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DETECTION OF EPIGENOMIC NETWORK COMMUNITY
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In this paper we propose network methodology to infer prognostic can-
cer biomarkers based on the epigenetic pattern DNA methylation. Epigenetic
processes such as DNA methylation reflect environmental risk factors, and are
increasingly recognised for their fundamental role in diseases such as cancer.
DNA methylation is a gene-regulatory pattern, and hence provides a means by
which to assess genomic regulatory interactions. Network models are a nat-
ural way to represent and analyse groups of such interactions. The utility of
network models also increases as the quantity of data and number of variables
increase, making them increasingly relevant to large-scale genomic studies.
We propose methodology to infer prognostic genomic networks from a DNA
methylation-based measure of genomic interaction and association. We then
show how to identify prognostic biomarkers from such networks, which we
term “network community oncomarkers”. We illustrate the power of our pro-
posed methodology in the context of a large publicly available breast cancer
dataset.

1. Introduction. Complex systems which can be modelled as networks
are ubiquitous. Well-known examples include social/communication networks
[Beguerisse-Diaz et al. (2014)] and economic networks [Saavedra et al. (2014)],
as well as many others in the biological sciences such as ecological networks
[Nandi, Sumana and Bhattacharya (2014)], gene networks [Li and Wang (2014),
Wei and Pan (2010)], protein networks [Mardia (2013), Tran and Kwon (2013)]
and metabolic networks [Reznik, Watson and Chaudhary (2013)]. Over the past
few years in cell biology, much focus has shifted from investigation of individual
genes, to pathways of genes, to gene networks. The interest in novel methodology
for network analysis in cell biology follows from the recognition that examining
the way genes work in groups often yields more accurate inference of biological
processes.

The problem of finding community structure in networks has been studied for
many years. Important applications of this problem include identifying groups of
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friends or co-workers in social networks, as well as identifying functional sub-
network modules in biological networks [Girvan and Newman (2002)]. In the bi-
ological setting, genes can be viewed as acting together as part of “subnetwork
modules”, which are functional units with specific biological roles [Shen-Orr et al.
(2002)]. Indeed, it has been demonstrated recently that such modularity is a natu-
ral and even inevitable result of evolutionary pressures [Clune, Mouret and Lipson
(2013)]. This is because modularity minimises network connectivity cost whilst
maximising performance, and thus it represents the most parsimonious and ef-
ficient type of network structure for biological networks such as these. Further-
more, considering groups of genes defined together as subgraphs can lead to big
increases in statistical power, aiding discovery of biological phenomena [Jacob,
Neuvial and Dudoit (2012), Li and Li (2010), Peng et al. (2010)]. Therefore, it is
relevant to both the biological and statistical modelling to consider the group be-
haviour of genes in this way. Hence, this viewpoint of modular genomic network
structure is fundamental to the methodology we propose here. Epigenetic patterns
are gene-regulatory patterns, meaning that they influence the activity of particu-
lar genes, among other phenomena [Jones (2012)]. Epigenetic information can be
modulated during the lifetime of an organism by environmental cues [Christensen
et al. (2009), Cooney (2007), Feinberg, Ohlsson and Henikoff (2006)]. As such,
epigenetics can be considered to be an interface between the genome and the en-
vironment, and consequently also a conduit for environmental risk factors. Alter-
ations in the epigenetic pattern DNA methylation are among the earliest changes in
human carcinogenesis [Feinberg, Ohlsson and Henikoff (2006)], and hence DNA
methylation patterns are expected to yield important prognostic information use-
ful for biomarker development. DNA methylation patterns are thought promising
for biomarker development in a wide variety of physiological systems and organs
[Fleischer et al. (2014), Gao et al. (2013), Kishida et al. (2012), Van Hoesel et al.
(2013), Verschuur-Maes, de Bruin and van Diest (2012), Kang et al. (2001, 2003),
Bhagat et al. (2012), Luo et al. (2014), Maekawa et al. (2013), Navarro et al.
(2012), Yamamoto et al. (2012)].

It is well established that DNA methylation plays an important role in gene
regulation, and hence DNA methylation patterns often reflect gene regulatory be-
haviour [Jones (2012)]. Changes in DNA methylation are highly stochastic. The
timescale over which these changes take place is much faster than DNA muta-
tions can arise, but much slower than the transient and periodically varying ac-
tivity of individual genes, and this timescale is ideal for biomarker development.
DNA methylation data are extremely noisy; however, statistics which summarise
DNA methylation patterns at the gene level have been shown to have much util-
ity as analytical tools [Bartlett et al. (2013)]. It has been shown previously that
DNA methylation can serve as a surrogate measure of genomic-regulatory action
[Brocks et al. (2014)]. Hence, DNA methylation measurements are a natural ba-
sis from which to construct genomic regulatory and related networks. As a cancer
progresses, its signalling and control networks are rearranged (“rewired”), leading
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to genomic changes which are advantageous for the cancer [Barabdsi and Oltvai
(2004)]. Previous research has found that patient survival outcome in breast cancer
can be predicted well by network models of this rewiring based on gene expres-
sion data [Taylor et al. (2009)]. Hence, network models based on DNA methyla-
tion measurements are a very promising basis for the development of prognostic
biomarkers.

