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Recent advances in high-throughput biotechnologies have generated var-
ious types of genetic, genomic, epigenetic, transcriptomic and proteomic data
across different biological conditions. It is likely that integrating data from
diverse experiments may lead to a more unified and global view of biolog-
ical systems and complex diseases. We present a coherent statistical frame-
work for integrating various types of data from distinct but related biological
conditions through graphical models. Specifically, our statistical framework
is designed for modeling multiple networks with shared regulatory mech-
anisms from heterogeneous high-dimensional datasets. The performance of
our approach is illustrated through simulations and its applications to cancer
genomics.

1. Introduction. Recent advances in high-throughput technologies have gen-
erated unprecedented types and amounts of data for biomedical research. Exam-
ples include genome-wide characterizations of DNA variations (e.g., genotyping
arrays, whole exome or genome sequencing), gene expression variations (e.g.,
gene expression microarrays, RNA sequencing), epigenetic variations and protein
expression variations. Each data type, for example, genomic, transcriptomic or
proteomic data, provides a comprehensive, but one-layer, view of the biological
system being studied. Integrating data of diverse types is likely to lead to a more
unified and global view. Thus, increasing research attention is being paid to the in-
tegrative analysis and modeling of various types of biomedical data. For instance,
Varambally et al. (2005) reported the signatures of metastatic progression through
integrative genomic and proteomic analysis of prostate cancer. Ouyang, Zhou and
Wong (2009) proposed a predictive model to integrate ChIP-Seq and RNA-Seq to
capture cooperation among regulators. Chen, Slack and Zhao (2013) developed a
statistical framework for joint analysis of expression profiles of microRNA and
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messenger RNAs from multiple cancers. Troyanskaya et al. (2003) proposed a
Bayesian framework for combining heterogeneous data sources for gene function
prediction in Saccharomyces cerevisiae. Myers and Troyanskaya (2007) developed
a network prediction approach to leveraging biological context information, and
applied it to Saccharomyces cerevisiae. Myers et al. (2005) proposed a Bayesian
approach to identifying biological networks from diverse functional genomic data.
Myers et al. (2006) evaluated several evaluation methods, and suggested a new
approach to evaluation in functional genomics. Shen and Tseng (2010) developed
a new meta-analysis approach to pathway enrichment analysis when combining
multiple genomic studies. For more literature review, see Ge, Walhout and Vidal
(2003), Hawkins, Hon and Ren (2010), Hecker et al. (2009), Joyce and Palsson
(2006), Ritchie et al. (2015).

In this paper, we focus on the problem of discovering regulatory relationships
among heterogeneous genomic variables from biological conditions with poten-
tially shared regulation mechanisms. In this scenario, genomic variables can be
genomic variants (for instance, mutations and copy number alterations), epige-
netic states (for instance, methylation status) and gene expression profiles. Bio-
logical conditions can be different tissue types or different cancer types, etc. The
heterogeneous genomic variables can be binary, categorical or continuous. Differ-
ent biological systems have both shared regulations and tissue or disease specific
regulations. Thus, we need a statistical method to jointly learn conditional inde-
pendence among a set of discrete or continuous variables across a set of distinct
but related conditions. Conditional independence among variables can be repre-
sented by a graphical model in which nodes represent variables and the absence of
an edge between two variables implies conditional independence.

In recent years, many efforts have been devoted to estimating undirected graph-
ical models, especially in the high-dimensional setting under the assumption that
the underlying graph is sparse. In most of the published work, the nodes in the
graphical models represent either continuous or discrete variables, but not both.
In the case of continuous variables, much interest has been focused on estimating
Gaussian graphical models of the relationships among a set of random variables
with a joint multivariate normal distribution, where zero entries in the precision (or
concentration) matrix correspond to conditional independence. Meinshausen and
Bühlmann (2006) proposed to estimate the precision matrix via a marginal penal-
ized regression approach. Peng, Zhou and Zhu (2009) extended this approach to
estimate partial correlations of Gaussian random variables by joint sparse regres-
sion models. Instead of performing regressions, Yuan and Lin (2006), Friedman,
Hastie and Tibshirani (2008) and others took a penalized log-likelihood approach.
This approach has been extended by Guo et al. (2011) and Danaher, Wang and
Witten (2013) to infer multiple Gaussian graphical models based on data collected
from distinct but related conditions such as different cancer types. Yin and Li
(2011) and Li, Chun and Zhao (2012) considered external effects on the inferred
edges through modeling conditional Gaussian graphical models. Chun et al. (2013)
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proposed joint conditional Gaussian graphical models with multiple sources of
genomic data. In the case of discrete variables, the Ising model can be used to
model conditional independence. Höfling and Tibshirani (2009) proposed a pseu-
dolikelihood approach to estimating the sparse binary pairwise Markov networks.
Ravikumar, Wainwright and Lafferty (2010) and Guo et al. (2010) formulated the
model selection methods for high-dimensional Ising models under a penalized lo-
gistic regression framework. In the case that both discrete and continuous vari-
ables are considered, Lauritzen (1996) proposed a mixed graphical model in the
low-dimensional setting. Recently, several methods have been proposed to esti-
mate a mixed graphical model in the high-dimensional setting. Lee and Hastie
(2012) proposed a pairwise graphical model over continuous and discrete vari-
ables using a group lasso penalty. Cheng, Levina and Zhu (2013) provided an
approach that substitutes the l1 penalty for the group lasso penalty to reduce com-
putation. Fellinghauer et al. (2013) took a random forests approach to mixed vari-
ables. Chen, Witten and Shojaie (2015) and Yang et al. (2013) investigated the
pairwise graphical model in which the conditional distribution of the nodes belong
to an exponential family.

