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CONDITIONS FOR PERMANENTAL PROCESSES
TO BE UNBOUNDED1

BY MICHAEL B. MARCUS AND JAY ROSEN

City University of New York

An α-permanental process {Xt , t ∈ T } is a stochastic process determined
by a kernel K = {K(s, t), s, t ∈ T }, with the property that for all t1, . . . , tn ∈
T , |I + K(t1, . . . , tn)S|−α is the Laplace transform of (Xt1 , . . . ,Xtn), where
K(t1, . . . , tn) denotes the matrix {K(ti , tj )}ni,j=1 and S is the diagonal matrix

with entries s1, . . . , sn. (Xt1 , . . . ,Xtn) is called a permanental vector.
Under the condition that K is the potential density of a transient Markov

process, (Xt1 , . . . ,Xtn) is represented as a random mixture of n-dimensional
random variables with components that are independent gamma random vari-
ables. This representation leads to a Sudakov-type inequality for the sup-
norm of (Xt1 , . . . ,Xtn) that is used to obtain sufficient conditions for a large
class of permanental processes to be unbounded almost surely. These results
are used to obtain conditions for permanental processes associated with cer-
tain Lévy processes to be unbounded.

Because K is the potential density of a transient Markov process, for all
t1, . . . , tn ∈ T , A(t1, . . . , tn) := (K(t1, . . . , tn))−1 are M-matrices. The re-
sults in this paper are obtained by working with these M-matrices.

1. Introduction. An Rn valued α-permanental random variable X = (X1,

. . . ,Xn) is a random variable with Laplace transform

(1.1) E
(
e−∑n

i=1 siXi
) = 1

|I + KS|α
for some n × n matrix K and diagonal matrix S with entries si , 1 ≤ i ≤ n, and
α > 0. Permanental random variables were introduced by Vere-Jones, [13], who
referred to them as random variables with multivariate gamma distributions. (Ac-
tually he considered the moment generating function.)

An α-permanental process {Xt, t ∈ T } is a stochastic process which has finite
dimensional distributions that are α-permanental vectors. The permanental process
is determined by a kernel {K(s, t), s, t ∈ T }, with the property that for all t1, . . . , tn
in T , {K(ti, tj ), i, j ∈ [0, n]} determines an α-permanental random variable by
(1.1). (Sometimes we refer to these processes simply as permanental processes.)
Vere-Jones briefly considers permanental processes in [13]. Note that when (1.1)
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holds for a kernel K(s, t) for all α > 0, the family of permanental processes ob-
tained are infinitely divisible. The permanental processes considered in this paper
have this property.

Local times of Markov processes with symmetric potential densities are re-
lated by isomorphism theorems to the squares of Gaussian processes. Note that
when K is symmetric and positive definite and α = 1/2, (η2

1/2, . . . , η2
n/2), where

(η1, . . . , ηn) is an n-dimensional normal random variable with mean zero and co-
variance matrix K , is a 1/2-permanental process. When α �= 1/2 or K is not sym-
metric, the isomorphism theorems can be generalized, by replacing the squares of
the Gaussian processes by other permanental processes, so that they also hold for
Markov processes with potential densities that are not symmetric. To apply these
isomorphism theorems it is important to know sample path properties of perma-
nental processes.

In this paper, we give a concrete representation of permanental vectors that is
used to obtain a Sudakov type inequality that gives lower bounds for permanen-
tal processes that only requires that the inverses of the matrices {K(ti, tj ), i, j ∈
[0, n]} are M-matrices. It does not require that the matrices are symmetric. This
work supplements [10] in which we give sufficient conditions for the continuity of
permanental processes.

Since the definition of permanental processes requires that their finite dimen-
sional distributions are permanental random variables, a fundamental question is:
For which matrices K do there exist random variables X satisfying (1.1)? Vere-
Jones answers this question but with criteria that are, in general, very difficult to
verify. On the other hand, as we just pointed out, when K is symmetric and pos-
itive definite and α = 1/2 then X = (η2

1/2, . . . , η2
n/2), where (η1, . . . , ηn) is an

n-dimensional normal random variable with mean zero and covariance matrix K .
There are other cases in which it is easy to see that the right-hand side of (1.1)

is the Laplace transform of an Rn valued random variable. Recall that a gamma
random variable is one with probability density function

(1.2) f (u, v;x) = vuxu−1e−vx

�(u)
for x ≥ 0 and u, v > 0,

and equal to 0 for x ≤ 0, where �(u) = ∫ ∞
0 xu−1e−x dx is the gamma function.

The parameter u is called the shape of the gamma distribution and the parameter v

is called the scale of the gamma distribution.
In this paper, we describe a large class of infinitely divisible permanental ran-

dom variables. We use ξu,v to denote a random variable with probability density
function f (u, v;x). The Laplace transform of ξu,v is

(1.3)
∫ ∞

0

vuxu−1e−(v+s)x

�(u)
dx = 1

(1 + s
v
)u

= vu

(v + s)u
.
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Therefore, if K is a diagonal matrix with entries 1/vi , (1.1) is the Laplace trans-
form of (ξα,v1, . . . , ξα,vn), in which all the components are independent. Conse-
quently, when the right-hand side of (1.1) is the Laplace transform of an Rn val-
ued random variable X, it is reasonable to say that X has an n-dimensional gamma
distribution.

We assume that |K| > 0. Therefore, A = K−1 exists and we can also define X

by

(1.4) E
(
e−∑n

i=1 siXi
) = |A|α

|A + S|α .

It turns out that it is simpler to describe the random variables X that are defined by
matrices K as in (1.1), by focusing on A, and describing the random variables X

that are defined by matrices A as in (1.4).
The results in this paper all depend on a concrete representation of permanental

random variables which we can obtain when the matrix A in (1.4) is a nonsingular
M-matrix.

Let C = {ci,j }1≤i,j≤n be an n × n matrix. We call C a positive matrix and write
C ≥ 0 if ci,j ≥ 0 for all i, j .

The matrix A is said to be a nonsingular M-matrix if:

(1) ai,j ≤ 0 for all i �= j .
(2) A is nonsingular and A−1 ≥ 0.

Theorem 2.1 gives a representation of α permanental vectors. It is rather techni-
cal and requires some preparation so we hold off presenting it until Section 2. The
following consequence of Theorem 2.1 is our key to obtaining conditions for the
paths of permanental processes to be unbounded.

THEOREM 1.1. Let X = (X1, . . . ,Xn) be an α-permanental vector with
nonsingular kernel K . Assume that A = K−1 is an M-matrix with diagonal
entries (a1, . . . , an). Then there exists a coupling between X and an n-tuple
(ξ

(1)
α,1, . . . , ξ

(n)
α,1) of independent identically distributed copies of ξα,1 such that

(1.5) X ≥ (
a−1

1 ξ
(1)
α,1, . . . , a

−1
n ξ

(n)
α,1

)
a.s.

This immediately implies the next theorem.

THEOREM 1.2. Let X be as in Theorem 1.1. Then if f is an increasing func-
tion on Rn+
(1.6) E

(
f (X)

) ≥ E
(
f

(
a−1

1 ξ
(1)
α,1, . . . , a

−1
n ξ

(n)
α,1

))
.

Equivalently,

(1.7) Ef
(
(a1X1, . . . , anXn)

) ≥ E
(
f

(
ξ

(1)
α,1, . . . , ξ

(n)
α,1

))
.
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We call (1.6) the permanental inequality. We explain in Section 4 that it is a
generalization, in a certain sense, of the Sudakov inequality.

It is shown in [5] that when {u(s, t), s, t ∈ T } is the potential density of a tran-
sient Markov process with state space T , then for any α > 0, there exists an α-
permanental process with kernel {K(s, t), s, t ∈ T } = {u(s, t), s, t ∈ T }. In this
case, we refer to the permanental process as an associated α-permanental process.
(It is associated with the transient Markov process.) We use this terminology in
what follows.