Statistical network models are a parsimonious way to represent and analyse
large numbers of variables and samples. They are efficient analytical tools appro-
priate for the very large datasets which are produced by the latest technologies
in cell biology. When carrying out modelling of this type, it is important to bal-
ance statistical fidelity with computational efficiency. The “stochastic blockmodel”
(SBM) [Bickel and Chen (2009), Holland, Laskey and Leinhardt (1983)] is an ef-
ficient network model which has been widely studied and is well understood, and
hence it is a good basis for our proposed methodology. Under the SBM, there
is a greater probability of observing an edge (or interaction) between a pair of
nodes if they are in the same block, or community. The Newman—Girvan modu-
larity [Newman and Girvan (2004)] quantifies the extent to which network edges
are observed between community members, for a particular assignment of nodes
to communities, compared to the expected number of edges between community
members if there were no community structure present. It can be shown that, under
certain conditions, fitting the stochastic blockmodel is equivalent to maximising
the Newman—Girvan modularity over a network, and that these are both equivalent
to spectral clustering [Bickel and Chen (2009), Riolo and Newman (2012)]. We
use spectral clustering as an efficient computational algorithm for fitting the SBM.

It has also been shown recently that, under reasonable assumptions, the SBM
can be used to represent any network as a “network histogram”, whatever the
generating mechanism of that network. Further, the network histogram provides
a heuristic method to estimate the optimum number of blocks, or clusters, which a
valid blockmodel representation of the network may contain. This is important and
useful because it means that the blockmodel can be used to identify an unknown
number of communities, or functional subnetwork modules, in a biological net-
work. Genomic networks are typically scale-free, which means that they exhibit
a power-law degree distribution [Wagner (2002)]. Further, they are thought to be
hierarchical [Barabasi and Oltvai (2004), Palla, Lovasz and Vicsek (2010)], dis-
playing multi-scale properties. This means that different functional organisation is
visible at different granularities, or scales. We use the network histogram method
[Olhede and Wolfe (2014)] to estimate the optimal granularity at which to identify
communities, or functional subnetwork modules, in our prognostic networks by
fitting the SBM.

The main contribution of this work is to propose a well-integrated, and well-
validated, statistical methodology for detecting biomarkers from the biological
viewpoint of modular genomic network structure using DNA-based measurements
of genomic regulatory patterns. To do this, we show how to integrate our previously
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proposed DNA methylation-based measure of interaction or association between
pairs of genes, the “DNA methylation network interaction measure” [Bartlett, Ol-
hede and Zaikin (2014)], into a multi-stage pipeline to construct prognostic net-
work community-based biomarkers. This leads to our novel and generally appli-
cable statistical methodology; we present the multiple stages of this methodology
sequentially here, and thus this paper is organised as follows. In Section 2, we
outline our previously proposed DNA methylation network interaction measure
[Bartlett, Olhede and Zaikin (2014)], and we show how to use this measure to in-
fer prognostic genomic networks. An edge between a pair of genes/nodes in these
networks indicates that the strength of interaction or association between those
genes is associated with disease progression. Also, in Section 2, we show how to
identify prognostic biomarkers from such networks using community detection to
identify subnetwork modules within the network. These communities are groups
of nodes/genes among which there is a high density of prognostic interactive or
associative behaviour, and we term them “network community oncomarkers”. In
Section 3, we demonstrate the utility of our proposed methodology in the con-
text of a large, publicly available breast cancer dataset. To do so, we use each
network community oncomarker to calculate a one-number prognostic score for
each patient, and we use these scores to classify patients one by one into prog-
nostic groups. Also, in Section 3, we show that among the genes of the network
community oncomarkers, the DNA methylation network interaction measure is as-
sociated with co-regulatory behaviour as measured by gene expression, justifying
these findings in terms of biological function.

2. Proposed methodology. An overview of our proposed methodology ap-
pears in Figure 1, following which component parts of this methodology are de-
scribed in detail.

We note that, in principle, each of the steps illustrated in Figure 1 could be
replaced with alternative choices of methodology.

2.1. DNA methylation network interaction measure. DNA methylation is a
chemical modification to DNA which may occur at numerous locations within a
gene: the pattern of these modifications within a gene forms a “DNA methylation
profile”. Using canonical correlation analysis (CCA) [Hotelling (1936)], we previ-
ously proposed a statistic [Bartlett, Olhede and Zaikin (2014)] which measures the
strength of interaction or association between a pair of genes (network nodes) in
a single sample/patient based on DNA methylation profiles (Figure 2). This statis-
tic quantifies the extent to which the DNA methylation profiles of a pair of genes
explain each other. It is based only on measurements of the DNA methylation pro-
files of that pair of genes, and it acts as a surrogate for a measure of the extent
to which this pair of genes behave interactively or associatively. Such behaviour
may include transcriptional regulation or co-regulation, or other types of biochem-
ical interaction, influencing gene expression levels, isoforms and the presence of
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(1) Calculate the DNAm network interaction measure
for each pair of genes, and for each patient

v

[(2) Calculate a Wald statistic (adjusted for clinical covariates) as a measure]

of prognostic ability for each pair of genes, across all patients

v

(3) Infer the prognostic network, by fitting a mixture model to identify
significantly non-zero Wald statistics, defining these
prognostic interactions as network edges

v

(4) Detect network community oncomarkers as groups of genes among
which there is a high density of prognostic interactions / network edges

v

(5) Summarise the DNA methylation network interaction measures over
the prognostic interactions / network edges of each network community
oncomarker, to give a one-number prognostic score for each
patient, and for each network community oncomarker

FI1G. 1. Overview of methods.

alternatively spliced gene products, among other phenomena [Jones (2012)]. The
details of this DNA methylation network interaction measure are as follows.

