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Human-induced climate change may cause significant ice volume loss
from the West Antarctic Ice Sheet (WAIS). Projections of ice volume change
from ice sheet models and corresponding future sea-level rise have large un-
certainties due to poorly constrained input parameters. In most future applica-
tions to date, model calibration has utilized only modern or recent (decadal)
observations, leaving input parameters that control the long-term behavior
of WAIS largely unconstrained. Many paleo-observations are in the form
of localized time series, while modern observations are non-Gaussian spa-
tial data; combining information across these types poses nontrivial statisti-
cal challenges. Here we introduce a computationally efficient calibration ap-
proach that utilizes both modern and paleo-observations to generate better
constrained ice volume projections. Using fast emulators built upon prin-
cipal component analysis and a reduced dimension calibration model, we
can efficiently handle high-dimensional and non-Gaussian data. We apply
our calibration approach to the PSU3D-ICE model which can realistically
simulate long-term behavior of WAIS. Our results show that using paleo-
observations in calibration significantly reduces parametric uncertainty, re-
sulting in sharper projections about the future state of WAIS. One benefit
of using paleo-observations is found to be that unrealistic simulations with
overshoots in past ice retreat and projected future regrowth are eliminated.

1. Introduction. Human-induced climate change may cause significant ice
volume loss in the polar regions. The West Antarctic Ice Sheet (WAIS) is particu-
larly vulnerable to the changing climate because much of the ice is grounded well
below sea level. Previous studies suggest that ice volume loss in this area may re-
sult in up to 4 meters of sea level rise [Fretwell et al. (2013)], which in turn will
require significant resource allocations for adaptation and may therefore have a
profound impact on human society [e.g., Lempert, Sriver and Keller (2012)].
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Many recent modeling efforts have focused on simulating and projecting the
past and future WAIS volume dynamics [e.g., Bindschadler et al. (2013)]. The
relevant time scale for many aspects of WAIS behavior is often in hundreds to
thousands of years; this in turn necessitates simulating and projecting the evolu-
tion of WAIS for a very long time span [Cornford et al. (2015), Feldmann and
Levermann (2015), Golledge et al. (2015), Gomez, Pollard and Holland (2015),
Ritz et al. (2015), Winkelmann et al. (2015)].

In this work we use the PSU3D-ICE model [Pollard and DeConto (2009, 2012a,
2012b)] to simulate the long-term evolution of the West Antarctic Ice Sheet. Us-
ing a hybrid dynamical core that combines the shallow-ice and the shallow-shelf
approximation, the model can realistically simulate the long-term behavior of the
ice sheet with a reasonable amount of computational effort. In contrast to higher-
resolution models [e.g., Favier et al. (2014), Gladstone et al. (2012), Joughin,
Smith and Medley (2014)] that are designed for relatively short simulations with
more detailed physical processes, this modeling strategy enables us to simulate the
long-term evolution of the West Antarctic Ice Sheet and utilize information from
paleo-observations for model calibration. The approach here is a trade-off between
(i) reduced fidelity in capturing details such as sills near modern grounding lines
that may be important for 10’s-km scale retreat in the next hundred years, and
(ii) more robust calibration versus retreat over hundreds of kilometres and more
pronounced bedrock variations, which is arguably more relevant to larger-scale
retreat into the West Antarctic interior within the next several centuries.

Parametric uncertainty is an important source of uncertainty in projecting future
WAIS volume change. Ice sheet models have input parameters that strongly affect
the model behaviors; they are also poorly constrained [Applegate et al. (2012),
Stone et al. (2010)]. Various calibration methods have been proposed to reduce
parametric uncertainty for Greenland [Chang et al. (2014b), McNeall et al. (2013)]
and the Antarctica ice sheets model [Chang et al. (2016), Gladstone et al. (2012)].
Although these recent studies have provided statistically sound ways of generat-
ing constrained future projections, they are mostly limited to generating short-term
projections (i.e., a few hundred years from present) or utilizing modern or recent
observations in the calibration. Inferring input parameters that are related to the
long-term behavior of WAIS is crucial for generating well-constrained projections
in the relevant time scale (hundreds to thousands of years). Modern or recent ob-
servations often lack information on these parameters, and therefore calibrating
solely based on these information sources may result in poorly constrained projec-
tions. Recent studies using heuristic approaches suggest that utilizing information
from paleo data can reduce uncertainties in these long-term behavior related pa-
rameters [Briggs, Pollard and Tarasov (2013, 2014), Briggs and Tarasov (2013),
Golledge et al. (2014), Maris et al. (2015), Whitehouse, Bentley and Le Brocq
(2012), Whitehouse et al. (2012)].

Here we propose an approach to simultaneously utilize modern- and paleo-
observations for ice sheet model calibration, generating well-constrained future
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WAIS ice volume change projections. This work represents the first statistically
rigorous approach for calibrating an ice sheet model based on both modern and
paleo data, and the resulting inference about parameters and projected sea level
rise are therefore less uncertain than those obtained solely based on modern data
[cf. Chang et al. (2016)]. Our methodological contribution is to provide a com-
putationally expedient approach to fuse information from modern and paleo data.
Our dimension reduction methods build upon two different calibration approaches
given by Chang et al. (2014a, 2016), while also accounting for potential relation-
ships between the two very different types of data—the modern data are spatial and
binary, while the paleo data are in the form of a time series. A central contribution
of this work is scientific. Based on our methods, we are able to show explicitly how
paleo data provides key new information about parameters of the ice sheet model,
and we thereby show that utilizing paleo data in addition to modern ice sheet data
virtually eliminates the possibility of zero (or negative) sea level rise.

The rest of the paper is organized as follows. Section 2 introduces the model
runs and the observational data sets used in our calibration experiment. Section 3
explains our computationally efficient reduced-dimension calibration approach
that enables us to emulate and calibrate the PSU3D-ICE model using both the
grounding line positions and the modern observations while avoiding the compu-
tational and inferential challenges. Section 4 describes our calibration experiment
results based on a simulated example and real observations. Finally, in Section 5,
we summarize our findings and discuss caveats and possible improvements.

2. Model runs and observational data. In this section, we describe the ice
sheet model that we use to simulate past and future West Antarctic Ice Sheet be-
havior, as well as the modern and paleo-data sets that we use to calibrate the ice
sheet model.

