and A2 random Bernoulli variables that differ in each coordinate
independently with probability δ. Consider the path on the decision tree above
followed by A1. With probability at least 1 − δ5/6, the resulting leaf satisfies
one of the two cases specified by Theorem 34. Furthermore, with probability at
least 1 − Oc,d(δ1/6 log(δ−1)O(d)), A2 agrees with A1 on all coordinates queried
by the decision tree. Conditioned on this occurrence, the probability that p(A1)

and p(A2) have different signs is equal to the noise sensitivity with parame-
ter δ of the polynomial threshold function defined by the leaf. If the leaf has a
(δ5/6, δ−c/2,Oc,d(1), δ2d)-regular decomposition, this is Oc,d(δ1/6−c) by Propo-
sition 49. If this polynomial has low variance compared to its mean, then both
p(A1) and p(A2) are the same sign as the mean of p with high probability by
Corollary 26. Thus, we have that

NSδ(f ) ≤ δ5/6 + Oc,d

(
δ1/6 log

(
δ−1)O(d)) + Oc,d

(
δ1/6−c) = Oc,d

(
δ1/6−c). �

Theorem 47 now follows immediately by Lemma 8.1 of [11], and Theorem 48
follows from Theorem 47 and Lemma 45.

8. Application to PRGs for PTFs with Bernoulli inputs. In [17], Meka and
Zuckerman developed a relatively small pseudo-random generator of polynomial
threshold functions with Bernoulli inputs. Their generator was defined as follows.
Let h : [n] → [a] be a hash function picked from a 2-independent family. Let
A1, . . . ,Aa : [n] → {−1,1} be chosen independently from a k-independent hash
family. Meka and Zuckerman’s generator is given by Ai = A

h(i)
i . Meka and Zuck-

erman show that for appropriate chosen m = Õ(ε−2) and a = O(ε−O(d)) that this
generator fools all degree-d polynomial threshold functions to within ε.

Meka and Zuckerman’s proof is essentially to think of h as constant and to
use the replacement method to bound the expected errors as the Ai are replaced
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by random Gaussians vectors one at a time. If the polynomial in question is suf-
ficiently regular, then these errors will be small, and thus, the expected value of
the PTF in question over the PRG will be close to the expected value of the PTF
over random Gaussian inputs, and by the invariance principle, the expected value
at random Bernoulli inputs will also be close. Unfortunately, this technique had
been limited by the classical invariance principle and regularity lemma, and thus,
could not produce a PRG of seed length less than ε−O(d). In this section, we will
show how our diffuse invariance principle and regularity lemma can improve this
to produce a PRG of seed length Od(log(n)ε−O(1)).

We begin by producing a pseudorandom generator that works in the case of
regular polynomials, and then reducing the general case to this one.

8.1. The regular case.

PROPOSITION 50. Let p be a degree-d polynomial in n variables with a
(τ,N,m, ε)-regular decomposition. Let a be a positive integer. Let h : [n] → [a] be
picked randomly from a 2-independent hash family and for each h let A1, . . . ,Aa :
[n] → {−1,1} be picked independently from 4d-independent hash families. De-
fine the n-variable function A in terms of h and Ai as Ai = A

h(i)
i . Then if B is a

Bernoulli random variable, |E[sgn(p(A))] −E[sgn(p(B))]| is at most

Od,m

(
Nτ 1/5 log

(
1 + τ−1)dm/2+1) + O

(
dε1/d log

(
ε−1)1/2) + O

(
a−1τ−1)

.

We begin by showing that a similar statement holds for an appropriate choice
of h.

LEMMA 51. Let p and p0 be degree-d polynomials with |p − p0|22,B ≤
ε2 Var(p0) so that p0 has a (τ,N)-diffuse decomposition (g, q1, . . . , qm) with qi

multilinear (1/2 > ε, τ > 0). Suppose furthermore that h : [n] → [a] is a function
so that

a∑
j=1

( ∑

:h(
)=j

∑
i

Inf
(qi)

)2
≤ τ.

