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ELECTRICITY PRICE DEPENDENCE IN NEW YORK STATE
ZONES: A ROBUST DETRENDED CORRELATION APPROACH1

BY DEBBIE J. DUPUIS

HEC Montréal

The cost of electricity varies across the zones of the New York State
electric system. While fair and open access to the electrical grid is sought,
we show that residents currently do not equally benefit, or suffer, from price
changes. Upcoming major investments in the grid offer an opportunity to
rectify these inequalities, but only if we understand the price-change prop-
agation dynamics for the current underlying infrastructure. We study these
dynamics, estimating the partial correlations between changes in electricity
prices in connected zones. We develop and investigate a robust exponentially
weighted correlation estimator that performs well in the presence of electric-
ity price spikes and can track a rapidly changing time-varying correlation.
We show that price-change partial correlations are mostly positive, but can
also be negative, and provide new insight into price-change dynamics within
the grid that cannot be extracted from the price-setting algorithm or obtained
from available transmission capability data.

1. Introduction. After many decades of electricity markets dominated by
regulated monopolies, there was a movement to restructure the electricity industry
in the 1990s. Driven by the desire to address high electricity prices, some U.S.
states opted to deregulate the electric utility industry. The New York Independent
System Operator (NYISO) was created in 1999 to facilitate the restructuring of the
industry in the state of New York. The NYISO’s mission is to provide fair and open
access to the electrical grid, maintain and enhance regional reliability, provide fac-
tual information to policymakers, stakeholders and investors in the power system,
and plan the power system for the future.2 In a deregulated electricity market, load
serving entities (or distributors) provide bids to purchase energy and power suppli-
ers (or generators) provide offers to sell energy. The NYISO manages these market
transactions and schedules energy sales and purchases in multiple locations across
the state.

Locational Based Marginal Pricing (LBMP) is a pricing methodology for the
cost of energy at each location in the New York State transmission system. LBMP
is essentially the cost to serve the next megawatt (MW) of load at a specific lo-
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cation on the grid, and it is determined by the NYISO following bids and offers.
Congestion and transmission losses lead to unequal LBMP at different locations.3

Referring to the heat wave of July 2013, the New York Independent System Op-
erator (2014) states “Periods of resource scarcity during the heat wave produced
price spikes and illustrated the challenges of serving historically-congested areas
of the Lower Hudson Valley, New York City and Long Island. Demand response
was targeted to those regions at the start of the heat wave. In the future, transmis-
sion upgrades into and/or development of generation and demand-side resources
in those areas would alleviate congestion, help avoid future reliability problems,
lower consumers’ energy costs, and enhance operational flexibility.” The New
York Independent System Operator (2014)4 also states that “More than 80 per-
cent of New York’s high-voltage transmission lines went into service before 1980.
Of the state’s more than 11,000 circuit-miles of transmission lines, nearly 4700
circuit-miles will require replacement within the next 30 years, at an estimated
cost of $25 billion.”

Any replacement and/or upgrade should minimally improve market efficiency
and serve more equitably all residents of the state. Determining the extent to which
changes in electricity price coincide across different locations is made particularly
difficult by the presence of electricity price spikes. Electricity price spikes do not
only occur during heat waves, but are actually quite frequent [see, e.g., Eydeland
and Wolyniec (2012)]. Unexpected increases in demand, unexpected shortfalls in
supply and failure of the transmission infrastructure can cause electricity prices
to suddenly jump to very high levels [Geman and Roncorni (2006)]. We are not
interested in electricity price forecasting; see, for example, Hickey, Loomis and
Mohammadi (2012) and Nowotarski, Tomczyk and Weron (2013). Our goal is also
not to identify spikes [see Janczura et al. (2013)], forecast spikes [see Christensen,
Hurn and Lindsay (2012)] or explain spikes [see Hellström, Lundgren and Yu
(2012)]. Rather, we wish to estimate the correlations between changes in elec-
tricity prices at different locations in the presence of these spikes. More robust
estimators than the usual Pearson correlation exist, for example, Spearman’s rho
or Kendall’s tau. The time-varying nature of the correlations must be considered
however. We calculate Spearman’s rho over moving windows, apply a recently de-
veloped [Pozzi, Di Matteo and Aste (2012)] exponentially weighted Kendall’s tau
and develop another well-suited and better performing robust alternative.

Our main contributions are twofold. First, we develop and investigate a robust
exponentially weighted correlation estimator that performs well in the presence
of spikes and can track a rapidly changing time-varying correlation. Second, we
provide an assessment of the current level of dependence between price changes in
connected zones. The sophistication of the price-setting algorithm [see New York
Independent System Operator (2013)] and the electrical grid do not allow for an

3The state of New York is divided into 11 zones. These are explained in Section 2.
4Citing New York’s State Transmission Assessment and Reliability Study Phase II Study Report,

STARS Technical Working Group, March 30, 2012.
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FIG. 1. New York Control Area internal zones. Source: NYISO.

ex ante analysis of the dependencies. Our ex-post analysis is the first to reveal
the dependencies resulting from the current protocols, practices and infrastructure.
We also assess how these dependencies are affected by contemporaneous variables
like temperature, time of day, price of natural gas, etc. Our correlation estimates
and innovative subsequent exploratory data analysis provide new insight that can
assist planners in determining the nature of transmission upgrades, or the location
and capacity of generation development and demand-side resources, that could
improve the electricity market.