However, in the scenario of multiple networks with mixed types of measure-
ments, for instance, multiple cancer types with copy number variations and mu-
tation measurements, the methods mentioned above are not suitable to be applied
directly to gain biologically interpretable results. For instance, if we simply treat
biological conditions (cancer types in the example) as categorical variables with
equal roles as mutations, we may end up with a network modeling interactions
among cancer types. These interactions are not as biologically meaningful as the
interactions among mutations and/or copy number variations. Moreover, if we ig-
nore the similarities among biological conditions and estimate the networks sepa-
rately, we may get less accurate networks. Thus, there is a need to treat biological
conditions and genomic measurements differently, and to discover multiple related
mixed graphical models in the high-dimensional setting to represent distinct but re-
lated relationships under different conditions. We will use cancer genomic data as
a motivating example to illustrate our method.

Cancers are complex diseases involving many different mechanisms. High-
throughput technologies applied to human cancers have generated large genomic
datasets, such as The Cancer Genome Atlas (TCGA) [Tomczak, Czerwińska and
Wiznerowicz (2015)]. TCGA provides molecular landscapes of thousands of hu-
man cancers at multiple layers, including mutations and copy number alterations.
It facilitates the study of regulatory mechanisms underlying various cancers. For
example, Ciriello et al. (2013) identified distinct oncogenic processes as well as
unexpected similarities among tumors originating from different tissues. However,
the molecular regulatory networks underlying cancers are still largely unknown,
impeding our understanding of cancer classifications and patient stratification, an
important issue in precision medicine.
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In this paper, we consider statistical learning of multiple graphical models that
consist of both continuous and discrete variables, and develop a method named
as Data Integration through Graphical models (DIG). We formally introduce our
model in Section 2, and propose appropriate penalty schemes in Section 3 to handle
high-dimensional data. Then the problem of estimating multiple mixed graphical
model is formulated into an optimization problem. We propose an algorithm for
parameter estimation in Section 4 and tuning parameter selection in Section 5. We
then illustrate our method through simulations in Section 6 and real application
to cancer genomic data in Section 7. We conclude our paper with discussion in
Section 8.

2. Model. We assume that there are a total of K groups where we have ob-
servations consisting of both continuous and discrete variables from each group.
Let (xp×1,yq×1)k denote a mixed (i.e., having both continuous and discrete vari-
ables) random vector, where k is the group label (such as tissue or disease), xp×1

is a p-dimensional vector of discrete variables, and yq×1 is a q-dimensional vec-
tor of continuous variables. We assume that the density function f (x,y) has the
following form proposed by Lauritzen (1996), with k omitted for simplicity:

(2.1) f (x,y) = exp
(
gx + hT

xy − 1

2
yT�xy

)
,

where gx is a real-valued function of x, hx is a q-vector-valued function of x taking
discrete values, and �x is a q × q positive definite symmetric matrix of x.

One can note that equation (2.1) can be rewritten as

f (x,y) = exp
(
gx + 1

2
hT

x�
−1
x hx − 1

2

(
y − �−1

x hx
)T

�x
(
y − �−1

x hx
))

.

Thus, the density defined in equation (2.1) implies a conditional Gaussian dis-
tribution of y|x with mean μx = �−1

x hx and variance �x = �−1
x . The marginal

distribution of the discrete variables x has the following form:

P(x) = (2π)q/2(
det(�x)

)−1/2 exp
(
gx + 1

2
hT

x�
−1
x hx

)
.

We further simplify equation (2.1) by ignoring all interaction terms between dis-
crete variables of order higher than two, and assuming that discrete variables affect
continuous variables in a linear form, that is, the conditional covariance matrix and
the canonical mean vector of the continuous (Gaussian) variables is modeled as a
linear function of the discrete variables. Therefore, we have the following specifi-
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cations for the functional forms of gx, hx and �x:

gx = λ0 +
p∑

j=1

λj (xj ) + ∑
j �=m

λjm(xj , xm),

hx = η0 +
p∑

j=1

ηj (xj ),

�x = �0 +
p∑

j=1

�j (xj ),

where λ0 is the normalizing constant,

λ0 = −q

2
ln(2π)

− ln
{∑

x
det(�x)

−1/2 exp
(∑

j

λj (xj ) + ∑
j �=m

λjm(xj , xm) + 1

2
hT

x�
−1
x hx

)}
;

each xj takes integer values 1 to Lj ; λj (·) is a discrete function taking on Lj pos-
sible values; λjm(·, ·) is a bi-variate function with Lj × Lm possible values, and
λjm(xj , xm) = λmj (xm, xj ); η0 is a q-dimensional vector; ηj (·) is a q-dimensional
function with Lj possible values for each dimension; �0 is a q × q matrix; and
�j (·) is a q × q matrix with each element having Lj possible values, which
{diag(�j )}pj=1 = {�jrr : j = 1, . . . , p, r = 1, . . . , q} are all 0. For identifiabil-
ity, we set λj (1) = 0, ηjr(1) = 0, �jrs(1) = 0 and λjm(1, ·) = λjm(·,1) = 0, for
j ∈ {1, . . . , p}, m ∈ {1, . . . , p}, r ∈ {1, . . . , q} and s ∈ {1, . . . , q}.

Now, the model is parametrized by λj , λjm,η0,ηj ,�0 and �j , where j ∈
{1, . . . , p},m ∈ {1, . . . , p}. For simplicity, we use � to denote the collection of
the parameters mentioned above. Among these parameters, λj and η0 are nuisance
parameters, which refer to discrete and continuous node potentials, respectively.
The rest are responsible for edge potentials, which are the parameters of interest.
Specifically, �0rs + ∑p

j=1 �jrs(xj ) is the continuous-continuous edge potential;
λjm is the discrete–discrete edge potential, which is a bivariate function taking on
Lj ×Lm values; ηjr(xj ) is the continuous–discrete edge potential, which takes Lj

values.
The model covers the two special situations when there are only discrete or

continuous variables naturally. In the case of only discrete variables, the mixed
model reduces to a discrete Markov random field,

p(x) ∝ exp

{ p∑
j=1

λj (xj ) +
p∑

j=1

p∑
m=1

λjm(xj , xm)

}
;
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while in the case of only continuous variables, the mixed model reduces to a mul-
tivariate Gaussian graphical model,

p(y) ∝ exp
{
−1

2

(
y − �0

−1η0
)T

�0
(
y − �0

−1η0
)}

.