We can use Theorem 1.2 to give conditions for a permanental process to be
unbounded in terms of the diagonals of the M-matrices of its finite dimensional
distributions. Let X = {Xt, t ∈ T }, T a countable set, be an α-permanental process
with kernel {u(s, t), s, t ∈ T }. Since, in Theorem 1.2, we require that A is an M-
matrix, the α-permanental processes that we can consider must have a kernel with
the property that for all (t1, . . . , tn) in T , the matrix with elements {u(ti, tj )}ni,j=1 is
invertible and its inverse A(t1, . . . , tn) is a nonsingular M-matrix. This is the case
if (and only if) X is an associated α-permanental process. (This result is part of [9],
Theorem 13.1.2. This theorem it is stated for symmetric kernels but symmetry is
not used in the proof. For the convenience of the reader, in Section A.1, we repeat
the proof of the portion of [9], Theorem 13.1.2, that we use in this paper.)

Suppose that X is an associated α-permanental process. Let ai(t1, . . . , tn), i =
1, . . . , n, denote the diagonal elements of A(t1, . . . , tn). We use Theorem 1.2 in
the following lemma which is proved in Section 3. It is a useful generalization of
Theorem 1.2 that enables us to only consider a fraction of the diagonal elements
of A.

LEMMA 1.1. Let a∗
i (t1, . . . , tn) denote a nondecreasing rearrangement of

ai(t1, . . . , tn). For any integer p ≥ 1, let

(1.8) ψ∗[n/p] = inf
(t1,...,tn)∈T n

a∗[n/p](t1, . . . , tn).

Then

(1.9) P
(
sup
t∈T

Xt ≥ λ/ψ∗[n/p]
)

≥ P
(

max
1≤i≤[n/p] ξ

(i)
α,1 ≥ λ

)
.

Therefore, if

(1.10) lim sup
n→∞

P
(

max
1≤i≤[n/p] ξ

(i)
α,1 ≥ λn

)
= 1

we have

(1.11) P
(
sup
t∈T

Xt ≥ λn/ψ
∗[n/p], i.o.

)
= 1.

In Section 3, we show that (1.10) holds with λn = logn. Therefore, we can use
(1.11) to obtain the following sufficient condition for permanental processes to be
unbounded.
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THEOREM 1.3. Let {Xt, t ∈ T } be an associated α-permanental process. If

(1.12) lim sup
n→∞

logn

ψ∗[n/p]
= ∞,

then supt∈T Xt = ∞ almost surely.

The next corollary is an immediate consequence of Theorem 1.3.

COROLLARY 1.1. Let d := ds,t be a function on T × T . Set

(1.13) d∗
n(t1, . . . , tn) = inf

1≤i,j≤n,i �=j
dti ,tj .

Suppose that a fraction of the entries

(1.14) ai(t1, . . . , tn) ≤ C′

(d∗
n)2(t1. . . . , tn)

for some constant C′. Then

(1.15) lim sup
n→∞

(
sup

(t1,...,tn)

(
d∗
n

)2
(t1, . . . , tn)

)
logn = ∞

implies that supt∈T Xt = ∞ almost surely.

The condition in (1.14) is not very useful because, in general one does not know
the inverse of the matrices {u(ti, tj }ni,j=1. In Lemma 5.2, we give conditions on the
kernel u(x, y) so that (1.14) holds with the function

(1.16) σs,t = (
u(s, s) + u(t, t) − (

u(s, t) + u(t, s)
))1/2

replacing ds,t . This enables us to obtain the following theorem.

THEOREM 1.4. Let u be the potential density of a transient Markov process
in R1 and assume that u(s, s) is constant for all |s| ≤ ε, for some ε > 0. Set

(1.17) σ 2
s,t = 2u(0,0) − u(s, t) − u(t, s)

and assume that

(1.18)
∣∣u(s, t) − u(t, s)

∣∣ ≤ Cσ 2
s,t , C < 1,

for all |s|, |t | ≤ ε. Then

(1.19) lim sup
n→∞

(
sup

(t1,...,tn)

∀|ti |≤ε

(
σ ∗

n

)2
(t1, . . . , tn)

)
logn = ∞

implies that the α-permanental process with kernel u is unbounded almost surely.
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It follows from Lemma 5.4 and that fact that u(s, s) is constant for all |s| ≤ ε,
for some ε > 0, that (1.18) always holds for C = 1.

In Theorem 5.1, we remove the hypothesis that u(s, s) is constant for all |s|
sufficiently small. We do not consider this here because the result is not as easy to
state as Theorem 1.4.

If u(s, t) is symmetric and positive definite it is the covariance of a Gaussian
process. Let {X̃t , t ∈ R1} be a mean zero Gaussian process with covariance u(s, t).
In this case,

(1.20) σ 2
s,t = E(X̃t − X̃s)

2 = u(s, s) + u(t, t) − 2u(s, t).

(In particular, this shows that σs,t is a metric on R1.)
Since {X̃t , t ∈ R1} is a mean zero Gaussian process, we can use Slepian’s lemma

to show that (1.19) implies that supt∈R1 X̃t = ∞ almost surely. This also follows
from Theorem 1.4, when EX̃2

t is constant, since in this case the left-hand side
of (1.18) is equal to 0. (What Theorem 1.4 shows is that the 1/2-permanental
process supt∈R1 X̃2

t = ∞ almost surely. Of course, we also require that the inverse
of {u(xj , xj )}ni,j=1 is an M-matrix for all xi1, . . . , xin ∈ R1.)

Even when u(s, t) is not symmetric, u(s, t) + u(t, s) is symmetric, and if it is
also positive definite it is the covariance of a Gaussian process. In this case, we can
still associate a permanental process with a Gaussian process. We plan to take this
up in a subsequent paper.

We can use Theorem 1.4 to study the boundedness of permanental processes
with kernels that are the potential densities of transient Lévy processes in R1.
Let Y = {Yt , t ∈ R+} be a Lévy process and consider the transient Lévy process
Y = {Y t , t ∈ R+} that is Y killed at ξ1,1/β , an independent exponential time with
mean β > 0. If uβ(x, y) is the β-potential density of Y it is the zero potential of Y ,
and thus is also the kernel of a permanental process. In this example, uβ(x, y) =
uβ(0, y − x) =: uβ(y − x).

As we have mentioned above, since uβ(x, y) is the 0-potential density of a
transient Lévy process, for every finite collection x1, . . . , xn ∈ R1, the n×n matrix
U = {u(xi, xj )}1≤i,j≤n is invertible and its inverse is a nonsingular M-matrix. We
use Theorem 1.4 to find conditions under which the α-permanental process with
kernel uβ is unbounded.

We write the characteristic function of Y as

(1.21) EeiλYt = e−tψ(λ).

When uβ(y − x) is not symmetric, ψ(λ) is complex. Set

(1.22) Rβ(λ) =Re
(
1/

(
β + ψ(λ)

))
and Iβ(λ) = Im

(
1/

(
β + ψ(λ)

))
.

LEMMA 1.2 ([7], Lemma 5.2). For β > 0, assume that Rβ(λ) ∈ L1(R+).
Then the the β-potential density of X is

(1.23) uβ(z) = Rβ(z) + Hβ(z) and uβ(−z) = Rβ(z) − Hβ(z),
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where

(1.24) Rβ(z) = 1

π

∫ ∞
0

cos(λz)Rβ(λ) dλ

and

(1.25) Hβ(z) = 1

π

∫ ∞
0

sin(λz)Iβ(λ) dλ.

As a special case of (1.17), we consider the metric

(1.26)

σβ(z) = (
2uβ(0) − uβ(z) − uβ(−z)

)1/2

=
(

2

π

∫ ∞
0

(
1 − cos(λz)

)
Rβ(λ) dλ

)1/2
.

(Note that because Rβ(λ) is positive and in L1(R+), �(x, y) = Rβ(y − x) is the
covariance function of a stationary Gaussian process, say {G(z), z ∈ R1}. There-
fore, σ 2(z) = E(G(z) − G(0))2.)

The following condition for the α-permanental process with kernel uβ to be
unbounded is an immediate application of Theorem 1.4.