The remainder of the paper is organized as follows. In Section 2, we present the
electricity price data and discuss marginal models. In Section 3, we review cor-
relation estimators and present our robust exponentially weighted midcorrelation
estimator. Its properties are investigated in Section 4 through a simulation study.
The electricity price data are analyzed in Section 5 and a discussion appears in
Section 6.

2. New York State electricity prices by zone. We consider the Day Ahead
Market Zonal LBMP electricity price in $/MWHr for each zone in the state of
New York over the 1 January 2009 to 31 December 2014 period. Data are hourly
prices and are available from NYISO at www.nyiso.com. There are 15 New York
Control Area (NYCA) zones: 11 internal5 and 4 external.6 The 11 internal NYCA
zones are shown in Figure 1. The external zone PJM connects at zones A, C, G
and J; Hydro-Quebec connects at zone D; NPX connects at zones D, F and K; and
Ontario Hydro connects at zones A and D. Data are plotted in Figure 2.

5A—West; B—Genesee; C—Central; D—North; E—Mohawk Valley; F—Capital; G—Hudson
Valley; H—Millwood; I—Dunwoodie; J—New York City; K—Long Island.

6PJM, Hydro Quebec, NPX and Ontario Hydro.

http://www.nyiso.com
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FIG. 2. Hourly Day Ahead Market Zonal Locational Based Marginal Pricing (LBMP) electricity
price in $/MWHr for each zone in the state of New York over the 1 January 2009 to 31 December
2014 period.

The presence of cyclical and seasonal patterns in prices is well documented. See
Hickey, Loomis and Mohammadi (2012) for a recent review of the problem and
possible modeling approaches. Following the standard practice with asset prices,
we consider log returns of the LBMP hourly price to obtain more stationary se-
ries; see Figure 3. Returns also show cyclical and seasonal patterns. The presence
of spikes in the electricity price is also well documented [see, e.g., Eydeland and
Wolyniec (2012)]. These spikes yield outliers in the returns and warrant the use
of robust estimation methods to deseasonalize. When the mean model is robustly
estimated, the distribution of residuals are heavy tailed, and the residuals show au-
tocorrelation and seasonal autocorrelation. When recent lags and seasonal lags are
included in the model to eliminate this dependence in the residuals, unaccounted
for differences also show cyclical and seasonal patterns in their variability, as well
as volatility clustering, and retain the spikes of the series. To avoid unnecessarily
large and persistent volatility following spikes and to produce more robust fits, we
use log-GARCH models [Sucarrat, Grønneberg and Escribano (2016)] since they
provide greater robustness to jumps and outliers. These models are attractive as
they guarantee the positivity of volatility without constraining the parameters. The
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FIG. 3. Hourly returns on Day Ahead Market Zonal Locational Based Marginal Pricing (LBMP)
electricity price in $/MWHr for each zone in the state of New York over the 1 January 2009 to 31
December 2014 period.

log-GARCH-X class easily includes explanatory variables to model any cyclical
or seasonal patterns in the volatility. Additionally, as the dynamics of the returns
in different zones can be strongly related (see, e.g., Figure 3), these series may
exhibit volatility spillovers. We proceed as in Francq and Sucarrat (2017) where
other return series are included as explanatory variables for the volatility of a given
series to capture any spillovers.7 The volatility equation for a given return series
can also include the lagged sign of the return as an explanatory variable to produce
an asymmetric log-GARCH model. We take this approach here; see Francq and
Sucarrat (2017) for more details. The main drawback of the log-GARCH model is
that the returns have to be nonnull. This was not an issue here, as while there are
zero log-returns in the data, the log-returns are deseasonalized/demeaned prior to
the fitting of the log-GARCH model and none of the residuals are equal to zero.
Solutions to the nonnull returns issue do exist; see Sucarrat and Escribano (2014).

7The resulting univariate volatility equation is consistent with the marginal in the multivariate
log-GARCH-X specification, however, we do not pursue the full multivariate specification here.
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2.1. Mean and variance models. In electricity markets, variation of demand,
costs and constraints lead to distinct price profiles for each hourly trading pe-
riod. Authors in the price forecasting literature [see, e.g., Karakatsani and Bunn
(2008), Pẽna (2012) and the references therein] estimate price models separately
for each period in order to control for these dissimilarities. We proceed analo-
gously with our hourly log returns. More precisely, let Yh(t) be the log return
[Yh(t) = � lnLh(t), where Lh(t) is the LBMP electricity price in $/MWHr] at hour
h in day t . We consider the time series model

�
(
BS)

φ(B)(Yh(t) − μh(t)) = εh(t),(1)

εh(t) = σh(t)zh(t),(2)

where

μh(t) = ω + γ /Dh(t) + ξ /Xh(t),(3)

lnσ 2
h(t) = α0 + α1 ln ε2

h(t−1) + β1 lnσ 2
h(t−1) + λ/Dh(t) + ζ /Xh(t),(4)

and B denotes the backshift operator, φ(B) is an autoregressive polynomial of or-
der p, �(B) is a seasonal autoregressive polynomial of order P , S = 7 to capture
the stochastic weekly patterns, Dh(t) is a matrix of dummy variables for determin-
istic components (day of the week, holidays), Xh(t) is a matrix of contemporane-
ous time-varying variables, and zh(t) ∼ stationary. Explanatory variables need not
be exogenous nor independent of the standardized error. We include a leverage
term Iεh(t−1)<0 and volatility proxies for other zones, say, ln (ε2−i,h(t−1)), where −i

means without zone i in a model for zone i, to allow for volatility spillovers; see
Francq and Sucarrat (2017) for details.

