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Redshift is a key quantity for inferring cosmological model parameters.
In photometric redshift estimation, cosmologists use the coarse data collected
from the vast majority of galaxies to predict the redshift of individual galax-
ies. To properly quantify the uncertainty in the predictions, however, one
needs to go beyond standard regression and instead estimate the full con-
ditional density f (z|x) of a galaxy’s redshift z given its photometric covari-
ates x. The problem is further complicated by selection bias: usually only the
rarest and brightest galaxies have known redshifts, and these galaxies have
characteristics and measured covariates that do not necessarily match those
of more numerous and dimmer galaxies of unknown redshift. Unfortunately,
there is not much research on how to best estimate complex multivariate den-
sities in such settings.

Here we describe a general framework for properly constructing and as-
sessing nonparametric conditional density estimators under selection bias,
and for combining two or more estimators for optimal performance. We pro-
pose new improved photo-z estimators and illustrate our methods on data
from the Sloan Data Sky Survey and an application to galaxy–galaxy lensing.
Although our main application is photo-z estimation, our methods are rele-
vant to any high-dimensional regression setting with complicated asymmetric
and multimodal distributions in the response variable.

1. Introduction. Technological advances over the last two decades have ush-
ered in the era of “precision cosmology,” with the construction of catalogs that
contain data on upward of 108 galaxies [e.g., Aihara et al. (2011)]. Cosmologists
use these data to place progressively tighter constraints on the parameters of the
�CDM model, the leading model explaining the structure and evolution of the
Universe [see, e.g., Springel, Frenk and White (2006)].

To estimate distances to astronomical sources, that is, to place them in time
relative to the Big Bang, cosmologists need to determine a galaxy’s redshift, the
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FIG. 1. Photometric estimates of f (z|x) for eight randomly chosen galaxies from the Sloan Dig-
ital Sky Survey (SDSS). Here we use the Series estimator from Section 5.3. Many of these densities
are highly asymmetric and multimodal. The vertical lines indicate the true redshift, determined via
high-resolution spectroscopy.

increase in the wavelength of a traveling photon due to the expansion of the Uni-
verse. One can accurately estimate redshift via spectroscopy, but, because of cost
and time considerations, more than 99 percent of today’s galaxy observations are
instead from photometry, a fast but low-resolution measuring technique where a
few broad-band filters coarsely record the radiation from an astronomical object.

The goal of photometric redshift estimation (or photo-z estimation) is to esti-
mate a galaxy’s redshift z given its photometric covariates x. Traditionally, red-
shift estimation has been viewed as a regression problem where one seeks the
conditional mean E[z|x] or the most probable redshift of a galaxy. Recent work,
however, shows the importance of estimating the full conditional density f (z|x)

[Ball and Brunner (2010)]. In photometry, f (z|x) is often asymmetric and multi-
modal, with errors that are heteroscedastic. Figure 1 shows density estimates for
eight randomly chosen galaxies from the Sloan Digital Sky Survey (SDSS): these
distributions are complicated non-Gaussian distributions which cannot easily be
summarized by, for example, means and variances.

By working with a density estimate f̂ (z|x) instead of a point estimate of z, one
can dramatically reduce systematic errors in downstream analysis, that is, when es-
timating functions g(z) of an unknown redshift z; see, for example, Mandelbaum
et al. (2008), Sheldon et al. (2012), Wittman (2009). Although optimizing the func-
tion g would be optimal for the problem of choice, often there is no clear g ahead of
time or there exist many different functions g for the same application; for exam-
ple, for the galaxy–galaxy lensing problem in Section 6, each of ≈500,000 lenses
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has a different calibration function g. Hence, a common practice in astronomy is
to build catalogs of photo-z density estimates (for galaxies in a survey), which can
then be used to address a range of different inference problems in astronomy and
cosmology. Many of these estimates, however, include handpicked tuning parame-
ters and, as we later show in Section 6 (Figure 10), estimates that yield good results
for a particular application or function of z do not necessarily predict the redshift
z per se well. This brings up the question of how to properly construct and assess
conditional density estimators, in general, and photo-z estimators, in particular.

On the methodological side, photo-z estimation presents challenges at the
boundaries of current statistical research. There exist a wide range of sophisti-
cated techniques for high-dimensional inference, but few attempt to estimate full
conditional densities or ratios of high-dimensional densities [see, e.g., Izbicki and
Lee (2016), Izbicki, Lee and Schafer (2014) and references within]. Even less is
known about how to estimate conditional densities under selection bias. Statistics
and machine learning procedures typically assume that training and test data have
similar distributions, but the two distributions can be very different for sky surveys
that mix spectroscopy and photometry, and, for example, remote sensing applica-
tions where different sensors may malfunction at different rates or collect data at
different rates [see Moreno-Torres et al. (2012) for data set shift in classification].

In the astronomy literature, existing photo-z algorithms roughly fall into two
categories. In the first category, template fitting [e.g., Fernández-Soto, Lanzetta
and Yahil (1998)] estimates f (z|x) by directly comparing observed data with a
suite of idealized photometric data sets for different types of galaxies at different
redshifts. Our interest lies in the second category, empirical redshift estimation, in
which one builds an estimator of f (z|x) using a training set of galaxies with spec-
troscopically confirmed redshifts [see, e.g., Ball and Brunner (2010), Kind and
Brunner (2013), Zheng and Zhang (2012)]. In photo-z estimation, however, high-
resolution spectroscopy is extremely time-consuming. For example, one would
already need ∼2.5 years of dedicated telescope time to estimate the spectroscopic
redshifts for the 500,000-galaxy photometric SDSS sample in our paper; the prob-
lem only gets worse with deeper and larger surveys. As a result, usually only the
rarest and brightest galaxies are spectroscopically observed, and these galaxies
have characteristics and measured covariates that do not necessarily match those
of more numerous dimmer galaxies [see, e.g., Ball and Brunner (2010), Oyaizu
et al. (2008)]. The goal of this paper is to develop improved nonparametric meth-
ods for conditional density estimation that explicitly deal with photo-z estimation
and selection bias:

(i) On the methods side, we present a general framework for supervised learn-
ing that accounts for differences in training and test data, and that, unlike stan-
dard nonparametric regression and classification, can handle highly asymmetric
and multimodal distributions. We design appropriate loss functions for a multi-
variate setting with selection bias [equations (5) and (9)], and we show how to
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estimate these functions using labeled and unlabeled data. Our setup provides a
principled method for choosing tuning parameters, for selecting covariates, and
for comparing and combining (Section 5.4) different conditional density estima-
tors for optimal performance. The final density estimates lead to more accurate
predictive intervals (see, e.g., Figure 10) for new observations. Estimating f (z|x)

is also a simple way of performing nonparametric quantile regression of many
quantiles simultaneously [Koenker (2005)].

