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In the presence of treatment effect heterogeneity, the average treatment
effect (ATE) in a randomized controlled trial (RCT) may differ from the av-
erage effect of the same treatment if applied to a target population of interest.
If all treatment effect moderators are observed in the RCT and in a dataset
representing the target population, then we can obtain an estimate for the tar-
get population ATE by adjusting for the difference in the distribution of the
moderators between the two samples. This paper considers sensitivity analy-
ses for two situations: (1) where we cannot adjust for a specific moderator V

observed in the RCT because we do not observe it in the target population;
and (2) where we are concerned that the treatment effect may be moderated
by factors not observed even in the RCT, which we represent as a compos-
ite moderator U . In both situations, the outcome is not observed in the tar-
get population. For situation (1), we offer three sensitivity analysis methods
based on (i) an outcome model, (ii) full weighting adjustment and (iii) par-
tial weighting combined with an outcome model. For situation (2), we offer
two sensitivity analyses based on (iv) a bias formula and (v) partial weighting
combined with a bias formula. We apply methods (i) and (iii) to an example
where the interest is to generalize from a smoking cessation RCT conducted
with participants of alcohol/illicit drug use treatment programs to the target
population of people who seek treatment for alcohol/illicit drug use in the US
who are also cigarette smokers. In this case a treatment effect moderator is
observed in the RCT but not in the target population dataset.

1. Introduction. Randomized controlled trials (RCTs) can be used to obtain
unbiased estimates of the effect of the intervention of interest in the sample used in
the trial, resulting in high internal validity. However, standard RCTs are not neces-
sarily informative regarding the effects an intervention would have in a target pop-
ulation that may be somewhat different from the RCT sample; in other words, the
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RCT may have limited external validity or generalizability. Potential challenges
in drawing inferences for populations of policy or decision-making relevance are
becoming an increasing concern, as researchers aim to make their research results
as relevant as possible.

As shown by Weisberg, Hayden and Pontes (2009), Cole and Stuart (2010) and
Olsen et al. (2013), results from RCTs may not directly carry over to populations if
there are treatment effect moderators whose distribution differs between the RCT
sample and the target population. Methods for assessing [Greenhouse et al. (2008),
Stuart et al. (2011), Stuart, Bradshaw and Leaf (2015)] and enhancing [Cole and
Stuart (2010), Tipton (2013), Kern et al. (2016)] generalizability have been pro-
posed. The latter includes approaches that reweight the RCT sample so that it
resembles the target population with respect to the observed covariates and plau-
sible moderators [Cole and Stuart (2010), Kern et al. (2016)] or predict treatment
effects for target population members based on an outcome model that captures
effect heterogeneity [Kern et al. (2016)]. However, those methods only adjust for
observed characteristics. In practice, once a dataset is identified as representing
the target population, it is often found that the number of variables measured con-
sistently between this dataset and the RCT is small [Stuart, Bradshaw and Leaf
(2015), Stuart and Rhodes (2016)]. In many cases, researchers and policymakers
may be worried about unobserved differences between the RCT sample and the
target population and how much they influence the conclusions regarding popula-
tion effects.

This paper presents a set of approaches for assessing the sensitivity of pop-
ulation effect estimates to unobserved moderators to be used when generaliz-
ing from a RCT to a target population. These sensitivity analyses are analogous
to methods that assess sensitivity to an unobserved confounder in observa-
tional studies [such as Cornfield et al. (1959), Rosenbaum and Rubin (1983a),
Rosenbaum (1987), Gastwirth, Krieger and Rosenbaum (1998), Greenland (1996),
Schneeweiss (2006), Arah, Chiba and Greenland (2008), Vanderweele and Arah
(2011), Ding and VanderWeele (2014, 2016)]. They address two situations:
(1) when a specific treatment effect moderator is observed in the RCT but is not
measured in the target population; and (2) when researchers are concerned about
possible effect moderation by factors that are not observed even in the RCT.