2.2. Estimation. Estimates for the parameters in (1)–(4) are obtained in three
steps. First, the mean model in (3) is fitted robustly using the method of the least
median of squares. The residuals, that is, detrended log returns, from the estimated
mean model (3) are then used for the estimation of the parameters φ1, . . . , φp and
�1, . . . ,�P in (1). These parameters are also estimated robustly using the method
of the least median of squares. The residuals from this second robust regression are
then used for the estimation of the parameters in the log-volatility specification.
The log-GARCH(1,1) model with external regressors in (4) is estimated using the
lgarch package in R [Sucarrat (2014)]. A weighted Portmanteau test is carried
out to check that the series are well devolatilized by our log-GARCH-X models.
We use the weighted version of the statistic proposed by Li and Mak (1994) imple-
mented in the WeightedPortTest package in R [Fisher and Gallagher (2012)].
We wish to assess the correlation between the residuals of model (4), which are the
detrended-devolatilized log returns, from each of the NYCA zones.
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3. Correlation. A simple statistical measure of co-movements between two
random variables is covariance. Given observations (xi, yi), i = 1, . . . , n of two
random variables X and Y , the sample covariance is defined as

cxy = 1

n − 1

n∑
i=1

(xi − x̄)(yi − ȳ).

The sample Pearson correlation coefficient is defined as

r = cxy√
cxxcyy

.

Historical returns are used to estimate the covariances, and correlations, among
present returns. When all returns, past and present, are drawn from a stable joint
distribution, it is desirable to use as many past observations as possible in order to
maximize the accuracy of the resulting estimates of the true underlying process that
describes the present. However, when parameters of the distribution are changing
over time, the situation is more difficult. Large amounts of past data are possibly
irrelevant, and a focus on the recent past is likely to be more appropriate, but
substantial estimation errors could result.

3.1. Exponentially weighted correlation. An exponential weighting scheme
assigns a weight to an observation that is the multiple of the weight assigned to
its predecessor; that is, more weight is assigned to the recent past than the distant
past.

More precisely, for some λ ∈ (0,1), the exponentially weighted moving average
is defined as

e(x) =
n∑

i=1

(1 − λ)λn−i

1 − λn
xi.

Note that
∑n

i=1(1 − λ)λn−i/(1 − λn) = 1; the nth observation gets the largest
weight, (1 −λ)/(1 −λn), the (n− 1)th observation gets the second largest weight,
(1 − λ)λ/(1 − λn), etc. . . . , with each observation only getting a λ fraction of the
weight of the observation that followed it.

The exponentially weighted moving covariance is most generally defined as

exy =
n∑

i=1

(1 − λ)λn−i

1 − λn

(
xi − e(x)

)(
yi − e(y)

)
,

although it is also common not to center the returns when using exx and exy for
volatility forecasting; see, for example, Alexander (2001).

The exponentially weighted moving correlation is thus defined as

(5) re = exy√
exxeyy

.
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FIG. 4. Impact of electricity price spikes on estimated correlation. Detrended-devolatilized hourly
log returns for zones N.Y.C. and H.Q. are shown in the top and middle panels, respectively. The
bottom panel shows estimated correlation. Data are for week of 2011-02-24 to 2011-03-02. Values
for 11am on 2011-02-27 appear as solid circles.

In the case of LBMP electricity prices in the state of New York, detrended-
devolatilized log returns can have very long tails, and the usual Pearson-like ex-
ponentially weighted moving correlation in (5) yields misleading results. This
is highlighted in Figure 4 where nonrobust and robust (to be introduced in Sec-
tion 3.4) estimates of the correlation are shown for the week of 24 February 2011
to 2 March 2011 for zones N.Y.C. and H.Q. The electricity price downward spike
(the price dropped 17%; accounting for trend, season and volatility, this is large)
at 11am on 27 February 2011 in zone H.Q. makes the nonrobust estimate of corre-
lation breakdown. Nonrobust Pearson-like correlation estimates for that hour, and
roughly the next 36 hours, are not representative of the level of dependence.

3.2. Spearman’s rho and Kendall’s tau. It is well known that the Pearson cor-
relation is susceptible to outliers. Several more robust measures of dependence
have been proposed, for example, Spearman’s rho or Kendall’s tau. The Spearman
correlation coefficient rs is defined as the Pearson correlation coefficient between
the ranked variables, that is,

(6) rs = cR(x)R(y)√
cR(x)R(x)cR(y)R(y)

,
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where R(·) is used to denote ranks. Spearman’s rho is, however, not amenable to
exponential weighting.

Kendall’s tau measures dependence differently, providing an estimate for the
probability of concordance minus the probability of discordance. The sample
Kendall’s tau is defined as

τ = 2

n(n − 1)

n−1∑
i=1

n∑
j=i+1

sgn(xi − xj ) sgn(yi − yj ),

where sgn is the sign function. Pozzi, Di Matteo and Aste (2012) developed an
exponential weighting Kendall’s tau following

(7) τe =
n−1∑
i=1

n∑
j=i+1

wij sgn(xi − xj ) sgn(yi − yj ),

where wij = w0 exp [α(i + j − 2n)] and

w0(α) = [exp (α) − 1]2[exp (α) + 1]
exp (2α)[1 − exp (−αn)][1 − exp (−α(n − 1))] .