For a graphical model, the conditional distributions are important because they
characterize the conditional dependence among the variables. The conditional dis-
tributions of the proposed model are as follows:

1. The conditional distribution of xj given the rest is multinomial,

p(xj |x\j ,y;�)

= exp{λj (xj ) + ∑p
m=1 λjm(xj , xm) + ∑q

r=1 ηjr (xj )yr − 1
2

∑q
r=1

∑q
s=1 �jrs(xj )yrys}∑Lj

l=1 exp{λj (l) + ∑p
m=1 λjm(l, xm) + ∑q

r=1 ηjr (l)yr − 1
2

∑q
r=1

∑q
s=1 �jrs(l)yrys}

.

2. The conditional distribution of yr given the rest is Gaussian,

p(yr |y\r ,x;�)

=
√

�xrr

2π
exp

{
−�xrr

2

[η0r + ∑p
j=1 ηjr(xj ) − ∑

s �=r �xrsys

�xrr

− yr

]2}
,

where �xrs = �0rs + ∑p
j=1 �jrs(xj ). This implies a regression model as

yr = 1

�xrr

(
η0r +

p∑
j=1

ηjr(xj )

− ∑
s �=r

(
�0rs +

p∑
j=1

�jrs(xj )

)
ys

)
+ er , where er ∼ N

(
0,�−1

xrr

)
.

We assume that the observations from different classes, labeled by k where k

varies from 1 to K , are independent. Given the observed data {xi(k),yi(k)}nk

i=1 for
class k with nk samples, the negative log-likelihood for class k is

�̃
(
�(k)) = −

nk∑
i=1

logf
(
xi(k),yi(k);�(k)).(2.2)

The minimization of the negative log-likelihood incorporates the calculation of
the normalization scalar. Because the mixed model includes the discrete model
as a special case which is computationally intractable, directly minimizing (2.2) is
challenging and impractical. Instead, we propose to use a computationally efficient
and consistent estimation approach, the pseudolikelihood method, which is formed
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by the product of all conditional distributions as below:

(2.3)

�
(
�(k)|x(k),y(k)) = −

nk∑
i=1

( p∑
j=1

logp
(
x

i(k)
j |xi(k)

\j ,yi(k);�(k))

+
q∑

r=1

logp
(
yi(k)
r |xi(k),yi(k)

\r ;�(k))).

The model above treats different biological conditions differently from cate-
gorical biological measurements such as SNPs, and estimates multiple biological
networks from different biological conditions jointly. Mathematically, one may
think of a possibility as treating the biological conditions and the categorical bi-
ological measurements such as SNPs equally, and make estimation through one
mixed graphical model. This approach may result in edges among biological con-
ditions. Such a network is biologically hard to interpret. Thus, we propose to use
a framework of joint mixed graphical models instead of treating biological con-
ditions equal to categorical biological measurements and estimating one mixed
graphical model.

Another possibility one may think of is to estimate the networks from differ-
ent biological conditions separately instead of jointly. As illustrated through a toy
example that consists of observations from two classes following two normal dis-
tributions with distinct covariance matrices in Danaher, Wang and Witten (2013),
estimating networks separately in each class results in less accurate estimates than
estimating networks jointly. Thus, we adapt a joint graphical model approach in
our application scenario.

It is easy to show that the additive negative log-pseudolikelihood is jointly con-
vex in all the parameters {�(k)} over the region {�(k)

xrr > 0} [see the Supplementary
Material, Zhang, Ouyang and Zhao (2017)].

3. Penalty terms. In the graphical representation of probability distributions,
the absence of an edge between two variables corresponds to conditional indepen-
dence between the two variables. In the proposed mixed model for each class (with
k omitted for simplicity), there are three types of edges:

1. Discrete–discrete: If λjm(xj , xm) = 0 for all values of xj and xm, then there
is no edge between nodes xj and xm. The corresponding edge potential is in either
p(xj |x\j ,y,�) or p(xm|x\m,y;�) of equation (2.3).

2. Discrete–continuous: If ηjr = 0 for all values of xj and �jrs = 0 for all val-
ues of ys , s ∈ {1, . . . , q}, then there is no edge between nodes xj and yr . The corre-
sponding edge potential parameter is in either p(xj |x\j ,y;�) or p(yr |x,y\r;�)

of equation (2.3).
3. Continuous–continuous: If �0rs = 0 for all values of yr and ys , and �jrs = 0

for all values of yr , ys and xj , then there is no edge between nodes yr and ys . These
parameters are in either p(yr |x,y\r;�) or p(ys |x,y\s;�) of equation (2.3).
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In summary, we have the following equivalences:

1. xj ⊥ xm|{x\j ,x\m,y} ⇐⇒ λjm = 0,
2. xj ⊥ yr |{x\j ,y\r} ⇐⇒ ηjr = 0 and ∀s ∈ {1, . . . , q},�jrs = 0,
3. yr ⊥ ys |{y\r ,y\s,x} ⇐⇒ �0rs = 0 and ∀j ∈ {1, . . . , p},�jrs = 0.