(ii) In the context of photo-z prediction, we propose more accurate algorithms
for estimating photo-z probability distributions in a setting where primarily nearby
and bright galaxies have known redshifts. Using SDSS as well as simulated data,
we analyze and compare different methods for estimating conditional densities
and so-called importance weights (which are used to correct for selection bias).
We introduce two new conditional density estimators, Kernel nearest neighbors
(Section 5.2) and Series (Section 5.3), that both have better performance than the
photo-z prediction method by Cunha et al. (2009), which represents the state of the
art for empirical photo-z estimators under selection bias. We also present differ-
ent diagnostic tests for evaluating the goodness of fit of estimated densities (Ap-
pendix A).

The organization of the paper is as follows: Section 2 describes our data. In
Section 3, we introduce the statistical problem and the idea of importance weights.
Section 4 compares different schemes for estimating these weights. Then, in Sec-
tion 5, we shift our focus to the problem of estimating conditional densities under
selection bias, and the issue of proper model selection and assessment. Finally, in
Section 6, we offer some new insights on the galaxy lensing-lensing example from
Sheldon et al. (2012). We conclude our work with Section 7.

2. Data. There are two main types of astronomical data: (i) spectroscopic
data, where both the covariates x and the redshift z (the label) can be measured
with negligible error, and (ii) photometric data, where only the covariates x are
known and there is no precise measurement of the redshift. In our study, we use
photometric and spectroscopic data from the Sloan Digital Sky Survey [SDSS;
York et al. (2000)], as well as SDSS-based simulated data with known levels of
selection bias.

2.1. SDSS photometric data. Since 1998, SDSS has collected data on over 200
million galaxies that are spread across one-quarter of the sky. The vast majority
(�99%) of these galaxies are only photometrically observed.

In photometry, different filters are sequentially placed into a telescope’s light
path. Each filter only allows passage of photons in a particular wavelength band.
SDSS measures photon fluxes, or, equivalently, magnitudes (the logarithm of
fluxes), in five bands, denoted u, g, r , i, and z, in the wavelength range 3.5 × 10−7

meters to 9 × 10−7 meters (i.e., from UV light through the optical regime to in-
frared light). Magnitude estimates are algorithm-dependent, in that they depend on
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how one defines a boundary around a galaxy and how one sums the light within
that boundary. SDSS catalogs include estimates from many different boundary-
definition algorithms or magnitude systems; in this work, we follow Sheldon et al.
(2012) and use model and cmodel magnitudes. We also work with colors, or
differences of magnitudes in adjacent wavelength bands.

Our final SDSS photometric data set contains 10 covariates (four colors and the
associated r-band magnitude from each algorithm) for 538,974 galaxies in an ≈72
square-degree sky patch.2 These galaxies are extracted from SDSS Data Release 8
[DR8; Aihara et al. (2011)] and filtered according to Sheldon et al. (2012) so that
the photometric sample lies in the same range as the spectroscopic sample.

2.2. SDSS spectroscopic data. Of the over 200 million galaxies in SDSS,
some one million have been the subject of follow-up spectroscopic observations. In
spectroscopy, a light-dispersing grating or prism is placed into a telescope’s light
path. The photon changes its path with an angle that is proportional to its wave-
length. Thanks to high-resolution mapping of the dispersed light, one can finely re-
solve narrow spectral features (or lines) that are smeared out in photometry. These
lines, which are caused by transitions of electrons between atomic energy levels,
occur at known wavelengths λ, but are observed at wavelengths (1+z)λ, where z is
the galaxy’s redshift.3 One can use the wavelength ratios of two or more observed
lines to infer which transitions they represent; once that information is known, red-
shift estimation is trivial. The precision in the estimates is typically �z/z ∼ 10−6,
that is, for spectroscopic redshifts, we can safely ignore the measurement error.

In this paper, we use the same data (i.e., colors and r-band magnitudes, collec-
tively denoted x, and redshifts z) as in Sheldon et al. (2012). This data set includes
435,875 galaxies; the vast majority are taken from SDSS DR8, but some fainter
galaxies have been added so that the spectroscopic covariates cover the same space
as the photometric covariates, albeit with a different distribution (E. Sheldon, pri-
vate communication).

Figure 2 shows the distributions of the spectroscopic and photometric samples.
The left panel shows that there is a clear selection bias in the study where the
galaxies in the spectroscopic sample tend to be brighter (i.e., they tend to have a
lower r-band magnitude) than the galaxies in the photometric sample.

2.3. Simulated samples with known levels of selection bias. In addition to the
SDSS data, we construct photometric samples with known levels of selection bias
relative to the SDSS spectroscopic data. We use the following rejection sampling

2Celestial longitude, or right ascension (RA) ∈ [168◦, 192◦] and celestial latitude, or declination
(δ) ∈ [−1.5◦, 1.5◦].

3In astronomy, the notation z is used to denote both redshift and a particular photometric band. For
the remainder of this work, z will always represent redshift.
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FIG. 2. Distribution of r-band modelmagnitude and colors (i.e., differences of modelmagnitude
values in adjacent photometric bins) for photometric versus spectroscopic SDSS data. Many galaxies
in the spectroscopic sample are brighter (i.e., they have a lower r-band magnitude as indicated in
the left panel) than the galaxies in the photometric sample.

algorithm: Let x be a data point in the spectroscopic sample with r model magni-
tude x(r) (scaled to be between 0 and 1). A large r model magnitude corresponds
to a faint galaxy. Let S be a binary selection variable that decides whether a galaxy
in the spectroscopic sample is included in the photometric sample (S = 1) or not
(S = 0). We assume that the probability P(S = 1|x) depends on x through x(r)

only; that is, that P(S = 1|x) = P(S = 1|x(r)). To create levels of selection bias
realistic for different astronomical surveys, we resample the SDSS spectroscopic
sample according to the following:

Scheme 1: P(S = 1|x(r)) = fB(1,1)(x
(r)) ≡ 1,

Scheme 2: P(S = 1|x(r)) = fB(13,4)(x
(r))/maxx(r) fB(13,4)(x

(r)),
Scheme 3: P(S = 1|x(r)) = fB(18,4)(x

(r))/maxx(r) fB(18,4)(x
(r)),

where fB(i,j) denotes the density of a beta random variable with parameters (i, j).
Figure 3 shows the resulting r-band distributions. Scheme 1 involves no selec-

tion bias: the spectroscopic and photometric data have r-band magnitudes with the
same distribution. At the other extreme is Scheme 3 with strong selection bias:
most photometrically observed galaxies are significantly fainter (shifted toward
large r-band magnitude) than the galaxies in the spectroscopic data set.

3. Selection bias, covariate shift, and importance weights. A standard as-
sumption in statistics and machine learning is that labeled and unlabeled data have
similar distributions, but, as Figure 2 (left panel) shows, the two distributions can
be very different for sky surveys that mix spectroscopy and photometry: Brighter
galaxies (or galaxies with a lower r-band magnitude) are more likely to be selected
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FIG. 3. Distribution of the r-band modelmagnitudes for three different schemes of resampling the
SDSS spectroscopic sample. The simulated data sets have (known) levels of selection bias realistic
for different astronomical surveys.

for follow-up spectroscopic observation. This fact motivates the methods and al-
gorithms presented in this paper. Below, we fix our notation and describe the main
ideas behind importance weights as a way of correcting for sample selection bias.