The DNA methylation network interaction measure is defined by analogy to
CCA. CCA aims to discover linear combinations of variables of one type and
linear combinations of variables of another type so that these combinations best
explain each other. In this context, a particular way of combining (by scaling and
adding) the deviations from the mean methylation profile at a number of locations
within one gene might be particularly effective at explaining a particular combi-
nation of (again, by scaling and adding) the deviations from the mean methylation
profile at a number of locations in another gene and vice versa. There will proba-
bly be fewer ways in which the methylation levels of these genes covary across the
samples than there are locations at which methylation is measured along the genes;
this is because the methylation level is highly correlated at many locations along
a particular gene. CCA finds the most important components of this covariation
across samples.

CCA seeks to find the vectors a and b, in the p and g dimensional spaces

of variables X = (x1,x2,...,x,) and Y = (y1, y2, ..., yq)’, respectively, which
maximise the correlation p = cor(a’X, b’Y) defined according to equation (1):
a’y Xyb
(1) p= —
Va'Yxxa/b'Xyyb
where

Txx =E[X—px)X—px)]
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FI1G. 2. The DNA methylation network interaction measure. A combination of the variation of the
healthy methylation profiles in regions (a) and (b) of gene X explains well/is well explained by a
combination of the variation of the healthy methylation profiles in regions (c) and (d) of gene Y.
The green cancer sample varies by a large amount about the mean methylation profile and in a
typical way in these regions in both genes. Hence, the green sample corresponds to a high level
of network interaction for this sample, pxy = 1. The equivalent variations in the other regions of
these genes do not explain each other well, and so the red sample, which varies by a large amount
in these other regions and varies less and in an atypical way in regions (a)—(d), corresponds to a
low level of network interaction, pxy = 0.07. Genes X and Y are likely to have different numbers of
methylation measurement locations (i.e., variables X and Y are of different dimension). The ordering
of the measurement locations has no influence on the calculation of p, as long as the ordering is
consistent across samples. This diagram was presented previously by Bartlett, Olhede and Zaikin
(2014).
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and

Zyy =E[(Y — ny)(Y — pny)']

are the covariance matrices of X and Y, respectively,

Txy =E[X - nx)(Y—ny)]

is the cross-covariance matrix of X and Y, and uyx and py are the mean vectors of
Xand Y.

Two genes X and Y have corresponding methylation profiles which are mea-
sured for sample/patient k at p and g CpGs (loci), respectively, along these genes.
Denoting these measurements by the variables x1, ..., x, and yy, ..., y, for genes
X and Y, respectively, the DNA methylation profiles for these genes, for patient
k, can be represented by the vectors x(k) and y(k), which have p and ¢ entries,
respectively. A measure of DNA methylation network interaction pxy (k), of the
methylation profiles of genes X and Y for sample &, can then be defined by analogy
with equation (1), according to equation (2):

X (k)T S0y (k)

Jxe TS e oy ye (0T £ ye (k)

2) pxy (k) =

h o (h .
where £ X X, ) ;1), nd Egﬂ), are estimated from healthy rather than cancer samples

in the methylation dataset, according to equations (3)—(5),

o (h) 1 R
3) Sxx=— Y. (x(b)— i) xk) —a)",
h | chealthy
~ (h) 1
) Syy=— > (&) — i) vk — )",
h i ehealthy
oy 1 R
) Syr=— > (x)—aY) vk — )",
nhkehealthy
where
1
iy =— 3 x(b.
h kehealthy
B =— 3y,
hkehealthy

ny, is the number of healthy samples in the dataset, and x°(k) and y°(k) are the
mean-centered methylation profiles x“(k) = x(k) — i )? ) and ye (k) =yk) — i <h)
The DNAm network interaction measure hence evaluates the extent to Wthh in
an individual tumour sample, the combinations of the methylation-variables (i.e.,
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loci) in genes X and Y explain each other, or covary, in the spaces determined by
CCA on corresponding healthy samples; that is, the covariation in tumour sample
k between the methylation-variables in genes X and Y is assessed against typ-
ical healthy variability in these variables. When the DNA methylation network
interaction measure pxy (k) is large (i.e., close to 1), the corresponding pair of
genes explain each others’ gene-regulatory behaviour (as reflected in their methy-
lation profiles) well, or have otherwise well-correlated interactive or associative
behaviour, for sample/patient k. Hence, pxy (k) measures (according to their DNA
methylation profiles) the level of interaction or association between genes X and
Y in tumour sample k£ compared to typical interactions between these genes in
healthy tissue.