To estimate the parameters for high-dimensional data, we assume that the under-
lying true graph is sparse, and incorporate penalization on the number of edges in
the minimization of the additive negative log-pseudolikelihood to obtain a sparse
graphical model. For the l0-norm, which is defined as the number of nonzero el-
ements in a vector, that is, ‖u‖0 := {#i, s.t. ui �= 0} = limq→0+(

∑n
i=1 |xi |q), we

may use the l0 penalty to infer the graphical model for each class separately. Also,
we notice that, for edges involving discrete variables, the absence of that edge re-
quires the entire matrix λjm (for discrete–discrete), or matrix �jrs and vector ηjr

(for discrete–continuous) to be 0. Specifically, we set up the following optimiza-
tion problem (with k omitted for simplicity):

(3.1)

min
�

�(�) + ρ

( ∑
j �=m

I(λjm �= 0) +
p∑

j=1

q∑
r=1

I(ηjr �= 0)

+ ∑
r �=s

I(�0rs �= 0) +
p∑

j=1

∑
r �=s

I(�jrs �= 0)

)
,

where λjm is an Lj × Lm matrix, ηjr is a vector with length Lj , �jrs is a vector
with length Lj , �0rs is a scalar, and ρ is a tuning parameter. The function involved
is integer valued and nonconvex, and it is generally hard to solve the optimization.
In the machine learning literature, such kinds of difficult optimization problems
are usually solved through appropriate relaxation, for example, Cheng, Levina and
Zhu (2013). Notice that, for any vector b, I(b �= 0) = 0 ⇐⇒ ‖b‖2 = 0, and for
any matrix B, I(B �= 0) = 0 ⇐⇒ ‖B‖F = 0. Thus, we can replace the l0 norm in
optimizing (3.1) with an appropriate convex relation, for example,

min
�

�(�)+ρ

( ∑
j �=m

‖λjm‖F +
p∑

j=1

q∑
r=1

‖ηjr‖2 +∑
r �=s

|�0rs |+
p∑

j=1

∑
r �=s

∥∥�jrs(xj )
∥∥

2

)
.

We also notice that, for any vector b, ‖b‖2 ≤ ‖b‖1, and for any matrix B = (bij ),
‖B‖F ≤ ∑

ij |bij |. Thus, we can replace ‖ · ‖2 and ‖ · ‖F with the corresponding
upper bound penalties, leading to the following optimization problem:

(3.2)

min
�

�(�) + ρ

( ∑
j �=m

Lj∑
xj=1

Lm∑
xm=1

∣∣λjm(xj , xm)
∣∣

+
p∑

j=1

q∑
r=1

Lj∑
xj=1

∣∣ηjr(xj )
∣∣ + ∑

r �=s

|�0rs | +
p∑

j=1

∑
r �=s

Lj∑
xj=1

∣∣�jrs(xj )
∣∣).
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For simplicity, we let C denote the indices such that (θuv)u∈C,v∈C contain pa-
rameters {λjm}, {ηj }, {�0} and {�j } only. Then problem (3.2) can be written as

min
�

�(�) + ρ
∑
u∈C

∑
v∈C

|θuv|.

After discussing the optimization function for a single class, we now formulate
our problem for joint analysis of multiple classes. The basic assumption for joint
graphical model analysis across different biological conditions is that there are
commonalities shared among multiple classes. We propose two penalization ap-
proaches (fused lasso and group lasso) to encourage borrowing information from
multiple biological conditions for the estimation of the joint mixed graphical mod-
els:

(3.3) arg min
�(1),...,�(K)

K∑
k=1

�
(
�(k)) + P

(
�(1), . . . ,�(K)).

Specifically, we define the penalty terms as follows.
In the case of the fused graphical lasso,

P
({

�(k)}) = ρ1

K∑
k=1

( ∑
j �=m

Lj∑
xj=1

Lm∑
xm=1

∣∣λ(k)
jm(xj , xm)

∣∣

+
p∑

j=1

q∑
r=1

Lj∑
xj=1

∣∣η(k)
jr (xj )

∣∣ + ∑
r �=s

∣∣�(k)
0rs

∣∣ + p∑
j=1

∑
r �=s

Lj∑
xj=1

∣∣�(k)
jrs(xj )

∣∣)

+ ρ2
∑
k<k′

( ∑
j �=m

Lj∑
xj=1

Lm∑
xm=1

∣∣λ(k)
jm(xj , xm) − λ

(k′)
jm (xj , xm)

∣∣

+ ∑
r,s

∣∣�(k)
0rs − �

(k′)
0rs

∣∣ + p∑
j=1

q∑
r=1

Lj∑
xj=1

∣∣η(k)
jr (xj ) − η

(k′)
jr (xj )

∣∣

+
p∑

j=1

∑
r �=s

Lj∑
xj=1

∣∣�(k)
jrs(xj ) − �

(k′)
jrs (xj )

∣∣)

= ρ1

K∑
k=1

∑
u∈C

∑
v∈C

∣∣θ(k)
uv

∣∣ + ρ2
∑
k<k′

∑
u∈C

∑
v∈C

∣∣θ(k)
uv − θ(k′)

uv

∣∣,
where ρ1 and ρ2 are tuning parameters. The fused graphical lasso penalty im-
plies that graphs from multiple biological conditions are the same except for a few
edges.
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In the case of the group graphical lasso,

P
({

�(k)}) = ρ1

K∑
k=1

( ∑
j �=m

Lj∑
xj=1

Lm∑
xm=1

∣∣λ(k)
jm(xj , xm)

∣∣

+
p∑

j=1

q∑
r=1

Lj∑
xj=1

∣∣η(k)
jr (xj )

∣∣ + ∑
r �=s

∣∣�(k)
0rs

∣∣ + p∑
j=1

∑
r �=s

Lj∑
xj=1

∣∣�(k)
jrs(xj )

∣∣)

+ ρ2

( ∑
j �=m

Lj∑
xj=1

Lm∑
xm=1

√√√√ K∑
k=1

(
λ

(k)
jm(xj , xm)

)2 + ∑
r,s

√√√√ K∑
k=1

(
�

(k)
0rs

)2

+
p∑

j=1

q∑
r=1

Lj∑
xj=1

√√√√ K∑
k=1

(
η

(k)
jr (xj )

)2 +
p∑

j=1

∑
r �=s

Lj∑
xj=1

√√√√ K∑
k=1

(
�

(k)
jrs(xj )

)2

)

= ρ1

K∑
k=1

∑
u∈C

∑
v∈C

∣∣θ(k)
uv

∣∣ + ρ2
∑
u∈C

∑
v∈C

√√√√ K∑
k=1

θ
(k)
uv

2
,

where ρ1 and ρ2 are tuning parameters. The group graphical lasso penalty treats
the related biological conditions as one group, and implies that the underlying
multiple graphs are the same.

