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The human lung airway is a complex inverted tree-like structure. De-
tailed airway measurements can be extracted from MDCT-scanned lung im-
ages, such as segmental wall thickness, airway diameter, parent-child branch
angles, etc. The wealth of lung airway data provides a unique opportunity
for advancing our understanding of the fundamental structure-function rela-
tionships within the lung. An important problem is to construct and iden-
tify important lung airway features in normal subjects and connect these to
standardized pulmonary function test results such as FEV1%. Among other
things, the problem is complicated by the fact that a particular airway feature
may be an important (relevant) predictor only when it pertains to segments
of certain generations. Thus, the key is an efficient, consistent method for
simultaneously conducting group selection (lung airway feature types) and
within-group variable selection (airway generations), i.e., bi-level selection.
Here we streamline a comprehensive procedure to process the lung airway
data via imputation, normalization, transformation and groupwise principal
component analysis, and then adopt a new composite penalized regression
approach for conducting bi-level feature selection. As a prototype of compos-
ite penalization, the proposed composite bridge regression method is shown
to admit an efficient algorithm, enjoy bi-level oracle properties and outper-
form several existing methods. We analyze the MDCT lung image data from
a cohort of 132 subjects with normal lung function. Our results show that
lung function in terms of FEV1% is promoted by having a less dense and
more homogeneous lung comprising an airway whose segments enjoy more
heterogeneity in wall thicknesses, larger mean diameters, lumen areas and
branch angles. These data hold the potential of defining more accurately the
“normal” subject population with borderline atypical lung functions that are
clearly influenced by many genetic and environmental factors.

1. Introduction. The human lung airway is a complex, fractal-like [Weibel
(2015)], inverted tree-like structure up to 28 segmental generations starting from
the trachea, resulting from repeated branch bifurcations/trifurcations. Figure 1
shows two human lung airway trees, each of which consists of the trachea and
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FIG. 1. Airway trees of two normal subjects; subject of the left (right) diagram has the lowest
(highest) standardized FEV1%.

other labeled segments of different generations [Gao (2010)]. Using multi-detector
row computed tomography (MDCT), detailed in vivo measurements of individ-
ual human lung airways have been increasingly collected [Palagyi et al. (2006),
Tschirren et al. (2005a, 2005b)]. From each MDCT image, thousands of measure-
ments of lung airway segments up to the 7th generation can be extracted. These
highly detailed, regional views of the lung airway geometry enable detailed explo-
ration of the integrated lung structure and its association with pulmonary functions.
Besides these geometric features, the MDCT scan also provides other important
lung features such as the lung parenchymal radio-density. Precisely, radio-density
from MDCT is measured in Hounsfield Units (HU), which range from −1000 to
+1000. By definition, air has −1000 HU, water has 0 HU, and bone is the most
dense, which has +1000 HU. Lung parenchymal radio-density, that is, the radio-
density of the portion of the lung involved in gas exchange, can be indicative of
certain lung disease and lung function deterioration.

Lung function can be assessed by spirometry, representing global measures,
using various pulmonary function tests that provide measures of airflow, lung vol-
umes, diffusing capacity and more along with the response of these properties to
bronchodilators. In particular, the forced expiratory volume in 1 second (FEV1)
measures the maximum air volume that can forcibly be blown out by a subject
in one second after a full inspiration effort. It is known that FEV1 is related to
both sex and age: men generally have higher FEV1 values than women of the
same age, and FEV1 generally increases with age until around 20 years old after
which it declines. Thus, the FEV1 of a subject is often calibrated by the ratio of
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the FEV1 to the predicted FEV1, which is the mean FEV1 of the subpopulation
with age, sex and body composition matching those of the subject; see Hankinson,
Odencrantz and Fedan (1999), which provided the spirometric reference values
from a sample of the general U.S. population which have been commonly used
in the literature. The preceding ratio is denoted as FEV1%, and it quantifies lung
obstruction. Having FEV1% greater than 80% is generally classified as normal,
while having FEV1% less then 40% is considered a symptom of severe lung ob-
struction. However, this value provides little to no information in regards to the
regional distribution of lung pathologies serving to effect this single measure, and
regional disease can be undetected by this single metric.

Even within the normal population, there is substantial variation in FEV1%,
and little is known about the mechanism underlying the variation in that some
normal subjects have exceptionally high FEV1% while others have borderline
lung obstruction. As the first step toward understanding the variation in FEV1%
among normal subjects, we examine how the local lung airway structures and
the global parenchymal radio-density measures affect FEV1% using a collec-
tion of lung-image data from a cohort of normal subjects gathered under an
NIH-sponsored Biomedical Engineering Research Partnership (BERP, NIH-HL-
064368). The question regarding the reliability of parenchymal measurements
from MDCT has received much attention in the medical literature, as the quan-
tification of the parenchymal pathology can be affected by variations in inspira-
tory and expiratory efforts, scanner type, radiation dose and image reconstruction
algorithms; see Iyer et al. (2014) for a review on the repeatability of the BERP
data. The data on the normal subjects we use here consist of volumetric MDCT
images gathered at spirometrically controlled [Fuld et al. (2012)] full inspiration
(total lung capacity) and 20% vital capacity (functional residual capacity) using a
scanning protocol outlined in Iyer et al. (2014) so that the levels of inspiratory and
expiratory efforts were both controlled when performing MDCT.

The preceding medical problem may be approached using a high-dimensional
regression analysis, with the FEV1% being the response variable and the lung air-
way variables the predictors. However, in order to fully embrace the many unique
characteristics of the lung airway data, a customized, comprehensive dimension
reduction approach is required. For each lung, the MDCT measurements comprise
a large number of measurements per airway segment, for example, wall thick-
ness, airway diameter, lumen area, segment angle, rate of tapering, etc. The airway
variables of the same type and from the same generation/segment are generally
highly positively correlated. Besides, the distortion of the airway structure due to
lung disease as reflected in each segmental measure could be weak and unstable,
and such local distortions need to be amplified by properly summarizing informa-
tion across airway segments. A comprehensive data-processing procedure is thus
needed to extract an interpretable and yet parsimonious set of candidate airway
features. More importantly, the problem is complicated by the fact that a particular
airway feature may be an important predictor only when it pertains to segments of
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certain generations. It is desirable to determine which lung features at a given gen-
eration are significant predictors of FEV1%. We tackle this problem by grouping
the airway variables by feature type and then simultaneously doing group selection
and within-group feature selection. Following Huang et al. (2009), we refer to this
general methodology as bi-level variable selection. Using our established frame-
work, other pulmonary function metrics and their association with lung airway
structure could be explored similarly.

With the properly constructed lung airway features, the bi-level selection
methodology is the key ingredient to carry out the lung airway analysis. The need
for bi-level selection is also motivated by the fact that, in the study of the as-
sociation between FEV1% and lung airway features, we do not possess an ideal
grouping configuration such that variables in any group are either all important
(relevant) variables (i.e., with nonzero true coefficients) or all irrelevant variables
(with zero coefficients). In real applications including our study, certain groups
may be mixed in the sense that they contain both relevant and irrelevant variables.
Thus, it is desirable to develop a variable selection approach that allows flexible
incorporation of the prior grouping information that is also robust to the presence
of mixed groups.