Let A1, . . . ,Aa : [n] → {−1,1} be picked independently from a 4d-independent
hash family. Define the random variable A so that its ith coordinate is the ith
coordinate of Ah(i). Then for G a random Gaussian we have that∣∣E[

sgn
(
p(A)

)] −E
[
sgn

(
p0(G)

)]∣∣ ≤ Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1) + O

(
dε1/2d)

.

PROOF. We show that

Pr
(
p(A) ≤ 0

) ≤ Pr
(
p0(G) ≤ 0

) + Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1) + O

(
dε1/2d)

.

The other direction will follow analogously.
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First, we note that by Corollary 26 that with probability 1 − O(ε) that |p(A) −
p0(A)| < ε1/2√Var(p0) ≤ ε1/2|p0|2. Therefore,

Pr
(
p(A) ≤ 0

) ≤ Pr
(
p0(A) ≤ −ε1/2|p0|2) + O(ε).

On the other hand,

Pr
(
p0(G) ≤ −ε1/2|p0|2) = Pr

(
p0(G) ≤ 0

) + O
(
dε1/2d)

by Lemma 2. Hence, it will suffice to prove that

Pr
(
p0(A) ≤ −ε1/2|p0|2)

≤ Pr
(
p0(G) ≤ −ε1/2|p0|2) + Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1)

.

Modifying p0 by ε1/2|p0|2, it suffices to prove under the same hypothesis that

Pr
(
p0(A) ≤ 0

) ≤ Pr
(
p0(G) ≤ 0

) + Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1)

.

The proof is by Proposition 21. Let Bi be the vector of entries Ai
j of Ai for

which h(j) = i. Reordering, the coordinate variables we can make it so that
A = (B1, . . . ,Ba). Similarly, let G = (G1, . . . ,Ga). Note that since the qi are
multilinear and degree at most d , that any degree-3 polynomial in the qi has the
same expectation under the Bi as under the Gi . We may thus apply Proposition 21
with k = 4. We have that∣∣Pr

(
p0(A) ≤ 0

) − Pr
(
p0(G) ≤ 0

)∣∣
(18)

= Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1 + τ−4/5T

)
.

Recall that T above is ∑
i,j

Ti,j ,

where Ti,j is

E
[(

qi

(
B1, . . . ,Bj ,Gj+1, . . . ,Ga) −EY

[
qi

(
B1, . . . ,Bj−1, Y,Gj+1, . . . ,Ga)])4]

+E
[(

qi

(
B1, . . . ,Bj−1,Gj , . . . ,Ga)

−EY

[
qi

(
B1, . . . ,Bj−1, Y,Gj+1, . . . ,Ga)])4]

.

By the 4d-independence of the Bi , this expectation is the same as it would be if
they were fully independent Bernoulli variables. Thus, by Lemma 27, this is at
most

Od

(
E

[(
qi

(
B1, . . . ,Bj ,Gj+1, . . . ,Ga)

−EY

[
qi

(
B1, . . . ,Bj−1, Y,Gj+1, . . . ,Ga)])2])2

+ Od

(
E

[(
qi

(
B1, . . . ,Bj−1,Gj , . . . ,Ga)

−EY

[
qi

(
B1, . . . ,Bj−1, Y,Gj+1, . . . ,Ga)])2])2

.
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Since the terms in the expectations above are at most quadratic in any coordinate,
the expectation is unchanged by replacing Gaussian inputs with Bernoullis, and
hence

Ti,j = Od

(
E

B1,...,B̂j ,...,Ba

[
VarBj

(
qi(B)

)]2)
.

The variance above is clearly the sum of the squares of the coefficients of
the nonconstant terms of the polynomial obtained by substituting the values of

B1, . . . , B̂j , . . . ,Ba into qi . The expectation of this is easily seen to be the sum of
the squares of the coefficients of the monomials in qi containing at least one of the
Bj variables. This in turn is clearly at most

∑

:h(
)=j Inf
(qi). Thus,

T =
m∑

i=1

a∑
j=1

Ti,j

≤
m∑

i=1

a∑
j=1

Od

( ∑

:h(
)=j

Inf
(qi)

)2

≤
a∑

j=1

( ∑

:h(
)=j

∑
i

Inf
(qi)

)2

≤ τ.