2.1. Model runs and input parameter decription. We calibrate the following
four model parameters that are considered to be important in determining the
long-term evolution of the West Antarctic Ice Sheet, yet whose values are particu-
larly uncertain: the sub-ice-shelf oceanic melt factor (OCFAC), the calving factor
(CALV), the basal sliding coefficient (CRH), and the asthenospheric relaxation e-
folding time (TAU). OCFAC (nondimensional) represents the strength of oceanic
melting at the base of floating ice shelves in response to changing ocean temper-
atures, and CALV (nondimensional) determines the rate of iceberg calving at the
outer edges of floating ice shelves. CRH (m year−1 Pa−2) represents how slippery
the bedrock is in areas around Antarctica that are currently under ocean, that is,
how fast grounded ice slides over these areas as it expands beyond the present ex-
tent. A higher value of CRH corresponds to faster basal sliding and greater ice flux
toward the ocean. TAU (with units in thousands of years) represents the time scale
for vertical bedrock displacements in response to changing ice load. In this paper,
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we remap the parameter values to the [0,1] intervals for convenience. We refer to
Chang et al. (2016) for more detailed description of these parameters.

We run the PSU3D-ICE model with 625 different parameter settings specified
by a factorial design, with five different values for each parameter. Starting from
40,000 years before present, each model run is spun up until present and then
projected 5000 years into the future. For atmospheric forcing, we use the mod-
ern climatological Antarctic data set from the Sea Rise project [Bindschadler et al.
(2013)] uniformly perturbed in proportion to a deep-sea-core d18O record [Pollard
and DeConto (2009, 2012b)]. For oceanic forcing, we use the ocean temperature
pattern from AOGCM simulation runs generated by Liu et al. (2009). From each
model run we extract the following two data sets and compare them to the corre-
sponding observational record: (i) the time series of grounding line positions, the
location of the transition from grounded ice to ice shelf along the central flow-
line in the Amundsen Sea Embayment (ASE) region (see Section 2.2 below for
more details), and (ii) the modern binary spatial pattern of presence and absence
of grounded ice in the ASE. The grounding line position time series (i) has 1501
time points from 15,000 years ago to the present, and the modern binary spatial
pattern (ii) is a binary map with 86 × 37 pixels with a 20 km horizontal resolution.
Because the time series of the grounding line position for each model run does not
usually show much change until 15,000 years before present, we only use the time
series after 15,000 years ago for our calibration. Note that each model output is in
the form of high-dimensional multivariate data, which causes computational and
inferential challenges described in Section 3.1.4. The corresponding observational
data sets, described below, have the same dimensionalities as the model output
sets.

Note that, for some parameter settings, the past grounding line position shows
unrealistically rapid retreat early in the time series and does not change for the rest
of the time period. We have found that using these runs for building our emula-
tor negatively affects the emulation performance for more realistic model outputs.
Therefore, we have excluded the model runs that reach a grounding line position
500 meters inland from the modern grounding line before 10,000 years ago from
our analysis and use the remaining 461 model runs for emulating the past ground-
ing line position output.

2.2. Paleo-records of grounding line positions. We take advantage of a very
recent, comprehensive synthesis of Antarctic grounding line data since the last
glacial maximum [RAISED Consortium (2014)]. For the ASE sector, Larter et al.
(2014) provide spatial maps of estimated grounding lines at 5000 year intervals
from 25,000 years ago to the present. These maps are based primarily on many
ship-based observations taken in the oceanic part of ASE using sonar (showing
patterns of ocean-floor features formed by flow of past grounded ice) and shal-
low sediment cores (providing dating and information on ice proximity, i.e., open
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ocean, ice proximal or grounded). There is considerable uncertainty in the recon-
structions, but general consensus for the overall retreat in this sector, especially
along the central flowline of the major paleo-ice stream emerging from the con-
fluence of Pine Island and Thwaites Glaciers and crossing the ASE [cf. earlier
synthesis by Kirshner et al. (2012)].

2.3. Modern observations. We use a map of modern grounding lines deduced
from the Bedmap2 data set [Fretwell et al. (2013)]. Bedmap2 is the most recent
all-Antarctic data set that provides gridded maps of ice surface elevation, bedrock
elevation and ice thickness. These fields were derived from a variety of sources,
including satellite altimetry, airborne and ground radar surveys, and seismic sound-
ing. The nominal Bedmap2 grid spacing is 1 km, but the actual coverage in some
areas is sparser especially for ice thickness. We deduce grounding line locations by
a simple floatation criterion at each model grid cell, after interpolating the data to
our coarser model grid. In this work, we use a part of the data that corresponds to
the ASE sector, which is expected to be the largest contributor to future sea level
rise caused by WAIS volume loss [Pritchard et al. (2012)]. Since the observed
modern binary pattern is derived from the highly accurate ice thickness measure-
ments in the Bedmap2 data set and the model binary patterns are highly variable
depending on the input parameter settings (see Section S1 and Figure S1 in the
Supplementary Material [Chang et al. (2016)]), the model outputs approximated
by our emulator are accurate enough to provide a basis for calibration.

3. Computer model emulation and calibration using dimension reduction.
As explained in the preceding discussion, parameter inference is central to WAIS
volume change projections; taking full advantage of all observational data, both
paleo and modern, may result in reduced parametric uncertainty which in turn
can result in well-constrained projections of volume change. In this section we
describe our statistical approach for inferring input parameters for WAIS models
while accounting for relevant sources of uncertainty. In Section 3.1 we introduce
our two-stage framework [Bayarri et al. (2007), Bhat, Haran and Goes (2010),
Bhat et al. (2012), Chang et al. (2014a)] that consists of the emulation and the
calibration steps: In the emulation step we build a Gaussian process emulator as a
fast approximation to WAIS model outputs [Sacks et al. (1989)]. In the calibration
step, we infer the input parameters for WAIS models by combining information
from emulator output and observational data while accounting for the systematic
model-observation discrepancy. The framework faces computational and inferen-
tial challenges when model output and observational data are high-dimensional
data such as large spatial patterns or long time series, and the challenges are fur-
ther exacerbated when the marginal distribution of model output and observational
data cannot be modeled by a Gaussian distribution. Section 3.2 describes a compu-
tationally expedient reduced-dimension approach that mitigates these challenges
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for high-dimensional Gaussian and non-Gaussian data and enables us to utilize in-
formation from both past grounding line positions and modern binary patterns for
calibration.