The proximity of observations (xi, yi) and (xj , yj ) to (xn, yn) is considered to
attribute the weight, and the exponential decay factor is α ≥ 0. The largest weight
is for the i = n − 1, j = n case.

3.3. Biweight midcorrelation. Let X have distribution function F , let T (F )

and η(F ) be location and scale functionals, respectively, and let  be an odd func-
tion having a first derivative. Shoemaker and Hettmansperger (1982) define the
midvariance as

γ 2(F ) = K2η2EF

{
2(U)

}
/
[
EF

{
 ′(U)

}]2
,

where U = {X − T (F )}/{Kη(F)} and K is a specified constant. The midvari-
ance arises naturally as the asymptotic variance of M-estimates of location. It is
shown that the midvariance responds to heavy tails, but is not drastically affected,
and has a bounded influence curve and positive breakdown point [Shoemaker and
Hettmansperger (1982)]. An estimator of the midvariance is easily found by con-
sidering the empirical distribution function.

Following the same reasoning, Wilcox (2012) defines a measure of covariance
between X and Y as

nK2ηxηyEF

{
(U)(V )

}
/
[
EF

{
 ′(U) ′(V )

}]
,

where now F is the distribution function of (X,Y ). Setting K = 9, T to be the
functional of the median, η to be the functional of the median absolute deviation,
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and (x) equal to the biweight function x(1 − x2)2 for |x| < 1 and 0 otherwise,
we consider the biweight midcovariance of Wilcox (2012):

sbxy = n
∑n

i=1 ai(xi − med(x))(1 − u2
i )bi(yi − med(y))(1 − v2

i )

[∑n
i=1 ai(1 − 5u2

i )][
∑n

i=1 bi(1 − 5v2
i )]

,

where the weights ai and bi are defined following

ai = (
1 − u2

i

)
I
(
1 − |ui |) and bi = (

1 − v2
i

)
I
(
1 − |vi |),

where I (z) equals 1 if z ≥ 0 and 0 otherwise, and

ui = xi − med(x)

9 mad(x)
and vi = yi − med(y)

9 mad(y)
.

The notation med denotes the median and mad denotes the raw median absolute
deviation, that is, the median of the absolute deviations from the median without
the adjustment factor for asymptotically normal consistency. The biweight mid-
correlation is then defined as

(8) rb = sbxy√
sbxxsbyy

.

A biweight midvariance sbxx using the weight function ai gave the best estimates
of scale for several symmetric long-tailed distributions in the study of Lax (1985).
The robust biweight midcorrelation can also be effectively used to suppress the
effects of outliers when defining a network; see Langfelder and Horvath (2008)
and Langfelder and Horvath (2012).

3.4. Robust exponentially weighted midcorrelation. Letting wi =
(1−λ)λn−i/(1−λn), i = 1, . . . , n, we define the exponentially weighted biweight
midcovariance as

swbxy =
(
n

n∑
i=1

wia
w
i

(
xi − wmed(x,w)

)(
1 − uw

i uw
i

)

× bw
i

(
yi − wmed(y,w)

)(
1 − vw

i vw
i

))

/([
n∑

i=1

wia
w
i

(
1 − 5uw

i uw
i

)][
n∑

i=1

wib
w
i

(
1 − 5vw

i vw
i

)])
,

where now the weights aw
i and bw

i are

aw
i = (

1 − uw
i uw

i

)
I
(
1 − ∣∣uw

i

∣∣) and bw
i = (

1 − vw
i vw

i

)
I
(
1 − ∣∣vw

i

∣∣)
and

uw
i = xi − wmed(x,w)

9 wmad(x,w)
and vw

i = yi − wmed(y,w)

9 wmad(y,w)
.
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The notation wmed denotes the weighted median and wmad denotes the raw
weighted median absolute deviation. Let x(1), . . . , x(n) denote the order statistics.
Since

∑n
i=1 wi = 1, the weighted median is defined as the element x(k) for which

the total weight of all elements x(i) < x(k) is less than or equal to 1/2 and for which
the total weight of all elements x(i) > x(k) is less or equal to 1/2; see, for example,
Cormen, Leiserson and Rivest (1990). The raw weighted median absolute devia-
tion is defined analogously.

The robust exponentially weighted midcorrelation is then defined as

(9) rwb = swbxy√
swbxxswbyy

.

Like the biweight midcorrelation in (8), the exponentially weighted midcorrela-
tion in (9) effectively suppresses the effects of outliers; however, it also allows us
to treat time-varying correlations. Conditions in electricity markets, just like finan-
cial markets, can change quite abruptly, and so covariances may be quite unstable
and it is better to use estimates that are weighted more heavily on recent hourly data
to capture current market conditions. Unlike the exponentially weighted moving
correlation is (5), the exponentially weighted midcorrelation in (9) is not guaran-
teed to produce a positive definite global correlation matrix when the same value
of λ is used in the computation of all pairwise correlations. This is not an issue for
the application treated herein, but it would be if we wished to carry out optimal
portfolio selection in financial markets, for example.