3.1. Problem statement and notation. Our data are covariates x ∈ R
d (pho-

tometric colors and magnitudes) and labels z ∈ R (the redshift). Without loss of
generality, we rescale the original redshift values so that the response z ∈ [0,1].

Suppose we have access to an i.i.d unlabeled sample xU
1 , . . . ,xU

nU
with only

photometric data, and an i.i.d. labeled sample (xL
1 , zL

1 ), . . . , (xL
nL

, zL
nL

) from a po-
tentially different distribution, where the labels are from follow-up spectroscopic
studies. Because of the high cost of spectroscopy in sky surveys, in terms of tele-
scopic resources, nL � nU , and the distributions of the labeled and unlabeled
samples will not be the same. Our goal in this paper is to construct a photo-z
density estimator f̂ (z|x) that performs well on the unlabeled photometric data,
which roughly dominate 99% of today’s galaxy observations.

To fix our notation, let PL and PU denote the distributions on the labeled and
unlabeled samples, respectively; that is, let (xL, zL) ∼ PL and (xU, zU) ∼ PU ,
where zU are missing data labels. We say that there is a data set shift if PL 	= PU .
To understand how this affects learning algorithms, one needs to make additional
assumptions about the relationship between PL and PU [e.g., Quionero-Candela
et al. (2009), Gretton et al. (2010), Moreno-Torres et al. (2012)]. For our applica-
tion, we assume that the probability that a galaxy is labeled with a spectroscopic
redshift is independent of the response variable z if we condition on the covariates
x [Lima et al. (2008), Sheldon et al. (2012)]; that is,

P(L = 1|x, z) = P(L = 1|x),(1)



NONPARAMETRIC DENSITY ESTIMATION UNDER SELECTION BIAS 705

FIG. 4. Toy example for covariate shift in linear regression: The solid line is reasonable for pre-
dicting new data from the labeled sample, but it is far from optimal for the unlabeled sample.

where the random variable L equals 1 if a datum is labeled and 0 otherwise. This
type of sample selection bias where equation (1) holds is sometimes referred to
as a missing at random [MAR; Rubin (1976), Moreno-Torres et al. (2012)] bias.4

MAR bias implies covariate shift, defined as

(2) fL(x) 	= fU(x), fL(z|x) = fU(z|x).

Under certain conditions on the support of fL(x) and fU(x), covariate shift also
implies MAR bias [Moreno-Torres et al. (2012)]. Below we use the terms inter-
changeably to refer to the assumption in equation (1).

At first glance, it may seem that MAR bias would not pose a problem for den-
sity estimation: Because f (z|x) is the same for both labeled and unlabeled sam-
ples [equation (2)], one might conclude that a good estimator of f (z|x) based on
labeled data would also have good performance for unlabeled data. This is in gen-
eral not true. Often f (z|x) is well estimated only in regions where there is plenty
of labeled data, and these regions may not coincide with regions where there is
plenty of unlabeled (target) data; see Figure 4 for a toy example of an equivalent
regression problem with covariate shift. From a statistical perspective, this prob-
lem arises because the loss function used for estimating f (z|x) (or, analogously,
E[z|x] in regression) depends on the marginal distribution of x. Hence, an estima-
tor that performs well with respect to fL(x) may not perform well with respect to
fU(x).

One solution to this mismatch problem is to reweight the labeled data so that
their distribution PL—after a reweighing with the so-called importance weights
β(x) := fU(x)/fL(x)—matches the distribution PU of the unlabeled data. We can

4MAR is to be distinguished from data missing completely at random (MCAR), which occurs
when the sampling method is completely independent of x and z, that is, P(L = 1|x, z) = P(L = 1),
and hence there is no data set shift.
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then compute expectations with respect to the target distribution PU using the dis-
tribution PL of the labeled training data. In particular, if l(f̂ , f ) is the loss function
for the estimated conditional density f̂ , we use that

(3) E(X,Z)∼PU

[
l
(
f̂ (Z|X), f (Z|X)

)] = E(X,Z)∼PL

[
l
(
f̂ (Z|X), f (Z|X)

)
β(X)

]
.

The last expression of equation (3) involves unknown weights β(x). Open ques-
tions are as follows:

(i) how to best estimate the importance weights β(x) := fU(x)/fL(x), where
x is our multivariate data, and

(ii) how to design an estimator of the full conditional density f (z|x) that per-
forms well on the target data, that is, that has a small risk according to equation (3).

In this work, we propose a greedy two-step approach to conditional density esti-
mation under selection bias where one first selects the best model for estimating
β(x) (see Section 4), and then uses these estimates to search for the best model
for estimating f (z|x) under covariate shift (see Section 5). Note that a neces-
sary condition for computing importance weights is that PL dominates PU , that is,
PL(x) 
 PU(x); hence, for this study, we have selected photometric data whose
covariates lie within the domain of the spectroscopic covariates (see Section 2.1).

4. Estimating importance weights. A naive method for computing β(x) is
to separately estimate fU and fL and to then take their ratio, but this approach can
enhance errors in the individual density estimates, particularly in regions where fL

is nearly zero [Sugiyama et al. (2008)]. There are also several other approaches for
estimating density ratios (see Appendix B).

The goal in this section is to find out how these estimators perform in practice
on our data. To assess the estimators, we use the weighted loss function by Izbicki,
Lee and Schafer (2014) defined as

(4)
L(β̂, β) : =

∫ (
β̂(x) − β(x)

)2
dPL(x)

=
∫

β̂2(x) dPL(x) − 2
∫

β̂(x) dPU(x) + K,

where K is a constant that does not depend on β̂(x). (Appendix B gives some
intuition behind the choice of this loss function.) We divide our data into three
parts: a training set used to fit the model, a validation set for model selection and
tuning of parameters, and a test set for assessing the final model [Hastie, Tibshirani
and Friedman (2009), page 222]. For model selection and model assessment, we
estimate L(β̂, β) according to Izbicki, Lee and Schafer (2014):

L̂(β̂, β) = 1

ñL

ñL∑
k=1

β̂2(̃
xL
k

) − 2
1

ñU

ñU∑
k=1

β̂
(̃
xU
k

)
,(5)

where x̃L
1 , . . . , x̃L

ñL
represent the labeled (validation or test) data, and x̃U

1 , . . . , x̃U
ñU

represent the unlabeled (validation or test) data.
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Experiments. We use this loss function to compare six different estimators
of β:

• β-NN, the nearest neighbor estimator from Lima et al. (2008) [equation (20) in
the Appendix B], but with the number of nearest neighbors M chosen so as to
minimize our estimated loss [equation (5)] on the validation data [as in Kremer
et al. (2015)];

• β-NN1, the nearest neighbor approach with M = 1 [Loog (2012)];
• β-KLIEP and β-uLSIF, importance weight estimators suggested by Sugiyama

et al. (2008) and Kanamori, Hido and Sugiyama (2009), respectively, and im-
plemented with the authors’ MATLAB code;5

• β-KuLSIF, a kernelized version of β-uLSIF [Kanamori, Suzuki and Sugiyama
(2012)]; and

• β-Series, the density ratio estimator from Izbicki, Lee and Schafer (2014).