Thus, by equation (18),

∣∣Pr
(
p0(A) ≤ 0

) − Pr
(
p0(G) ≤ 0

)∣∣ = Od,m

(
Nτ 1/5 log

(
τ−1)dm/2+1)

,

completing our proof. �

We can now prove Proposition 50.

PROOF. Let q1, . . . , qm be as given in the (τ,N,m, ε)-regular decomposition
of p.

By the above lemma, it suffices to prove that with probability 1 − O(a−1τ−1)

over h that

a∑
j=1

( ∑
i:h(i)=j

∑



Infi (q
)

)2
= Od,m(τ).

On the other hand, this is at most

m
∑



∑
i

Infi (q
)
2 + m

∑



∑
i �=i′:h(i)=h(i′)

Infi (q
) Infi′(q
).
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Since
∑

i Infi (q
) = Od(1) for each 
 and since each Infi (q
) is at most τ , the first
term above is Od,m(τ). The expectation of the latter term above is

m/a
∑



∑
i �=i′

Infi (q
) Infi′(q
) ≤ Om

(
a−1

∑



(∑
i

Infi (q
)

)2)

= Od,m

(
a−1)

.

Our result follows from the Markov bound on this random variable. �

8.2. The general case. We are now prepared to state our conclusions in the
general case.

THEOREM 52. Let A be a random variable defined as follows. Let h : [n] →
[a] be picked randomly from a 2-independent hash family for a = ε−6. Let
A1, . . . ,Aa : [n] → {−1,1} be picked independently from k-independent hash fam-
ilies for k = ε−5 + 4d . Let Ai = A

h(i)
i for 1 ≤ i ≤ n. Note that A can be generated

from a seed of length O(log(n)ε−11). Let B be a random n-dimensional Bernoulli
random variable, and let f be any degree-d polynomial threshold function in n

variables. Then for any c > 0∣∣E[
f (A)

] −E
[
f (B)

]∣∣ = Oc,d

(
ε1−c).

REMARK 6. Note that by changing the values of a and k above we can find a
PRG with seed length Oc,d(log(n)ε−11−c) that fools degree-d PTFs to within ε.

PROOF. Note that the coordinates of A are k-independent (since they are for
each possible value of h). Assume that ε is sufficiently small (since otherwise
there is nothing to prove). By Theorem 34, we know that f can be written as a
decision tree of depth ε−5 so that with probability 1 − O(ε) a randomly chosen
leaf is of the form sgn◦p where either Var(p(B)) < ε2|E[p(B)]| or p has an
(ε5, ε−c/5,Oc,d(1), ε2d)-regular decomposition. For each such decision-tree path,
condition on A and B on having the appropriate values on the appropriate ε−5

coordinates defining this branch of the decision tree. Note that the conditional
distribution on A can be written in the same form as A was originally written only
with the Ai perhaps only being 4d-independent.

There is a probability of 1 − O(ε) that p satisfies one of the two conditions
outlined above. If the former condition holds, both p(A) and p(B) have the same
sign as E[p(B)] with probability 1 − O(ε). In the latter case, by Proposition 50,
we have that for an appropriate p0

E
[
sgn

(
p(A)

)] = E
[
sgn

(
p0(G)

)] + Od,m

(
ε1−c) = E

[
sgn

(
p(B)

)] + Od,m

(
ε1−c)

(since B is also of the form specified in Proposition 50). This completes our proof.
�
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9. Conclusion. We have introduced the notion of a diffuse decomposition of
a polynomial and proved that they exist for reasonable parameters. This in turn has
allowed us to make improvements on known bounds for several major problems
relating to polynomial threshold functions. There are several directions in which
this work might be expanded. Perhaps most importantly is that the theory intro-
duced in this paper may well have applications to other problems of interest in the
field. On the other hand, Theorem 1 still has room for improvement. In particular, I
believe that such a diffuse decomposition should exist with size merely polynomial
in dN/c. Producing such a technical improvement, would allow one to noticeably
improve the d-dependence in all of the applications presented in this paper.

Acknowledgments. I would like the thank the anonymous reviewers for their
useful feedback.
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