We use the following notation henceforth: Let θ1, . . . , θq ∈ R4 be the parame-
ter settings at which we use both the past grounding line positions and the mod-
ern binary patterns for emulation, and let θq+1, . . . , θp ∈ R4 be the settings at
which we use only the modern binary patterns (see Section 2.1 above for the
reason why q is less than p in our experiment). We denote the past ground-
ing line position time series from our WAIS model at a parameter setting θ and
a time point t by Y1(θ , t). We let Y1 be a q × n matrix where its ith row is
[Y1(θ i , t1), . . . , Y1(θ i , tn)] and t1, . . . , tn are time points at which the grounding
line positions are recorded. We let Z1 = [Z1(t1), . . . ,Z1(tn)] be a vector of the
observed time series of past grounding line positions reconstructed from paleo
records. Similarly, we denote the modern ice-no ice binary output at the param-
eter setting θ and a spatial location s by Y2(θ , s). We let Y2 be a p × m matrix
where its ith row is [Y2(θ i , s1), . . . , Y2(θ i , sm)] with model grid points s1, . . . , sm.
The corresponding observational data are denoted by an m-dimensional vector
Z2 = [Z2(s1), . . . ,Z2(sm)]. For our WAIS model emulation and calibration prob-
lem in Section 4, n = 1501, m = 3182, p = 625k and q = 461.

3.1. Basic WAIS model emulation and calibration framework. In this subsec-
tion we explain the basic general framework for computer model emulation and
calibration, and describe the computational challenges posed by our use of high-
dimensional model output and observational data.

3.1.1. Emulation and calibration using past grounding line positions. We start
with the model output Y1 and the observational data Z1 for the past grounding line
positions. Since computer model runs are available only at a limited number of pa-
rameter settings q , one needs to construct a statistical model for approximating the
model output at a new parameter setting θ by interpolating the existing model out-
put obtained at the design points θ1, . . . , θq [Sacks et al. (1989)]. Constructing this
statistical model requires us to build a Gaussian process that gives the following
probability model for the existing q model runs with n-dimensional output:

(1) vec(Y1) ∼ N
(
X1β1,�(ξ1)

)
,

where vec(·) is the vectorization operator that stacks the columns of a matrix into
one column vector, and X1 is a nq×b covariate matrix that contains all the time co-
ordinates and the input parameters settings used in the nq × nq covariance matrix
�(ξ1) with a covariance parameter vector ξ1. The b-dimensional vector β1 con-
tains all the coefficients for the columns of X1. When the number of time points n

and the number of parameter settings q are small, one can estimate the parameter
ξ1 by maximizing the likelihood function corresponding to the probability model
in (1) and finding the conditional distribution of Y1(θ i , t1), . . . , Y1(θ i , tn) given Y1
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for any new value of θ using the fitted Gaussian process with the maximum like-
lihood estimates β̂1 and ξ̂1. We call the fitted Gaussian process an emulator and
denote the output at θ interpolated by the emulator as η(θ ,Y1). Using the emula-
tor, one can set up a model for inferring the input parameter θ as follows [Bayarri
et al. (2007), Kennedy and O’Hagan (2001)]:

(2) Z1 = η(θ ,Y1) + δ,

where δ is an n-dimensional random vector that represents model-observation dis-
crepancy. The discrepancy term δ is often modeled by a Gaussian process that is
independent of the emulated output η(θ ,Y1). Using a posterior density defined by
the likelihood function that corresponds to the probability model in (2) and a stan-
dard prior specification, one can estimate the input parameter θ along with other
parameters in the model via Markov Chain Monte Carlo (MCMC).

3.1.2. Emulation and calibration using modern binary observations. Emula-
tion and calibration for the modern ice-no ice binary patterns require additional
consideration in model specification due to the binary nature of the data sets. In-
spired by the generalized linear model framework, Chang et al. (2016) specify
emulation and calibration models in terms of logits of model output and observa-
tional data. Let � = {γij } be a p × m-dimensional matrix whose element is the
logit of the (i, j)th element in Y2, that is,

P
(
Y2(θ i , sj ) = yij

) =
(

exp(γij )

1 + exp(γij )

)yij
(

1

1 + exp(γij )

)1−yij

= (
1 + exp

(−(2yij − 1)γij

))−1
,

where the value of yij is ether 0 or 1. Assuming conditional independence be-
tween the elements in Y2 given �, one can use a Gaussian process that yields the
probability model below to specify the dependence between the model output at
different parameter settings and spatial locations,

(3) vec(�) ∼ N
(
X2β2,�(ξ2)

)
,

where the mp × c dimensional covariate matrix X2, c-dimensional coefficient vec-
tor β2 and the mp × mp covariance matrix �(ξ2) with a covariance parameter
vector ξ2 are defined in the same way as in (1). One can find the maximum like-
lihood estimates β̂2 and ξ̂2 by maximizing the likelihood function corresponding
to the probability model in (3). The resulting Gaussian process emulator gives a
vector of interpolated logits ψ(θ ,Y2) for a new input parameter value θ .

The calibration model is also defined in terms of the logits of the observational
data Z2, denoted by an m-dimensional vector λ = [λ1, . . . , λm],

λ = ψ(θ ,Y2) + φ,
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where φ is an m-dimensional random vector representing the model-observation
discrepancy defined in terms of the logits of Z2. Again, assuming conditional in-
dependence between the elements in Z2 given λ, the relationship between λ and
Z2(si) is given by

P
(
Z2(sj ) = zj

) =
(

exp(λj )

1 + exp(λj )

)zj
(

1

1 + exp(λi)

)1−zj

= (
1 + exp

(−(2zj − 1)λj

))−1
,

(4)

where zj takes a value of either 0 or 1. If the number of parameter settings p

and spatial locations m are small, one can set up a posterior density based on
the likelihood function corresponding to the probability models above and some
standard prior specifications, and might be able to infer θ and other parameters
using MCMC.

3.1.3. Combining information from two data sets in calibration. We set up a
calibration model to infer the input parameters in θ based on the models described
in Sections 3.1.1 and 3.1.2. The main consideration here is how to model the de-
pendence between Z1 and Z2, which can be translated to the dependence between
the emulated outputs η(θ ,Y1) and ψ(θ,Y2) and the dependence between the dis-
crepancy terms δ and φ. We model the dependence between η(θ ,Y1) and ψ(θ ,Y2)

only through the input parameter θ [i.e., we assume that η(θ ,Y1) and ψ(θ ,Y2)

are conditionally independent given the input parameter θ ] because the emulators
are independently constructed for Y1 and Y2. We do not introduce a conditional
dependence between the emulators η(θ ,Y1) and ψ(θ ,Y2) given θ because the
emulators are already highly accurate. The greater challenge is the dependence be-
tween the discrepancy terms δ and φ because both terms are high dimensional and
it is not straightforward to find a parsimonious model that can efficiently handle
the cross-correlation between them (see Section 3.1.4 below for further discussion
and Section 3.2 for our solution).