2.2. Prognostic network construction. Our proposed methodology for infer-
ence of network oncomarkers is based on a prognostic interaction network over m
genes. This network is represented by the m x m adjacency matrix A, in which an
edge is defined to be present (i.e., A;; = 1) if and only if the corresponding pair
of genes (nodes) are prognostic according to the DNA methylation network inter-
action measure of Section 2.1. Otherwise, we set A;; = 0. We note that i and j
are now redefined compared to the last section so that they index genes rather than
DNA methylation locations. This formulation will not be problematic because all
subsequent analysis is carried out at the level of genes rather than DNA methyla-
tion locations. To identify prognostic edges, we use the Cox proportional hazards
model [Cox (1972)] to calculate a Wald-statistic z;; for each of the (’5) pairs of
genes in the network. The Wald statistic quantifies the strength of association of
the DNA methylation network interaction measure p;; for the pair of genes i and
j=1,...,mand j=1,...,m) with patient survival outcome across patients k
(k=1,...,n). We use a multivariate Cox model, adjusting these Wald statistics
for clinical covariates, fitting this model separately to each pair of genes (i, j). We
adjust in this way in order to detect novel DNA methylation biomarkers which are
independent of known prognostic clinical features.

The Wald statistic is asymptotically normally distributed with unit variance
[Harrell (2001)], and we can therefore model the distribution of our observed Wald
statistics, z;;, as a mixture of Gaussians. We have previously demonstrated the util-
ity of mixture modelling to a related network inference problem [Bartlett (2015)],
and a similar approach can be applied in this context. We model the z;; as a Gaus-
sian mixture as follows:

N (ij, 0?), if A;j =1,

6 i~
© TN, 62). if Aij =0,

where N (u; s o?) is the normal distribution, and we enforce o> = 1 in line with
the asymptotic behaviour of the Wald statistic. We fit this mixture model to each
observed statistic z;;, and then infer whether, given z;;, it is more likely that p;; =
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0, or u;j # 0, leading to the estimates Aij =0 or Aij = 1, respectively. We fit this
model using the empirical Bayes procedure of Johnstone and Silverman (2004),
defining a mixture prior distribution fpior(i4;j) over the u;; of equation (6):

(7 Jorior(ij) = (1 — w)d(wij) + wy (iij),

where w is the mixing parameter between the two components, which can also be
interpreted as w = E[p(A;; = 1)], and y(-|a) is the Laplace probability density
function,

a
y(pijla) = Eexp(—almjl)’

where we use the standard value of a = 0.5 [Johnstone and Silverman (2004)].
Taking the mixture components to have Gaussian likelihoods, far(-|uij, 02), as
in equation (6), it follows from equation (7) that the posterior density over the
observed prognostic Wald statistic z;; is

(1 — w)8(wij) fi(zijl0, 0%) + wy (wij) i (zijl i, o)

(8) ior(4ij12ij) =
Jposterior (i 12i; Smarginal (Zi )

where the marginal density is

) fmarginal (zij) = (1 — w) i (2710, 02) + wg(zi)),

where g(1;;) is the convolution of the Laplace density with the standard normal
density. If the Laplace distribution in the prior [equation (7)] were replaced with
a Gaussian, then the marginal distribution [equation (9)] would be a mixture of
Gaussians. However, as noted previously [Johnstone and Silverman (2004)], this
empirical Bayes procedure requires a prior with tails that are exponential or heav-
ier. Hence, we similarly use the Laplace rather than Gaussian prior, which is a
slight model misspecification.

Although a separate model is fitted to each observed Wald statistic z;;, a com-
mon weight w; is used for each gene/node i. We choose to do this because esti-
mating w; separately for each gene i allows adaptation to a heterogenous degree
distribution in A, as follows. For a particular gene i, if the z;; are mostly close
to zero, then w; will be set low, which means that fewer edges (A;; = 1) will be
detected; this hence corresponds to i being a low-degree node. If for a different
gene i the z;; are generally further from zero, then w; will be set high, which
corresponds to more edges being detected; this hence corresponds to i being a
high-degree node.

The estimate w; is found as the value which maximises the marginal likelihood
[equation (10)] of the observed statistics z;; over all the pairwise comparisons of
i with j, j # i. This allows the model for each such pairwise comparison (i, j) to
“borrow strength” from all the other comparisons (i, j'), j' #1i, j' # j:

(10 w; = argm]ﬁleog{(l — w)¢(zij) + wg(zij)}.
J#
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As in the original presentation of this methodology [Johnstone and Silverman
(2004)], we use the posterior median to obtain the estimate fi; j. Then we make
a conservative estimate of A as follows:

(11) AUZI if;l,-j>0and/lj,~>00r;2,-j<Oandﬁj,-<0,
Aij=0 otherwise.

2.3. Community and oncomarker detection. Network nodes can be grouped
together according to their propensity to interact with each other, for example,
groups of friends in a social network or functional subnetwork modules in a bi-
ological network; this method is referred to as community detection [Girvan and
Newman (2002), Newman (2004)]. We use community detection to naturally in-
fer groups of genes in our constructed prognostic network. These groups of genes
interact differently in cancer than in healthy tissue, in a way which is predictive
of how advanced the disease is. We term these groups “network community onco-
markers”. Within a network community oncomarker the genes may interact with
each other more (relative to healthy tissue) the more serious the disease is [as in
Figure 6(c)], or they may interact with each other less the more serious the disease
is [as in Figure 6(a)]. We carry out the task of community detection by fitting the
degree-corrected stochastic blockmodel [Bickel and Chen (2009), Holland, Laskey
and Leinhardt (1983)]. We fit this model in an efficient way by regularised spectral
clustering [Qin and Rohe (2013)], calculating the optimum number of commu-
nities to divide the network into by the network histogram method [Olhede and
Wolfe (2014)]. Each community identified in this way represents a potential net-
work community oncomarker.