THEOREM 1.5. Suppose that Rβ(λ) ∈ L1(R+) and

(1.27)
∣∣Hβ(z)

∣∣ ≤ Cσ 2
β (z) for some C < 1/2

and all |z| sufficiently small. Suppose, in addition, that σ 2
β (z) ≥ f (|z|) for some

increasing function f for all |z| sufficiently small. Then

(1.28) lim sup
n→∞

f (1/n) logn = ∞

implies that the α-permanental process with kernel uβ is unbounded almost surely.

THEOREM 1.6. Let X = {X(t), t ∈ R+} be the α-permanental process with a
kernel that is the the β potential density of a Lévy process with Lévy measure

(1.29) ν(dx) = (
x−2g

(
1/|x|)(pIx>0 + qIx<0)

)
dx, p, q > 0,p + q = 1,

in which g is a positive, quasi-monotonic slowly varying function at infinity. Sup-
pose p �= q and

(1.30) lim
n→∞

∫ n

1

g(s)

s
ds = ∞.

Then X is unbounded almost surely if∫ n

1

g(s)

s
ds = o(logn)(1.31)

as n → ∞.
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If p = q and

(1.32) lim
n→∞

∫ ∞
n

1

sg(s)
ds = 0,

then X is unbounded almost surely if

(1.33)
(∫ ∞

n

1

sg(s)
ds

)−1
= o(logn).

It is interesting to note that the β potential density determined by (1.29) has the
property that for z > 0

(1.34)
uβ(z) ∼ uβ(0) − σ 2(z)

2

(
1 − |p − q|),

uβ(−z) ∼ uβ(0) − σ 2(z)

2

(
1 + |p − q|)

as z → 0. Here, we write f ∼ g as z → 0 if limz→0 f (z)/g(z) = 1, with a simi-
lar meaning for f ∼ g as z → ∞. The derivation of (1.34) is given in Section 6
following the proof of Theorem 1.6.

EXAMPLE 1.1. We consider Barlow’s example ([1], page 1393), slightly
modified, of a Lévy process with Lévy measure given by (1.29) with g(y) replaced
by gγ δ(y) where

(1.35) gγ δ(y) = (logy)γ (log logy)δ1{y>ε}

with γ > −1. Let Yγ δ be the Lévy process determined by this Lévy measure and
denote its β potential density by uβ . It follows from (1.31) that when p �= q the
permanental process with kernel uβ is unbounded if γ < 0 or γ = 0 and δ < 0.

When p = q ,

(1.36)
(∫ ∞

n

1

s(log s)γ (log log s)δ
ds

)−1
∼ C(logn)γ−1(log logn)δ,

and we now require that γ > 1. In this case the permanental process with kernel
uβ is unbounded if γ < 2 or γ = 2 and δ < 0.

Let uβ(s, t) = uβ(t − s) be the β-potential of a Lévy process. Using Bar-
low’s [1] necessary and sufficient condition for the boundedness of local times
of Lévy processes and an isomorphism theorem of Eisenbaum and Kaspi [4] that
relates local times and permanental processes, we can show that the associated
α-permanental process is unbounded almost surely if the Gaussian process with
covariance γ (s, t) = uβ(s − t) + uβ(t − s)) is unbounded almost surely. (See the
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comment following Lemma 1.2.) For the processes considered in Example 1.1,
this occurs if and only if

(1.37)
∫ ∞

1

(
∫ ∞
λ Rβ(u) du)1/2

λ(logλ)1/2 dλ = ∞.

Consequently, when p �= q the permanental process with kernel uβ in Example 1.1
is unbounded almost surely if γ < 0 or γ = 0 and δ ≤ 2 and bounded almost surely
when γ = 0 and δ > 2. When p = q , it is unbounded almost surely if γ < 2 or
γ = 2 and δ ≤ 2 and bounded almost surely when γ = 2 and δ > 2. This gives a
little more than we obtain in Example 1.1.

Even though the results in Theorems 1.5 and 1.6 are not best possible, the theo-
rems are interesting for at least two reasons. The first is that their proofs are much
simpler than the proof in [1]. The second is that the proofs involving [1] and [4]
are indirect and give no insight into why permanental processes have sample path
properties similar to the squares of Gaussian processes. Our proofs of Theorems
1.5 and 1.6 are classical and relatively simple and show that permanental processes
have sample path properties similar to the squares of Gaussian processes because
the permanental inequality is a generalization, in many respects, of the Sudakov
inequality.

With some restrictions and a simplification, and slight weakening, of (1.27) we
get a corollary of Theorem 1.5 that is easier to use and imposes weaker conditions
on the behavior of |Iβ(λ)| and Rβ(λ) as λ → ∞.

COROLLARY 1.2. Suppose that Rβ(λ) ∈ L1(R+) and that |Iβ(λ)| and Rβ(λ)

are asymptotic to nonincreasing functions as λ → ∞ and

(1.38) |z|
∫ π/|z|

0
λ
∣∣Iβ(λ)

∣∣dλ ≤ C

2

∫ ∞
π/(2|z|)

Rβ(λ) dλ

for some C < 1, for all |z| sufficiently small. Then

(1.39) lim sup
n→∞

(∫ ∞
n

Rβ(λ) dλ

)
logn = ∞

implies that the α-permanental process with kernel uβ is unbounded almost surely.

The proof of Theorem 1.1 is given in Section 2 and that of Theorem 1.3 in
Section 3. In Section 4, we examine the implications of (1.6), the permanental in-
equality and explain why we refer to it as a Sudakov-type inequality. Theorem 1.4
is proved in Section 5. In Section 6, we prove Theorem 1.5, Corollary 1.2 and fill
in the details for Example 1.1.
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2. Representation of permanental processes. For any n × n matrix M , we
define the α-permanent

(2.1) |M|α =
∣∣∣∣∣∣
m1,1 · · · m1,n

· · · · · ·
mn,1 · · · mn,n

∣∣∣∣∣∣
α

= ∑
π

αc(π)m1,π(1)m2,π(1) · · ·mn,π(n).

Here, the sum runs over all permutations π on [1, n] and c(π) is the number of
cycles in π . We make the trivial observation that if all entries of M are nonnegative,
then |M|α ≥ 0.

We use boldface, such as x, to denote vectors. Let k = (k1, . . . , kn) ∈ N
n and

|k| = ∑n
l=1 kl . For 1 ≤ p ≤ |k|, set ip = j , where

(2.2)
j−1∑
l=1

kl < p ≤
j∑

l=1

kl.

For any n × n matrix C = {ci,j }1≤i,j≤n we define

(2.3) C(k) =

⎡⎢⎢⎢⎣
ci1,i1 ci1,i2 · · · ci1,i|k|
ci2,i1 ci2,i2 · · · ci2,i|k|
· · · · · ·

ci|k|,i1 ci|k|,i2 · · · ci|k|,i|k|

⎤⎥⎥⎥⎦ ,

and C(0) = 1. For example, if n = 3 and k = (0,2,3), then |k| = 5 and i1 = i2 = 2
and i3 = i4 = i5 = 3:

(2.4) C(0,2,3) =

⎡⎢⎢⎢⎢⎢⎣
c2,2 c2,2 c2,3 c2,3 c2,3
c2,2 c2,2 c2,3 c2,3 c2,3
c3,2 c3,2 c3,3 c3,3 c3,3
c3,2 c3,2 c3,3 c3,3 c3,3
c3,2 c3,2 c3,3 c3,3 c3,3

⎤⎥⎥⎥⎥⎥⎦ .

LEMMA 2.1. Let A be an n × n nonsingular M-matrix with diagonal entries
a1, . . . , an and S be an n × n diagonal matrix with entries (s1, . . . , sn) and set

(2.5) A = D − B,

where D = diag(a1, . . . , an) and all the elements of B are nonnegative (so that all
the diagonal elements of B are equal to zero). Then

(2.6)

|A|α
|A + S|α = |A|α ∑

k=(k1,...,kn)

|B(k)|α
k1! · · ·kn!