3.1.4. Computational and inferential challenges. The emulation and calibra-
tion problems for both the past grounding line positions and the modern ice-no
ice binary patterns face computational and inferential challenges when the length
of time series n and the number of spatial locations m are large. For both of
these problems, the likelihood evaluation in the emulation step involves Cholesky
decomposition of nq × nq and mp × mp covariance matrices, which scales as
O(n3q3) and O(m3p3), respectively. For our WAIS model calibration problem,
this requires 1

3n3q3 = 1.1 × 1017 and 1
3m3p3 = 2.6 × 1018 flops of computation

for each likelihood evaluation, which translate to about 28,000 hours and 220,000
hours on a high-performance single core. Moreover, emulation and calibration us-
ing the modern ice-no ice patterns poses additional inferential difficulties. In par-
ticular, we need to compute mp = 1,988,750 logits for the model output in the
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emulation step and 2m = 6364 logits for the observational data. The challenge is
therefore to ensure that the problem is well posed by constraining the logits, while
at the same time retaining enough flexibility in the model. The problem is even
more complicated due to the dependence between the discrepancy terms δ and φ
because we need to estimate n×m = 1501×3182 correlation coefficients between
the elements in those two terms.

3.2. Reduced-dimension approach. In this subsection, we discuss our
reduced-dimension approaches to mitigate the computational and inferential chal-
lenges described above.

3.2.1. Dimension reduction using principal components. The first step is to
reduce the dimensionality of model output via principal component analysis. For
the model output matrix of the past grounding line positions Y1, we find the J1-
leading principal components by treating each of its columns (i.e., output for each
time point) as different variables and rows (i.e., output for each parameter setting)
as repeated observations. For computational convenience we rescale the princi-
pal component scores by dividing them by the square roots of their corresponding
eigenvalues so that their sample variances become 1. We denote the j th rescaled
principal component scores at the parameter setting θ as YR

1 (θ , j), and denote
the q × J1 matrix that contains all the principal component scores for the design
points θ1, . . . , θq as YR

1 = {YR
1 (θ i , j )} with its rows for different parameter set-

tings and columns for different principal components. Similarly, for the model
output matrix of the modern ice-no ice binary patterns Y2, we form a p × J2 ma-
trix YR

2 = {YR
2 (θ i , j )} of J2 leading logistic principal components in the same way,

where YR
2 (θ , j) is the j th logistic principal component at the parameter setting θ .

We use J1 = 20 principal components for the past grounding position output
and J2 = 10 for the modern binary pattern output. Through a cross-validation ex-
periment described below in Section 4, we have found that increasing the number
of principal components does not improve the emulation performance. We have
also confirmed that the principal component score surfaces vary smoothly in the
parameter space, and hence Gaussian process emulation is a suitable approach to
approximating them (Figures S2–S7 in the Supplementary Material [Chang et al.
(2016)]).

We display the first three principal components for a modern binary spatial pat-
tern in Figure S8 and past grounding line position time series in Figure S9. The
first three principal components for the modern binary spatial pattern show that
the most variable patterns between parameter settings are (i) the overall ice cov-
erage in the inner part of the Amundsen Embayment, which determines whether
there is a total collapse of ice sheet in this area, (ii) the grounding line pattern
around the edge of Amundsen Sea Embayment, (iii) and the ice coverage around
the Thurston island. The first three principal components for the past grounding
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line position time series indicate that the most variable patterns between the input
parameter settings are (i) the grounding line retreat occurring between 15,000 and
7000 years ago, (ii) the retreat occurring until around 9000 years ago, followed
by strong re-advance until 3000 years ago (red dashed curve), and (iii) a quasi-
sinusoidal advance and retreat (black dashed-dotted curve) that spans the entire
time period.

3.2.2. Emulation using principal components. In the emulation step, our prin-
cipal component-based approach allows us to circumvent expensive matrix com-
putations in likelihood evaluation (Section 3.1.4 above) by constructing emulators
for each principal component separately. For the j th principal component of Y1,
we fit a Gaussian process model to YR

1 (θ1, j), . . . , YR
1 (θq, j) (j = 1, . . . , J1) with

0 mean and the following covariance function:

Cov
(
YR

1 (θk, j), YR
1 (θ l , j )

) = κ1,j exp

(
−

4∑
i=1

|θik − θil|
φ1,ij

)
+ ζ1,j 1(θk = θ l),

with κ1,j , φ1,1j , . . . , φ1,4j , ζ1,j > 0 by finding the MLEs κ̂1,j , φ̂1,1j , . . . , φ̂1,4j , and
ζ̂1,j . The computational cost for likelihood evaluation is reduced from O(q3n3

1) to
O(J1q

3). The resulting J1 Gaussian process models allow us to interpolate the val-
ues of the principal components at any new value of θ . We denote the collection of
the predicted values given by these Gaussian process models for parameter setting
θ as η(θ ,YR

1 ). Similarly, we construct Gaussian process models for the logistic
principal components YR

2 (θ1, j), . . . , YR
2 (θp, j) (j = 1, . . . , J2) with mean 0 and

the covariance function

Cov
(
YR

2 (θk, j), YR
2 (θ l , j )

) = κ2,j exp

(
−

4∑
i=1

|θik − θil|
φ2,ij

)
+ ζ2,j 1(θk = θ l),

with κ2,j , φ2,1j , . . . , φ2,4j , ζ2,j > 0, by finding the MLEs κ̂2,j , φ̂2,1j , . . . , φ̂2,4j ,
and ζ̂2,j . This reduces the computational cost for likelihood evaluation from
O(m3p3) to O(J2p

3). Moreover, our approach requires computing only p × J2
logistic principal components, and hence eliminates the need for computing mp

logits. As above, we let ψ(θ ,YR
2 ) be the collection of the values of logistic princi-

pal components at any new value of θ interpolated by the Gaussian process models.