For each network community oncomarker, we then calculate a prognostic score
for each patient by summarising the DNA methylation network interaction mea-
sure over this group of genes. This prognostic score can be used as a one-number
summary of disease prognosis for that patient according to that network commu-
nity oncomarker. The following points are important when calculating these sum-
maries. Some gene—gene interactions will correspond to an increasingly negative
DNA methylation network interaction measure p;; for worse patient prognosis.
On the other hand, some gene—gene interactions will correspond to an increas-
ingly positive p;; for worse prognosis. This means that care must be taken when
summarising the network interaction measure across the network community on-
comarker. Also, for the same amount of prognostic information conveyed, the mag-
nitude of the changes in the network interaction measure may not be the same for
each prognostic pairs of genes. To address these points, we combine the p;; across
the prognostic pairs of genes of the network community after first multiplying
them by the corresponding fitted Cox proportional hazards model coefficients 0; s
obtained as described at the start of Section 2.2. Under the Cox proportional haz-
ards model, the fitted model coefficient 6; ;j for a predictor ij gives the log of the



EPIGENOMIC NETWORK COMMUNITY ONCOMARKERS 1383

hazard ratio (HR) for that predictor in the model, that is, log(HR;;) = éi j. The
hazard ratio is the scale-factor increase in probability of an event (e.g., death) oc-
curring per unit time, relative to the baseline hazard (e.g., compared to a control
group). Hence, these coefficients are interpretable in the same way, without scal-
ing issues, across fitted models. This means that, for patient k, we can combine
the DNA methylation network interaction measures over a network community
oncomarker to generate a one-number prognostic score, as follows:

Scorey = Z Aijbijpij(k),
ieC,jeCli<j

where C is the set of nodes in the network community oncomarker, A is the in-
ferred adjacency matrix, p;;(k) is the DNA methylation network interaction mea-
sure for genes/nodes i and j and patient k, and 6; ; s the corresponding fitted Cox
multivariate proportional-hazards model coefficient. Network edges/DNA methy-
lation network interaction measures p;; which increase with poor prognosis (i.e.,
pairs of genes which interact more as the disease progresses, coloured green in Fig-
ure 6) will correspond to é,- ;> 0. Hence, an increase in such a p;; will increase the
prognostic score. Equivalently, network edges/DNA methylation network interac-
tion measures p;; which decrease with poor prognosis (i.e., pairs of genes which
interact less as the disease progresses, coloured red in Figure 6) will correspond to
6; j < 0. Hence, a decrease in such a p;; will also increase the prognostic score.

2.4. An equivalent gene-expression interaction measure. To examine further
the hypothesis that the DNA methylation network interaction measure is a re-
flection of co-regulatory or co-regulated gene-expression patterns (among other
genomic effects), we need an equivalent measure of gene—gene interaction or as-
sociation in terms of gene expression. We can calculate such a measure, p?ﬁr (k),
for gene expression measurements x**P"(k) and y**P' (k) for the genes X and Y and
patient k, as follows [equation (12)]:

. ~ (h
expr e ) — A% PP — Ale)
(12) pxy (k) = - : - ,
(h) (h)
O expr Uyexpr
where
~(h 1 ~(h 1
AR =— Y x®() and Ale=— > y*P(k),
"h kehealthy "h ¢ ehealthy
NORVIER.! . (h) \2
(O')Eex)pr) = — Z (Xexpr(k) - M)(Ce))ﬁpr)
h kehealthy
and

) 2 ] ~(h) \2
(O’)Eex)pr) = — Z (yexPr(k) — /J/;e))(pr) .
"h ¢ ehealthy



1384 T. E. BARTLETT AND A. ZAIKIN

The intuition of equation (12) is that when the gene expression measurements
x®*P(k) and y**P'(k) deviate in the same sample from the corresponding healthy
mean expression levels, this measure will be nonzero. When this occurs in the
same samples as the DNA methylation network interaction measure pxy (k) is also
nonzero, we will see a correlation between pxy (k) and :Oxy These interaction
measures for methylation and expression, pxy (k) and p X Y , are equivalent because
they both measure deviation from typical interactive behaviour in healthy/control
samples.

3. Examples. We present an example application of the methodology pro-
posed in Section 2 to a large publicly available breast cancer invasive carcinoma
(BRCA) dataset downloaded from the Cancer Genome Atlas (TCGA). We down-
loaded an initial batch of DNA methylation data for tumour samples taken from
175 individuals (the training set), together with clinical data for these samples re-
lating to patient survival outcome, and the covariates age, disease stage and resid-
ual disease. These training data were used to detect potential network commu-
nity oncomarkers. We then downloaded DNA methylation data for a further 528
tumour samples (the test set), together with data for the same clinical features:
these independent samples were used to validate the potential network commu-
nity oncomarkers. We also downloaded corresponding DNA methylation data for
healthy breast tissue samples from 98 individuals to form a reference population of
DNA methylation profiles for this analysis, and we downloaded gene expression
data for 216 of the tumours for which DNA methylation data were also available.
To proceed, we estimated from the training set the healthy population means, co-
variances and cross-covariances required to calculate the p;; (i =1,...,m and
j=1,...,m), as well as the corresponding log hazard ratios 6; ; and adjacency
matrix A. Additionally, from the training data we estimated the communities in
the adjacency matrix (including the number of communities) and the prognostic
score thresholds used to assign patients to better and worse prognostic groups. We
then used these estimates to verify the prognostic ability of the methodology in the
test set. .