1

(a1 + s1)α+k1 · · · (an + sn)α+kn

= |A|α∏n
i=1 aα

i

∑
k=(k1,...,kn)

|B(k)|α∏n
i=1 a

ki

i ki !
n∏

i=1

(
ai

ai + si

)α+ki

,

where the sum is over all k = (k1, . . . , kn) ∈ N
n. (The series converges for all

s1, . . . , sn ∈ Rn+ for all α > 0.)
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PROOF. For B as given in (2.5), consider

(2.7) H(z1, . . . , zn) = |I − ZB|−α = ∑
k=(k1,...,kn)

(
n∏

i=1

z
ki

i

ki !
)∣∣B(k)

∣∣
α,

where Z is a diagonal matrix with entries z1, . . . , zn and the second equality is
given in [13], (6). By [12], Theorem, page 120, the series (2.7) converges for
(z1, . . . , zn), when the modulus of the maximum eigenvalue of ZB is less than 1.

We write

(2.8) |A + S| = ∣∣(D + S) − B
∣∣ = ∣∣(D + S)

∣∣∣∣I − (D + S)−1B
∣∣,

so that

(2.9) |A + S|−α = ∑
k=(k1,...,kn)

|B(k)|α
k1! · · ·kn!

1

(a1 + s1)α+k1 · · · (an + sn)α+kn
.

By the statements in the first paragraph of this proof, this series converges when
the modulus of the maximum eigenvalue of (D + S)−1B is less than 1.

We complete the proof by referring to several results in the valuable book [2].
Note that the definition of M-matrix in [2], page 133, is different from the one that
we give. However, it follows by [2], N38, page 137, that they are equivalent. We
now write A + S = D + S − B to see by [2], Chapter 7, Theorem 5.2, that the
maximum eigenvalue of (D +S)−1B is less than 1 if and only if (A + S)−1B ≥ 0.
Since A is a nonsingular M-matrix, we have B ≥ 0 and by [2], Chapter 6, Theo-
rem 2.4, (A + S)−1 ≥ 0 as well. This completes the proof of this lemma. �

In the next theorem, we give an explicit description of random variables with
Laplace transforms given in (2.6).

THEOREM 2.1. Let A be an n × n nonsingular M-matrix as in Lemma 2.1.
Set Z = (Z1, . . . ,Zn) with

(2.10) P
(
Z = (k1, . . . , kn)

) = |A|α∏n
i=1 aα

i

|B(k)|α∏n
i=1 a

ki

i ki !
,

and X = (X1, . . . ,Xn) with

(2.11)

X = (
ξ

(Z,1)
α+Z1,a1

, . . . , ξ
(Z,n)
α+Zn,an

)
= ∑

k=(k1,...,kn)

1k1,...,kn(Z)
(
ξ

(k,1)
α+k1,a1

, . . . , ξ
(k,n)
α+kn,an

)
,

where Z and all the gamma distributed random variables, ξ
(k,i)·,· , k ∈ N

n, i ∈
1, . . . , n are independent and {ai}ni=1 are the diagonal elements of A. Then

(2.12) E
(
e−∑k

i=1 siXi
) = |A|α

|A + S|α .
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PROOF. Taking S = 0 in (2.6), we see that

(2.13)
|A|α∏n
i=1 aα

i

∑
k=(k1,...,kn)

|B(k)|α∏n
i=1 a

ki

i ki !
= 1.

Therefore, we can define an N
n valued random variable Z = (Z1, . . . ,Zn) with

(2.14) P
(
Z = (k1, . . . , kn)

) = |A|α∏n
i=1 aα

i

|B(k)|α∏n
i=1 a

ki

i ki !
.

We write (2.6) in the form

(2.15)
|A|α

|A + S|α = ∑
k=(k1,...,kn)

P
(
Z = (k1, . . . , kj )

) n∏
i=1

(
ai

ai + si

)α+ki

.

This is the Laplace transform of the Rn+ valued random variable

(2.16)

X = (
ξ

(Z,1)
α+Z1,a1

, . . . , ξ
(Z,n)
α+Zn,an

)
= ∑

k=(k1,...,kn)

Ik1,...,kn(Z)
(
ξ

(k,1)
α+k1,a1

, . . . , ξ
(k,n)
α+kn,an

)
,

where all the random variables are independent. �

PROOF OF THEOREM 1.1. Theorem 1.1 follows from (2.11) and the facts that

(2.17) ξα+ki ,ai

law= ξα,ai
+ ξki ,ai

and

(2.18) ξα,ai

law= a−1
i ξα,1,

which allow us to write

(2.19)
X = (

ξ
(Z,1)
α+Z1,a1

, . . . , ξ
(Z,n)
α+Zn,an

)
law= (

a−1
1 ξ

(1)
α,1, . . . , a

−1
n ξ

(n)
α,1

) + (
ξ

(Z,1)
Z1,a1

, . . . , ξ
(Z,n)
Zn,an

)
,

where ξ
(i)
α,1 are i.i.d. copies of ξα,1 and we set (ξ ·

0,a1
, . . . , ξ ·

0,an
) = 0. �

We get the following immediate corollary of Theorem 2.1.

COROLLARY 2.1. Let A be an n × n nonsingular M-matrix. Then for each
α > 0, (1.4) defines an n-dimensional infinitely divisible random variable.

Actually Eisenbaum and Kaspi [5], Lemma 4.2, show that the condition in
Corollary 2.1 is both necessary and sufficient. They do this by extending the proof
of this result by Bapat, Griffiths and Milne in the case when K is symmetric (see
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[5] for references) to the case when K is not symmetric. The proof of sufficiency
in Corollary 2.1 is completely different from their proof.

It follows from (2.10) and (2.11) that, for measurable functions f on Rn+,

(2.20)

E
(
f (X)

)
= |A|α∏n

i=1 aα
i

∑
k=(k1,...,kn)

|B(k)|α∏n
i=1 a

ki

i ki !
E

(
f

(
ξ

(k,1)
α+k1,a1

, . . . , ξ
(k,n)
α+kn,an

))
.

Obviously, (2.20) gives us more than (1.6). Even though it is difficult to compute
B(k) for all k it is not difficult to obtain it for some k and to improve (1.6).

All the results in this paper follow from the representation in Lemma 2.1. A dif-
ferent form of this representation, under different hypotheses, is given in [8]. It
seems to be more useful than Lemma 2.1 in obtaining explicit probability den-
sity functions of low dimensional multivariate gamma distributions. Lemma 2.1
is more useful in describing multivariate gamma distributions in high dimensions.
(Multivariate gamma random variables and α-permanental random variables are
synonyms.)

3. Proof of Theorem 1.3. The next three lemmas are used in the proof of
Theorem 1.3.

LEMMA 3.1. For λ > 2(u − 1) ∨ 0 and all u, v > 0,

(3.1) P(ξu,v ≥ λ/v) ≤ 2λu−1e−λ

�(u)

and for λ ≥ 2 and all u, v > 0

(3.2)
2λu−1e−λ

3�(u)
≤ P(ξu,v ≥ λ/v).

PROOF. Using the fact that P(ξu,v ≥ λ/v) = P(ξu,1 ≥ λ), it suffices to get the
bounds in (3.1) for P(ξu,1 ≥ λ). By an integration by parts,

(3.3)
∫ ∞
λ

xu−1e−x dx = λu−1e−λ + (u − 1)

∫ ∞
λ

xu−2e−x dx.

The upper bound in (3.1) follows immediately if u ≤ 1. If u > 1 and λ > 2(u − 1),

(3.4)
(u − 1)

∫ ∞
λ

xu−2e−x dx ≤ λ

2

∫ ∞
λ

xu−2e−x dx

≤ 1

2

∫ ∞
λ

xu−1e−x dx.

Using this in (3.3), we see that

(3.5)
∫ ∞
λ

xu−1e−x dx ≤ 2λu−1e−λ.

This gives the upper bound in (3.1).
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To obtain the lower bound, we first note that for u ≥ 1 it follows from (3.3) that
for any λ > 0 we have

(3.6)
∫ ∞
λ

xu−1e−x dx ≥ λu−1e−λ.