Following Lima et al. (2008) and Cunha et al. (2009), our covariates are the four
colors and the r-band magnitude in the model magnitude system. At the end
of this section as well as at the end of Section 5.5 on CDE, we discuss variable
selection on the full set of 10 covariates in Section 2.

We study the estimators under the simulated selection bias settings from Sec-
tion 2.1 (Schemes 1–3), using labeled and unlabeled samples that are each of
size 10,000. (For each sample, we randomly choose 2800 galaxies for training,
1200 for validation, and 6000 for testing.) We also apply the estimators to the
SDSS data. These data have a large covariate shift (Figure 2), where β̂(x) = 0 for
≈80% of the labeled examples; that is, the majority of the spectroscopic sam-
ple lies in regions of covariate space where there are no unlabeled data. Hav-
ing more labeled data may seem harmless, but it turns out that if one includes
these labeled examples in the training sample, the effective sample size [defined
in Shimodaira (2000) and Gretton et al. (2010); a quantity which measures how
far the weights’ distribution is from a uniform distribution] will be very small,
ultimately resulting in poor conditional density estimates (see Section 5.5 and Fig-
ure 8). Essentially, many galaxies have no contribution (i.e., zero weight) in the
conditional density estimation with β̂(xL

k ) = 0 in, for example, equations (11) and
(12). To mitigate this problem, we use a similar data cleaning and resampling step
as in Lima et al. (2008): First, we construct a β-NN estimator using a prelimi-
nary sample of 10,000 spectroscopic and 10,000 photometric (randomly selected)
galaxies.

Based on these estimates of β̂(x), we then resample the spectroscopic survey
data until we have a sample of size 15,000, which only includes galaxies from
SDSS at points where β̂(x) 	= 0. The SDSS results in this paper are based on the
new spectroscopic sample together with 15,000 randomly selected photometric

5http://www.ms.k.u-tokyo.ac.jp/software.html.

http://www.ms.k.u-tokyo.ac.jp/software.html
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FIG. 5. Distribution of the r-band model magnitude and the four colors from model magnitude
for the SDSS photometric and spectroscopic samples after we replace labeled examples for which
the initial estimates of the importance weights are zero; compare with Figure 2. By restricting the
labeled data to the regions of interest (i.e., to the regions where there are unlabeled data), we now
discard examples that have no contribution (i.e., zero weight) in our conditional density estimators.

observations; Figure 5 shows the distributions of the two samples after the pre-
processing step. In all experiments on SDSS data, we use 3500 galaxies from each
sample (labeled and unlabeled) for training, 1500 for validation, and the remainder
for testing.

Figure 6 compares the different estimators of β . The nearest neighbor method
is rarely mentioned in the literature on data set shift, but in our experiments we
find that β-NN, where M is chosen by data splitting, consistently performs the
same or better than other competing (and more complicated) methods; β-Series is
a close second. This is in agreement with recent independent work by Kremer et al.
(2015). We also note that by minimizing equation (5), we select M = 8 neighbors
for the SDSS data set, a value similar to the value M = 5 chosen in an ad hoc
manner by Cunha et al. (2009). Henceforth, we will use the β-NN method [defined
in Appendix B, equation (20)] to estimate importance weights.

Variable selection. One can further improve on these results by variable selec-
tion on the full set of 10 covariates described in Section 2. Table 1 lists the selected
covariates in a forward stepwise model search with β-NN. For Scheme 1, where
there is no selection bias [and where β(x), as a result, does not depend on x], the fi-
nal model includes only one covariate. In Schemes 2 and 3, the importance weights
depend on the model r-band magnitude, and the selected model always includes
this covariate. For the SDSS data, we achieve a loss of −2.41 ± 0.08 with variable
selection, which is significantly smaller than the value −2.16 ± 0.05 when includ-
ing all 10 covariates, and the value −1.97 ± 0.04 (see β-NN in Figure 6d) when
using the five covariates from the model magnitude system only as in Sheldon
et al. (2012).
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FIG. 6. The estimated loss L̂(β̂, β) of different estimators of β(x) for Schemes 1–3 with, respec-
tively, (a) no, (b) moderate, and (c) large covariate shift. Panel (d) shows L̂(β̂, β) for observed SDSS
data. The bars in each panel correspond to the mean estimated loss ±1 standard error. These results
indicate that β-NN consistently performs the same or better than other competing methods; β-Series
is a close second.

5. Conditional density estimation under covariate shift. Conditional den-
sity estimators are typically designed to minimize the loss

∫∫ (
f̂ (z|x) − f (z|x)

)2
dPL(x) dz(6)

TABLE 1
Selected covariates for estimating importance weights with the β-NN estimator

model cmodel

Data set r u − g g − r r − i i − z r u − g g − r r − i i − z

Scheme 1 X
Scheme 2 X X X
Scheme 3 X X
SDSS X X X X X
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under the implicit assumption that PL = PU .6 One can easily estimate this loss (up
to a constant) using the labeled data:

1

ñL

ñL∑
k=1

∫
f̂ 2(

z|̃xL
k

)
dz − 2

1

ñL

ñL∑
k=1

f̂
(̃
zL
k |̃xL

k

)
.(7)

However, our goal is really to minimize

L(f̂ , f ) :=
∫∫ (

f̂ (z|x) − f (z|x)
)2

dPU(x) dz,(8)

where PU is the distribution of the unlabeled target data. The two losses can be
very different if PL 	= PU . Hence, a density estimator that performs well on the
labeled data may not be a good estimator for the data of interest; Figure 4 shows a
similar problem in linear regression.

The challenge is to estimate equation (8) without knowing z at the unlabeled
data points. Under the covariate shift assumption fU(z|x) = fL(z|x), one can use
importance sampling. Up to a constant, equation (8) becomes

L(f̂ , f ) =
∫∫

f̂ 2(z|x) dPU(x) dz − 2
∫∫

f̂ (z|x)f (z|x) dPU(x) dz

=
∫∫

f̂ 2(z|x) dPU(x) dz − 2
∫∫

f̂ (z|x)β(x) dPL(z,x),

where for the second equality we use that fU(z|x) dPU(x) dz = fL(z|x) ×
β(x) dPL(x) dz = β(x) dPL(z,x). Hence, when PL 	= PU , we replace the standard
empirical loss in equation (7) by

L̂(f̂ , f ) = 1

ñU

ñU∑
k=1

∫
f̂ 2(

z|̃xU
k

)
dz − 2

1

ñL

ñL∑
k=1

f̂
(̃
zL
k |̃xL

k

)
β̂

(̃
xL
k

)
.(9)

We can compute this loss using (labeled and unlabeled) validation data and β̂(̃xL
k ),

which are estimates of the importance weights at the labeled data points.
In what follows (Sections 5.1–5.4), we present four conditional density estima-

tors specifically designed for multivariate data and a covariate shift (CS) setting:
NNCS, ker-NNCS, SeriesCS, and CombCS. The NNCS nearest neighbor histogram
estimator first appeared in Cunha et al. (2009); the other estimators represent novel
approaches. For model selection and tuning of parameters, we minimize equation
(9) with importance weights β estimated via equations (20) and (5). The same loss
is also used for model assessment of the SDSS data. For model assessment of the
simulated data (where we know the true labels z̃U ), we compute the more accurate

6Note that f̂ (z|x) stands for the estimator of f (z|x), the density at point x. This estimator can be
computed using a subset of the covariates in x as in Section 5.5 Variable Selection.
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error estimate

L̂(f̂ , f ) = 1

ñU

ñU∑
k=1

∫
f̂ 2(

z|̃xU
k

)
dz − 2

1

ñU

ñU∑
k=1

f̂
(̃
zU
k |̃xU

k

)
,(10)

which does not involve importance weights β .