4. Algorithm. In this section, we focus on the numerical algorithms to solve
the optimization problem proposed above. This constrained optimization problem
can be simplified and solved by replacing it with a series of distributed problems
through an augmented Lagrangian scheme. We first make the objective function
separable by rewriting (3.3) as

(4.1) arg min
{�(k)},{Z(k)}

K∑
k=1

�
(
�(k)) + P(Z),

subject to the constraint that Z(k) = �(k) for k = 1, . . . ,K , where {Z} =
{Z(1), . . . ,Z(K)}. Then we carry out the function optimization and regularization
locally and coordinate them globally via constraints by further rewriting prob-
lem (4.1) using the scaled augmented Lagrangian [Boyd et al. (2011), Hestenes
(1969)] as

(4.2) Lρ

({�}, {Z}, {U}) =
K∑

k=1

�
(
�(k)) + P(Z) + d

2

K∑
k=1

∥∥�(k) − Z(k) + U(k)
∥∥2
F ,

where U = {U(1), . . . ,U(K)} are the dual feasibility-tolerance variables, and d is
a scalar. The augmented Lagrangian optimization problem (4.2) can be solved by
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the alternating direction method of multipliers (ADMM), which guarantees to con-
verge to the global optimum [Boyd et al. (2011)]. The skeleton of the algorithm at
the ith iteration includes the following three steps:

(a) {�(i)} ← arg min{�} Ld({�}, {Z(i−1)}, {U(i−1)}),
(b) {Z(i)} ← arg min{Z} Ld({�(i)}, {Z}, {U(i−1)}),
(c) {U(i)} ← {U(i−1)} + ({�(i)} − {Z(i)}).

Please refer to Supplementary Material for details [Zhang, Ouyang and Zhao
(2017)]. Briefly, to estimate �, we use a coordinate-wise descent approach to
obtain each parameter in �, and directly apply a well-suited proximal gradient
algorithm, which can achieve ε-optimality within O(1/

√
ε) iterations. The con-

vergence rates and properties of proximal gradient algorithms and their acceler-
ated variants have been well studied [Auslender and Teboulle (2006), Beck and
Teboulle (2009)]. To update Z, the optimization problem is separable with respect
to each pair of elements in the matrix, and thus can be solved using the fused lasso
signal approximator in Hoefling (2010) or the group lasso operator in Friedman,
Hastie and Tibshirani (2010) depending on the choice of penalty P .

We note that separate regressions were used in estimating a single graphi-
cal model, including the Gaussian graphical model [Meinshausen and Bühlmann
(2006)], the Ising model [Ravikumar, Wainwright and Lafferty (2010)] and the
mixed graphical model [Chen, Witten and Shojaie (2015), Cheng, Levina and Zhu
(2013), Yang et al. (2013)]. The regression-type approach is computationally con-
venient by virtue of effective regression tools, such as glmnet [Friedman, Hastie
and Tibshirani (2009)]. However, node-wise regression yields asymmetric esti-
mates of edge potentials for an undirected graph, which results in an arbitrary or
ad hoc selection of estimates of parameters. The computational diagram employed
in our approach can yield symmetric estimates of edge potentials for the undirected
graphs. In this respect, the proposed optimization method outperforms the simple
approach to parameter estimation via separate node-wise regression. Moreover, as
discussed in Section 2, it is not appropriate to treat biological conditions as discrete
measurements in the modeling and estimate one mixed graph. Furthermore, esti-
mating networks separately in each class can result in less accurate estimates than
estimating networks jointly [Danaher, Wang and Witten (2013)]. Thus, we use the
proposed symmetric pseudolikelihood method to jointly estimate mixed graphical
models.

It is also notable that our model covers a special situation when there are only
continuous variables across multiple biological conditions, which was studied by
joint graphical lasso (JGL) [Danaher, Wang and Witten (2013)]. In this simple
case, one only needs to estimate precision matrices of multivariate Gaussian ran-
dom variables, which results in estimated concentration graphs. It has been shown
that the thresholded sample covariance graph induces the same connected compo-
nents as those induced by the estimated concentration graph under the same regu-
larization parameter [Mazumder and Hastie (2012), Witten, Friedman and Simon
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(2011)]. With this nice property of a path of graphical lasso solutions, it can result
in a faster computation by employing screenings of empirical covariance matrices
to determine whether the solution to concentration graphs is block diagonal upon
feature permutation, and by performing the JGL algorithm on the features within
each block separately [Danaher, Wang and Witten (2013)].

5. Tuning parameter selection. For the selection of tuning parameters, we
propose the following Bayesian information criterion (BIC) type of approach:

BIC(ρ1, ρ2) = −2
K∑

k=1

ln l
(
�(k)

ρ1,ρ2

) + Ek ln(nk),

where l(�(k)
ρ1,ρ2

) is the pseudolikelihood for the observations from the kth class
with the tuning parameters ρ1 and ρ2, and Ek is the number of edges in the kth
mixed graphical model. It is notable that the proposed BIC-type approach depar-
tures from classical BIC approaches by using the pseduolikelihood rather than
likelihoods.