4. Simulation study. Before applying our proposed robust approach to our
electricity price returns data, we examine the robustness properties of our robust
exponentially weighted midcorrelation and evaluate its performance, and that of
other dependence measures detailed in Section 3, in a setting where the true corre-
lation is known.

4.1. Normal margins. First, we compare the robustness properties of the ro-
bust exponentially weighted midcorrelation in (9) and the Pearson-like exponen-
tially weighted moving correlation in (5). We consider series of length T = 1000
of zt ∼ N(0,Rt ). Entries on the diagonal of Rt are set to 1, and three different
correlation processes are considered for the off-diagonal entries of Rt :

a. sine ρt = 0.5 + 0.4 cos (2πt/200)

b. fast sine ρt = 0.5 + 0.4 cos (2πt/20)

c. ramp ρt = mod (t/200).

Then we create data with γ % spikes by generating the innovations from a mixture.
More precisely, we first consider[

zt,1
zt,2

]
∼ (1 − γ )%N(0,Rt ) + γ %

[
δN(0,1) + (1 − δ)ζ

(1 − δ)N(0,1) + δζ

]
,
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where δ ∼ Bernoulli(0.5). These simulated data are normal with marginal outliers.
We also simulate data with two different types of bivariate outliers: generating (i)
γ % data which are equal to [ζ, ζ ], or (ii) γ % data which are equal to [ζ,−ζ ]. We
call case (i) bivariate positive outliers and case (ii) bivariate negative outliers, as
the first should increase nonrobust correlation estimates while the second should
decrease them. We consider spikes of three different sizes: ζ = 3,6 or 9. More
precisely, we present results from six scenarios: (1) γ = 0, (2) γ = 3% and ζ = 3,
(3) γ = 3% and ζ = 6, (4) γ = 3% and ζ = 9, (5) γ = 10% and ζ = 9, (6) γ =
20% and ζ = 9. The last scenario is unlikely in our electricity market prices data,
but we include it to examine the breakdown properties of our new robust estimator.
Results are shown for λ = 0.96, but are qualitatively the same for neighboring
values. The performance of each method is assessed using the root mean square
error (RMSE) defined as

RMSE =
√√√√√(T − T0)−1

T∑
t=T0

(ρ̂t − ρt )2

and the mean bias defined as

bias = (T − T0)
−1

T∑
t=T0

(ρ̂t − ρt ),

where T0 = 100 so that exponentially weighted estimates are based on a suffi-
ciently lengthy past. Figures 5 and 6 show results for 200 replications of series of
length T = 1000 from each of the three correlation models and each of the three
contamination models. We see that both estimators perform well when there is no
contamination and that the robust estimator is very efficient. The usual Pearson-
like exponentially weighted moving correlation breaks down quite quickly for all
three correlation processes, the bias increasing considerably with the size and/or
amount of contamination. The robust exponentially weighted midcorrelation per-
forms very well. It does not completely recognize and sufficiently downweight the
mild 3% contamination where ζ = 3. It suffers some breakdown under 20% con-
tamination with ζ = 9. The exponential weighting nature of the estimator makes
it such that if too many point mass outliers of the same value appear in the 100-
observation window, then the weighted MAD becomes 0 and the midcorrelation
is undefined. While this did not happen at 20% contamination, it does for larger
amounts. The size of the bias for the nonrobust estimator is quite considerable and
makes this estimator unusable for valid inference when spikes are present.

4.2. log-GARCH margins. Now, we examine models that are more consistent
with our electricity market returns data. We consider series of length T = 1000 of
uncontaminated data Y t = εt , where

lnσ 2
1,t = 0.005 + 0.3 ln ε2

1,t−1 + 0.6 lnσ 2
1,t−1,

lnσ 2
2,t = 0.001 + 0.15 ln ε2

2,t−1 + 0.8 lnσ 2
2,t−1
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FIG. 5. RMSE for 200 simulations of series of length T = 1000. Results are for sine (left column),
fast sine (middle column) and ramp (right column) models described in Section 4.1, and marginal
outliers (top row), bivariate positive outliers (middle row) and bivariate negative outliers (bottom
row) for the six scenarios described in Section 4.1.

and εt = σi,t zt,i , zt,i as in Section 4.1. We consider marginal outliers and the first
four spike scenarios. We show results for five different approaches. First, we con-
sider the dynamic conditional correlation (DCC) model of Engle (2002) fitted us-
ing the two-step DCC estimator described therein. In the last four approaches, the
log-GARCH(1,1) model is fitted in a first step. Then the correlation ρt is esti-
mated following (i) the exponentially weighted moving correlation in (5), (ii) the
Spearman correlation in (6) calculated using observations at indices t −41 through
t − 1, (iii) the exponentially weighted Kendall’s tau in (7), and (iv) the exponen-
tially weighted midcorrelation in (9). We considered large smoothing constants
λ, assuming that volatility in electricity markets is very persistent but not highly
reactive as in most equity markets; see, for example, Alexander (2001).