Similarly, for u < 1, we use (3.3) to see that for any λ > 0

(3.7)
∫ ∞
λ

xu−1e−x dx = λu−1e−λ − (1 − u)

∫ ∞
λ

xu−2e−x dx,

and since, for λ > 2(1 − u)

(3.8)
(1 − u)

∫ ∞
λ

xu−2e−x dx ≤ λ

2

∫ ∞
λ

xu−2e−x dx

≤ 1

2

∫ ∞
λ

xu−1e−x dx,

we get

(3.9)
∫ ∞
λ

xu−1e−x dx ≥ 2

3
λu−1e−λ.

Combining (3.6) and (3.9) we get the lower bound in (3.1). �

LEMMA 3.2. Let {ξ (i)
u,v}ni=1 be independent. Then for all ε, q > 0, n ≥ 10 and

(nε/(q�(u) logn)) ≥ 3/2,

(3.10) P

(
max

1≤i≤n
ξ (i)
u,v ≥ (1 − ε) logn

v

)
≥ 1 − e−q .

PROOF. We have

P

(
max

1≤i≤n
ξ (i)
u,v >

(1 − ε) logn

v

)
= 1 − P

(
max

1≤i≤n
ξ (i)
u,v ≤ (1 − ε) logn

v

)
(3.11)

= 1 −
n∏

i=1

(
1 − P

(
ξ (i)
u,v >

(1 − ε) logn

v

))
.

By (3.2), for nε/(q�(u) logn) ≥ 3/2,

(3.12) P

(
ξ (i)
u,v >

(1 − ε) logn

v

)
≥ 2e−(1−ε) logn

3�(u)(1 − ε) logn
≥ q

n
.

Using this and (3.11), we see that

P

(
max

1≤i≤n
ξ (i)
u,v >

(1 − ε) logn

v

)
≥ 1 −

(
1 − q

n

)n

> 1 − e−q . �

The next lemma follows immediately from (1.6). It is useful because in applying
the permanental inequality sometimes we do not want to consider all the diagonal
elements of the nonsingular M-matrix A. We use it in the proof of Lemma 1.1
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For a sequence {vi}ki=1, we define {v∗
i }ki=1 to be the nondecreasing rearrange-

ment of {vi}ki=1.

LEMMA 3.3. Let X = (X1. . . . ,Xn) be an Rn valued random variable defined
by (1.4) with an n × n nonsingular M-matrix A with diagonal elements ai , 1 ≤ n.
Then for all p ≥ 1,

(3.13) P
(

max
1≤i≤n

Xi ≥ λ
)

≥ P
((

a∗[n/p]
)−1 max

1≤i≤[n/p] ξ
(i)
α,1 ≥ λ

)
,

where {ξ (i)
α,1, 1 ≤ i ≤ [n/p]} are independent.

PROOF. Using (1.6), we see that

P
(

max
1≤i≤n

Xi ≥ λ
)

≥ P
(

max
1≤i≤n

a−1
i ξ

(i)
α,1 ≥ λ

)
= P

(
max

1≤i≤n

(
a∗)−1

i ξ
(i)
α,1 ≥ λ

)
(3.14)

≥ P
(

max
1≤i≤[n/p]

(
a∗
i

)−1
ξ

(i)
α,1 ≥ λ

)
≥ P

((
a∗[n/p]

)−1 max
1≤i≤[n/p] ξ

(i)
α,1 ≥ λ

)
. �

PROOF OF LEMMA 1.1. By Lemma 3.3, for any sequence t1, . . . , tn ∈ T ,

P
(
sup
t∈T

Xt ≥ λ
)

≥ P
(

max
1≤i≤n

Xti ≥ λ
)

≥ P
((

a∗[n/p](t1, . . . , tn)
)−1 max

1≤i≤[n/p] ξ
(i)
α,1 ≥ λ

)
(3.15)

≥ P
(

max
1≤i≤[n/p] ξ

(i)
α,1 ≥ a∗[n/p](t1, . . . , tn)λ

)
.

Therefore, by continuity of the cumulative distribution function
P(max1≤i≤[n/p] ξ (i)

α,1 ≤ s), we have

(3.16) P
(
sup
t∈T

Xt ≥ λ
)

≥ P
(

max
1≤i≤[n/p] ξ

(i)
α,1 ≥ inf

(t1,...,tn)∈T n
a∗[n/p](t1, . . . , tn)λ

)
,

which is (1.9). �

PROOF OF THEOREM 1.3. By (1.10), all we need to do is to show that

(3.17) lim
n→∞P

(
max

1≤i≤[n/p] ξ
(i)
α,1 ≥ logn

)
= 1.

This follows immediately from Lemma 3.2. �
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4. Permanental inequality. We examine the implications of (1.6) and explain
why we refer to it as a Sudakov-type inequality.

It follows from (1.6), the permanental inequality that

(4.1) E
(

max
1≤i≤n

(2Xi)
1/2

)
≥ E

(
max

1≤i≤n

(
2ξ

(i)
α,1/ai

)1/2
)
.

If K = A−1 is symmetric and positive definite and α = 1/2, then X = (η2
1/2, . . . ,

η2
n/2), where (η1, . . . , ηn) is a Gaussian vector with covariance {Ki,j }. In this case

by (4.1),

(4.2) E
(

max
1≤i≤n

|ηi | ≥ λ
)

≥ √
2E

(
max

1≤i≤n

(
ξ

(i)
α,1/ai

)1/2
)
.

Note that (ξ
(i)
α,1)

1/2, 1 ≤ i ≤ n, are the absolute values of a sequence of indepen-
dent normal random variable with variance 1/2. Therefore, we can rewrite (4.2)
as

(4.3) E
(

max
1≤i≤n

|ηi |
)

≥ √
2E

(
max

1≤i≤n
|ζi |/

√
2ai

)
≥

(
max

1≤i≤n

√
ai

)−1
E

(
max

1≤i≤n
|ζi |

)
,

where ζi , 1 ≤ i ≤ n, are independent normal random variables with mean zero and
variance 1. This is what we get from the permanental inequality for a mean zero
normal random vector (η1, . . . , ηn) with covariance matrix K .

By Fernique’s comparison principle [9], Lemma 5.5.3,

(4.4) E
(

max
1≤i≤n

ηi

)
≥ E

(
max

1≤i≤n
ρi

)
,

where (ρ1, . . . , ρn) is a mean zero Gaussian random variable satisfying

(4.5) E(ρi − ρj )
2 ≤ E(ηi − ηj )

2 = Ki,i + Kj,j − 2Ki,j .

This can be achieved when ρi , 1 ≤ i ≤ n, are independent normal random variable
with variance (σ ∗

n )2/2 where

(4.6)
(
σ ∗

n

)2 = inf
1≤i,j≤n,i �=j

Ki,i + Kj,j − 2Ki,j .

With this choice of ρi , 1 ≤ i ≤ n we get

(4.7) E
(

max
1≤i≤n

ηi

)
≥ σ ∗

n√
2
E

(
max

1≤i≤n
ζi

)
.

This inequality is essentially Sudakov’s inequality.
If we ignore the presence or absence of absolute values, we see that if

(4.8) max
1≤i≤n

ai ≤ 2

(σ ∗
n )2 ,

then (4.3), which follows from the permanental inequality, gives a stronger lower
bound for E(max1≤i≤n ηi) than (4.7), which is what we get using the Sudakov in-
equality. In Lemma 5.2, we show that (4.8) holds when the matrix K is symmetric
and constant on the diagonals.
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REMARK 4.1. The Sudakov inequality is very useful in giving necessary con-
ditions for a Gaussian process to be bounded, but it can be a very weak lower
bound for many Gaussian random variables. We point this out because the perma-
nental inequality has the same limitations. Evaluating the right-hand side of (4.7),
we get

(4.9) E
(

max
1≤i≤n

ηi

)
≥ Cσ ∗

n (logn)1/2

for some constant C > 0, for all n sufficiently large. If we take the limit as n → ∞,
as we do when considering whether a Gaussian process is bounded, this is only
useful when

(4.10) lim sup
n→∞

σ ∗
n (logn)1/2 > 0.