3.2.3. Dimension-reduced calibration. In the calibration step, we use basis
representations for the observational data sets using the emulators for the principal
components constructed above to mitigate the computational and inferential chal-
lenges explained in Section 3.1.4. For the observed past grounding line positions
Z1, we set up the following linear model:

Z1 = K1,yη
(
θ,YR

1
) + K1,dν1 + ε1,(5)
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where K1,y is the n × J1 matrix for the eigenvectors for the leading principal
components rescaled by square roots of their corresponding eigenvalues, K1,dν1
is a low-rank representation of the discrepancy term δ, with an n×M basis matrix
K1,d and its M-dimensional random coefficient vector ν1 ∼ N(0, α2

1IM) (α2
1 > 0),

and ε1 is a vector of n i.i.d. random errors with mean 0 and variance σ 2
ε > 0 (see

Section 3.3 below for the details on specifying K1,d ). Inferring parameters using
dimension-reduced observational data computed based on the representation in (5)
leads to a significant computational advantage by reducing the computational cost
for likelihood evaluation from the order of O(n3) to the order of O((J1 + M)3)

(see Appendix A for details).
The idea of using principal components and kernel convolution in calibration is

similar to the approach described in Higdon et al. (2008). However, our approach
enables a faster computation by emulating each principal component separately
and formulating the calibration model in terms of the dimension-reduced obser-
vational data ZR

1 ; the approach in Higdon et al. (2008) retains the original data
Z1, and hence their computational gains are primarily due to more efficient ma-
trix operations. Moreover, we use a two-stage approach [cf. Bayarri et al. (2007),
Bhat et al. (2012), Chang et al. (2014a)], which separates the emulation and the
calibration steps, to reduce the identifiability issues between the parameters in the
emulator and the discrepancy term.

For the modern observed ice-no ice binary patterns Z2, we set up the following
linear model for the logits:

(6) λ = K2,yψ
(
θ ,YR

2
) + K2,dν2,

where K2,y is the m × J2 eigenvectors for the leading logistic principal compo-
nents and K2,d is an m × L basis matrix with L-dimensional random coefficients
ν2 ∼ N(0, α2

2IL) (see Section 3.3 below for the details on specifying K2,d ). This
basis representation also reduces the cost for matrix computation from O(m3) to
O(J2p

3). More importantly, using this basis representation reduces the number of
logits that need to be estimated from 2m to J2 + L, and hence makes the cali-
bration problem well posed. Using the model in (5) and (6) and additional prior
specification, we can set up the posterior density and estimate the input parameters
θ while accounting for the uncertainty in other parameters via MCMC using the
standard Metropolis–Hastings algorithm. We describe posterior density specifica-
tion in more detail in Appendix B.

We need to consider the dependence between Z1 and Z2 to use the information
from both data sets simultaneously. As discussed above, we model the dependence
between the emulators through the input parameter θ . We also capture the depen-
dence between the discrepancy terms through the M × L cross-correlation matrix
Rν between ν1 and ν2, where the (i, j)th element of Rν is ρν,ij = Cov(ν1i , ν2j )

and ν1i and ν2j are respectively the ith and j th elements of ν1 and ν2 (see Ap-
pendix A and B for further details). This greatly reduces the inferential issue by
reducing the number of cross-correlation coefficients that need to be estimated
from mn to ML.
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3.3. Model-observation discrepancy. For a successful computer model cali-
bration it is important to find good discrepancy basis matrices K1,d and K2,d

that allow enough flexibility in representing the model-observation discrepan-
cies while avoiding identifiability issues in estimating θ [cf. Brynjarsdóttir and
O’Hagan (2014)]. To define the discrepancy basis matrix for the past ground-
ing line positions K1,d , we use a kernel convolution approach using M < n knot
points a1, . . . , aM that are evenly distributed between t1 and tn. We use the fol-
lowing exponential kernel function to define the correlation between t1, . . . , tn and
a1, . . . , aM :

(7) {K1,d}ij = exp
(
−|ti − aj |

φ1,d

)
,

with a fixed value φ1,d > 0. The basis representation based on this kernel function
enables us to represent the general trend in model-observation discrepancy using a
small number of random variables for the knot locations. Note that the discrepancy
term constructed by kernel convolution can confound the effect from model param-
eters and thus cause identifiability issues; any trend produced by K1,yη(θ ,YR

1 ) can
be easily approximated by K1,dν1, and therefore one cannot distinguish the effects
from these two terms [Chang et al. (2014a)]. To avoid this issue, we replace K1,d

with its leading eigenvectors, which corresponds to regularization given by ridge
regression [see Hastie, Tibshirani and Friedman (2009), page 66]. In the calibra-
tion experiment in Section 4, we chose the value of φ1,d as 750 (years), the number
of knots as M = 1500 and the number of eigenvectors as 300, and confirmed that
using the discrepancy term based on these values leads to a reasonable calibration
result by a simulated example (Section 4.1). We have also found that different set-
tings for these values lead to similar calibration results, and hence inference for θ

is robust to the choice of these values [cf. Chang et al. (2014a)].
The identifiability issue explained above is further complicated for the modern

ice-no ice binary patterns because binary patterns provide even less information
for separating the effects from the input parameters and the discrepancy term than
continuous ones do. Through some preliminary experiments (not shown here) we
found that the regularization introduced above does not solve the identifiability is-
sue for binary patterns. Therefore, we use an alternative approach to construct the
discrepancy basis K2,d , which is based on comparison between model runs and
observational data [Chang et al. (2016)]. In this approach K2,d has only one col-
umn (i.e., L = 1), and therefore the matrix is reduced to a column vector k2,d and
its coefficient vector ν2 becomes a scalar ν2. For the j th location sj , we calculate
the following signed mismatch between the model and observed binary outcomes:

rj = 1

p

p∑
i=1

sgn
(
Y2(θ i , sj ) − Z2(sj )

)
I
(
Y2(θ i , sj ) �= Z2(sj )

)
,
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where sgn(·) is the sign function. If |rj | is greater than or equal to a threshold value
c, then we identify sj as a location with notable discrepancy and define the corre-

sponding j th element of k2,d as the logistic transformed rj , log(
1+rj
1−rj

). If |rj | < c,
then we assume that the location sj shows no notable model-observation discrep-
ancy and set the j th element of k2,d as 0. Choosing a too large value of c results in
inaccurate discrepancy representation by ignoring important patterns in the model-
observation discrepancy, while a too small value of c causes identifiability issues
between the input parameters θ and the discrepancy term. Based on experiments
with different model runs and observational data sets [cf. Chang et al. (2016)], we
found that setting c to be 0.5 gives us a good balance between accurate discrepancy
representation and parameter identifiability.