Estimated marginal log-GARCH(1,1) parameters for 200 replications of se-
ries of length T = 1000 from the sine correlation model are shown in Figure 7.
The log-GARCH(1,1) model indeed reduces the impact of spikes on marginal
volatility parameters and shock, and persistence parameters are unbiasedly esti-
mated even under the largest spikes. Marginal parameter estimates (not shown) for
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FIG. 6. Bias for 200 simulations of series of length T = 1000. Results are for sine (left column),
fast sine (middle column) and ramp (right column) models described in Section 4.1, and marginal
outliers (top row), bivariate positive outliers (middle row) and bivariate negative outliers (bottom
row) for the six scenarios described in Section 4.1.

the other two correlation models are similar. Performance results for 200 repli-
cations of series of length T = 1000 from each of the three correlation models
appear in Figure 8. We see that both methods that do not have a robust estima-
tor of correlation give very poor estimates of the time-varying correlation for the
bulk of the data in the presence of spikes, and the performance gets worse with
the size of the spikes. In the case of a slowly-varying sine correlation, a Spearman
correlation based on the last 40 observations works surprisingly well. Results are
almost as good as those of the robust exponentially weighted midcorrelation and
only slightly more variable. The benefits of the exponential weighting in the mid-
correlation are clearer on the rapid-varying fast sine and ramp correlations. The
exponentially weighted Kendall’s tau offers the best performance among robust
estimators for the ramp correlation model, but is the worst robust performer in
both sine correlation models. Overall, robust exponentially weighted midcorrela-
tion offers the best performance of all methods. As with all robust estimators, there
is some loss of efficiency in the case of no contamination.
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FIG. 7. Estimated marginal log-GARCH(1,1) parameters for 200 simulations of series of length
T = 1000 for the sine model described in Section 4. Results are for uncontaminated data and 3%
spike innovations of size 3, 6 and 9, respectively, in each panel. The horizontal line indicates the true
value of the parameter.

5. Electricity price returns. We consider the log return at hour t for each of
the 15 NYCA zones over the 1 January 2009 to 31 December 2014 period. Data
for February 29 are removed.

5.1. Marginal models. The key drivers for the day-ahead load forecasting
models of the NYISO are day-type and weather [New York Independent System
Operator (2013)], and these variables are also likely to be important regressors
in the marginal mean and variance models for the log return. For the marginal
mean model, the matrix Dh(t) of dummy variables includes six binary variables
for day of the week, a binary variable for public holidays, and day of year har-
monics up to order 3.8 The matrix Xh(t) contains an hourly temperature variable
and two dummy variables to pick up extreme temperatures in the bottom and top
0.5% for the zone, respectively. Following New York Independent System Opera-
tor (2013), we aggregate weather from 17 stations across New York into 11 zone
points based on population and other historical weighting factors. Weather sta-
tion weights imputed to each of the 11 internal zones are as in Table B-3 of New
York Independent System Operator (2013). For each of the four external zones, we
choose a weather station in close proximity to the external connection. Weather
stations used for each zone are shown in Figure 9. We use the hourly temperature

8Terms in cos (2πkt/365) and sin (2πkt/365) for k = 1,2,3.
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FIG. 8. RMSE for 200 simulations of series of length T = 1000. Results for the sine (top panel),
fast sine (middle panel) and ramp (bottom panel) models described in Section 4. Results are for un-
contaminated data and 3% spike innovations of size 3, 6 and 9, respectively, in each panel. Results
shown for smoothing values λ = 0.96 (EW-cor and EW-bicor) and, equivalently, α = 0.04 (WghtK-
end).
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FIG. 9. Weather stations imputed to each zone to establish the temperature value for the zone.
Weights imputed to each of the 11 internal zones as in Table B-3 of NYISO (2013).

as our weather variable. The temperature data are recorded to the nearest tenth of a
degree Celsius and are obtained from the National Oceanic and Atmospheric Ad-
ministration (NOAA) at www.nesdis.noaa.gov. These series have very few miss-
ing observations, and we simply filled in missing points by linear interpolation.
For the marginal variance model, the matrix Dh(t) only includes the day of week
and public holiday binary variables. The matrix Xh(t) contains an hourly temper-
ature variable, a natural gas price variable,9 a leverage term and volatility proxies
for the other 14 zones. Parameters in equations (1)–(4) are estimated as described
in Section 2.2. For the mean model, the values P = 1 and p = 2 are found to be
sufficient, and are used for all zones. No attempt is made to find optimal values for
each of the zones. For the variance model, explanatory variables were added to the
model one at a time to favor convergence. We retained a final model based on the
BIC criterion for models that passed the Li and Mak (1994) test.10

Table 1 shows the skewness and excess kurtosis of residuals from the second
least median of squares fit and the log-GARCH(1,1)-X models, respectively, for
the 15 zones. As expected, there are electricity price spikes.

9There is a high level of dependence between natural gas and electricity prices in the state of
New York; see, e.g., Pineau, Dupuis and Cenesizoglu (2015). We use the Henry Hub Natural Gas
Spot Price in dollars per MMBtu, available from EIA (2015). Economic activity and population is
considered fixed over the short six-year period.