REMARK 1 (Choice of loss function). One can replace the averaged L2-loss
in equation (8) with other measures of discrepancy, but many of the distance mea-
sures common in discrimination analysis (e.g., F -divergences and differences in
log-densities) are profoundly sensitive to the tails of the distribution and not suit-
able for density estimation; see, e.g., Hall (1987) and Wasserman (2006). Unlike
the L1 loss and related loss functions, we can (as shown in the paper) also estimate
the L2-loss from the data without knowledge of the true f (z|x); this is not the case
for L1-related losses, which makes them less practical in applications.

5.1. Nearest neighbor histogram (NNCS). In Cunha et al. (2009), the authors
use a weighted nearest neighbor histogram to estimate the photo-z distribution of a
galaxy with photometric covariates x. Let NN(x) denote the N nearest neighbors
of x among the labeled data. Divide [0,1], the range of z, into B equal sized
bins, and let b(z) denote the bin that includes z for z ∈ [0,1]. Then, the weighted
histogram estimator is

f̂ (z|x) ∝ ∑
k∈NN(x)

β̂
(
xL
k

)
I
(
zL
k ∈ b(z)

)
,(11)

where the importance weights β̂(xL
k ) reflect how representative each labeled

galaxy k ∈ NN(x) is of the target distribution. Cunha et al. choose the tuning pa-
rameters in their model by hand. Here we use equation (9) to find the optimal
values of N and B for the conditional density estimator in equation (11), and we
use equation (5) to select the best value of M in equation (20) for computing the
weights β̂(x).

5.2. Kernel nearest neighbor estimator (ker-NNCS). A simple way of improv-
ing upon NNCS is to replace the indicator function in equation (11) with a kernel
smoother:

f̂ (z|x) ∝ ∑
k∈NN(x)

β̂
(
xL
k

)
Kε

(
z − zL

k

)
,(12)

where, for example, Kε(z − zk) = e−(z−zk)
2/4ε .7 As before, we choose the tuning

parameters [here, N and ε in equation (12), and M in equation (20)] that minimize

7For a traditional kernel nearest neighbors estimator not corrected for selection bias [Zhao and Liu
(1985)], let β̂(x) ≡ 1 for all x; we denote the uncorrected estimator by ker-NN.
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the estimated losses in equations (9) and (5). This estimator leads to much more
accurate density estimates than its histogram equivalent when we have limited
amounts of labeled data (and hence small values of N ).

5.3. Spectral series CDE under covariate shift (SeriesCS). Suppose that the
covariates x lie in a lower-dimensional subspace X of Rd , where the number of
covariates d may be large. Izbicki and Lee (2016) propose a spectral series estima-
tor that expands the conditional density f (z|x) in a basis �i,j (z,x) = φi(z)ψj (x)

adapted to the intrinsic (lower-dimensional) geometry of a reference distribution P

on X . Here we generalize the series approach to a setting with covariate shift. We
choose PL as the reference distribution and tune the estimator so as to minimize
the loss with respect to PU .

More specifically, we assume the functions φi to be standard (one-dimensional)
Fourier basis functions, whereas the functions ψj are the eigenfunctions of the
operator K : L2(X ,PL) −→ L2(X ,PL),

K(h)(x) =
∫
X

K(x,y)h(y) dPL(y),(13)

where K(x,y) is a bounded, symmetric, and positive definite kernel. By construc-
tion [Lee and Izbicki (2016), Minh, Niyogi and Yao (2006)],∫

X
ψi(x)ψj (x) dPL(x) = δi,j

def= I(i = j).(14)

As a result, the coefficients in the series expansion are simply expectations over
the eigenfunctions:

αi,j =
∫∫

f (z|x)�i,j (z,x) dPL(x) dz = E(X,Z)∼PL

[
�i,j (Z,X)

]
.(15)

In practice, we need to estimate both the functions ψj and the coefficients αi,j

from data: Using the labeled training examples, we compute the first J eigenvec-
tors ψ̃1, . . . , ψ̃J of the Gram matrix[

K
(
xL
i ,xL

j

)]n
i,j=1,

where K(x,y) = exp (−d2(x,y)/4ε) is the Gaussian kernel. We then extend these
vectors to out-of-sample points via the Nyström extension

ψ̂j (x) =
√

nL

l̂j

nL∑
k=1

ψ̃j

(
xL
k

)
K

(
x,xL

k

)
,(16)

where l̂j is the eigenvalue associated to the eigenvector (ψ̃j (xL
1 ), . . . , ψ̃j (xL

nL
)).

Next we estimate the expansion coefficients in equation (15) according to

α̂i,j = 1

nL

nL∑
k=1

�̂i,j

(
zL
k ,xL

k

);
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that is, we average the empirical basis functions �̂i,j (zk,xk) = φi(zk)ψ̂j (xk) over
the labeled data. We define the new series estimator SeriesCS by

f̂ (z|x) =
I∑

i=1

J∑
j=1

α̂i,j �̂i,j (z,x),(17)

where the parameters I , J , and ε are chosen so as to minimize the loss in equation
(9) relative to the unlabeled data PU .

5.4. Combined estimator (CombCS). Finally, we present a procedure for
combining, or stacking, multiple estimators in a principled way. Suppose that
f̂1(z|x), . . . , f̂p(z|x) are different estimators of f (z|x); these estimators could, for
example, be any of the cross-validated estimators described in Sections 5.1–5.3.
Now ask the question: Can we average these models so as to reduce the predic-
tion performance of individual estimators? If we restrict ourselves to weighted
averages, then the answer is to compute

f̂ α(z|x) =
p∑

k=1

αkf̂k(z|x),

where the weights minimize the empirical loss L̂(f̂ α, f ) in equation (9) under the
constraints αi ≥ 0 and

∑p
i=1 αi = 1. The weights α = [αi]pi=1 can then be found

by solving a standard quadratic programming problem:

arg min
α:αi≥0,

∑p
i=1 αi=1

α′
Bα − 2α′b,(18)

where B is the p × p matrix [ 1
ñU

∑ñU

k=1

∫
f̂i(z|̃xU

k )f̂j (z|̃xU
k ) dz]pi,j=1 and b is the

vector [ 1
ñL

∑ñL

k=1 f̂i (̃z
L
k |̃xL

k )β̂(̃xL
k )]pi=1.