We notice that the Akaike information criterion (AIC) approach has been
used for the selection of Gaussian graphical models [Danaher, Wang and Witten
(2013)]. Analogously, one may use the following AIC-type approach for model
selection in our research scenario using the pseudolikelihood:

AIC(ρ1, ρ2) = −2
K∑

k=1

ln l
(
�(k)

ρ1,ρ2

) + 2Ek.

We compared the two model selection criteria through simulation studies as
shown in Section 6. Our analysis suggests that the AIC-type approach tends to
choose too large but less accurate models compared to the proposed BIC-type
criterion. Thus, we use the proposed BIC-type approach in the real application as
illustrated in Section 7.

6. Simulations. We demonstrate the performance of our approach through
simulations. Without loss of generality, in the following and for the simplicity of
simulation, we focus on �x = �, that is, �jrs(xj ) = 0 for any j ∈ {1, . . . , p},
r ∈ {1, . . . , q}, s ∈ {1, . . . , q} and xj ∈ {1, . . . ,Lj }. With this assumption, the co-
variance matrix for the continuous variables is independent of the values of the
discrete variables for the same class.

6.1. Random networks. We first considered two mixed graphical models (rep-
resenting two classes), each consisting of 10 categorical (with two levels, 1 and
2) and 10 Gaussian variables. The topologies for the two simulated networks are
shown in Figure 1. The left panel of Figure 1 is the adjacent matrix of the mixed
graphical model of the first class, while the right panel represents the second class.
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FIG. 1. The true adjacency matrices of simulated random networks in Section 6.1.

The first 10 rows/columns correspond to discrete variables, while the second 10
rows/columns correspond to continuous variables. The degree distributions are al-
most uniform, which are similar to those in the synthetic experiments in Lee and
Hastie (2012). Based on the edge sets defined in Figure 1, we assigned nonzero
potentials on the edges for each mixed graphical model as follows.

First, we generated a p × p edge potential matrix connecting discrete variables
as below:

(6.1) λjm(xj , xm) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.5 if (j,m) ∈ E and xj = 1 and xm = 1,

−0.5 if (j,m) ∈ E and xj = 2 and xm = 1,

−0.5 if (j,m) ∈ E and xj = 1 and xm = 2,

0.5 if (j,m) ∈ E and xj = 2 and xm = 2,

0 if (j,m) /∈ E.

Second, we assigned 2p × q elements for an edge potential matrix connecting
discrete and continuous random variables as follows:

(6.2) ηjr(xj ) =

⎧⎪⎪⎨
⎪⎪⎩

1 if (j,m) ∈ E and xj = 1,

−1 if (j,m) ∈ E and xj = 2,

0 if (j,m) /∈ E.
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Third, we generated a precision matrix � = (ωrs) of continuous variables as
below:

ωrs =

⎧⎪⎪⎨
⎪⎪⎩

0.25 if (r, s) ∈ E and r �= s,

1 if r = s,

0 if (r, s) /∈ E and r �= s.

To draw samples (x,y) from the joint density f (x,y), we first drew samples
x ∼ f (x) of the following form:

f (x) ∝ exp

( p∑
j=1

p∑
m=1

λjm(xj , xm) + 1

2
ηT(x)�−1η(x)

)

with

(
η(x)

)
r =

p∑
j=1

ηjr(xj ).

To overcome the difficulty with direct sampling from f (x), we adapted the
Gibbs sampling approach in Lee and Hastie (2012). We drew 202,000 samples in
total for discrete random variables of each mixed graphical model, and discarded
the first 2000 samples which were generated in a burn-in period. Then we took one
sample every 100 draws to preserve independence. After sampling x, we sampled
y from the conditional distribution f (y|x), which is N(�−1(η0 + η(x)),�−1)

with η0 = 0.
Using the proposed method DIG, we discovered the network structures for two

classes over a range of tuning parameters. We recorded the total number of iden-
tified edges for each pair of tuning parameters and calculated the number of true
positive edges and the number of false positive edges. It took 52 seconds to obtain
the results using the proposed algorithm using a 3-GHz Intel Core i7 processor.
For comparison, we also applied the JGL proposed by Danaher, Wang and Witten
(2013) by treating the two values (1 and 2) of discrete random variables as contin-
uous variables. Similarly, we calculated the number of true positive edges and the
number of false positive edges for a range of tuning parameters of JGL. The results
are shown in Figure 2. One can see that our method has better performance with
both group lasso and fused lasso penalty schemes. This shows the benefit of ex-
plicitly modeling discrete and continuous variables in discovering the underlying
networks.

Then we investigate the performance of the tuning parameter selection proce-
dure by checking the sensitivity and specificity of the selected model. The sensi-
tivity and specificity are defined as below, respectively,

sensitivity = TP

FN + TP
,

specificity = TN

FP + TN
,
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FIG. 2. Comparison of DIG and JGL on random networks using the simulated data in Section 6.1.

where TP refers to true positives, FP refers to false positives, TN refers to true
negatives and FN refers to false negatives. For each pair of tuning parameters,
we calculated the corresponding sensitivity, specificity and score for the proposed
BIC-type model selection criterion as shown in Figure 3. Figure 3(a) shows the
sensitivities of DIG with the group lasso penalty over a range of tuning parameters,
while Figure 3(b) shows the sensitivities of DIG with the fused lasso penalty. Fig-
ure 3(c) shows the specificities of DIG with the group lasso penalty over a range
of tuning parameters, while Figure 3(d) shows the specificities of DIG with the
fused lasso penalty. Figures 3(e) and (f) show the corresponding BIC-type scores
for the group lasso and fused lasso, respectively, with the selected model for each
type of penalty indicated by a purple diamond. The results show that DIG achieves
high sensitivities (1 for both group lasso and fused lasso penalties) and specificities
(0.93 for group lasso penalty, 0.96 for fused lasso penalty) with the proposed BIC-
type model selection approach. To compare, we also investigated model selection
performance through the AIC-type approach. The orange circles in Figure 3 indi-
cate the corresponding selected models for the group lasso penalty and the fused
lasso penalty. In this simulation study, although the graphical models selected by
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FIG. 3. Performance of DIG with a range of tuning parameter pairs on random networks using
the simulated data in Section 6.1. Purple diamonds indicate the model selected by the proposed BIC
procedure. Orange circles indicate the model selected by the AIC-type criterion.

the AIC-type approach can achieve as high sensitivities as the BIC-type approach,
the corresponding specificities are lower (0.78 for group lasso penalty, 0.49 for
fused lasso penalty) than those of the BIC-type approach. The results suggest that
the AIC-type approach tends to choose a larger but less accurate model than the
BIC-type approach.