While our research is motivated by the lung study, the bi-level variable selection
methodology is widely applicable. For example, a multi-level categorical variable
can be coded as a group of dummy variables. When a group of such dummy vari-
ables is selected, it is also desirable to determine which categories truly matter and
which shall be collapsed to the baseline. In genetic studies where the genes can be
grouped based on the pathways, it is of importance to both select relevant pathways
and identify a few useful genes along each selected pathway. Huang et al. (2009)
developed the group bridge method for bi-level variable selection. Due to the use of
the nonconvex bridge penalty at the group level, the method enjoys group selection
consistency. However, at the individual level, the method exhibits similar behav-
iors as Lasso [Tibshirani (1996)], which often leads to within-group overselection.
Zhao, Rocha and Yu (2009) proposed a composite absolute penalty, which com-
bines the properties of norm penalties at the across-group and within-group levels
to facilitate hierarchical variable selection. Breheny and Huang (2009, 2011) pro-
posed a general form of composite penalty for bi-level selection. Bi-level selection
techniques are also critical in the integrative analysis of multiple data sets, espe-
cially in high-throughput genomic studies [Liu, Ma and Huang (2014), Ma et al.
(2011)]; see Huang, Breheny and Ma (2012) for a recent review of the group and
bi-level selection methods.

To the best of our knowledge, however, little progress has been made to rig-
orously investigate the bi-level selection methodology and theory via composite
penalization scheme since the pioneer work by Huang et al. (2009). Motivated by
the lung airway study, we propose a composite bridge method for bi-level selec-
tion. Unlike the group bridge method in which an �1 penalty is used to induce
within-group sparsity, our approach adopts another nonconvex bridge penalty for
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within-group regularization, and hence the name composite bridge. Our approach
is a prototype in the nonconvex composite penalization scheme, and thus our anal-
ysis can be readily extended to the general composite and hierarchical penalization
methods.

Section 2 presents our comprehensive approach of linking the lung airway data
to the pulmonary function measured by FEV1% via bi-level feature selection.
Specifically, we describe the lung airway data and the related scientific problems
in Section 2.1, and a streamlined procedure to derive crafted lung airway features
from lung imaging data in Section 2.2. The problem is then reduced to a bi-level
variable selection task as described in Section 2.3, for which we develop the new
composite bridge regression approach in Section 2.4. Since the proposed method
is applicable in many problems, the methodology and the algorithm are presented
in general terms. In Section 2.5, our results show that lung function in terms of
FEV1% is promoted by a number of expected characteristics of the airway tree
structure and the lung parenchyma. These findings certainly guide and prompt fur-
ther clinical and data investigations for reaching the goal of devising more infor-
mative, personalized calibration of FEV1% and other pulmonary function tests by
taking into account important airway features derived from MDCT lung imaging
data. Section 3 provides both theoretical and empirical justifications of the com-
posite bridge method. In particular, we show that it enjoys the oracle properties for
both group selection and within-group selection, and superior empirical perfor-
mance over several existing methods. All the technical statements of our findings
are given in the Appendix, with their proofs and some additional simulation ex-
amples given in the Supplementary Material [Chen et al. (2016)]. We provide our
conclusions in Section 4.

2. Linking FEV1% and lung airway features.

2.1. Lung airway and lung function data. Our study is based on data from
132 subjects with normal lung function [Hoffman, Simon and McLennan (2006)].
From the MDCT-image of each human lung, numerous detailed in vivo measure-
ments were obtained to quantify the airway tree structure, including luminal and
wall characteristics along with branching patterns. Along each airway segment,
there were hundreds of measurements taken at various locations along the luminal
centerlines [Palagyi et al. (2006), Tschirren et al. (2005a, 2005b, 2005c)]; these
measurements were processed by the Pulmonary Analysis Software Suite (PASS)
[Guo et al. (2008)], an image reconstruction software, into 49 summary statis-
tics per airway segment, which comprise part of the covariates for our analysis.
These variables can be categorized into several feature types, for example, wall
thickness, inner/outer airway diameter, inner/outer airway perimeter, inner/outer
lumen area and segment angle. For instance, 13 summary statistics are related to
wall thickness. As an example, we illustrate how PASS calculates the so-called
“average–average wall thickness.” At every voxel position along the centerline
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of an airway segment, the wall thickness is measured along rays cast from the
center of gravity of the airway lumen. Rays are cast every half degree, resulting
in a total of 720 measurements. These 720 wall thickness measurements are av-
eraged into one mean wall thickness. The mean measurements for all centerline
voxel positions along the middle third part of the segment are then averaged to ob-
tain the average–average wall thickness. Other wall thickness measures, including
average–minimum wall thickness (the average of the minimum measurements for
all centerline voxel positions) and maximum–minimum wall thickness (the maxi-
mum of the minimum measurements for all centerline voxel positions), are simi-
larly constructed. The extents of variation in wall thickness are also calculated, for
example, standard-deviation-average wall thickness, standard-deviation-minimum
wall thickness, etc.

Higher generational image data are affected both by limitations of scanner res-
olution and by motion artifacts, and so they are less reliable and also admit sub-
stantial missing values. Therefore, quantitation of the airway tree has been limited
to the segmental airways plus two generations beyond along 5 major pathways by
manual verification, namely, RB1, RB4, RB10, LB1 and LB10. For the details of
the naming convention of the airway segment, see, for example, Gao (2010). In
our analysis, the raw airway data are first preprocessed via imputation, normaliza-
tion and transformation. Specifically, about 1.1% of the airway measurements are
missing, and the missing values for each subject are imputed by the corresponding
average measurements from the cohort of subjects with the same gender. The mea-
surements are normalized to adjust for variations in body size using the subject’s
height, that is, the length, area and volume measurements are normalized by the
height, the square of the height and the cubic of the height, respectively. Geometric
features related to segment angles are not adjusted. The original variables tend to
have skewed marginal distributions, and we thus work with log-transformed data.

Our interest is to identify which lung airway features from MDCT-scanned
lung images are associated with FEV1%, but it is essential to adjust for poten-
tial confounding effects due to parenchymal (lung tissue) anomalies, as measured
by mean parenchymal (radio-)density, standard deviation of parenchymal density
(measured at total lung capacity) and the percent of lung voxels with attenuation
below −856 HU. In the regression analysis to be presented in Section 2.3, we have
used log-transformed FEV1% as the response variable; for convenience, we still
refer to it as the FEV1% in the sequel. By definition, the FEV1% is a gender- and
age-adjusted pulmonary function measure, and so we do not include gender and
age in the analysis.

2.2. Airway feature construction and extraction. To improve data reliability,
reduce data dimensions and enhance the biological signals, it is pivotal to con-
struct meaningful and interpretable airways features from the segmental lung air-
way data. This is done in the following two steps.
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First, we aggregate the segmental airway measurements to create generation-
level summaries. Specifically, we compute generational average measures for gen-
erations 0–6, for example, for average–average wall thickness of generation 3, we
computed its average value over all segments in generation 3 to get the generational
average–average wall thickness. Similarly, we compute the generational average
within-segment variation measures, for example, within-segment standard devia-
tion of the average–average wall thickness of generation 3. Besides, the variation
among all segments of the same generation can also be very informative. We thus
compute various between-segment variation measures of generations 1 to 4 for
which we have at least 4 segments per generation, for example, between-segment
standard deviation of the average–average wall thickness of generation 3.