The data application in this paper involves generalizing the effect of a smoking
cessation intervention from a RCT conducted with participants in alcohol/illicit
drug use treatment programs [Reid et al. (2008)] to the target population of people
who seek treatment for alcohol/illicit drug use in the US who are also cigarette
smokers. This RCT is one of the substance use treatment RCTs funded by the
US National Institute on Drug Abuse (NIDA); these are deposited in a repository
maintained by NIDA’s Clinical Trials Network with the purpose to facilitate the
use of evidence from RCTs to generate knowledge that informs the provision of
treatment services to people with substance use disorders in the US.
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With a subset of these RCTs (not including the one in our current application),
Susukida and colleagues found significant differences in certain characteristics be-
tween the RCT samples and samples they identified as representing relevant target
populations [Susukida et al. (2016)] and, for some interventions, a substantial dif-
ference between the average treatment effects (ATEs) for the target population and
for the RCT sample due to treatment effect heterogeneity associated with such
characteristics (work under review). Such work considers only variables measured
in both each RCT and the corresponding target population dataset. With the pro-
posed sensitivity analysis methods, we are able to take one step further, exploring
treatment effect moderators among all baseline variables measured in the RCT and
conducting sensitivity analysis when finding that one moderator (baseline cigarette
addiction score) is not observed in the target population dataset (here drawn from
the National Survey on Drug Use and Health, or NSDUH).

The paper is structured as follows: Section 2 describes two methods for ob-
taining estimates for target population treatment effects when the moderators are
observed in both the RCT and the target population dataset; these are the basis of
the sensitivity analyses we propose. Section 3 presents sensitivity analysis meth-
ods for settings where a moderator is observed in the RCT but not in the target
population. Section 4 addresses sensitivity analyses for effect moderation that is
not even observed in the RCT. Section 5 reports on the data application. Section 6
concludes with a discussion.

2. Two methods for generalization when the moderators are observed in
both the RCT and in a dataset representing the target population. This sec-
tion formalizes the goal of inference, describes notation, and reviews two methods
for generalizing treatment effect estimates from an RCT to a target population;
these methods form the basis for the sensitivity analyses described below.

Consider an RCT in which participants are randomly assigned to active treat-
ment (T = 1) and control (T = 0) conditions, and their outcomes (Y ) are observed.
In this sample, we also observe pretreatment covariates, including covariates Z that
interact with treatment in influencing the outcome and covariates X that influence
the outcome but do not interact with treatment. Z and X are generally multivariate,
but we use univariate notation to simplify presentation.

Suppose we have data from a second sample, one that represents the target pop-
ulation. Let S represent sample membership, with S = 1 if a person is in the RCT
and S = 0 if a person is in the target population sample. Here we assume that
the two samples are disjoint. (For the case where the RCT sample is a subset of
the target population sample, the methods are slightly modified [Cole and Stuart
(2010)], which we comment on in the Discussion section.) In this section, we con-
sider the situation where we also observe the treatment effect moderators Z in the
target population dataset. All through this paper we assume that the outcome is not
observed in the target population.
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Let Y t denote the potential outcome if under treatment condition t, t ∈ {0,1}.
For each RCT participant, we observe one of the two potential outcomes Y 1, Y 0.
For those in the target population sample, we observe neither. We are interested in
the average treatment effects (ATEs) both for the RCT sample and for the target
population, which we refer to respectively as the Sample Average Treatment Effect
(SATE) and the Target Average Treatment Effect (TATE). These are defined as the
average of the individual additive treatment effects over the RCT sample and over
the target population:

SATE ≡ E
[
Y 1 − Y 0|S = 1

] = E
[
Y 1|S = 1

] −E
[
Y 0|S = 1

]
,(2.1)

TATE ≡ E
[
Y 1 − Y 0|S = 0

] = E
[
Y 1|S = 0

] −E
[
Y 0|S = 0

]
.(2.2)

Estimation of SATE is straightforward. For simplicity, consider simple random-
ization, with all RCT participants having the same probability of being assigned
treatment.4 An unbiased estimate of SATE can be obtained by taking the difference
in mean outcome between the treated and control groups, or regressing outcome on
treatment adjusting for pretreatment covariates. Estimation of TATE, on the other
hand, requires adjustment for treatment effect moderators whose distribution dif-
fers between the RCT sample and the target population [Olsen et al. (2013), Cole
and Stuart (2010)]. The methods for estimating TATE described below assume
conditional sample ignorability for treatment effects [Kern et al. (2016)]: being in
the RCT or in the target population sample does not carry any information about
treatment effect once we condition on the moderators Z.

2.1. Outcome-model-based TATE estimation. We assume an additive model
for the potential outcomes. With i indexing the individual, the model is

(2.3) E
[
Y t

i

] = β0 + fzt (Zi, t) + fxz(Xi,Zi), t = 0,1,

where fzt , fxz are functions of the corresponding variables. For simplicity, we
consider the special form fzt (Zi, t) = βt t +βztZit , which is perhaps the one most
commonly used in practice. (This form assumes constant moderation effect, as βzt

does not depend on the level of Z.) The simplified model is

(2.4) E
[
Y t

i

] = β0 + βt t + βztZit + fxz(Xi,Zi), t = 0,1.