Let {B(t), t ∈ [0,1]} be Brownian motion and consider (B(1/n),B(2/n), . . . ,

B(1)). Then the Sudakov inequality, (4.9), gives

(4.11) E
(

max
1≤i≤n

B(i/n)
)

≥ C

(
logn

n

)1/2
,

whereas

(4.12) E
(

sup
t∈[0,1]

B(t)
)

=
√

2/π.

5. Diagonals of nonsingular M-matrices. We now show that (1.14) holds
for a large class of nonsingular M-matrices. In the following, we will make the
assumption that Ki,i ≥ maxj �=i Kj,i and that A = K−1 has positive row sums.
Considering the nature of the kernel of many important permanental processes this
is a reasonable assumption (see e.g., [9], (3.107), (3.109) and Theorem 13.1.2).

LEMMA 5.1. Let A be an n×n nonsingular M-matrix with positive row sums
and set K = A−1. Assume that Ki,i ≥ maxj �=i Kj,i . Then

(5.1) Ai,i ≤ 1

Ki,i − maxj �=i Kj,i

.

PROOF. Using the facts that A is an M-matrix and
∑n

j=1 Ai,jKj,i = 1 and∑
j �=i |Ai,j | ≤ Aii , we see that

(5.2)

Ki,iAi,i = 1 + ∑
j �=i

|Ai,j |Kj,i

≤ 1 + max
j �=i

Kj,i

∑
j �=i

|Ai,j | ≤ 1 + max
j �=i

Kj,iAi,i ,

which gives (5.1). �
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Set

(5.3) σ 2
i,j = Ki,i + Kj,j − (Ki,j + Kj,i) and

(
σ ∗

n

)2 = inf
i,j :i �=j

σ 2
i,j .

The fact that we can write these as squares follows from our assumption that Ki,i ≥
maxj �=i Kj,i .

LEMMA 5.2. Under the hypotheses of Lemma 5.1 assume also that K is con-
stant along the diagonal and that

(5.4) |Ki,j − Kj,i | ≤ Cσ 2
i,j for C < 1.

Then

(5.5) Ai,i ≤ 2

(1 − C)(σ ∗
n )2 .

PROOF. Consider (5.1) and set Kj∗,i = maxj �=i Kj,i . We have

Ki,i − Kj∗,i = 1

2

(
Ki,i + Kj∗,j∗ − (Kj∗,i + Ki,j∗)

) − 1

2
(Kj∗,i − Ki,j∗)

≥ 1

2

(
σ 2

i,j∗ − |Kj∗,i − Ki,j∗ |)(5.6)

≥ (1 − C)σ 2
i,j∗

2
≥ (1 − C)(σ ∗

n )2

2
.

Using this in (5.1), we get (5.5). �

PROOF THEOREM 1.4. This follows from Lemma 5.2 with tj = jδ/n, j =
1, . . . , n, for some δ > 0 and Corollary 1.1 with ds,t replaced by σs,t . �

REMARK 5.1. If K + KT is positive definite, it is easy to see that σi,j is a
metric on {1, . . . , n}, because we can define an n-dimensional mean zero Gaussian
random variable {Xi, i ∈ {1, . . . , n}} with covariance (K + KT )/2 and

(5.7) σi,j = (
E(Xi − Xj)

2)1/2 and σ ∗
n = inf

i,j :i �=j

(
E(Xi − Xj)

2)1/2
.

We can remove the assumption that the kernel is constant on the diagonal.

LEMMA 5.3. Let A be an n×n nonsingular M-matrix with positive row sums
and set K = A−1. Assume that Ki,i > maxj �=i Kj,i . Choose ri = Ki,i/K̂ for some
constant K̂ . Set

(5.8) σ̂ 2
i,j = 2K̂ − Ki,j

rj
− Kj,i

ri



UNBOUNDED PERMANENTAL PROCESSES 2077

and assume that

(5.9)
∣∣∣∣Ki,j

rj
− Kj,i

ri

∣∣∣∣ ≤ Cσ̂ 2
i,j , C < 1,

for all i, j . Set

(5.10)
(
σ̂ ∗

n

)2 = inf
i,j :i �=j

σ̂ 2
i,j .

Then

(5.11) riAi,i ≤ 2

(1 − C)(σ̂ ∗
n )2 .

PROOF. Let X = (X1, . . . ,Xn) be the α-permanental vector with kernel K .
Then Y = (Y1/r1, . . . , Yn/rn) is the α-permanental vector with kernel KY =:
KR−1, where R = diag(r1, . . . , rn). It follows from the assumption that Ki,i >

maxj �=i Kj,i that this also holds for KY . Let AY = K−1
Y = RA. We see that AY is a

nonsingular M-matrix with positive row sums. Consequently, (5.11) follows from
Lemma 5.2. �

We have the following generalization of Theorem 1.4.

THEOREM 5.1. Let u be the potential density of a transient Markov process
in R1. Set

(5.12) σ̂ 2
s,t = 2 − u(s, t)

u(t, t)
− u(t, s)

u(s, s)

and assume that

(5.13)
∣∣∣∣u(s, t)

u(t, t)
− u(t, s)

u(s, s)

∣∣∣∣ ≤ Cσ̂ 2
s,t , C < 1,

for all |s|, |t | sufficiently small. Then

(5.14) lim sup
n→∞

(
sup

(t1,...,tn)

(
σ̂ ∗

n

)2
(t1, . . . , tn)

)
logn = ∞

implies that

(5.15) sup
t

Yt

u(t, t)
= ∞ a.s.,

where Yt is the α-permanental process with kernel u.

PROOF. The proof is the same as the proof of Theorem 1.4. �

In Lemma 5.1, we assume that Ki,i > maxj �=i Kj,i . The following example
shows that we can still get an inequality like (5.5) when this condition does not
hold.
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EXAMPLE 5.1. Consider the covariance matrix B of (B(1), . . . ,B(n)), where
{B(t), t ∈ R+} is standard Brownian motion. Obviously, Bi,i − maxj �=i Bi,j = 0.
However, B−1 is a tri-diagonal matrix with all diagonal elements equal to 2, except
that (B−1)n,n = 1 and all off diagonal elements that are not zero equal to −1. In
this case,

(5.16)
(
B−1)

i,i ≤ 2 = 2

(σ ∗
n )2 .

[Here, (σ ∗
n )2 = mini �=j E(B(i) − B(j))2 = 1.]

We can use this to create another interesting example. Let D be a diagonal
matrix with entries 1, . . . , n. Let B̃ = D−1B. This matrix has entries 1 on and
above the diagonal and B̃i,j = j/i for 1 < j < i. The diagonal entries of Ã =
(B̃)−1 are Ãi,i = 2Bi,i = 2i, 1 ≤ i ≤ n − 1 and Ãn,n = Bn,n = n. Set

(5.17) φ2
i,j = B̃i,i + B̃j,j − B̃i,j − B̃j,i

and

(5.18)
(
φ∗

n

)2 = min
1≤i,j≤n

i �=j

φ2
i,j .

The minimum is achieved at φ2
n,n−1 = 1/n. Therefore, we have

(5.19) (A)i,i ≤ 2

(φ∗
n)2 = 2n, 1 ≤ i ≤ n.

The maximum on the left-hand side of (5.19) is (A)n−1,n−1 = 2(n − 1), since
(A)n,n = n.

LEMMA 5.4. When u is the potential density of a transient Markov process in
R1, (5.13) always holds with C = 1.

PROOF. We need to show that

(5.20)
∣∣∣∣u(s, t)

u(t, t)
− u(t, s)

u(s, s)

∣∣∣∣ ≤ 2 − u(s, t)

u(t, t)
− u(t, s)

u(s, s)
.

Without loss of generality, we assume that u(s, t)/u(t, t) ≥ u(t, s)/u(s, s). Then
(5.20) is equivalent to

(5.21)
u(s, t)

u(t, t)
≤ 1.

It follows from [9], Lemma 3.4.3, that when u is the potential density of a transient
Markov process, in R1, this always holds. �
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6. Permanental processes with a kernel that is the potential density of a
Lévy process.