Second, as the airway variables of the same type and in the same genera-
tion/segment are generally highly positively correlated, we conduct groupwise
principal component analysis (PCA) to further reduce the dimensionality and al-
leviate the collinearity problem. For instance, the correlation coefficients among
the wall thickness variables in any particular generation are generally above 0.90,
and so are the variables measuring the variation in thickness. The variables of each
particular type and generation are summarized (replaced) by their leading principal
components (PC). Thus, the thickness variables per generation are summarized by
their leading principal components, and so are the variables measuring the extents
of variation in thickness, etc. Due to high positive correlation among the variables,
all PC loadings are of the same sign, and hence set to be positive without loss of
generality. Therefore, each principal component roughly corresponds to the aver-
age of the correlated lung variables. This approach accounts for on average 89% of
the within-group variation, yet the leading principal components largely preserve
the interpretation of the original features. The number of variables is reduced by
70%, resulting in 87 lung airway feature variables for the subsequent regression
analysis to be elaborated below.

2.3. Grouping of the airway features and the need for bi-level selection. To
identify the important airway features associated with FEV1%, it is natural to con-
sider a penalized regression approach, with the FEV1% serving as the response
and the lung airway variables and parenchymal density variables as the linear pre-
dictors. The problem is challenging for several reasons. The number of candidate
variables (d = 90) is comparable to the sample size (n = 132). Moreover, there ex-
ist various sources of variations affecting the spirometric measurements [Becklake
(1985)]. For example, the FEV1 measurements can be affected by inspiratory and
expiratory efforts. Another fact that may be less well known is that the FEV1 mea-
surements of each individual may even vary substantially within a day, and the
highest values usually occur around noon. These “unwanted variations” may lead
to low signal-to-noise ratio in the regression analysis of FEV1% on the lung airway
structure. Despite these difficulties, some characteristics of lung airways and lung
disease mechanisms can be potentially utilized to boost the performance of feature
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selection. In particular, any lung airway feature may be an important predictor of
FEV1% only when it pertains to segments of certain generations. This important
prior scientific knowledge may hold the key of conducting a successful penalized
regression analysis.

We thus group the constructed lung airway variables by feature types, and de-
velop a new penalized regression method to simultaneously conduct group se-
lection (lung airway feature types) and within-group variable selection (airway
generations), that is, bi-level selection. Specifically, each group consists of the
generational mean leading principal component for a particular feature type (wall
thickness, lumen area, circularity, etc.), and corresponding groups of the between-
segment (within-segment) variation of the features. The between-segment stan-
dard deviations will be abbreviated as BSSD and the within-segment counterparts
WSSD. The mean and standard deviation of the parenchymal density form a group
by their own. The process consolidates the d = 90 variables into J = 17 groups,
with the group sizes varying from 2 to 7.

Below we list the lung features and their grouping structure. We develop an
efficient penalized regression approach to conduct bi-level selection in Section 2.4
below:

• Mean parenchymal density, standard deviation of parenchymal density and
percentage of voxels below −856 HU form a group.

• Forty-one generational average segmental characteristics including wall
thickness, diameter, perimeter, lumen area and circularity, for generations 0–
6, plus segmental angle for generations 1–6. These variables form 6 feature
groups.

• Twenty-eight generational within-segment variation variables (standard devi-
ation) of wall thickness, diameter, perimeter, and lumen area, for generations
0–6. These variables form 4 groups.

• Eighteen generational between-segment variation variables (standard devia-
tion) of wall thickness, diameter, perimeter, lumen area, angle and circularity,
for generations 3–5. These variables form 6 groups.

2.4. Composite bridge regression. Since the bi-level feature selection ap-
proach is applicable in many applications, we shall present the new methodology
in general terms, but in the mean time we refer back to the lung airway analysis
whenever necessary.

Consider the multiple linear regression model

y = Xβ0 + ε =
d∑

k=1

xkβ0k + ε,(2.1)

where y = (y1, . . . , yn)
′ is the response vector, X = (x1, . . . ,xd) the design matrix,

β0 = (β01, . . . , β0d)′ a vector of regression coefficients, and ε = (ε1, . . . , εn)
′ an

error vector consisting of uncorrelated random errors with mean 0 and variance
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σ 2. We assume the response is centered and the predictors are standardized so that
there is no intercept term in the model. Throughout the paper, we use ‖ · ‖q to
denote the �q norm for any q ≥ 0.

Let A1, . . . ,AJ be subsets of {1, . . . , d} representing prior grouping structure
of the predictors, and βAj

= (βk, k ∈ Aj)
′ be the vector of regression coefficients

in the j th group, with β0Aj
being the corresponding true values. Without loss

of generality, suppose only the first J1 groups are relevant, that is, β0Aj
�= 0 for

j = 1, . . . , J1 and β0Aj
= 0 for j = J1 + 1, . . . , J . We further assume that, in each

of the first J1 groups, only a subset of the predictors is important. For each Aj ,
j = 1, . . . , J1, let A1

j = {k;β0k �= 0, k ∈ Aj } and A2
j = {k;β0k = 0, k ∈ Aj }. As in

Huang et al. (2009), the J groups may overlap with each other and their union is
allowed to be a proper subset of all the predictors. Note that the j th group among
the first J1 groups is a mixed group if A2

j �= ∅.
Consider estimating the vector of coefficients β0 in model (2.1) by minimizing

the following objective function:

Ln(β) =
∥∥∥∥∥y −

d∑
k=1

xkβk

∥∥∥∥∥
2

2

+ λn

J∑
j=1

cj

( ∑
k∈Aj

|βk|μ
)γ

.(2.2)

The first term is the sum of squared errors, which is appropriate in the case of
Gaussian errors. The second term is a penalty function incorporating the known
grouping structure, where μ ≥ 0, γ ≥ 0, the cj ’s are group-level weights adjusting
for the dimensions or magnitudes of each group of coefficients, and λn is a tuning
parameter controlling the degrees of penalization.

The choice of μ and γ in the above penalty form holds the key for control-
ling the sparsity-inducing behaviors in the individual and the group levels. In fact,
with certain choices of μ ≥ 0 and γ ≥ 0, (2.2) subsumes many existing penalized
estimation approaches or formulations, but may not lead to satisfactory bi-level
selection. When γ = μ = 1, it reduces to Lasso, and when γ = 1 and 0 < μ < 1,
it reduces to the bridge regression. The group Lasso method corresponds to μ = 2
and γ = 1/2, in which cj is commonly chosen as

√|Aj |, the square root of the
number of predictors in group j . The group Lasso penalty induces group sparsity
due to the �1 norm penalization at the group level, which cannot achieve selection
consistency in general and tends to overselect groups of variables. Zhao, Rocha
and Yu (2009) proposed the composite absolute penalty, and the focus was on the
case μ > 1 and γ = 1 and the design of the overlapping pattern to achieve hier-
archical selection. Another interesting case is that, when μ = 1 and 0 < γ < 1,
the above criterion becomes the group bridge method [Huang et al. (2009)]. The
method penalizes the �1 norms of the groups of coefficients using a bridge penalty,
hence inducing bi-level sparsity. Huang et al. (2009) showed that the group bridge
enjoys group selection consistency. Yet since its selection performance at the indi-
vidual level is analogous to that of the Lasso, the group bridge cannot achieve the
bi-level selection consistency in general.