10In a few cases, no log-GARCH-X model devolatilized the series sufficiently well to pass the Li
and Mak (1994) test. In those cases, the retained model was based on BIC alone.

http://www.nesdis.noaa.gov
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TABLE 1
Summary statistics of residuals of mean and variance models. Skewness and excess kurtosis of

residuals of mean and variance models fitted to data for each NYCA zone

Mean model Variance model

Zone Skewness Kurtosis Skewness Kurtosis

A 0.25 16 −0.90 76
B −0.93 43 1.2 114
C −0.12 21 −0.49 84
D 0.00 64 −0.09 99
E −0.02 19 0.26 60
F 0.06 11 0.59 21
G 0.11 9.6 −0.07 42
H −0.04 10 0.09 62
I −0.11 10 0.62 56
J −0.01 7.9 −0.70 32
K −0.11 10 −0.11 12
NPX 0.09 17 −0.18 29
H.Q. −0.13 472 −2.4 188
PJM 0.11 11 0.01 16
O.H. 0.30 20 0.21 30

Figure 10 shows the estimated value of the GARCH persistence parameter β1
in the log-GARCH(1,1)-X model for each hour and each zone. The persistence is
small with the exception of zones N.Y.C, LONGIL, H.Q. and PJM. N.Y.C. is the
most populated zone [42.1% of the state population, New York Independent Sys-
tem Operator (2013)], and it consumed the largest proportion (33%) of electricity
among NYCA zones over the 2009–2014 period of our study. Its dominating size
explains the larger levels of persistence. Long Island is the least interconnected
zone within the NYCA. Networking problems make it such that the zone must
sometimes depend on its own thermal power plants to meet demand within the
zone. This leads to price changes that are not necessarily shared with other zones.
H.Q. and PJM are external zones which must additionally deal with issues outside
of NY state, and this explains their larger levels of persistence. Estimated lever-
age parameters are sometimes significant, but not always. When significant, they
are negative or positive with no particular tendency (results not shown). Spillover
terms in the log-GARCH-X models can make a strong contribution to the time-
varying volatility. Figure 11 shows ratios of the estimated value of spillover pa-
rameters to their estimated standard error when volatility proxies are retained in
the hourly log-GARCH(1,1)-X model. For a given zone, there is greater spillover
from directly connected zones. Zones that showed larger volatility persistence in
Figure 10 are less affected by spillover volatility.
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FIG. 10. Estimated value of the persistence parameter β1 in the hourly log-GARCH(1,1)-X model.

5.2. Zone correlations. The correlation between the detrended-devolatilized
log returns for NYCA zones is estimated robustly using the exponentially weighted
midcorrelation in (9). Residuals from the fitted model (4) are used as a proxy for
the detrended-devolatilized log return for each zone.

Robustly estimated correlations with N.Y.C. and H.Q. are shown in Figure 12.
Several interesting points emerge for correlation values with N.Y.C. (left panel):

FIG. 11. Ratio of the estimated value of spillover parameters to their estimated standard error for
zones with a direct connection (direct) and indirect connection (indirect) when volatility proxies are
retained in the hourly log-GARCH(1,1)-X model.
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FIG. 12. Robustly estimated correlations between the detrended-devolatilized hourly log returns in
zone N.Y.C. and other zones (left) and in zone H.Q. and other zones (right). Based on data over the
1 January 2009 to 31 December 2014 period.

(i) they are not in the same range for every zone pair, (ii) they are mostly positive,
but can be negative, (iii) they are the highest with neighboring zones to the north
(G, H and I), and (iv) they are weaker with immediate neighbor Long Island (K).
The weaker interconnectedness of Long Island detailed earlier explains (iv). With
H.Q. (right panel), we note the following: (i) greater values with neighboring zones
D and O.H., (ii) slightly smaller correlation overall than between N.Y.C. and other
zones. As the only NYCA connection to a regulated market,11 the H.Q. zone does
not follow the rules of a competitive market, and its price changes may not reflect
those of other NYCA zones.

5.3. Partial correlations. There are 23 transmission service areas contained
within the 15 NYCA zones. They are shown as edges in Figure 13 and may rep-
resent multiple transmission facilities. As there can be multiple paths between any
two zones, it is difficult to interpret the correlation estimate between two zones.
To isolate the dependence between a zone and one of its directly connected neigh-
bors, we look at the partial correlation between the price changes in the two zones.
Partial correlation measures the degree of association between two random vari-
ables, after having removed the effect of a set of controlling random variables.

11Hydro-Quebec is a government-owned public utility.
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More technically, the partial correlation between X and Y given a set of n control-
ling variables Z = {Z1,Z2, . . . ,Zn}, written rXY ·Z, is the correlation between the
residuals resulting from the linear regression of X with Z and of Y with Z, respec-
tively. The nth-order partial correlation (i.e., with |Z| = n) can be easily computed
from three (n−1)th-order partial correlations. The zeroth-order partial correlation
rXY ·∅ is defined to be the regular correlation coefficient rXY . For any Z0 ∈ Z, we
have

(10) rXY ·Z = rXY ·Z\{Z0} − rXZ0·Z\{Z0}rZ0Y ·Z\{Z0}√
1 − r2

XZ0·Z\{Z0}
√

1 − r2
Z0Y ·Z\{Z0}

;

see, for example, Kendall and Stuart (1979). We compute robust partial correlation
estimates by applying (10) recursively, using our robust exponentially weighted
midcorrelations computed as in (9) as the zeroth-order partial correlation coeffi-
cient. These robust partial correlations are plotted in Figure 13 for directly con-
nected neighbors to each zone. It is clear that all transmission service areas are
not created equally and do not allow for their connecting zones to benefit/suffer
from price changes equally. For some, the distribution of the partial correlation
is roughly symmetric about 0. Some internal zones are more in sync with their
directly connected external zone than with their directly connected internal zone;
see, for example, zone F with NPX. Nothing in the price-setting protocol [New
York Independent System Operator (2013)] would lead us to believe that this is
the case.