PROOF OF THEOREM 1.5. It follows from Lemma 1.2 that (1.27) is the same
as (1.18). Therefore, (1.28) follows from (1.19) with t1, . . . , tn replaced by δ/n,

2δ/n, . . . , δ. �

The next lemma is used in the proof of Theorem 1.6.

LEMMA 6.1. Suppose that � and h are positive, quasi-monotonic slowly vary-
ing functions (see [3], Section 2.7) at infinity. Let R(λ) and I(λ) be functions on
[0,∞] such that

(6.1) R(λ) = h(λ)

λ
and

∣∣I(λ)
∣∣ = �(λ)

λ
.

If R ∈ L1 and

(6.2)
∫ ∞

1/z
R(λ) dλ ≥ B�

(
1/|z|)

as |z| → 0 with B > π
2 , then

(6.3)
∣∣∣∣∫ ∞

0
sin(λz)I(λ) dλ

∣∣∣∣ ≤ C

∫ ∞
0

(
1 − cos(λz)

)
R(λ) dλ

for some C < 1, and all |z| sufficiently small. Furthermore,

(6.4)
∫ ∞

0

(
1 − cos(λz)

)
R(λ) dλ ∼

∫ ∞
1/|z|

R(λ) dλ

as |z| → 0.

PROOF. It suffices to show (6.3) for z > 0. By [11], (1.43),

(6.5)
∫ ∞

0

1{λz≤1} − eiλz

λ
�(λ) dλ ∼ �(1/z)

∫ ∞
0

1{λz≤1} − eiλz

λ
dλ

as z → 0. Taking the imaginary part of (6.5), we see that

(6.6)
∫ ∞

0
sin(λz)I(λ) dλ =

∫ ∞
0

sin(λz)

λ
�(λ)dλ ∼ �(1/z)

∫ ∞
0

sin(s)

s
ds

as z → 0. Therefore, by [6], 3.721,

(6.7)
∫ ∞

0
sin(λz)I(λ) dλ ∼ π

2
�(1/z)

as z → 0.
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To use below, we note that by a change of variables

(6.8)

∫ ∞
0

1{λz≤1} − cos(λz)

λ
dλ =

∫ ∞
0

1{s≤1} − cos(s)

s
ds

= 2
∫ 1

0

sin2(s/2)

s
ds −

∫ ∞
1

cos(s)

s
ds.

Therefore, the first integral in (6.8) is a constant which we denote by c0. It is easy
to see that c0 < ∞. The first of the last two integrals in (6.8) is bounded by 1/4,
and by integration by parts, that the second of these last two integrals is bounded
by 2.

By (6.5), (6.8) and [9], Theorem 14.7.2,∫ ∞
0

(
1 − cos(λz)

)
R(λ) dλ

=
∫ ∞

0

(
1{λz≤1} − cos(λz)

)
R(λ) dλ +

∫ ∞
1/z

R(λ) dλ

(6.9)

∼ h(1/z)

∫ ∞
0

1{λz≤1} − cos(λz)

λ
dλ +

∫ ∞
1/z

R(λ) dλ

= coh(1/z) +
∫ ∞

1/z
R(λ) dλ ∼

∫ ∞
1/z

R(λ) dλ

as z → 0. Thus, we obtain (6.3) and also (6.4); see (1.26). �

PROOF OF THEOREM 1.6. The characteristic exponent of this process

ψ(λ) = −
∫ ∞
∞

(
eiλx − 1 − iλx1{|x|<1}

)
ν(dx)

∼ π

2
|λ|g(λ) + i(p − q)λ

∫ 1

1/λ

g(1/x)

x
dx(6.10)

∼ π

2
|λ|g(λ) + i(p − q)λ

∫ λ

1

g(s)

s
ds

as λ → ∞. Note that the Reψ(λ) = o(Imψ(λ)) as λ → ∞. We show how to
obtain (6.10) in Section A.2.

We first consider the case when p �= q . It follows from (6.10) that

(6.11)
∣∣Iβ(λ)

∣∣ ∼ 1

|p − q|λ ∫ λ
1

g(s)
s

ds
:= �(λ)

λ

and

(6.12) Rβ(λ) ∼ (π/2)g(λ)

|p − q|2λ(
∫ λ

1
g(s)
s

ds)2



UNBOUNDED PERMANENTAL PROCESSES 2081

as λ → ∞. Note that

(6.13)
(π/2)g(λ)

|p − q|2λ(
∫ λ

1
g(s)
s

ds)2
= − (π/2)

|p − q|
d

dλ
�(λ)

which implies that

(6.14)
∫ ∞

1/z
Rβ(λ) dλ ∼ (π/2)

|p − q|�(1/z).

Comparing this with (6.11), we see that (6.2) holds for all B < (π/2)/|p − q|.
Obviously, we can take B > (π/2) as long as p �= q . Also, by (1.26) and (6.4),

(6.15) σ 2(z) ∼ 1

|p − q|2
(∫ 1/z

1

g(s)

s
ds

)−1
.

Therefore, (1.31) follows from Theorem 1.5.
Note that we require that Rβ ∈ L1(R+). That is why we impose the condition

in (1.30).
When p = q , ψ(λ) is real and symmetric and

(6.16) Rβ(λ) ∼ 2

π |λ|g(λ)
.

Condition (6.2) in Lemma 6.1 is trivially satisfied and, by by (1.26) and (6.4)

(6.17) σ 2(z) ∼ 4

π2

∫ ∞
1/|z|

1

|λ|g(λ)
dλ

as |z| → 0. Therefore, (1.33) follows from Theorem 1.5. �

DETAILS FOR (1.34). This is simple for symmetric processes, so we only
need to check (1.34) for p �= q . By (1.26), for all Lévy processes,

(6.18) Rβ(z) = uβ(0) − σ 2(z)

2
.

For the processes with Lévy measure given by (1.29), we see by (6.7) that as z → 0

(6.19) Hβ(z) ∼ �(1/z)

2
.

In addition by (1.26), (6.9) and (6.14),

(6.20) σ 2(z) ∼ 2

π

∫ ∞
1/z

R(λ)dλ ∼ 1

|p − q|�(1/z).

Therefore,

(6.21) Hβ(z) ∼ |p − q|
2

σ 2(z) and Hβ(−z) ∼ −|p − q|
2

σ 2(z).

Adding (6.18) and (6.21), we get (1.34).
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PROOF OF COROLLARY 1.2. To show that (1.27) is satisfied, it suffices to
show that for all z > 0 sufficiently small

(6.22)
∣∣∣∣∫ ∞

0
sin(λz)Iβ(λ) dλ

∣∣∣∣ ≤ C

∫ ∞
0

(
1 − cos(λz)

)
Rβ(λ) dλ

for some C < 1. To simplify the proof, we assume that Iβ(λ) ≥ 0 and take Iβ(λ)

and Rβ(λ) to be nonincreasing functions. It is easy to extend the proof to the case
in which |Iβ(λ)| and Rβ(λ) are asymptotic to nonincreasing functions as λ → ∞.
We have

(6.23)
∫ ∞

0
sin(λz)Iβ(λ) dλ ≤

∫ π/z

0
λzIβ(λ) dλ

because, since Iβ(λ) is decreasing, for all k ≥ 1

(6.24) −
∫ (2k)π/z

(2k−1)π/z
sin(λz)Iβ(λ) dλ ≥

∫ (2k+1)π/z

(2k)π/z
sin(λz)Iβ(λ) dλ.

Also
1

2

∫ ∞
0

(
1 − cos(λz)

)
Rβ(λ) dλ =

∫ ∞
0

sin2
(

λz

2

)
Rβ(λ) dλ

≥
∫ ∞
π/(2z)

sin2
(

λz

2

)
Rβ(λ) dλ

(6.25)

=
∞∑

k=0

∫ π(1+4(k+1))/(2z)

π(1+4k)/(2z)
sin2

(
λz

2

)
Rβ(λ) dλ

≥
∞∑

k=0

∫ π(3+4k)/(2z)

π(1+4k)/(2z)
sin2

(
λz

2

)
Rβ(λ) dλ.