LINKING LUNG AIRWAY STRUCTURE TO PULMONARY FUNCTION 1889

Motivated by the aforementioned works and the lung airway data structure, we
propose to minimize the above objective function (2.2) with

μ ∈ (0,1) and γ ∈ (0,1).

Unless otherwise noted, we set cj = |Aj |1−γ , accounting for varying group sizes.
Unlike the group bridge method, we adopt another bridge penalty to induce within-
group sparsity, and hence we refer to the method as the composite bridge penalized
regression. As we will show in Section 3 and the Appendix, this intuitive extension
is simple yet consequential, leading to variable selection consistency at both the
group and individual levels simultaneously for any particular choices of γ ∈ (0,1)

and η ∈ (0,1). For simplicity and to streamline the idea, we fix γ = μ = 0.5 in all
numerical studies. The choice of μ or γ can be made data adaptive, which may
further boost the empirical performance of the proposed approach at the cost of
increased computational efforts.

The minimization of the objective function (2.2) is challenging, as the compos-
ite bridge penalty is nonconvex for μ ∈ (0,1), γ ∈ (0,1). Motivated by Huang
et al. (2009), we show that an equivalent minimization problem can be formulated
through an augmented variable approach, and an efficient iterative algorithm is
then developed for solving (2.2). Define

Sln(β, θ, δ) =
∥∥∥∥∥y −

d∑
k=1

xkβk

∥∥∥∥∥
2

2
(2.3)

+
J∑

j=1

θ
1− 1

γ

j c
1
γ

j

( ∑
k∈Aj

δ
1− 1

μ

k |βk| + ψ
∑

k∈Aj

δk

)
+ τn

J∑
j=1

θj ,

where τn = λ
1/(1−γ )
n γ γ/(1−γ )(1 − γ ) and ψ = μμ/(1−μ)(1 − μ). The following

proposition shows the equivalence between the minimizers of (2.3) and (2.2).

PROPOSITION 2.1. The composite bridge estimator β̂n minimizes (2.2) if and
only if

(β̂n, θ̂, δ̂) = arg min
(β,θ ,δ)

Sln(β, θ, δ) subject to θ ≥ 0, δ ≥ 0

for some θ̂ and δ̂, where Sln(β, θ, δ) is given in (2.3).

To see the main idea behind our augmented variable approach, denote

δ̂(β, θ) = arg min
δ≥0

{
Sln(β, θ, δ)

}
, θ̂(β) = arg min

θ≥0

{
Sln

(
β, θ, δ̂(β, θ)

)}
,

that is, δ̂(β, θ) is obtained by minimizing Sln(β, θ, δ) with respect to δ with
(β, θ) held fixed; the profile objective function Sln(β, θ, δ̂(β, θ)) becomes a func-
tion of (β, θ) only, and then θ̂(β) is obtained by minimizing Sln(β, θ, δ̂(β, θ))



1890 K. CHEN ET AL.

with respect to θ with β held fixed. It turns out that both δ̂(β, θ) and θ̂(β)

admit closed-form solutions that are easy to compute, and, more importantly,
once they are plugged into Sln, the profile function Sln(β, θ̂(β), δ̂(β, θ̂(β))) re-
covers the original objective function Ln(β)! This suggests an iterative algo-
rithm for minimizing Ln(β). Denote the solution at the (s − 1)th iteration as
β(s−1). We first compute θ̂(β(s−1)) and δ̂(β(s−1), θ̂(β(s−1))), and then minimize
Sln(β, θ̂(β(s−1)), δ̂(β(s−1), θ̂(β(s−1)))) to obtain β(s). The latter problem turns out
to be an adaptive Lasso [Zou (2006)] problem in β , which could be solved effi-
ciently by many methods. By construction,

Ln

(
β(s−1)) = Sln

(
β(s−1), θ̂

(
β(s−1)), δ̂(

β(s−1), θ̂
(
β(s−1))))

≥ Sln

(
β(s), θ̂

(
β(s−1)), δ̂(

β(s−1), θ̂
(
β(s−1))))

≥ Sln

(
β(s), θ̂

(
β(s)), δ̂(

β(s), θ̂
(
β(s))))

= Ln

(
β(s)).

Therefore, the objective function decreases monotonically along the iterations. The
convergence of the algorithm is thus guaranteed, although not necessarily to the
global minimum as the objective function is nonconvex. Based on our limited ex-
perience, the proposed method is stable and fast in practice. The detailed proof of
Proposition 2.1 is given in the Supplementary Material [Chen et al. (2016)], and
the resulting iterative algorithm for solving (2.3) is presented in Algorithm 1.

The proposed algorithm is then an iteratively reweighted adaptive Lasso proce-
dure. At each iteration, the penalty level for a regression coefficient is determined
by (2.4), combining information from both its current value and the coefficient val-
ues of the groups it belongs to. Another way to reveal this connection between our
algorithm and the adaptive Lasso is to minimize the composite bridge penalized
least squares problem (2.2) via local linear approximation [Zou and Li (2008)].
Up to a constant, the first-order approximation of the penalty for any coefficient,
say, βk , with other βs held fixed, yields an adaptive Lasso penalty for βk , with the
adaptive weight taking the same form as in (2.4). We note that, with some local
approximation of the penalty term, we can alternatively implement an element-
wise coordinate descent algorithm [Friedman, Hastie and Tibshirani (2010)] for
solving the problem; see Breheny and Huang (2011). Although we mainly focus
on Gaussian data and the squared error loss, our method can be readily extended
to generalized linear models and models with more general loss functions, for ex-
ample, Bregman divergence loss [Zhang, Jiang and Chai (2010)].

2.5. Results of the lung airway analysis. We use the composite bridge (CoB)
method developed in Section 2.4 to select important lung airway variables jointly
associated with FEV1%. For comparison, we have also tested several other meth-
ods, including group bridge (GrB) [Huang et al. (2009)], composite mimimax con-
cave penalization (CoMCP) [Zhang (2010)], group Lasso (GrLasso) [Yuan and Lin
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Algorithm 1 Composite Bridge Penalized Regression Algorithm (CoBRA)

Initialization: start with an initial estimator β(0).
repeat

Step 1: calculate

θ
(s)
j = cj (λnγ )

γ
γ−1

( ∑
k∈Aj

∣∣β(s−1)
k

∣∣μ)γ

, j = 1,2 . . . , J,

δ
(s)
k = μ

μ
μ−1

∣∣β(s−1)
k

∣∣μ, k = 1, . . . , d.

Step 2: solve the adaptive Lasso problem,

β(s) = arg min
β

∥∥∥∥∥y −
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xkβk

∥∥∥∥∥
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}1− 1
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1
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}1− 1
μ |βk|

= arg min
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∥∥∥∥∥y −
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xkβk

∥∥∥∥∥
2

2

+ λn

d∑
k=1

w
(s)
1k |βk|,

where

w
(s)
1k = γμ

∑
j :k∈Aj

cj

∥∥β(s−1)
Aj

∥∥μ(γ−1)
μ

∣∣β(s−1)
k

∣∣μ−1
.(2.4)

k ← k + 1.
until convergence, i.e., ‖β(s) − β(s−1)‖2/‖β(s−1)‖2 < ε, where ε is some toler-
ance level, e.g., ε = 10−4.