We first inferred the binary prognostic adjacency matrix A for the 175 samples
of the BRCA training dataset according to the methods set out in Sections 2.1-2.2.
DNA methylation data were available for 14,829 genes, and hence the number of
nodes/ genes m in the inferred adjacency matrix A is m = 14,829. The presence of
an edge in A, that is, A;; = j = 1, indicates that the interaction between genes i and

Jj is associated with disease progression. The edge density of A is 0.0035, that is,
p(fi,- i =1) =0.0035. We then extracted the connected component from this in-
ferred network and carried out community detection on this connected component
as described in Section 2.3. This resulted in 33 communities ranging from 116 to
285 nodes in size. The reduced adjacency matrix relating to these communities
[with m = 5668 and p(Aij = 1) = 0.023] is shown in Figure 3. We note that the
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T

F1G. 3. The inferred prognostic adjacency matrix after community detection. Entries in the ad-
Jjacency matrix equal to 1 (representing a network edge) are coloured blue. Detected communities
are outlined in black. The potential network community oncomarkers which are analysed further in
Figures 4-7, Tables 1-2 and Tables S1-S5 in the supplement are outlined in red and labelled (a)—(e).

stochastic blockmodel, fitted in this way via spectral clustering, does not provide
any uncertainty as to the inferred community assignments: if this is desired, then
mixed-membership stochastic blockmodels are available as an alternative [Airoldi
et al. (2008)]. In the analysis we present here, uncertainties arising from these
inferred community assignments are considered in the subsequent analyses (Fig-
ures 4 and 5, and Tables 1 and 2).

We validated each of the 33 potential network community oncomarkers in the
528 independent tumour samples of the test/validation set. We note that these 528
samples were not used in any way to identify the 33 potential network commu-
nity oncomarkers shown in Figure 3. Hence, in this validation, each of these 528
patients were classified individually according to prognosis without reference to
the other validation samples. This means that comparing these prognostic classi-
fications assigned to the validation samples is a true test of prognostic ability of
the network community oncomarkers. To carry out the validation, we calculated
the prognostic score for the 528 independent/unseen samples of the test set based
on the inferred prognostic adjacency matrix A and the fitted Cox multivariate pro-
portional hazards model coefficients @ obtained from the initial 175 samples of
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FI1G. 4. Network community oncomarkers: Kaplan—Meier plots for the training set. Comparison of
survival curves for the patient groups defined by the prognostic score for each network community
oncomarker. The groups are divided by the median prognostic score in the 175 samples of the train-
ing dataset. The hazard ratio (HR) is displayed with 95% C.1I. in brackets, with the corresponding
p-value calculated by univariate Cox regression. (a)—(e) indicate network community oncomarkers
1-5, as shown in Figure 3.

the training set. Using this trained model, we calculated one prognostic score for
each potential network community oncomarker for each of the 528 unseen test-set
samples. We then tested the prognostic score, for each potential network commu-
nity oncomarker, for significant prediction of patient survival outcome in these
528 unseen test-set samples. The five potential network community oncomarkers
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FI1G. 5. Network community oncomarkers: Kaplan—Meier plots for the test set. Comparison of sur-
vival curves for the patient groups defined by the prognostic score for each network community
oncomarker. The groups are divided by the median prognostic score in the 175 samples of the train-
ing dataset. The hazard ratio (HR) is displayed with 95% C.1. in brackets, with the corresponding
p-value calculated by univariate Cox regression. (a)—(e) indicate network community oncomarkers
1-4, as shown in Figure 3.

which validated in this way with the highest level of significance are outlined in
red in Figure 3. The results of univariate and multivariate Cox regression for these
five best network community oncomarkers are shown in Figures 4 and 5, and in
Tables 1 and 2, for the training and test sets, respectively. Plots equivalent to Fig-
ures 4 and 5 for all 33 detected network communities appear in Supplementary
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TABLE 1
Network community oncomarkers—training set prognosis. Multivariate Cox regression was used to
test significance of the prognostic scores obtained from the network community oncomarkers.
(a)—(e) indicate network community oncomarkers 1-5, as shown in Figure 3

HR (95% CI) pr n
(a) Network community oncomarker 1
Prognostic score 77.1 (10.5-567) <0.001 172
Age 1.79 (0.66-4.84) 0.249 172
Residual disease 15.4 (4.68-50.9) <0.001 172
Stage 2.85 (0.96-8.46) 0.060 172
(b) Network community oncomarker 2
Prognostic score 51.3 (8.35-315) <0.001 172
Age 1.42 (0.48-4.23) 0.53 172
Residual disease 30.4 (5.82-158) <0.001 172
Stage 1.95 (0.68-5.54) 0.212 172
(c) Network community oncomarker 3
Prognostic score 50.1 (9.77-256) <0.001 172
Age 2.16 (0.81-5.8) 0.125 172
Residual disease 13.3 (4.54-39.1) <0.001 172
Stage 2.41(0.81-7.18) 0.114 172
(d) Network community oncomarker 4
Prognostic score 22.7 (5.52-93.1) <0.001 172
Age 3.49 (1.3-9.42) 0.0135 172
Residual disease 16.3 (5.24-50.7) <0.001 172
Stage 1.05 (0.38-2.91) 0.928 172
(e) Network community oncomarker 5
Prognostic score 46.0 (8.17-259) <0.001 172
Age 2.91 (1-8.44) 0.0493 172
Residual disease 7.04 (2.68-18.5) <0.001 172
Stage 3.74 (1.23-11.4) 0.02 172