6.2. Scale-free networks. It has been shown that many real networks are scale-
free, of which degree distributions follow power law. In this simulation, we inves-
tigate the performance of our approach for scale-free networks where the proba-
bility that a node has a connectivity of d is proportional to d−γ . It has been found
that the γ values for real-world networks usually vary from 2 to 3 [Albert, Jeong
and Barabási (2000), Barabási and Albert (1999), Govindan and Tangmunarunkit
(2000), Jeong et al. (2001), Yook, Oltvai and Barabási (2004)]. Thus, we randomly
generated two networks for two classes where γ is 2.433 and 2.317, respectively.
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The nodes in each network consist of 10 discrete variables and 10 continuous vari-
ables. The simulated structures of the two scale-free networks guided us to assign
edge potentials. We used the formula of equation 6.1 for the potentials of the edges
connecting discrete variables. We used the formula of equation 6.2 for the poten-
tials of the edges between discrete and continuous variables. For the potentials of
the edges connecting continuous variables, we drew random values using the fol-
lowing approach such that the precision matrix � is a positive definite matrix. For
each class, we first created a q×q matrix with ones on the diagonal and zeros on el-
ements not corresponding to network edges. Then we drew nonzero random values
on elements corresponding to edges. To obtain each of these nonzero random val-
ues, we first drew a random number a from a uniform distribution U(0,1), then we
randomly picked a number from {0.1,−0.4} with equal probability. The nonzero
random values assigned to the elements corresponding to edges are 0.3a +b. Then
we divided each off-diagonal element by 1.5 times the sum of the absolute values
of the off-diagonal elements in its row. Finally, we added the transpose of the ma-
trix to the matrix itself to achieve a symmetric and positive definite matrix �. To
draw samples for each graphical model, we adapted the sample generation proce-
dure in Section 6.1. We set the burn-in threshold as 2000 in the Gibbs sampler.
For each graphical model, we took one observation every 100 draws to preserve
independence, and obtained 2000 samples in total for the following investigation.

Using the proposed DIG approach, we discovered network topologies using the
simulated samples over a range of tuning parameters. Figures 4(a) and (b) show the
sensitivities of DIG with group lasso penalty and fused lasso penalty, respectively,
while Figures 4(c) and (d) show the corresponding specificities. Figures 4(e) and
(f) show the corresponding scores of the proposed BIC-type approach, with the
selected model for each type of penalty indicated by a purple diamond. The re-
sults show that DIG can achieve high sensitivity (1 for both group lasso and fused
lasso penalties) and specificity (0.87 for group lasso penalty, 0.86 for fused lasso
penalty) with the proposed BIC-type of approach. It suggests that the proposed
BIC-type model selection approach can select suitable tuning parameters. We also
investigated the effects of sample sizes on the performance of DIG. With a smaller
sample size of 800, we obtained sensitivity as high as 1 for both group lasso and
fused lasso, with a considerable specificity of 0.61 for group lasso and 0.62 for
fused lasso.

We also compared our approach with JGL in Danaher, Wang and Witten (2013).
The results are shown in Figure 5. In the scenario of scale-free mixed networks,
our method outperforms JGL with higher true positive discovery rates and lower
false positive discovery rates in both group lasso and fused lasso penalty schemes.

7. Application to cancer genomic data. We applied our DIG approach to
TCGA datasets of two cancer types: colorectal carcinoma (coadread) and breast
invasive carcinoma (brca). We obtained the mutation and copy number variation
(CNV) data compiled by Ciriello et al. (2013) for 491 coadread subjects and 488
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FIG. 4. Performance of DIG with a range of tuning parameter pairs on scale-free networks us-
ing the simulated data in Section 6.2. Purple diamonds indicate the models (group lasso penalty:
ρ1 = 0.0001, ρ2 = 0.1; fused lasso penalty: ρ1 = 0.05, ρ2 = 0.1) selected by the proposed BIC
procedure.

brca subjects, respectively. We used the PI3K-mTOR-AKT pathway to illustrate
our method. Our data includes 62 genes with mutation information and their cor-
responding copy number measurements for each subject. We treated mutations as
discrete variables with two levels representing the presence and absence of muta-
tions, and copy number variations as continuous variables. We used the fused lasso
penalty to the datasets from the two cancer types, and the proposed BIC approach
to choose the tuning parameters (ρ1 = 0.3, ρ2 = 0.5). The selected optimum tuning
parameter ρ2 = 0.5 for fused lasso indicates similarities exist in our data between
coadread and brca. It took 134 seconds to obtain the results using a 3-GHz In-
tel Core i7 processor with our current DIG implementation. We have identified
1660 edges for the coadread class and 1632 edges for the brca class. Among the
interactions of coadread, 16% of them are mutation-mutation interactions, 42.3%
of them are mutation-CNV interactions, and the rest are CNV-CNV interactions.
For brca, 16.2% of edges are mutation-mutation interactions, 43% of them are
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FIG. 5. Comparison of DIG and JGL on scale-free networks using the simulated data in Sec-
tion 6.2.