In this work, CombCS denotes the estimator that combines the two estimators
ker-NNCS and SeriesCS, although this procedure of combining models applies more
generally to other conditional density estimators.

5.5. Experiments. Using the simulated and observed data (Section 2), we will
now compare the performance of seven different estimators of f (z|x). (As be-
fore, our covariates are the four colors and the r-band magnitude in the model
magnitude system. We split our data into training, validation, and test sets as in
Section 4.) The first three estimators do not account for selection bias. They are as
follows:

• NN: the nearest neighbor estimator from Section 5.1 with β̂(x) ≡ 1 for all x;
• ker-NN: the kernel nearest neighbor estimator from Section 5.2 with β̂(x) ≡ 1

for all x; and
• Series: the spectral series estimator from Izbicki and Lee (2016).
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The tuning parameters of these three estimators minimize the empirical loss in
equation (7) on the (labeled) validation data. The second three estimators correct
for covariate shift by importance weights. They are as follows:

• NNCS: the nearest neighbor estimator from Section 5.1;
• ker-NNCS: the kernel nearest neighbor estimator from Section 5.2; and
• SeriesCS: the spectral series estimator from Section 5.3.

Finally, we have the following:

• CombCS: an estimator that combines ker-NNCS and SeriesCS according to Sec-
tion 5.4.

We choose the tuning parameters of these last four estimators so as to minimize
the reweighted empirical loss L̂(f̂ , f ) in equation (9) on (labeled and unlabeled)
validation data. By bootstrap, we estimate the standard error of L̂(f̂ , f ) accord-

ing to
√
V[L̂(f̂ , f )] ≈

√
B−1 ∑B

b=1(L̂b(f̂ , f ) − L̂(f̂ , f ))2, where B = 500 is the
number of bootstrap samples of the test set, L̂b(f̂ , f ) is the estimated loss for the
bth bootstrap sample, and L̂(f̂ , f ) is the mean of {L̂b(f̂ , f )}Bb=1. Note that each
bootstrap sample consists of a sample with a replacement from the labeled set and
a sample with replacement from the unlabeled set.

Figure 7 shows the empirical loss [equation (10)] on the test set for the simulated
samples with known covariate shifts. Figure 8(a) shows the estimated loss [equa-
tion (9)] for 15,000 SDSS samples with no preprocessing, and Figure 8(b) shows
the loss after resampling training examples with estimated weights β̂(xL) = 0 so
as to increase the effective sample size; note that the scales in these two plots differ.

FIG. 7. Estimated loss of different density estimators for Schemes 1–3 with, respectively, (a) no,
(b) moderate, and (c) large covariate shift. Bars correspond to mean plus and minus standard er-
ror. ker-NN is robust to selection bias and has a much smaller loss than previously proposed NN
estimators (NN and NNCS) even without importance weights; see text for discussion.
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FIG. 8. Estimated loss of conditional density estimators for SDSS data (a) in the original sample
with no preprocessing, and (b) after resampling labeled training examples for which the initial weight
estimates β̂(xL) = 0 (see Section 4 for details). Note that the scales in the two plots differ.

Variable selection. As in Section 4, one can further improve these results by
choosing a subset of the ten covariates from the model and cmodel magnitude
systems. Table 2 lists the covariates from a forward stepwise model search with the
combined estimator, initialized by an estimate of the marginal distribution f (z).
For the SDSS data, the loss of the combined estimator with variable selection
[CombCSVS in Figure 8(b)] is −2.51 ± 0.09, which is smaller than −2.36 ± 0.10,
the loss achieved by the combined estimator (CombCS) based on a fixed set of five
model covariates.

Summary. Our main conclusions are as follows:

(i) A necessary condition for importance weighting is that PL dominates PU .
Our results (Figure 8) show that one should also restrict the labeled examples
to regions where there is unlabeled data; a simple procedure is to search for la-
beled examples with β̂(xL) = 0 and replace these data with labeled examples with
β̂(xL) 	= 0.

(ii) Our kernel-based estimators ker-NN and ker-NNCS consistently perform
better than their histogram counterparts NN and NNCS introduced by Cunha et al.
(2009).

TABLE 2
Selected covariates for conditional density estimation with CombCSVS

model cmodel

Data set r u − g g − r r − i i − z r u − g g − r r − i i − z

Scheme 1 X X X X X X X X
Scheme 2 X X X X
Scheme 3 X X X X
SDSS X X X X
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(iii) Interestingly, ker-NN is robust to selection bias even without explicitly in-
corporating importance weights into the estimator. Here is an intuitive explanation:
If the neighborhood N(x0) around x0 is sufficiently small, then the covariate shift
assumption [equation (2)] implies that fL[z|x ∈ N(x0)] ≈ fU [z|x ∈ N(x0)]. As a
result, ker-NN returns good density estimates even without correcting for selection
bias. NN is less robust than ker-NN because smoothing via binning requires larger
neighborhoods (over which the above approximation may not hold) than smooth-
ing via kernels. For example, in Scheme 3, N = 35 for NN, versus 8 for ker-NN.

(iv) Series is sensitive to selection bias, but its covariate shift-corrected ana-
logue SeriesCS, which we introduce in this work, is one of the best estimators for
conditional density estimation. When there is no selection bias [Figure 7(a)], spec-
tral series (Series and SeriesCS) perform significantly better than nearest neighbors
methods (ker-NN and ker-NNCS); this result is consistent with earlier work by
Izbicki and Lee (2016) on Series. In settings with covariate shift [Figures 7(b)–
(c) and Figure 8(b)], SeriesCS and ker-NNCS are comparable. We conjecture that
SeriesCS may lose some of its competitive edge when PL 	= PU because we com-
pute the eigenvectors in the series using only labeled data, and then extrapolate to
regions of the unlabeled data via the Nyström extension [equation (16)].

(v) However, by combining ker-NNCS and SeriesCS as in Section 5.4, we au-
tomatically get “the best of both worlds” under a variety of different settings. (The
combined estimator CombCS assigns weights α = 0.96, 0.50, and 0.43 to SeriesCS
in Schemes 1–3, and α = 0.53 for the SDSS data.)

(vi) Finally, we can further improve our predictions by variable selection ac-
cording to Sections 4 and 5.5 when estimating β(x) and f (z|x), respectively. Se-
lection bias leads to smaller models with fewer variables (see Table 2), which is
consistent with covariate shift decreasing the effective sample size [Gretton et al.
(2010), Shimodaira (2000)], and thereby increasing the variance of the estimators.

Algorithm 1 summarizes the combined model with variable selection
(CombCSVS ). This model includes two main steps, where we (i) first estimate the
importance weights via β-NN with variable selection (lines 1–9), and (ii) then es-
timate the conditional density with the combined estimator with variable selection
(lines 10–23) that combines SeriesCS (lines 11–14) and ker-NNCS (lines 16–20).