(2006)] and group minimax concave penalization (GrMCP) [Breheny and Huang
(2009)]. While our main focus is on bi-level selection and group selection to take
advantage of the prior grouping information, the Lasso method [Tibshirani (1996)]
is also included as a benchmark. For each method, we consider a grid of 200
values of its tuning parameter (equally spaced on the log scale) that produces a
whole spectrum of candidate models, and select the best model via tenfold cross-
validation, based on the predictive performance of the models.

Figure 2 displays a heatmap of FEV1% and the lung features used in the anal-
ysis. Each subject is represented by a column, and the columns are sorted by their
observed FEV1% values. The topmost row gives the FEV1% values, followed by a
block of variables selected by either CoB, CoMCP or GrB. For better visualization,
each row is centered, divided by the maximum absolute value of its entries, and
then multiplied by the sign of its sample correlation coefficient with the topmost
row. As such, the entries of each adjusted row are always within −1 and 1, and
if the corresponding variable has high predictive power, the row will show similar
color change as the topmost row. There does not appear to be any single strong
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FIG. 2. Heatmap of FEV1% and the lung features used in the analysis. Each subject is represented
by a column, and the columns are sorted by their FEV1% value. The topmost row gives the FEV1%
values, followed by a block of variables selected by either CoB, CoMCP or GrB, and another block
of unselected variables.

predictor for FEV1%. Indeed, the impact of the lung airway structure on FEV1%
can be properly assessed only by a joint regression analysis.

Figure 3 displays a diagram showing the lung feature selection results by vari-
ous methods. Table 1 tabulates the coefficient estimates of the selected models by
the three bi-level selection methods, namely, CoB, CoMCP and GrB. The reported
estimation and inference results are based on the least-squares refitting of the se-
lected models [Efron (2004), Meinshausen and Bühlmann (2006)]. Both CoB and
CoMCP selected seven feature groups, four of which are common. CoMCP ad-
ditionally selected mean thickness, circularity and BSSD of area, all of which,
however, do not contain significant variables as judged by the p-values from the
least squares refitting. CoB additionally selected BSSD of wall thickness, WSSD
of diameter and mean area, two of which contain significant variables. The GrB
method tends to select fewer feature types attributed to within-group overselec-
tion, but the coefficients of the selected features have the same signs as those of
the other methods. Out of the 9 nonzero coefficient estimates based on the CoB
method, 6 of them are significant at the 5% level, while only 4 (5) out of 9 (11)
nonzero GrB (CoMCP) estimates are significant. This suggests that the proposed
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FIG. 3. A diagram showing the selected features by various methods. Dark gray means the coeffi-
cient estimate of a selected variable is positive, light gray means the coefficient estimate of a selected
variable is negative, and white means a variable is not selected.

CoB method does a better job of picking the component variables in the selected
features. These results are consistent with the findings from the simulation studies
to be reported in the next section.

Figure 4 shows a good fit of the composite bridge regression model, and the
residuals are approximately normally distributed. The following inference can be
drawn based on the composite bridge regression fit:

1. FEV1% decreases significantly with the mean and the standard deviation of
the parenchymal density at the 5% level.

2. Everything else being equal, higher FEV1% is associated with (i) higher
within-segment variation in wall thickness (fifth generation, where a bold-faced
generation indicates significance at the 5% level), (ii) higher between-segment
variation in wall thickness (fourth generation), (iii) smaller within-segment vari-
ation in diameter (third generation), (iv) larger lumen area (fourth generation),
(v) larger perimeter (zeroth and sixth generations), (vi) larger angle between par-
ent segment and daughter segment (fifth generation).

Many of these findings are consistent with the current understandings regarding
the association between lung function and airway distortion. The normal airways
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TABLE 1
Variable selection and coefficient estimation results using composite bridge, composite MCP and group bridge. The reported estimation and inference

results are based on refitting the selected models using the least squares method. BSSD (WSSD) stands for between-segment
(within-segment) standard deviation

Composite bridge Composite MCP Group bridge

Feature Type Gen# Coef std p-value Coef std p-value Coef std p-value

Lung density Mean −0.037 0.012 2.50E−03
SD −0.045 0.011 1.00E−04 −0.035 0.011 2.80E−03

Wall thickness Mean 2 0.011 0.010 2.66E−01
Mean 3 0.007 0.011 5.27E−01

WSSD 5 0.026 0.011 2.10E−02 0.035 0.011 1.20E−03 0.036 0.011 1.00E−03
BSSD 4 0.019 0.010 6.86E−02

Diameter Mean 0 0.009 0.016 5.85E−01
Mean 1 −0.003 0.017 8.74E−01
Mean 3 0.010 0.016 5.12E−01
Mean 4 0.048 0.015 2.10E−03
Mean 6 0.012 0.010 2.52E−01

WSSD 3 −0.026 0.010 7.00E−03
Lumen area Mean 4 0.044 0.012 3.00E−04

BSSD 4 0.009 0.012 4.82E−01
Perimeter Mean 0 0.020 0.011 6.56E−02

Mean 4 0.036 0.013 7.60E−03
Mean 6 0.016 0.010 1.13E−01 0.013 0.010 1.85E−01

Angle Mean 4 0.030 0.010 2.30E−03 0.034 0.010 1.30E−03
Mean 5 0.026 0.010 7.60E−03 0.021 0.010 3.52E−02 0.024 0.010 1.76E−02
Mean 5 0.008 0.010 4.38E−01

Circularity Mean 4 0.018 0.012 1.29E−01
Mean 5 0.019 0.011 9.73E−02

#variables 9 11 9
Adjusted R2 0.387 0.392 0.323
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FIG. 4. Left diagram: scatter plot of the observed FEV1% values vs the fitted values. Right Dia-
gram: the normal Q–Q plot for the residuals.

would have segments with a more spacious lumen (items iv and v), larger within-
segment homogeneity in diameter (item iii) and larger branch angles (item vi); see
Nakano et al. (2009) and Montesantos et al. (2013). Moreover, these effects are re-
vealed after adjusting for those of the mean and standard deviation of parenchymal
densities, both of which have negative impacts on the FEV1%, which is expected
as normal lung parenchyma would be neither too dense nor too heterogeneous.

The finding on the positive association between the variation in wall thickness
with FEV1% may seem somewhat surprising. But it has recently been demon-
strated that airway segments of subjects with chronic obstructive pulmonary dis-
ease (COPD) have significantly thinner walls [Smith et al. (2014)], and so our
finding may indicate that some variation in wall thickness is a symptom of a nor-
mal lung airway.