Figures S1-S2 [Bartlett and Zaikin (2016)]. For the multivariate analysis, samples
with missing data for any of the clinical covariates were removed, leaving 172 and
396 samples for the training and test sets, respectively. We note that, as would be
expected, the level of significance in the training set (to which the model was fitted,
Figure 4 and Table 1) is much higher than in the test set (Figure 5 and Table 2).
Figure 6 shows the five network community oncomarkers which validated most
significantly. Green edges indicate gene—gene interactions which become stronger
with disease progression. Red edges indicate interactions which become weaker
with disease progression. Hence, the network community oncomarkers of Fig-
ure 6(a) and (b) can be considered to be functional subnetwork modules which
become less active as the cancer progresses (comprised of 99% and 96% red edges,
respectively). On the other hand, Figure 6(c) and (d) can be considered to be func-
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TABLE 2
Network community oncomarkers—test/validation set prognosis. Multivariate Cox regression was
used to test significance of the prognostic scores obtained from the network community
oncomarkers. (a)—(e) indicate network community oncomarkers 1-5, as shown in Figure 3

HR (95%CI) p n
(a) Network community oncomarker 1
Prognostic score 4.89 (1.65-14.5) 0.00429 396
Age 3.52 (1.46-8.49) 0.00513 396
Residual disease 12.5 (5.32-29.3) <!10.001 396
Stage 1.62 (0.66—4) 0.294 396
(b) Network community oncomarker 2
Prognostic score 5.07 (1.81-14.1) 0.00195 396
Age 3.67 (1.49-9.03) 0.00458 396
Residual disease 8.72 (3.78-20.1) <0.001 396
Stage 1.47 (0.6-3.61) 0.406 396
(c) Network community oncomarker 3
Prognostic score 2.63 (1.01-6.89) 0.0484 396
Age 2.07 (0.86-5) 0.106 396
Residual disease 11.3 (4.97-25.5) <0.001 396
Stage 2.04 (0.76-5.45) 0.157 396
(d) Network community oncomarker 4
Prognostic score 4.92 (1.8-13.5) 0.00189 396
Age 1.91 (0.78-4.69) 0.159 396
Residual disease 17.2 (6.76-43.9) <0.001 396
Stage 0.92 (0.34-2.48) 0.871 396
(e) Network community oncomarker 5
Prognostic score 2.5 (0.94-6.65) 0.0668 396
Age 2.23 (0.94-5.27) 0.0677 396
Residual disease 8.17 (3.47-19.3) <0.001 396
Stage 1.59 (0.64-3.95) 0.321 396

tional subnetwork modules which become more active as the cancer progresses
(both comprised of 99% green edges). Then the network community oncomarker
of Figure 6(e) contains a mixture of these effects (comprised of 87% red and 13%
green edges). However, each of these network community oncomarkers represents
a functional subnetwork module which is rewired in a way which is advantageous
for the cancer, in favour of proliferation, and against cell death and immune func-
tion. The genes/nodes of these network community oncomarkers are shown in Ta-
bles S1-S5 in the supplement [Bartlett and Zaikin (2016)]; they list many genes
related to cell proliferation (e.g., CDKLI, NKAPL, MAPK®6), developmental pro-
cesses (e.g., HOXD10, HOXB9, HOXC10, HOXA13, HOXCI2, HOXD13) and im-
mune function (e.g., VSIG2, IL36B, RBPJ).

We hypothesise that the DNA methylation network interaction measure is a re-
flection of co-regulatory or co-regulated gene-expression patterns, among other
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Network interaction stronger
with worse prognosis

Network interaction weaker
with worse prognosis

*  Gene / network node

FIG. 6. Detected network community oncomarkers. (a)—(e) indicate network community oncomark-
ers 1-5, as shown in Figure 3.

genomic effects. We tested this hypothesis by comparing the DNA methylation
network interaction measure pyy for a pair of genes XY [equation (2)] with an
equivalent measure of interactive behaviour of these genes in terms of their ex-
pression levels, p;‘ﬁr [equation (12)]. Correlation test p-values for the comparison
between pxy and p?gr appear in Figure 7. It is clear that, in these histograms,
there is a concentration of significant p-values close to zero, indicating a depar-
ture from the null hypothesis uniform distribution, and demonstrating an associ-
ation between pyxy and p?}‘,’r for many of the edges/interactions of each network
community oncomarker. However, there are also many nonsignificant p-values
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F1G. 7. Correlation of DNA methylation with gene expression for the network community onco-
markers. (a)—(e) indicate network community oncomarkers 1-5, as shown in Figure 3.

visible in these histograms, indicating that there are other genomic interactive ef-
fects present which cannot be explained in terms of gene expression (as assessed
by mRNA levels) alone. Such effects are expected to include the influence of alter-
natively spliced products or isoforms [Jones (2012)] and the interaction between
noncoding transcripts and the epigenome [Lai and Shiekhattar (2014)].