In Appendix A, we describe different diagnostic tests that can be used to
more closely assess the quality of different models. Figure 9, for example, shows
quantile-quantile (Q–Q) plots of the SDSS data for NNCS and CombCSVS . These
plots tell us how well these density estimates actually fit the observed data.

6. Application to galaxy–galaxy lensing. By working with a probability dis-
tribution of the photometric redshift instead of a single best estimate, one can
reduce systematic biases in cosmological analyses [Mandelbaum et al. (2008),
Sheldon et al. (2012), Wittman (2009)]. In this section, we study the galaxy–galaxy
weak-lensing application from Sheldon et al. (2012) and offer new insights on the
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Algorithm 1 Redshift estimation under covariate shift. Returns the combined
model with variable selection. To emphasize the dependence on tuning parameters
and covariates, we use subindices for each estimator; for example, β̂M,S denotes
the NN importance weight estimator with M nearest neighbors and covariates S

Input: Labeled training data (xL
1 , zL

1 ), . . . , (xL
nL

, zL
nL

); labeled validation data (x̃L
1 , z̃L

1 ), . . . ,

(x̃L
ñL

, z̃L
ñL

); unlabeled training data xU
1 , . . . ,xU

nU
; unlabeled validation data x̃U

1 , . . . , x̃U
˜nU

; grid
over tuning parameters ε1, ε2, I , J , M , N .

1: for all M do � Tune NN Importance Weights Estimator using all covariates
2: Fit β̂M using all covariates � Eq. (20)
3: Estimate L(β̂M,β) � Eq. (5)
4: end for
5: Define M∗ = arg minM L̂(β̂M,β) and β̂ := β̂M∗ .
6: Replace labeled examples where β̂(xL) = 0 with additional spectroscopic data.

� Tune NN Importance Weights Estimator with new labeled sample
7: for all S ⊂ {x1, . . . , xd} do � Alternatively, one may use a stepwise approach
8: for all M do � Tune NN Importance Weights Estimator using covariates S

9: Fit β̂M,S � Eq. (20)
10: Estimate L(β̂M,S,β) � Eq. (5)
11: end for
12: Define M∗ = arg minM L̂(β̂M,S,β).
13: Let β̂S := β̂M∗,S .
14: end for
15: Let β̂ := β̂S∗ , where S∗ = arg minS L(β̂S, β)

16: for all S ⊂ {x1, . . . , xd} do � Alternatively, one may use a stepwise approach
17: for all I, J, ε1 do � Tune Spectral Series Estimator using covariates S

18: Fit f̂ series
I,J,ε1,S

� Eq. (17)

19: Estimate L(f̂ series
I,J,ε1,S

, f ) � Eq. (9)
20: end for
21: Let (I ∗, J ∗, ε∗

1) = arg minI,J,ε1 L(f̂ series
I,J,ε1,S

, f )

22: for all N,ε2 do � Tune Kernel Nearest-Neighbor Estimator using covariates S

23: Fit f̂ ker-NN
N,ε2,S

� Eq. (12)

24: Estimate L(f̂ ker-NN
N,ε2,S

, f ) � Eq. (9)
25: end for
26: Let (N∗, ε∗

2) = arg minN,ε2 L(f̂ ker-NN
N,ε2,S

, f )

27: Find f̂S by combining f̂ series
I∗,J ∗,ε∗

1 ,S
and f̂N∗,ε∗

2 ,S � Section 5.4

28: Estimate L(f̂S, f ) � Eq. (9)
29: end for

30: Output f̂S∗ , where S∗ = arg minS L(f̂S, f )
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FIG. 9. Quantile-quantile plots for (a) NNCS and (b) CombCSVS , the combined model with selected
covariates.

proper use of redshift distributions in downstream analysis, that is, when estimat-
ing functions g(z) of an unknown redshift z.

Weak gravitational lensing is the slight deflection of photons from distant astro-
nomical sources that occurs when they pass near massive “lenses” (e.g., galaxies or
galaxy clusters) lying closer to us. Lensing acts to magnify the sizes of the distant
sources as well as to distort their shapes. Cosmologists can use it to directly probe
the distribution of dark matter, a form of matter that does not interact with light
(hence the moniker “dark”) and which comprises ≈27% of the mass-energy of the
Universe. The critical surface density �(zl, zs) determines the lensing strength
of a given lens-source pair [Mandelbaum et al. (2008)]. The goal in this example
is to estimate gl(zs) = �−1(zl, zs) for a source galaxy with unknown redshift zs ,
assuming that the redshift zl of lens l is known. A naive approach is to evaluate
the function gl(·) at a point estimate of the source galaxy redshift zs , that is, to
compute gl(̂zs) = �−1(zl, ẑs) where ẑs typically is an estimate of the regression
E[Z|x]. However, because E[gl(Z)|x] 	= gl(E[Z|x]), the estimator

(19) �̂−1(zl, zs) :=
∫

�−1(zl, z)f̂ (z|x) dz

usually yields better results if f̂ (z|x) is a good estimate of f (z|x) [Sheldon et al.
(2012)]. Note that even though we ultimately are interested in gl(z), there are clear
advantages in estimating the photo-z density f (z|x) well—rather than just aiming
for the best regression of gl(Z) on the photometric covariates x. For example,
the data set in this example includes ≈ 500,000 lenses that each has a different
function gl , and future data sets will only increase in size. With a good density
estimator f̂ (z|x), one can address several different inference problems with differ-
ent gl’s simultaneously as well as construct reliable predictive intervals for each
function gl(Z) for new observations of Z.

Following Sheldon et al. (2012), we use data from the DEEP2 EGS Region
[Weiner et al. (2005)]. In addition to the conditional density estimators in Sec-
tion 5, we implement a nearest neighbors density estimator with 7 neighbors [the
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value handpicked by Sheldon et al. (2012) for this particular application], and pho-
toz, which computes �−1(zl, ẑs) where ẑs is the nearest neighbor regression esti-
mate of zs . To assess the performance of these methods in galaxy–galaxy lensing,
we use the two measures in Mandelbaum et al. (2008) called the lensing calibration
bias and the variance ratio. Small values of bias and large values of variance ratio
indicate good performance. We use 500 samples for training, 500 for validation,
and 382 for testing.

Figure 10 shows the results. The nearest neighbor density estimator with 7
neighbors, NN-7, has a smaller calibration bias than NN with 27 neighbors, the
value chosen via the technique described in the paper [see plot (a)]. However, 7
neighbors leads to poor density estimates [see plot (e)]. Series is the only estima-
tor that returns both accurate parameter estimates for different values of zl and
lenses l [plots (a) and (b)], as well as accurate photo-z density estimates [plots (c)
and (f)]. The other estimators do not have both of these properties simultaneously:
depending on the chosen tuning parameter, either they have small bias but bad
coverage (as NN-7) or good coverage but high bias (as NN) (see Appendix A for
details on how the coverage is computed).

With conditional density estimates, we can also construct predictive regions for
the redshift. The bottom panel in Figure 10 shows the 95% Highest Predictive
Density regions (HPD; Appendix A) of the redshift for Series and NN. The former
HPD region is typically more informative; the size of the HPD’s from Series are
on average ≈ 75% the size of those from NN.