The form of fxz(Xi,Zi) is not of interest here, but a common practice is to use
βxXi + βzZi and perhaps add some complexity such as quadratic or interaction
terms.

The treatment effect for individual i is

(2.5) E
[
Y 1

i

] −E
[
Y 0

i

] = βt + βztZi,

4If the RCT design is complex and treatment probabilities vary across individuals, then a minor
variation that incorporates inverse-probability-of-treatment weights can be used.
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which means

SATE = βt + βztE[Z|S = 1],(2.6)

TATE = βt + βztE[Z|S = 0].(2.7)

The difference between SATE and TATE, βzt {E[Z|S = 1]−E[Z|S = 0]}, is the
bias if we generalize the effect estimated in the RCT directly to the target popula-
tion without adjusting for differences in Z. The magnitude of this bias depends on
the moderation effect (βzt ) and the difference between the means of the modera-
tor in the two samples (E[Z|S = 1] − E[Z|S = 0]). If either of these is zero, then
SATE is equivalent to TATE.

When Z is observed in both samples, an estimate for TATE can be obtained us-
ing equation (2.7), with E[Z|S = 0] estimated using the target population dataset,
and with βt and βzt estimated by fitting to the RCT data an outcome model with
interaction terms.5 While equation (2.7) does not involve X, the accuracy and pre-
cision of the estimates of βt and βzt require a good estimate of the outcome model.
Not only do we need to capture all Z variables, but all X variables (or at least all
X variables that are correlated with, or interact with, Z variables) should also be
included and correctly modeled.

Note that we have invoked the conditional sample ignorability for treatment
effects assumption when equating {βt , βzt} between equations (2.6) and (2.7). This
assumption is violated if we do not observe all the moderators that are differentially
distributed between the two samples. It is also violated if the range of Z in the
target population includes segments not covered by the RCT, a violation of the
positivity assumption [Rosenbaum and Rubin (1983b)]; using equation (2.7) in
this case would result in extrapolation beyond the support of the data. Positivity is
often not a problem with a binary Z, but, for a continuous Z, care needs to be taken
to check overlap, and judgment needs to be made about whether extrapolation to
any uncovered areas is reasonable.

2.2. Weighting-based TATE estimation. The idea of this method is to reweight
the RCT sample so that it resembles the target population with respect to the dis-
tribution of the treatment effect moderators (Z) and then to use this weighted RCT
sample to estimate TATE.

The weighting procedure involves first stacking the RCT and target population
datasets and fitting a model predicting sample membership. The set of predictors
in this model needs to include all the moderators (Z variables); outcome predictors
that do not moderate treatment effect (X variables) do not need to be included. To

5An alternative is to estimate the outcome model, predict treatment effects for the individuals
in the target population dataset [Kern et al. (2016)] using equation (2.5), and average them. This
strategy does not require the constant moderation effect assumption. However, it does not provide
for a straightforward sensitivity analysis for an unobserved moderator.
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determine which pretreatment covariates are moderators requires a prior step of
detecting them through modeling the outcome. There may be times when it is hard
to know whether a variable is a moderator (e.g., its interaction term with treatment
has a substantial but statistically nonsignificant coefficient), in which case it is
preferable to treat it as a moderator and include it in the sample membership model.
For the same reason (or to avoid having to model the outcome), one may also
include a broader set of variables in this model, regardless of whether they may be
moderators (Z) or not (X).

The fitted sample membership model is used to compute the predicted odds of
being in the target population sample for the RCT participants. These odds are then
used to reweight the RCT sample. As a result, the weighted RCT sample better re-
sembles the target population with respect to the distribution of the variables used
in the sample membership model. This strategy of weighting the RCT sample to
the target population sample has been described by Kern et al. (2016) and Cole and
Stuart (2010);6 here we emphasize the distinction between moderators and other
covariates, as the purpose of the weighting is to adjust for the diffential distribu-
tion of the moderators. Whether the weighting succeeds in doing this should be
checked.

The weighted RCT sample is used to estimate an average treatment effect, which
is taken as the estimated TATE. A simple estimator for TATE is the difference be-
tween the weighted means of the outcome in the RCT’s treated and control groups.
Another option is to fit a weighted regression model that controls for Z and X

variables (but not their interaction terms with T ), and estimate TATE with the co-
efficient of T .