4. Implementation details and results. We calibrate the PSU3D-ICE model
(Section 2) using our reduced-dimension approach (Section 3.2). We first verify the
performance of our approach using simulated observational data sets (Section 4.1)
and then move on to actual calibration using real observational data sets to estimate
the input parameters and generate WAIS volume change projections (Section 4.2).

Before calibration, we verified the performance of our emulators through sep-
arate leave-out experiments for each emulator η and ψ . In each experiment we
leave out a group of model runs around the center of the parameter space from
the ensemble and try to recover them using an emulator constructed based on the
remaining model runs. We have left out 82 model runs for the modern binary ice
patterns and 60 for the past grounding line positions since we use a smaller num-
ber of model runs to emulate the grounding line position output (q = 461) than
the modern binary pattern output (p = 625). Some examples of the comparison
results are shown in Figures 1 (for the past grounding line positions) and 2 (for the
modern binary patterns). The results show that our emulators can approximate the
true model output reasonably well.

4.1. Simulated example. In this subsection we describe our calibration re-
sults based on simulated observations to study how accurately our method recov-
ers the assumed true parameter setting and its corresponding true projected ice
volume change. The assumed-true parameter setting that we choose to use here
is OCFAC = 0.5, CALV = 0.5, CRH = 0.5 and TAU = 0.4 (rescaled to [0,1]),
which correspond to OCFAC = 1 (nondimensional), CALV = 1 (nondimensional),
CRH = 10−7 (m/year Pa2) and approximately TAU = 2.6 (k year) in the original
scale. This is one of the design points that is closest to the center of the parameter
space.

To represent the presence of model-observation discrepancy, we contaminate
the model outputs at the true parameter setting with simulated structural errors.
We generate simulated errors for the past grounding line positions from a Gaus-
sian process model with zero mean and the covariance defined by the squared ex-
ponential function with a sill of 90 m and a range of 10,500 years. The generated
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FIG. 1. Results for two example parameter settings from the leave-out experiment to verify the
performance of the emulator for past grounding line positions. Results for other parameter settings
are qualitatively similar to the results shown here. In general, the emulated grounding positions are
similar to those from the actual model runs. For comparison we have also added the reconstructed
grounding line position observations.
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FIG. 2. Results for two example parameter settings from the leave-out experiment to verify the
performance of the emulator for modern binary patterns (light gray for grounded ice and dark gray
for no grounded ice). Results for other parameter settings are similar to the ones presented here. In
general, the emulator can accurately approximate the binary patterns from the actual model runs.
For comparison we have also included the observed modern binary patten.

errors represent a situation where the model-observation discrepancy varies slowly
and has a persistent trend over time. We generate the discrepancy for the modern
binary patterns in a manner that makes them realistic. Our approach is therefore
as follows. We use the original model output and observational data for the ice
thickness pattern used to derive the modern binary patterns. We first choose the
“best” 90% model runs (i.e., exclude the “worst” 10% model runs) that are clos-
est to the modern observations in terms of the mean squared differences, and take
pixel-wise averages for the selected model runs to derive a common thickness pat-
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FIG. 3. The original model outputs at the assumed true parameter setting and the simulated obser-
vations used for the simulated example in Section 4.1. The upper plot is for the past grounding line
positions and the lower plots are for the modern binary patterns (light gray for grounded ice and
dark gray for no grounded ice).

tern. We then subtract the common thickness pattern from the observational data to
derive the common discrepancy pattern in terms of the ice thickness. By subtract-
ing this discrepancy pattern from the ice thickness pattern for the assumed truth
and dichotomizing the resulting thickness pattern into a binary ice-no ice pattern,
we obtain simulated observations for the modern binary pattern. We illustrate the
resulting simulated observations in Figure 3.

Depending on the computational environment, the emulation step typically
takes several minutes to half an hour. The computation in the calibration step re-
quires about 240 hours to obtain an MCMC sample of size 70,000. The values of
MCMC standard errors [Flegal, Haran and Jones (2008), Jones et al. (2006)] sug-
gest that the sample size is large enough to estimate the posterior mean. We have
also compared the marginal densities estimated from the first half the MCMC chain
and the whole chain and confirmed that the chain is stable.
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FIG. 4. Posterior density for input parameters from the perfect model experiment described in
Section 4.1. The black dashed lines represent the assumed parameter settings. The result indicates
that our method can recover the true input parameter setting by assigning high posterior density
around the truth. The joint density in the upper left panel shows that OCFAC and TAU have a strong
nonlinear interaction.

The probability density plots in Figure 4 show that the posterior has a high
probability mass around the assumed truth, and hence indicate that our approach
can recover the true parameter setting. However, the results also show that parame-
ter settings other than the assumed truth have high probability densities, suggesting
that settings other than the assumed truth can yield similar outputs to the simulated
observations. Interestingly, the joint posterior density for TAU and OCFAC shows
that these two parameters have a strong nonlinear interaction with each other.

Figure 5 shows the resulting projection for ice volume change for 500 years
from present. To generate the projections, we first built an emulator to interpo-
late the ice volume change values at the existing 625 parameter settings and then
converted our MCMC chain for θ into a Monte Carlo sample for the ice volume
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FIG. 5. Predictive distribution for the ice volume change projection based on the simulated obser-
vations described in Section 4.1. The gray solid line shows the assumed truth. The black solid and the
gray dashed lines, respectively, show the predictive distributions with and without calibration using
our approach. The result shows that our approach can recover the assumed truth and significantly
reduce the uncertainty in projection.

change values using the emulator. The result also confirms that our method accu-
rately recovers the assumed-true projection with reasonable uncertainty.

4.2. Calibration using real observations. We are now ready to calibrate the
PSU3D-ICE model using the real observational data sets described in Section 2.
Our main goal is to investigate whether using information on past grounding line
position in our calibration leads to reduced uncertainty and better constrained pro-
jections. To this end, we calibrate the PSU3D-ICE model based on (i) only the
modern binary patterns and (ii) both information sources. For (i) we conduct cal-
ibration using only the part of the posterior density that is related to Y2 and Z2,
and for (ii) we use the entire posterior density. We have obtained MCMC samples
with 100,000 for (i) and 47,000 iterations for (ii), and checked its convergence and
standard errors, as above.