Finally, we note that estimating f (z|x) by NN and then computing
∫

g(z) ×
f̂ (z|x) dz is essentially equivalent to estimating E[g(Z)|x] directly by performing
nearest neighbors regression of g(Z) on x. In other words, for this particular ap-
plication, NN-7 yields a good estimate of the regression of g(Z) on x, but not (as
previously assumed) a reasonable estimate of photo-z.

7. Conclusions. Over the past 15 years, the number of applications for es-
timating photometric redshifts has grown rapidly, and today there exist a large
number of techniques (or codes) for estimating redshifts; see, for example, Dahlen
et al. (2013) and references therein. With next-generation surveys, we also expect
to have access to additional data [e.g., surface brightness or sizes of galaxies, Lima
et al. (2008), or other magnitudes such as grizYJHKs, Oyaizu et al. (2008)], which
could potentially improve current photo-z estimates. The value of our work is that
it provides a principled framework for properly tuning and assessing different es-
timators, as well as methods for selecting covariates and for combining two or
more estimators for optimal performance. In this paper, we also compared some
new and existing estimators of importance weights and photometric redshift under
different settings. We found that the nearest neighbors estimator from Cunha et al.
(2009) is very effective for estimating importance weights, even when compared to
state-of-the-art approaches for density ratio estimation from the machine learning
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FIG. 10. Lensing photo-z calibration for DEEP2: Series returns parameter estimates with smaller
biases and variances than the other approaches [see plots (a) and (b)]. Using 7 neighbors for nearest
neighbors as in Sheldon et al. (2012) yields similar performance in terms of bias; however, the value
7 was handpicked for this specific task and results in poor density estimates [plot (e)]. Series also
yields more informative predictive intervals for redshifts than NN [plots (f) and (g)].

literature. We introduced two new nonparametric conditional density estimators,
kernel nearest neighbors (Section 5.2) and Series (Section 5.3), that both have
better performance than the photo-z prediction method by Cunha et al. (2009).
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Finally, although the scope of this paper is conditional density estimation, one
can directly apply the proposed methods to the regression of functions of the
photometric redshift, as the regression E[g(Z)|x] = ∫

g(z)f (z|x) dx. The galaxy–
galaxy lensing example in Section 6 clearly illustrates the importance of properly
tuning and assessing photo-z density estimators in downstream cosmological anal-
ysis. In the example, our estimator yielded more accurate predictive regions for the
redshift z, as well as better estimates of g(z) for a range of different functions g,
although we did not explicitly take g into account in the optimization. We believe
our proposed techniques will be valuable for astronomers and cosmologists carry-
ing out next-generation surveys, where accurate photo-z estimates will be needed
within a range of different applications (and functions g).

APPENDIX A: DIAGNOSTIC TESTS FOR CONDITIONAL
DENSITY ESTIMATION

The L2 loss only conveys limited information on how well the final density esti-
mates actually fit the observed data. Below we describe three diagnostic so-called
goodness-of-fit tests that one can use to more closely assess the quality of different
models; similar tests can be found in the time series literature [see, e.g., Corradi
and Swanson (2006)]. Let F̂z|xi

denote the estimated conditional cumulative dis-
tribution function for z given xi . Then:

(i) (Q–Q Plot) For every c in a grid of values on [0,1] and for every ob-
servation i in the test spectroscopic sample, compute Qc

i = F̂−1
z|xi

(c). Define ĉ =
1
n

∑n
i=1 β̂(xL

i )I(zL
i ≤ Qc

i ). We plot the values of ĉ against the corresponding val-
ues of c. If the distributions F̂z|x and Fz|x are similar, then the points in the Q–Q
plot will approximately lie on the line ĉ = c.

(ii) (P-value) For every test data point i, let Ui = F̂z|xi
(Zi). If the data are re-

ally distributed according to F̂z|x, then U1, . . . ,Un
i.i.d.∼ Unif(0,1). Hence, we com-

pute the p-value for a Kolmogorov–Smirnoff test that compares the distributions
of these statistics to the uniform distribution.

(iii) (Coverage Plot and HPD Regions) For every α in a grid of values in
[0,1] and for every spectroscopic data point i in the test sample, let Ai be a set
such that

∫
Ai

f̂ (z|xL
i ) dz = α. Here we choose the set Ai with the smallest area:

Ai = {z : f (z|xL
i ) > t} where t is such that

∫
Ai

f̂ (z|xL
i ) dz = α (i.e., Ai is a High-

est Predictive Density region; HPD). Define α̂ = 1
n

∑n
i=1 β̂(xL

i )I(zL
i ∈ Ai). If the

distributions F̂z|x and Fz|x are similar, then α̂ ≈ α. Hence, we plot a graph of α̂’s
versus α’s and assess how close they are to the line α̂ = α. For each α, we also in-
clude a 95% confidence interval based on a normal approximation to the binomial
distribution.
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APPENDIX B: ESTIMATING IMPORTANCE WEIGHTS

Some common approaches to estimating density ratios include direct basis
expansions of the form β̂(x) = ∑I

i=1 α̂iλi(x) [Izbicki, Lee and Schafer (2014),
Kanamori, Hido and Sugiyama (2009), Sugiyama et al. (2008)], kernel mean
matching [KMM; Gretton et al. (2010)], and various machine learning techniques
[see, e.g., Bickel, Brückner and Scheffer (2009) and Margolis (2011) for a review].
Astronomers have also themselves explored nearest neighbor-based techniques for
reweighting nonrepresentative training samples. In particular, Lima et al. (2008)
and Cunha et al. (2009) have had success in photo-z estimation with the nearest
neighbor estimator

β̂(x) = 1

M

nL

nU

nU∑
k=1

I
(
xU
k ∈ V M

x
)
,(20)

where

V M
x = {

y ∈ R
d : d(y,x) ≤ d

(
xL
(M),x

)}
denotes the region of feature space with points that are closer to x than xL

(M), the
M th nearest neighbor of x among labeled data, is to x. This estimator has also been
used in the machine learning literature [Loog (2012)], although only for the case
M = 1.

Model selection and tuning of parameters. To select the best method for
estimating β(x), we need to specify an appropriate loss function. Our ultimate goal
is good photo-z prediction for new unlabeled data. If we use importance weighting
according to equation (3), then we need good estimates of β(x) at the labeled
points or, more generally, in regions where the density of labeled points is large.
Hence, we define the loss function according to equation (4), which is weighted
with respect to PL. [These weights are later used in equation (9) to estimate the
PU -weighted loss in equation (8) for CDE.]
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SUPPLEMENTARY MATERIAL

Supplement to “Photo-z estimation: An example of nonparametric
conditional density estimation under selection bias” (DOI: 10.1214/16-
AOAS1013SUPP; .zip). We provide the data and code used in the paper as supple-
mentary material.

http://dx.doi.org/10.1214/16-AOAS1013SUPP
http://dx.doi.org/10.1214/16-AOAS1013SUPP
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