3. Theoretical properties and empirical performance of composite bridge.

3.1. Theoretical properties. We have explored the theoretical properties of
the composite bridge estimator following the framework developed by Huang,
Horowitz and Ma (2008) and Huang et al. (2009). All the technical statements
of our findings are given in the Appendix, and the proofs are provided in the Sup-
plementary Material [Chen et al. (2016)]. Here we briefly discuss the rationales of
the theoretical framework and the implications of our main findings.
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The technical conditions given in A1–A5 concern the error distribution, the de-
gree of variable overlapping in group specification, the rate of the tuning param-
eter and the model size, which are all standard. Theorem A.1 provides an estima-
tion error bound of composite bridge, which quantifies how the estimation perfor-
mance is affected by the noise level, the number of predictors, the sample size,
etc. Theorems A.2 and A.3 establish the variable selection properties of the com-
posite bridge method, that is, for any predetermined 0 < γ,μ < 1, the composite
bridge estimator can identify the correct groups and the correct nonzero elements
within each selected group with probability converging to one. In Theorem A.4,
we further show that the composite bridge estimators of the nonzero coefficients
are asymptotically normal with the limiting distribution the same as the case when
the true sparsity pattern is known a priori. Therefore, Theorems A.2–A.4 together
imply that the composite bridge achieves the powerful bi-level oracle property. To
the best of our knowledge, this property of the composite penalization approach is
established for the first time.

In our analysis, we require a full rank design so that dn ≤ n, where dn denotes
the number of covariates, but dn is allowed to grow at a certain rate as n → ∞. To
ensure group selection consistency, we allow dn = o(1)n(1−μγ )/(2−μγ ), which is
faster than o(1)n(1−γ )/(2−γ ), the rate allowed by the group bridge method [Huang
et al. (2009)]. This shows that choosing the nonconvex bridge penalty as the in-
ner penalty further improves group selection. To achieve bi-level selection con-
sistency, our method allows dn = o(1)n(1−μ)/(2−μ), which is essentially the same
as the rate allowed by bridge regression [Huang, Horowitz and Ma (2008)] under
similar conditions. From the group selection perspective, the established bi-level
oracle properties show that our method is adaptive to various scenarios of potential
group configurations. In particular, our method can achieve a faster rate (compar-
ing to group bridge) in identifying irrelevant groups, that is, groups containing
only variables with zero coefficients. For selecting relevant predictors from the
mixed groups, that is, groups containing both relevant predictors (with nonzero
coefficients) and irrelevant predictors (with zero coefficients), our method is as
good as the individual variable selection method (comparing to bridge regression).
Therefore, the composite bridge method flexibly incorporates the prior grouping
information and is adaptive to the potential presence of mixed groups.

3.2. Simulation. We compare the empirical performances of the proposed
composite bridge (CoB) method, group bridge (GrB), composite mimimax con-
cave penalization (CoMCP) [Zhang (2010)], group Lasso (GrLasso), group min-
imax concave penalization (GrMCP) and Lasso [Tibshirani (1996)]. The GrMCP
and CoMCP estimators are computed using the grpreg package [Breheny and
Huang (2009)] in R [R Development Core Team (2015)]; all other methods are
implemented in R.

We consider several examples covering various practical scenarios, for exam-
ple, bi-level sparsity, group sparsity, varying group sizes, correlation within/among
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groups, etc. In examples 1–3 to be elaborated below, the number of predictors
is around 40 and the sample size is n = 200, adopting similar setups as the ex-
amples in Huang et al. (2009). The setup of example 4 mimics the lung airway
application. In the Supplementary Material [Chen et al. (2016)], we provide an-
other example for investigating the performance of the proposed method under the
high-dimensional scenario and the impact of group size. Under each setting, the
simulation experiment is replicated 400 times.

EXAMPLE 1 (n = 200, d = 42). There are J = 6 groups of variables, with
|A1| = |A2| = |A3| = 10 and |A4| = |A5| = |A6| = 4. To generate d = 42 covari-
ates, we first form n × 1 vectors r1, . . . , rd and z1, . . . , zJ ; all the entries in these
vectors are independently generated from N(0,1). The covariates x1, . . . ,xd are
generated as

xk = (zgk
+ rk)/

√
2, 1 ≤ k ≤ d,

where (g1, . . . , gd) = (rep(1,10), rep(2,10), rep(3,10), rep(4,4), rep(5,4),

rep(6,4)), indicating the group membership structure, where rep(a, l) denotes
a vector of length l whose entries are all equal to a. Therefore, the covariates
within each group are correlated, while the covariates from different groups are
uncorrelated. The response y is then generated using model (2.1), where

β0A1
= (1,−2,1.25,1,−1,1,3,−1.5,2,−2)′,

β0A2
= (−1.5,3,1,−2,1.5,0,0,0,0,0)′,

β0A3
= (0, . . . ,0)′, β0A4

= (2,−2,1,1.5)′,

β0A5
= (−1.5,1.5,0,0)′, β0A6

= (0, . . . ,0)′,

and ε ∼ N(0,4I).

EXAMPLE 2 (n = 200, d = 42). The model is the same as in Example 1,
except that β0A2

= (−1.5,3,0, . . . ,0)′ and β0A4
= (2,0,0,0)′, and so there are

several very sparse non-null groups.

EXAMPLE 3 (n = 200, d = 40). In this example, all the coefficients in a
nonzero group are nonzero, and so this is an ideal group selection setup. We set
J = 5, |A1| = · · · = |A5| = 8 and d = 40. We first simulate r1, . . . , r40 indepen-
dently from N(0, I). Next, to generate zj vectors (j = 1, . . . , J ), we simulate n

independent samples from a J -dimensional Gaussian distribution N(0,�), where
the (h, l)th entry of � equals σhl = 0.4|h−l|. Then the covariates x1, . . . ,x40 are
generated as

x8(j−1)+k = {zj + r8(j−1)+k}/
√

2. 1 ≤ j ≤ 5,1 ≤ k ≤ 8.
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In this way, the AR(1) correlation structure of the zj s induces correlation across
different groups of covariates. The response vector is computed using model (2.1),
where

β0A1
= (1,1,1.5,2,2.5,3,3.5,4)′, β0A2

= (2,2,2,2,2,2,2,2)′,

β0A3
= β0A4

= β0A5
= 0′, and ε ∼ N(0,4I).

EXAMPLE 4 (n = 132, d = 90). In this example, the dimensions and the group
configurations are exactly the same as the lung airway data application. Based on
the feature types of the lung airway variables, there are J = 17 variable groups,
with group size varying from 2 to 7. The true model structure is the same as the
one selected by the composite bridge method, and the true nonzero coefficients are
set to be ten times of the estimates in Table 2 so that the values range from 1.5 to
4.5 in magnitude. The rest of the setup is the same as that of example 3, hence,
both within-group and between-group correlations exist among the generated pre-
dictors.

In our simulation study, to alleviate inaccuracy in the empirical tuning for en-
suring a fair comparison, we tune each method based on its predictive accuracy
evaluated with an independently generated validation data set of sample size 500.
For each method, we compute the solutions over a grid of 200 values of its tun-
ing parameter (equally spaced on the log scale) that produces a whole spectrum
of candidate models, and then select the model with the smallest prediction error.
We have also tried using BIC [Fan and Tang (2013), Schwarz (1978)] for tuning,
and, as expected, in general the variable selection performance improves while the
estimation accuracy becomes slightly worse. The results are consistent with our
findings reported below, and hence are omitted for brevity.