mutation-CNV interactions, and the rest are CNV–CNV interactions. The two tu-
mor networks share 1584 edges. We studied the community structures or modules
in the identified networks through the eigenspectrum decomposition of the modu-
larity matrices described in Newman (2006). We found four modules in coadread
with sizes of 16, 66, 22 and 20. We also found two modules in brca with sizes 58
and 66. Interestingly, the second module is shared in both coadread and brca. This
module is shown in the left panel of Figure 6 with common interactions in coad-
read and brca plotted. The nodes with the highest degrees are indicated by their
names. The hubs in this common module for both coadread and brca are impor-
tant oncogenes including TP53 that play important roles in many cancers. We also
performed enrichment analysis using INGENUITY (www.ingenuity.com) on the
genes evolved in this common module. As shown in the right panel of Figure 6,
we found that the identified functions are very relevant to the studied biological
context and critical to tumor development, for example, melanoma signaling and
cell-cycle events. The rest of the tumor-specific communities for coadread and
brca are presented in Supplementary Figure 1, and indicated by different colors.
The representative nodes for each module with the highest degrees are indicated

http://www.ingenuity.com
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FIG. 6. Common module and functions for networks identified by DIG. (a) The shared module with
common interactions presented in both coadread and brca. (b) Identified functions by enrichment
analysis of genes evolved in the common module. P -values are obtained by Fisher’s exact tests.

by their names as well. We also plotted the detailed tumor-specific interactions in
Supplementary Figure 2. There are 76 coadread-specific interactions and 48 brca-
specific interactions. Nodes are shown in different colors corresponding to degree
differences between the two types of tumors. Specifically, red nodes have the same
degrees in the two conditions, while blue nodes have higher degrees in the coad-
read condition, and orange nodes have higher degrees in the brca condition. We
also zoomed in some known oncogenes with their names shown in the pictures.
We identified genetic variants that are known to be implicated in individual cancer
types. For example, the MTOR copy number has a higher degree in coadread ver-
sus brca, which is consistent with the activation of the PI3K-mTOR-AKT pathway
in coadread [Ciriello et al. (2013)]. Also, the BRCA1 mutation has a higher de-
gree in brca versus coadread, which corresponds to the inactivation of BRCA1 in
breast tumors that leads to defective cell cycle arrest in response to DNA damage
[Network et al. (2012)].

To compare, we also performed the analysis without considering the similari-
ties of coadread and brca, for which ρ2 = 0. We selected the optimal value for the
tuning parameter controlling sparsity as ρ1 = 0.5. We found 1222 edges for coad-
read and 981 edges for brca, respectively. Among them, there are 1000 coadread-
specific interactions, 759 brca-specific interactions and 222 common interactions.
The number of common interactions in this analysis is much less than that in the
joint analysis above. We also performed modularity analysis for the resulting net-
works. We found three modules for caodread with sizes of 67, 1 and 56, as well
as four modules for brca with sizes of 36, 45, 22 and 21. Moreover, the results
show that the shared edges cannot form a common community. Furthermore, we
also applied JGL [Danaher, Wang and Witten (2013)] to this cancer dataset by
treating mutations as continuous variables of CNVs. It ended up with 890 inter-
actions for coadread and 1218 interactions for brca. Among these interactions,



DATA INTEGRATION THROUGH GRAPHICAL MODELS 181

for coadread, 1.69% are mutation-mutation interactions and 21.5% are mutation-
CNV interactions. For brca, 0.41% are mutation-mutation interaction and 14.4%
are mutation-CNV interactions. The results suggest that JGL is less capable of
identifying interactions related to mutations. Specifically, JGL identified only one
interaction (NRG1) associated with the mTOR mutation in coadread, and no in-
teraction was identified with the mTOR mutation in brca. However, DIG identi-
fied 20 and 19 interactions associated with the mTOR mutation in coadread and
brca, respectively. In coadread, DIG suggests that the mTOR mutation is associ-
ated with the mutations of TP53, RB1, MAP3K1, COL4A5 and PTEN, as well as
CNVs of MTOR, ARID1A, DNMT3A, TET2, FBXW7, SDK1, NRG1, CDKN1B,
HCN4, CTCF, CDH1, MAP2K4, SMAD4, PHLPP1 and EP300. In brca, DIG in-
dicates that the mTOR mutation is connected with the mutations of TP53, RB1,
MAP3K1, COL4A5 and PTEN, as well as MTOR, DNMT3A, TET2, FBXW7,
SDK1, NRG1, CDKN1B, HCN4, CTCF, CDH1, MAP2K4, SMAD4, PHLPP1
and EP300. As the PI3K-mTOR-AKT pathway is the biological context consid-
ered in our application, JGL is likely to miss important interactions relevant to the
mTOR mutation compared to DIG. One of the evidences is that activation of p53
inhibits mTOR activity, and inhibited mTOR also affects p53 activity [Feng et al.
(2005)].

8. Discussion. In this paper, we have proposed a coherent statistical frame-
work, DIG, for the problem of estimating multiple related mixed graphical models
from high-dimensional data with both discrete and continuous variables and with
observations belonging to distinct but related biological conditions. The applica-
tion has been illustrated using cancer studies. DIG is a general statistical frame-
work that can be applied to the genomics of other diseases. For future work, it
is natural to extend the proposed framework employing exponential families for
a mixed graphical model [Chen, Witten and Shojaie (2015), Yang et al. (2013)].
Furthermore, it would be interesting to develop hypothesis testing methods such
that the final mixed graphical models are accompanied by a p-value on each edge
and an overall estimate of edge false discovery rate. A systematic investigation of
model selections and hypothesis testing for the components of the mixed graphical
models would be important future work.
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SUPPLEMENTARY MATERIAL

Supplement to “A statistical framework for data integration through
graphical models with application to cancer genomics.” (DOI: 10.1214/16-
AOAS998SUPP; .pdf). We present technical and methodological details regarding
the model and algorithm in Section 2 and 4. Furthermore, complementary results
for the application in Section 7 are provided.
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