Available transfer capability (ATC) data are also available at www.nyiso.com
for some of the transmission service areas. In Figure 14, ATC at six internal inter-
faces are shown along with the partial correlations for the zones they connect. The
percentage of NYCA electricity consumed by the latter zones is also indicated. It
is clear that the dependencies are not a function of ATC and consumption only. For
example, the Dysinger East transmission service area (i) has roughly half the ATC
of the UPNY/CONED transmission service area, (ii) connects two zones that con-
sume double that of the zones connected by UPNY/CONED, and yet (iii) results in
partial correlations quite comparable to those produced for the zones connected by
UPNY/CONED. On the other hand, the small ATC for transmission service area
CENT EAST could explain the small, and even often negative, partial correlations
between zones E and F.

Robustly estimated partial correlations in Figures 13 and 14 are over the 1 Jan-
uary 2009 to 31 December 2014 period. It is interesting to regress these corre-
lations on potential explanatory variables and identify possible significant differ-
ences in the correlations across different levels of the factors. To establish the sig-
nificance of the effects, the Newey and West (1987) procedure is used to adjust
the covariance matrix of the parameters to account for autocorrelation and het-
eroskedasticity. While the explanatory variables listed in Section 5.1 could explain
in part the level of partial correlation between detrended-devolatilized log returns

http://www.nyiso.com
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FIG. 13. NYISO zones and transmission service areas (shown as lines of different types) connecting
them. For each zone, the robustly estimated partial correlation between its detrended-devolatilized
hourly log returns and those of directly connected zones is shown. For a given zone, the kernel density
estimate curve is the same color/type as the line representing the transmission service area to which
it corresponds. Based on data over the 1 January 2009 to 31 December 2014 period.
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FIG. 14. Left plot: Available transfer capability at six internal interfaces (connected zones in
parentheses). The percentage of NYCA electricity use for zones also appears. Right plot: Robustly
estimated partial correlation between the detrended-devolatilized hourly log returns for connected
zones. Based on data over the 1 January 2009 to 31 December 2014 period.

from two directly connected zones, congestion due to planned outages or acciden-
tal network breaks could also have an effect. As complete data on congestion due
to outages and accidental network breaks are not available, we follow Ben Amor
et al. (2014) and use the absolute difference in price levels between the two zones
as a proxy. Ben Amor et al. (2014) use a $5 threshold as an indicator of congestion.
We create a congestion factor variable by dividing according to price differential
(D in $) into four levels: [0,5), [5,10), [10,15) and [15,∞). We also take a factor
approach to isolating the impact of hourly temperature and natural gas prices.12

While some effects are significant (results not shown), the size of most effects re-
mains quite small and of no practical significance; plots of partial correlations for
different levels of the factors remain essentially as in Figure 13. One notable ex-
ception is the effect of congestion for some zonal pairs. In Figure 15, such pairs
are shown. The effects are as anticipated, with increased absolute price differential
leading to less correlation in the price changes.

Finally, in the case of an electricity grid, spatial proximity is better described by
the number of intermediary zones between two given zones. Transmission service

12We divide temperatures (in ◦C) into five levels: (−∞,0], [0,16), [16,20), [20,28) and [28,∞).
We divide natural gas prices (in $) into three levels: [0,3), [3,5) and [5,∞).
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FIG. 15. Robustly estimated partial correlation between the detrended-devolatilized hourly log
returns for connected zones under different absolute price differences. The number of observations
N for the level of the factor is shown below the boxplot. Based on data over the 1 January 2009 to
31 December 2014 period.

areas between zones are shown in Figure 13. We found the number of intermedi-
aries to be a poor predictor of partial correlations (results not shown). Returns in
some zones have very poor partial correlation with returns in their connected zones
(see Figure 13), and the partial correlation is no poorer for zones many intermedi-
aries away.

6. Discussion. As part of its mission, the NYISO must provide factual in-
formation to policymakers, stakeholders and investors in the power system. The
analyses herein seek to move from the raw LBMP hourly zonal price data made
available to an understanding of market price dynamics within the system. Our
proposed methodology enables the computation of robust detrended-devolatilized
price-change correlation estimates for any two zones within the NYCA and shows
that these correlations can vary considerably by pair. To isolate the dependence
between a zone and one of its directly connected neighbors, we look at partial
correlation between the price changes in the two zones. We see that in terms of
price-change dynamics, the zones are not as connected as an equitable statewide
market would wish; even adjacent zones with transmission service areas showing
large available transmission capability may not have large price-change correla-
tions. Our analysis is the first to provide such an assessment. The methodology
presented herein can be applied to any electricity market.

Regression analyses were performed in an attempt to explain the time-varying
partial correlations for a given pair of zones, and many regressors were included.
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Only price differential was found to be practically significant, and this for only four
pairs. As for any differences between the partial correlations of different pairs,
they could not be easily explained. Investigating the relationships between our
estimated partial correlations and the characteristics of the underlying network
grid could provide additional information for investment. Such an analysis requires
access to, and understanding of, much technical data and is out of the scope of this
paper.
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