For each method, the model accuracy is measured by the average of the mean
squared errors from all runs (Model Error), that is, ‖Xβ0 − Xβ̂)‖2/n. To evaluate
the group-level selection accuracy, we compute the average number of selected
nonzero groups (No. of Groups) and the frequency of correct identification of the
group sparsity structure (Correct Groups). To evaluate the individual variable se-
lection performance, we compute the average number of nonzero coefficients (No.
of Var.), the false negative rate (FNR) and the false discovery rate (FDR).

Tables 2 summarizes the simulation results for examples 1–4. Examples 1–2
are in favor of the bi-level selection methods. The CoB and CoMCP methods have
comparable performance in terms of estimation accuracy and variable selection,
and they both outperform GrB. CoMCP tends to select slightly more groups than
needed, and yet it has the best estimation performance and maintains a low false
discovery rate comparable to that of CoB. This indicates that CoMCP may falsely
select a few variables from the null groups, behaving more toward an individual
variable selection method [Breheny (2015)]. In contrast, GrB yields many more
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TABLE 2
Simulation results for examples 1–4. CoB, composite bridge; GrB, group bridge; CoMCP,

composite MCP; GrMCP, group MCP; GrLasso, group Lasso. The average values (avg) are based
on 400 simulation runs, and the standard deviations (sd) are also reported

CoB CoMCP GrB GrMCP GrLasso Lasso

Example 1
Model Error avg 0.54 0.52 0.60 0.63 0.82 0.82

sd 0.19 0.19 0.19 0.20 0.23 0.23
No. of Groups (4) avg 4.16 4.77 4.17 4.34 5.92 5.99

sd 0.41 0.70 0.42 0.62 0.27 0.05
Correct Group (%) 86.3% 38.8% 73.8% 85.3% 0.0% 0.0%
No. of Vars (21) avg 22.45 23.95 26.79 30.49 41.68 35.59

sd 1.60 2.12 2.26 4.56 1.16 2.95
FDR (%) 6.0% 11.7% 21.1% 29.8% 49.6% 40.6%
FNR (%) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Example 2
Model Error avg 0.41 0.36 0.50 0.64 0.82 0.70

sd 0.16 0.14 0.18 0.20 0.23 0.21
No. of Groups (4) avg 4.08 4.63 4.11 4.38 5.93 5.97

sd 0.28 0.67 0.34 0.65 0.26 0.17
Correct Group (%) 91.8% 47.5% 72.0% 90.5% 0.0% 0.0%
No. of Vars (16) avg 16.42 17.30 22.98 30.75 41.71 30.87

sd 1.47 1.94 2.81 4.85 1.12 3.67
FDR (%) 8.0% 12.3% 33.8% 50.2% 64.0% 50.7%
FNR (%) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Example 3
Model Error avg 0.36 0.36 0.36 0.35 0.53 0.46

sd 0.14 0.14 0.14 0.14 0.19 0.17
No. of Groups (2) avg 2.16 2.75 2.13 2.47 4.59 4.58

sd 0.42 0.94 0.39 0.78 0.60 0.64
Correct Group (%) 85.8% 52.8% 67.5% 88.5% 0.25% 0.5%
No. of Vars (16) avg 16.24 17.03 16.35 19.78 36.74 21.59

sd 0.71 1.54 1.26 6.25 4.78 2.77
FDR (%) 1.3% 5.2% 2.0% 14.1% 55.7% 24.8%
FNR (%) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Example 4
Model Error avg 2.77 2.78 3.75 7.73 9.49 4.08

sd 1.31 1.22 1.43 2.13 2.48 1.49
No. of Groups (7) avg 6.87 8.85 7.60 8.28 14.75 13.87

sd 0.95 1.75 1.27 1.69 1.43 1.89
Correct Group (%) 46.3% 12.0% 32.5% 6.0% 0.0% 0.0%
No. of Vars (9) avg 9.94 13.66 20.90 46.34 80.47 27.90

sd 2.13 3.56 5.61 9.26 6.84 5.84
FDR (%) 13.5% 33.7% 56.0% 81.3% 88.8% 66.9%
FNR (%) 7.2% 4.6% 3.7% 6.6% 0.8% 1.7%
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FIG. 5. Relative frequency plot of each covariate not being selected in examples 1–2. The verti-
cal lines indicate the group structure. As neither of the methods yields a false negative in the two
examples, the four types of symbols at the bottom of each figure are overlaid.

false positives due to its inner �1 penalty, but it behaves better than CoMCP at the
group-level selection. For each covariate in a simulated model, we plot in Figures 5
the relative frequency that it is not selected. It is clear that the GrB method often
yields false positives in non-null groups, and the other two bi-level selection meth-
ods perform much better due to their enhanced individual selection property. Not
surprisingly, all three bi-level methods outperform GrMCP, GrLasso and Lasso,
and more so in example 2 when several non-null groups are quite sparse. In exam-
ple 3, the model is only sparse at the group level, which has exactly the structure
the group selection methods aim to recover. While the performance of GrMCP and
GrLasso improves, the bi-level selection methods, especially CoB, may still out-
perform them by a considerable margin. This shows that individual-level section
consistency may reinforce the selection at the group level, which agrees with our
theoretical analysis. We note that both CoB and GrB can handle overlapping of
predictors in group assignments. We thus have examined the effect of overlapping
by modifying example 1 to allow a few important or irrelevant predictors to be
grouped into more than one group. Both CoB and GrB remain to work well, as the
simulation results (unreported) are very similar to those of the reported nonover-
lapping case. Example 4 uses the same group structure and model dimensions as
in the real application, and allows for both within-group and between-group cor-
relations. Here the sample size is comparable to the number of predictors, which
makes the problem more challenging. The performances of the CoB and CoMCP
methods are comparable, except that CoMCP tends to select a few more variables
than needed and CoB has slightly larger false negatives, although they were both
tuned based on prediction error. Again, in this bi-level selection scenario, these two
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nonconvex composite penalization methods substantially outperform other meth-
ods.

4. Discussion. We have developed a comprehensive procedure for extract-
ing parsimonious and interpretable lung airway features from noisy and high-
dimensional lung airway tree data, and then study their association with lung func-
tion variables using a new composite bridge regression method. In particular, our
findings indicate the importance of the between-segment and within-segment het-
erogeneities in studying lung function. The found relationships between lung func-
tion and airway characteristics indicate the potential for future work to collect more
data in order to derive a systematic approach for assessing FEV1% (and other pul-
monary function tests) after adjusting for the subject’s parenchymal density and
airway tree features, which has the potential of more accurately identifying “nor-
mal” subjects with borderline atypical lung functions.

We have established the bi-level oracle properties for the composition of the
bridge penalty in penalized regression, and demonstrated that the method can take
full advantage of prior grouping information and be adaptive to the presence of
mixed groups. In the theoretical analysis we allow a diverging number of pre-
dictors but still require n > dn. There are many directions for future research.
Our results may shed light on developing a unified theory for bi-level selection
via the general nonconvex composite penalty forms under high-dimensional se-
tups [Huang, Breheny and Ma (2012)]. Bi-level and hierarchical variable selection
techniques are critical in the integrative analysis of multiple data sets, especially in
high-throughput genomic studies [Liu, Ma and Huang (2014), Ma et al. (2011)].
It is thus pressing to develop efficient algorithms and investigating properties of
multiple-level penalization. In time series analysis, the model terms in an ARMA
model form an AR group, an MA group and groups associated with exogenous
variables, and they may also be grouped based on the lag orders. Motivated by
Chen and Chan (2011), it would be interesting to explore the use of bi-level pe-
nalization methods to identify a parsimonious subset ARMA model. In multivari-
ate regression, there are naturally grouped coefficients associated with different
responses, predictors or latent structures in which bi-level selection can be very ef-
fective, for example, it can be used to identify the relevant predictors as well as the
subset of selected predictors associated with each response variable [Chen, Chan
and Stenseth (2012), Chen and Huang (2012)].