Note that if π(1 + 4k)/(2z) ≤ λ ≤ π(3 + 4k)/(2z) then

(6.26) π/4 + kπ ≤ λz/2 ≤ 3π/4 + kπ,

and consequently sin2(λz/2) ≥ 1/2. Therefore,

(6.27)
∫ π(3+4k)/(2z)

π(1+4k)/(2z)
sin2

(
λz

2

)
Rβ(λ) dλ ≥ 1

2

∫ π(3+4k)/(2z)

π(1+4k)/(2z)
Rβ(λ) dλ.

Furthermore, since Rβ(λ) is decreasing, for all z > 0 sufficiently small

1

2

∫ π(3+4k)/(2z)

π(1+4k)/(2z)
Rβ(λ) dλ

≥ 1

4

∫ π(3+4k)/(2z)

π(1+4k)/(2z)
Rβ(λ) dλ + 1

4

∫ π(5+4k)/(2z)

π(3+4k)/(2z)
Rβ(λ) dλ(6.28)

= 1

4

∫ π(1+4(k+1))/(2z)

π(1+4k)/(2z)
Rβ(λ) dλ.
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Putting all this together, we see that for all z sufficiently small

(6.29)
∫ ∞

0

(
1 − cos(λz)

)
Rβ(λ) dλ ≥ 1

2

∫ ∞
π/(2z)

Rβ(λ) dλ.

Combining (6.23) and (6.29) and using the hypothesis (1.38), we get (6.22) for
some C < 1.

We see from (1.16) and (6.29) that

(6.30) σ 2(z) ≥ C

∫ ∞
π/(2z)

Rβ(λ) dλ

which implies by Theorem 1.5 that if

(6.31) lim sup
n→∞

(∫ ∞
πn/(2δ)

Rβ(λ) dλ

)
logn = ∞,

then the α-permanental process with kernel uβ is unbounded almost surely. It is
easy to see that, by interpolation, this is equivalent to (1.39). �

REMARK 6.1. We consider (1.38) for Iβ(λ) and Rβ(λ) asymptotic to I(λ)

and R(λ) as λ → ∞ [see (6.11) and (6.12)]. In this case, Corollary 1.2 it is not
much cruder than the estimates given in Theorem 1.6. Since in this case λIβ(λ)

is slowly varying at infinity we see that the left-hand side of (1.38) is asymptotic
to π�(1/|z|) as |z| → 0. By (6.2) and the fact that � is slowly varying, the right-
hand side of (1.38) is asymptotic to Cπ�(1/|z|)/(2|p − q|) as |z| → 0. Therefore,
(1.38) holds for C > 2|p − q|. Therefore, Corollary 1.2 gives the results obtained
in Example 1.1 when p �= q and |p − q| < 1/2.

APPENDIX

A.1. A property of the potential density of a transient Markov process.

LEMMA A.1. If {u(s, t), s, t ∈ T } is the potential density of a transient
Markov process Xt with state space T , then for all distinct t1, . . . , tn in T , the
matrix K with elements {u(ti, tj )}ni,j=1 is invertible and its inverse is a nonsingu-
lar M-matrix.

PROOF. This proof is a portion of the proof of [9], Theorem 13.1.2. We define
the following stopping time:

(A.1) σ = inf
{
t ≥ 0|Xt ∈ {t1, . . . , tn} ∩ {X0}c}

(note that σ may be infinite). Let {Lx
t ; (x, t) ∈ S × R1} be the local times of X.

Since u(ti, tj ) is the 0-potential density of X, we can normalize the local time so
that

(A.2) u(ti, tj ) = Eti
(
L

tj∞
)
.
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Using (A.2) and the strong Markov property, we see that

(A.3)

u(ti, tj ) = Eti
(
L

tj
σ

) + Eti
(
EXσ

(
L

tj∞
);σ < ∞)

= di,j +
n∑

k=1

hi,ku(tk, tj ),

where di,j = Eti (L
tj
σ ) and hi,k = P ti (Xσ = tk).

Let D = {di,j }1≤i,j≤n and H = {hi,j }1≤i,j≤n. We can write (A.3) as

(A.4) K = D + HK

so that (I −H)K = D. Moreover, D is a diagonal matrix with all its diagonal ele-
ments strictly positive. This follows because, starting from X0 = ti , σ > 0, which
implies that each bi,i > 0. On the other hand, the process is killed the first time it
hits any tj �= ti . Thus, starting from ti , L

tj
σ = 0, j �= i.

Since D is invertible, both (I − H) and K are invertible and

(A.5) K−1 = D−1(I − H).

It is clear that H ≥ 0. It follows from this that K−1 has negative off diagonal ele-
ments. Moreover, since hi,i = 0 it follows that K−1 has positive diagonal elements.
Therefore, K is a nonsingular M-matrix. Furthermore,

(A.6)
n∑

j=1

hi,j = P ti (σ < ∞) ≤ 1 ∀i = 1, . . . , n,

from which it follows that K−1 has positive row sums. �

A.2. Derivation of (6.10). We have

(A.7) Imψ(λ) = −(p − q)

∫ ∞
0

(sinλx − λx1{|x|<1})ν(dx).

Let ν1(dx) := (p − q)ν(x). Then Imψ(λ) is equal to

(A.8) −
∫ 1/λ

0
(sinλx − λx)ν1(dx) + λ

∫ 1

1/λ
xν1(dx) −

∫ ∞
1/λ

sinλxν1(dx).

Using | sinλx − λx| ≤ |λx|3 in the first of these integral and | sinλ| ≤ 1 in the
the last of these integral we see that their absolute values are both O(g(λ)/λ) as
λ → ∞. Consequently,

(A.9) Imψ(λ) ∼ (p − q)λ

∫ 1

1/λ

g(1/x)

x
dx = (p − q)λ

∫ λ

1

g(s)

s
ds

as λ → ∞.
The asymptotic behavior of Reψ(λ) as λ → ∞ follows from the next lemma.
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LEMMA A.2. Let g(·) be a slowly varying function at infinity. Then

(A.10)
∫ ∞

0
(1 − cosλx)

g(1/x)

x2 dx ∼ π

2
λg(λ)

as λ → ∞.

PROOF. We write the left-hand side of (A.10) as

(A.11) λg(λ)

∫ ∞
0

(1 − cos s)

s2

g(λ/s)

g(λ)
ds.

Consider

(A.12)
∫ M

0

(1 − cos s)

s2

g(λ/s)

g(λ)
ds + 1

g(λ)

∫ ∞
M

(1 − cos s)

s2 g(λ/s) ds.

Note that by [3], Theorem 1.5.6, for s ∈ (0,M], g(λ/s)/g(λ) ≤ C(s−ε ∨ 1), for
any ε > 0, and some constant depending on M and ε. Therefore, by the dominated
convergence theorem we see that the limit, as λ → ∞ of the first integral in (A.12)
is

(A.13)
∫ M

0

(1 − cos s)

s2 ds.

The second integral in (A.12) is bounded by

(A.14)
2

λg(λ)

∫ ∞
M/λ

g(1/s)

s2 ds = 2

λg(λ)

∫ λ/M

0
g(v) dv.

We need a condition on g near 0. This is given implicitly by the statement that ν is
a Lévy measure, which requires that

(A.15)
∫ ∞

1

g(1/|x|)
x2 dx =

∫ 1

0
g(v) dv ≤ C′ < ∞.

Therefore, since g is slowly varying at infinity, the second integral in (A.14) is
bounded by 3g(λ/M)/(Mg(λ)) which goes to 3/M as λ → ∞. Therefore, taking
λ → ∞, we see that (A.12) is equal to

(A.16)
∫ M

0

(1 − cos s)

s2 ds + O(1/M)

for all M . This gives us (A.10) because, by integration by parts,

(A.17)
∫ ∞

0

(1 − cos s)

s2 ds =
∫ ∞

0

sin s

s
ds = π

2

by [6], 3.721. �
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