The results clearly show the utility of using past grounding line positions in
calibrating the PSD3D-ICE model. Figure 6 shows that using the past grounding
line positions in our calibration drastically reduces parametric uncertainty. The ice
volume change projection based on both information sources also has significantly
less uncertainty than that based only on the modern binary patterns (Figure 7). In
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(a) Modern binary patterns only

FIG. 6. Posterior density for input parameters based on the actual observational data sets (for
details see Section 4.2). Using both information sources leads to significantly less uncertainty in
estimating input parameters.

particular, using the grounding line positions in calibration eliminates the prob-
ability mass below 0 m sea level equivalent in the predictive distribution. This
improvement is due to the fact that some parameter settings result in very unre-
alistic ice sheet behavior from the last glacial maximum to the present day, but
give modern ice coverage patterns that are close to the current state. See the next
subsection for further discussion.

Note that the calibration results in Figure 6(a) are somewhat different from the
results based on the same observational data set shown by Chang et al. (2016)
because there are 6 other parameters that are varied in the ensemble used by Chang
et al. (2016), which are fixed by expert judgment in this experiment.

4.3. Insights. The results presented in the previous subsection clearly indicate
that using the past grounding line position leads to better calibration results with
less parametric uncertainties and, in turn, sharper future ice volume change pro-
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(b) Modern binary patterns and past grounding line positions

FIG. 6. (Continued).

jections. The hindcast and forecast of ice volume changes based on different data
sources in Figure 8 clearly show the reason for this improvement. The 95% predic-
tion intervals show that using the information from past grounding line positions
significantly reduces the uncertainties in ice volume change trajectories by ruling
out the parameter settings that generate unrealistic past ice sheet behavior. In par-
ticular, some parameter settings produce ice sheets that start from a very high ice
volume around 15,000 years ago and then show unrealistically rapid ice volume
loss, thereby resulting in a modern ice volume that is close to the observed value.
These parameter settings are the cause of the left tail of volume change distribu-
tions based on the modern binary pattern only. Using paleo data rules out these
parameter settings, thereby cutting off the left tail and reducing parametric uncer-
tainty.

The credibility of this result of course depends on (i) how the model can reliably
reproduce the past grounding line time series and (ii) how our calibration method
accounts for the model-observation discrepancy. Figure 9 shows the grounding line
position time series from the model outputs at the parameter settings θ1, . . . , θq
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FIG. 7. Predictive distribution for the ice volume change projection based on the real observations
described in Section 4.2. The black solid line shows the predictive distribution based on our approach
using both the past grounding line positions and the modern binary patterns, and the black dashed
and dotted line represents the result based on only the modern binary patterns. The gray dashed line
shows the projection without calibration. The results show that using the past grounding line leads
to a significantly sharper projection by removing the unrealistic ice volume increase in the results
solely based on the modern observations.

and the observational data. It also shows the observational time series corrected
by the discrepancy term K1,dν1. The discrepancy automatically accounts for the
fact that all the model time series start further inland than the observed starting
points. Hence, this is analogous to working with anomalies (difference between an
observed value and a standard reference value). The use of anomalies is common
in paleoclimate modeling; that is, the modeled change in a quantity is considered
more reliable than the modeled absolute value because the model errors that re-
main constant through time cancel when differences are taken. The model change
can either be the difference from the initial model state or the difference from a
“control” simulation of an observed state. The difference is added to the observed
quantity to yield a more robust model projection. This is equivalent here to uni-
formly shifting the observed grounding line positions to coincide with the mean
model initial position at 15,000 years before present (Figure 9).

In addition, we also show another corrected observed time series in which only
the starting position is matched with the discrepancy-adjusted observed time se-
ries discussed above. The difference between this time series (dashed-dotted line
in Figure 9) and the fully corrected time series (dashed line in Figure 9) can be
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FIG. 8. The mean (solid lines) and pointwise 95% prediction limits (dashed lines) for projected ice
volume changes based on the modern binary patterns only (gray) and the past grounding line posi-
tions and modern binary patterns (black). The negative values on the y-axis indicate the ice volume
is larger than the modern value. The prediction limits based only on modern binary patterns contain
trajectories that start from excessive amount of ice volume and show very fast ice volume decay. The
prediction limits based on both sources of information rule out such unrealistic trajectories.

viewed as the estimated discrepancy in the anomaly. Although the modeled and
observed anomalies clearly show a certain degree of discrepancy, the observed
anomaly still allows us to rule out the model runs that showed too small or too large
total grounding line position changes over 15,000 years. Therefore, the observed
grounding line positions still provide useful information for reducing parametric
uncertainty.

5. Discussion and caveats.

5.1. Discussion. In this work we have proposed a computationally efficient
approach to calibrating WAIS models using two different sources of information,
the past grounding line positions and the modern binary spatial patters. Using the
proposed approach, we have successfully calibrated the PSU-3D ice model and
generated the WAIS volume change projections. Results from a simulated example
indicate that our method recovers the true parameters with reasonably small uncer-
tainties as well as provides useful information on interactions between parameters.
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FIG. 9. The grounding line position time series from the observational data set (black solid line),
observational data adjusted by the discrepancy term (black dashed line), observational data shifted
to have the same starting point as the fully adjusted data (dashed and dotted black line), and the
model outputs at the input parameter settings θ1, . . . , θp (gray lines). The discrepancy term shifts
the observational data to match the starting grounding line position to the model outputs, which is
similar to using anomalies.

Results based on the real observations indicate that using the paleo-record signif-
icantly reduces parametric uncertainty and leads to better constrained projections
by removing the probability for unrealistic ice volume increase in the predictive
distribution.

Several recent modeling studies of Antarctic Ice Sheet variations have used
heuristic approaches to study parametric uncertainties, mostly applied to ice sheet
retreat since the last glacial maximum about 15,000 years ago [Briggs, Pollard
and Tarasov (2013, 2014), Briggs and Tarasov (2013), Golledge et al. (2014),
Maris et al. (2015), Whitehouse, Bentley and Le Brocq (2012), Whitehouse et al.
(2012)]. Using highly aggregated data and less statistically formal frameworks,
these studies try to reduce the parametric uncertainties based on geologic data
around Antarctica. By and large, our results are consistent with the parameter val-
ues found in these studies, while also reducing uncertainties about the parameters.
Other recent modeling studies have projected future Antarctic Ice Sheet response
to anthropogenic warming in coming centuries to millennia [Cornford et al. (2015),
Feldmann and Levermann (2015), Golledge et al. (2015), Gomez, Pollard and Hol-
land (2015), Ritz et al. (2015), Winkelmann et al. (2015)]. These models have been
calibrated only over observed small-scale variations of the last few decades. Only
a few of these studies use large ensembles, and none use the advanced statistical
methods we have developed here, which allow for analyses based on large ensem-
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bles and unaggregated data sets. Furthermore, we are able to obtain projections as
well as parameter inference in the form of genuine probability distributions, and
we take into account potential data-model discrepancies that are ignored by other
studies. This allows us to provide uncertainties about our estimates and projec-
tions.