APPENDIX: THEORETICAL PROPERTIES OF THE COMPOSITE
BRIDGE METHOD

Recall that, without loss of generality, we have assumed that

β0Aj
�= 0, 1 ≤ j ≤ J1,

β0Aj
= 0, J1 + 1 ≤ j ≤ J.
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For each Aj , j = 1, . . . , J1, A1
j = {k;β0k �= 0, k ∈ Aj } and A2

j = {k;β0k = 0, k ∈
Aj }. Let B2 = ⋃J

j=J1+1 Aj be the union of the groups with zero coefficients. Let

B1 = Bc
2 , B1

1 = {k;β0k �= 0, k ∈ B1} and B2
1 = {k;β0k = 0, k ∈ B1}. Note that Aj

may include relevant predictors or irrelevant predictors either in B1 or B2. Denote
β0Bj

= (β0k, k ∈ Bj)
′ for j = 1,2, and define other subvectors of β0 similarly.

Assume the variables are arranged so that β0 = (β ′
0B1

1
,β ′

0B2
1
,β ′

0B2
)′. Since β0B2

1
=

0 and β0B2
= 0, the response variable is fully explained by the relevant variables

belonging to B1
1 within the first J1 groups. In this notation, β̂nB1

1
, β̂nB2

1
and β̂nB2

are respectively the estimates of β0B1
1
, β0B2

1
and β0B2

from the composite bridge

estimator β̂n.
Let X = (x1,x2, . . . ,xd), X1 = (xk, k ∈ B1), X11 = (xk, k ∈ B1

1 ) and X12 =
(xk, k ∈ B2

1 ). Define

�n = 1

n
X′X, �1n = 1

n
X′

1X1, �11n = 1

n
X′

11X11.(A.1)

Let ρn and ρ∗
n be the smallest and largest eigenvalues of �n, and let τ1n and τ ∗

1n be
the smallest and largest eigenvalues of �11n.

We consider the following conditions:

A1. The errors ε1, ε2, . . . , εn are uncorrelated with mean zero and finite vari-
ance σ 2.

A2. The c∗
n = maxk

∑J
j=1 I (k ∈ Aj) is bounded, and

λ2
nη

2
n

nρnσ 2d
= Mn = O(1),

where ηn = {∑J1
j=1 c2

j‖β0A1
j
‖2μ−2

2μ−2‖β0A1
j
‖2μ(γ−1)
μ }1/2.

A3. The constants cj ’s are scaled to satisfy minj≤J cj ≥ 1, and

λnρ
1−μγ/2
n

d1−μγ/2ρ∗
nnμγ/2 → ∞.

A3*. The constants cj ’s are scaled to satisfy minj≤J cj ≥ 1, and

λnρ
1−μ/2
n

d1−μ/2ρ∗
nnμ/2 → ∞.

A4. There exists constant τ ∗
1 < ∞ such that τ ∗

1n ≤ τ ∗
1 for all n.

Assumption A1 is standard about the error distribution. Assumptions A2 and A3
are about the degree of overlapping, the growth rate of the tuning parameter and the
growth rate of the model size; they imply a full rank design with rank(X) = d ≤ n,
ρn > 0, and τ1n > 0. The first three assumptions are used to establish the group-
level selection consistency. To establish the individual-level selection consistency,
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however, A3 shall be replaced by a stronger version A3*. A4 ensures that the
largest eigenvalue of X11 is bounded.

In general, the selection consistency at the individual level is stronger than that
at the group level. This fact is reflected in the above required assumptions. Note
that A3* implies A3, as individual-level selection consistency implies group-level
consistency. Moreover, the choice of the group-level penalty does not have a direct
impact on the within-group variable selection. On the other hand, A3 involves
both μ and γ , and it is evident that the choice of the within-group or inner penalty
determines the behavior of individual variable selection, and hence also influences
the group selection performance. Similar to Huang et al. (2009), for [B1

1 ,β0B1
1
, J1]

fixed but unknown, Assumptions A2 and A3 hold when

(a) (1/ρn) + ρ∗
n +

J1∑
j=1

c2
j = O(1), (b)

λn

n1/2 → λ0 < ∞,

(A.2)

(c)
λnd

μγ/2

dnμγ/2 → ∞,

provided that cj ≥ 1 and c∗
n = O(1). For Assumptions A2 and A3*, (c) is strength-

ened to

(c*)
λnd

μ/2

dnμ/2 → ∞.(A.3)

Our main results about the properties of the proposed composite bridge estima-
tor are summarized in the following theorems. We remark that Theorems 1 and 2
also apply to the group bridge method when μ = 1 [Huang et al. (2009)]. All
proofs are provided in the Supplementary Material [Chen et al. (2016)].

THEOREM A.1 (Estimation Error Bound). Suppose that 0 < μ ≤ 1, 0 < γ < 1
and Assumptions A1–A2 hold. Then

E
(‖β̂n − β0‖2

2
) ≤ σ 2d

nρn

(
8 + 64c∗

nMn

)
.

THEOREM A.2 (Group Selection Consistency). Suppose that 0 < μ ≤ 1, 0 <

γ < 1 and Assumptions A1–A3 hold. Then

P(β̂nAj
= 0, j > J1) → 1,(A.4)

as n → ∞.

THEOREM A.3 (Individual Selection Consistency). Suppose that 0 < μ < 1,
0 < γ ≤ 1 and Assumptions A1, A2, A3* and A4 hold. Then (A.4) holds, and

P(β̂nA2
j
= 0, j ≤ J1) → 1,

as n → ∞.
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THEOREM A.4 (Asymptotic Distribution). Suppose {B1
1 ,β0B1

1
, J1} are fixed

unknowns and (A.2) holds. Suppose further that �1n → �1 and n−1/2X′
1ε1 →d

W1 ∼ N(0, σ 2�1), and, consequently, �11n → �11 and n−1/2X′
11ε11 →d W11 ∼

N(0, σ 2�11). Then
√

nβ̂nB2
→
d

0,
√

nβ̂nB2
1
→
d

0,

and
√

n(β̂nB1
1
− β0B1

1
)→

d
arg minV11(u), u ∈ R

|B1
1 |,

where

V11(u) = −2u′W11 + u′�11u

+ μγλ0

J1∑
j=1

cj‖β0Aj
‖μ(γ−1)
μ

∑
k∈A1

j

uk|β0k|μ−1 sgn(β0k).
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SUPPLEMENTARY MATERIAL

Supplement to“Linking lung airway structure to pulmonary function via
composite bridge regression” (DOI: 10.1214/16-AOAS947SUPP; .pdf). We pro-
vide the technical details in the theoretical investigation of the proposed method
and an additional simulation example to investigate the impact of group size.
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