4. Discussion. In this paper, we have proposed methodology to detect cancer
biomarkers based on the epigenomic pattern DNA methylation. This methodology
builds on a previously proposed measure of pairwise interaction between genes
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based on the epigenomic gene-regulatory pattern DNA methylation [Bartlett, OI-
hede and Zaikin (2014)]. Based on this DNA methylation network interaction
measure, the methodology we describe in this paper allows inference of prog-
nostic genomic networks and identification of prognostic biomarkers from such
networks using community detection methodology. Community detection has pre-
viously proved powerful as well as realistic in a range of fields, including social
as well as biological networks [Girvan and Newman (2002)]. In the context of
genomic networks, such modular groups of genes are known to correspond to
specific physiological functions [Shen-Orr et al. (2002)]. The modular prognos-
tic biomarkers which we detect are termed “network community oncomarkers”;
they are groups of nodes/genes among which there is a high density of prognostic
genomic interactive or associative behaviour. We have demonstrated that within
these communities, the DNA methylation network interaction measure is highly
associated with co-regulatory behaviour linked to gene expression (at the mRNA
level), giving functional relevance to the findings. However, there are also likely to
be a range of genomic interactive effects present which are measured by the DNA
methylation network interaction measure but which are not reflected in mRNA
levels. Our proposed methodology also allows a one-number prognostic score for
a network community oncomarker to be calculated for each patient/sample: this
prognostic score is a measure of disease progression in that patient.

Our proposed methodology uses mixture modelling to infer network structure
from prognostic association between genes, and draws on practical approaches to
community detection to obtain oncomarkers from this prognostic network. Mix-
ture modelling has previously been shown to be an effective approach to the re-
lated problem of clustering in networks [Vu, Hunter and Schweinberger (2013)].
This suggests that more general methodology could be developed here, in which
network and community inference are both carried out simultaneously by model
fitting. Network inference has also been carried out previously using multiple node
attributes in cell biological data [Katenka and Kolaczyk (2012)], and those find-
ings could be used as a basis upon which data from other genomic sources could
be integrated into the methodology proposed here. Genes also frequently carry out
multiple roles in different biological contexts, and hence may be involved in more
than one functional subnetwork module within a genomic network. Work has been
carried out on overlapping stochastic blockmodels [Latouche, Birmelé and Am-
broise (2011)], and hence this would be a natural context in which to develop an
application for such methodology.

The field of epigenomics is progressing fast and promises many new insights
in the near future into unexplained or undiscovered genomic phenomena, for ex-
ample, relating to the so-called “dark matter” of the genome [Venters and Pugh
(2013)]. Epigenomics is also expected to provide new understanding of the mech-
anisms of disease progression. The discovery that some genomic loci gain or lose
methylation in ways which may be unique to cancer suggests that understanding
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changes in DNA methylation machinery may be essential to understanding onco-
genesis [Xie et al. (2013)]. The field of network science is also advancing rapidly.
Networks are an efficient way to represent and analyse large numbers of variables,
which is particularly relevant in modern, large-scale genomic studies. Networks of
interactions are a natural way to represent and analyse genomic interactions, asso-
ciations and processes. Therefore, the study of genomic and epigenomic networks
promises to be productive over the coming years for the fields of biology, medicine
and statistics.

5. Datasets. DNA methylation (DNAm) data from breast cancer invasive
carcinoma (BRCA) tumour samples, collected via the Illumina Infinium Hu-
manMethylation450 platform, were downloaded from The Cancer Genome Atlas
(TCGA) project [Bonetta (2006), Collins and Barker (2007), Hampton (2006)] at
level 3. These data were preprocessed by first removing probes with nonunique
mappings and which map to SNPs (as identified in the TCGA level 3 data); probes
mapping to sex chromosomes were also removed; in total, 98,384 probes were
removed in this way from all datasets. After removal of these probes, 270,985
probes with known gene annotations remained. Probes were then removed if they
had less than 95% coverage across samples; probe values were also replaced if
they had corresponding detection p-value greater than 5% by KNN (k nearest
neighbour) imputation (k = 5). The loci of analysed CpGs were mapped to genes
based on annotation information for the Illumina Infinium platform obtained from
the R/Bioconductor package “IlluminaHumanMethylation450k”. The data were
also checked for batch effects by hierarchical clustering and correlation of the sig-
nificant principle components with phenotype and batch: no significant batch ef-
fects (which would warrant further correction) were found. We downloaded DNA
methylation data for tumour samples from 175 samples/individuals, from TCGA
in July 2013, with clinical data available for patient survival outcome, and the
clinical covariates age, disease stage and residual disease. At the same time, we
also downloaded corresponding DNA methylation data for healthy tissue for 98
individuals. These data were used to detect potential network community onco-
markers. We then downloaded DNA methylation data for a further 528 tumour
samples from TCGA in September 2014, with data for the same clinical features
available. These independent samples were used to validate the potential network
community oncomarkers. At this time we also downloaded gene expression data
from TCGA at level 3, for 216 of the tumours for which we also obtained DNA
methylation data.
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