5.2. Caveats and future directions. One caveat in our calibration model spec-
ification is that we do not take into account the dependence between the past
grounding line positions and the modern binary patterns. However, we note that
the past grounding line positions and the modern binary patterns contain quite
different information since two model runs with very different trajectories of past
grounding line position often end up with very similar modern binary patterns; this
is corroborated by an examination of cross-correlations. Developing a calibration
approach based on the generalized principal component analysis that reduces the
dimensionality of Gaussian and binary data simultaneously and computes common
principal component scores for both data sets is one possible future direction.

Our results are also subject to the usual caveats in ice sheet modeling. For ex-
ample, we use simplified atmospheric conditions for projections, which assume
that atmospheric and oceanic temperatures linearly increase until 150 years after
present and stay constant thereafter. Using more detailed warming scenarios is a
subject for further work. Another caveat for the present study is the use of coarse-
grid global ocean model results to parameterize past basal melting under floating
ice shelves. Fine-grid modeling of ocean circulation in Antarctic embayments is
challenging and a topic for further work [e.g., Hellmer et al. (2012)]. Another im-
provement will be the use of finer scale models with higher-order ice dynamics,
which, as discussed in the Introduction, are not quite feasible for the large space
and time scales of this study, but should gradually become practical in the near
future.

APPENDIX A: COMPUTATION IN REDUCED-DIMENSIONAL SPACE

For faster computation we infer θ and other parameters in the model based on
the following dimension-reduced version of the observational data for the past
grounding line positions:

ZR
1 = (

KT
1 K1

)−1KT
1 Z1 =

(
η
(
θ ,YR

1
)

ν1

)
+ (

KT
1 K1

)−1KT
1 ε1,

where K1 = (K1,y K1,d), which leads to the probability model

(8) ZR
1 |ν2 ∼ N

((
μη

μν1|ν2

)
,

(
�η 0
0 �ν1|ν2

)
+ σ 2

ε

(
KT

1 K1
)−1

)
.

The J1-dimensional vector μη and J1 × J1 matrix η are the mean and variance
of η(θ ,YR

1 ). The M-dimensional vector μν1|ν2
and M × M matrix �ν1|ν2 are the
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conditional mean and variance of ν1 given ν2, which can be computed as

μν1|ν2
= 1

α2
2

Rνν2,

�ν1|ν2 = α2
1
(
IM − RνRT

ν

)
.

Using the likelihood function corresponding to this probability model and some
standard prior specification for θ , α2

1 and σ 2
ε (see Section 4 for details), we can

infer the parameters via Markov chain Monte Carlo (MCMC). The computational
cost for likelihood evaluation reduces from 1

3n3 to 1
3(J1 + M)3.

APPENDIX B: DETAILED DESCRIPTION FOR THE POSTERIOR
DENSITY BASED ON THE MODEL SPECIFICATION IN SECTION 3.2.3

The parameters that we estimate in the equations in (5) and (6) are the in-
put parameter θ (which is our main target), the variance of the i.i.d. observa-
tional errors for the grounding line positions σ 2

ε , coefficients for the emulator term
ψ = ψ(θ ,YR

2 ), the coefficients for the discrepancy term for the modern binary pat-
tern ν2, and the variances of ν1 and ν2, α2

1 and α2
2 . In addition to these parameters,

we also re-estimate the sill parameters for the emulator η, κ1 = [κ1,1, . . . , κ1,J1]
[cf. Bayarri et al. (2007), Bhat et al. (2012), Chang et al. (2014a)] to account for
a possible scale mismatch between the computer model output Y1 and the ob-
servational data Z1. However, we do not re-estimate the sill parameters for ψ ,
κ2,1, . . . , κ2,J2 , since both Y2 and Z2 are binary responses, and hence a scaling
issue is not likely to occur here; in fact, we have found that re-estimating these
parameters causes identifiability issues between the emulator term K2,yψ(θ ,YR

2 )

and the discrepancy term K2,dν2.
The posterior density can be written as

π
(
θ ,ψ,κ1, ν2, α

2
1, α

2
2, σ

2
ε ,Rν |YR

1 ,ZR
1 ,YR

2 ,Z2
)

∝ L
(
ZR

1 |YR
1 , θ,κ1, α

2
1, σ 2

ε , ν2,Rν

)
× f (κ1)f

(
α2

1
)
f

(
σ 2

ε

)
f (Rν)

× L(Z2|ψ, ν2)

× f
(
ψ |θ ,YR

2
)
f

(
ν2|α2

2
)
f

(
α2

2
)

× f (θ).

The likelihood function L(ZR
1 |YR

1 , θ,κ1, α
2
1, σ

2
ε , ν2,Rν) is given by the proba-

bility model in (8). For f (κ1) = f (κ1,1, . . . , κ1,J1) we use independent inverse
gamma priors with a shape parameter of 50 and scale parameters specified in a way
that the modes of the densities coincide with the estimated values of κ1,1, . . . , κ1,J1

from the emulation stage. We assign a vague prior IG(2,3) for f (α2
1), f (α2

2) and
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f (σ 2
ε ), and a uniform prior for f (θ) whose support is defined by the range of

design points θ1, . . . , θp . The likelihood function L(Z2|ψ, ν2) is defined as

L(Z2|ψ, ν2) ∝
n∏

j=1

(
exp(λj )

1 + exp(λj )

)Z2(sj )( 1

1 + exp(λj )

)1−Z2(sj )

,

where λj is the j th element of λ in (6). The conditional density f (ψ |θ ,YR
2 )

is given by the Gaussian process emulator ψ(θ ,YR
2 ). The conditional density

f (ν2|α2
2) is defined by the model ν2 ∼ N(0, α2

2IL). The prior density f (Rν) is
defined as

M∏
i=1

L∏
j=1

I (−1 < ρν,i,j < 1) · I (
IM − RνRT

ν is positive definite
)
,

where I (·) is the indicator function and ρν,i,j is the (i, j)th element of Rν .
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SUPPLEMENTARY MATERIAL

Supplement to “Improving ice sheet model calibration using paleo and 2
modern observations: A reduced dimensional approach” (DOI: 10.1214/16-
AOAS979SUPP; .pdf). We provide additional supporting plots that show more
example model outputs for modern binary patterns and the leading principal com-
ponents used in our calibration method.
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