3. Sensitivity analysis for a moderator that is observed in the RCT but not
in the target population sample. We continue using Z to denote moderators
observed in both samples, and using V to denote a moderator observed in the RCT
but not in the target population sample. (We hereafter refer to the current case as
the V case to differentiate it with the case to be addressed in Section 4.) In this case,
although TATE cannot be estimated in a way that adjusts for all of the moderators,
we can conduct sensitivity analysis to assess how TATE estimates would change
based on what we assume about the distribution of V in the target population. Here
we present several sensitivity analysis methods, and report on a simulation study
that compares some of these methods.

3.1. Three sensitivity analysis strategies. The methods described below are
based on an outcome model, full weighting adjustment and partial weighting com-
bined with an outcome model.

6The weights are the same in Kern et al. (2016), but slightly different in Cole and Stuart (2010)
because in the latter case the RCT sample was a subsample of the target population dataset. We will
return to this in the Discussion section.
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3.1.1. Outcome-model-based sensitivity analysis. We rewrite the potential
outcomes model, separating Z and V :

(3.1) E
[
Y t

i

] = β0 + βt t + βztZit + βvtVit + fxzv(Xi,Zi,Vi).

For simplicity, this model makes an additional assumption [compared to the model
in equation (2.4)] that there is no three-way interaction of the treatment with both
Z and V . Based on this model, the formula for TATE is

TATE = βt + βztE[Z|S = 0] + βvtE[V |S = 0],(3.2)

where βt , βzt , βvt , E[Z|S = 0] can be estimated from data, whereas E[V |S = 0]
cannot. We will refer to the latter as an “unknown” parameter, which is a slight
abuse of terminology because the true values of all these parameters, βt , βzt , βvt ,
E[Z|S = 0] and E[V |S = 0], are not known. By “unknown” here, we mean that
one cannot learn about this parameter from data, while one can learn about the
other parameters from data.

The simple formula in equation (3.2) results from the no three-way interaction
assumption. Without such an assumption, the potential outcomes model would
have an additional term, βzvtZiVit , and the formula for TATE would include
βzvtE[ZV |S = 0], with the unknown E[ZV |S = 0] being more complex to con-
sider than simply E[V |S = 0].

To conduct the sensitivity analysis, first we need to estimate the estimable quan-
tities. E[Z|S = 0] is estimated using target population data. Assuming sample ig-
norability for treatment effects conditional on Z, V , we estimate βt , βzt , βvt using
the RCT data; this involves estimating the outcome model with interaction terms
[equation (3.1)] in the same manner as discussed in Section 2.1, and extracting the
estimated values and variance–covariance matrix of βt , βzt , βvt .

We then specify a plausible range for the unknown E[V |S = 0] (mean V in the
target population). In doing this, it is important to check if the range of V being
considered has good overlap with the RCT sample.

A range for the TATE point estimate is computed by plugging the point es-
timates of βt , βzt , βvt , E[Z|S = 0] and the specified range of E[V |S = 0] into
equation (3.2).

A confidence band to accompany this TATE range can be obtained. For each
value of E[V |S = 0] in the specified range, the variance–covariance matrix of the
estimated βt , βzt , βvt can be used to obtain a confidence interval for TATE. If the
uncertainty in the estimated E[Z|S = 0] is non-negligible, then it can be incorpo-
rated by using the confidence limits of E[Z|S = 0] (rather than its point estimate)
in the construction of such confidence intervals.

3.1.2. Weighting-based sensitivity analysis. Ideally, had V been available
from both samples, we would be able to estimate TATE using RCT data, weighting
the individuals by their odds of being in the target population sample conditional
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on Z, V (as described in Section 2.2). While such weights cannot be estimated
when V is not observed in the target population, they can be reexpressed, using
Bayes’ rule, as

Wi = P(S = 0|Zi,Vi)

P(S = 1|Zi,Vi)

= P(S = 0,Z = Zi,V = Vi)/P(Z = Zi,V = Vi)

P(S = 1,Z = Zi,V = Vi)/P(Z = Zi,V = Vi)

= P(S = 0,Z = Zi,V = Vi)

P(S = 1,Z = Zi,V = Vi)

= P(Z = Zi)P(S = 0|Zi)P(V = Vi |S = 0,Zi)

P(Z = Zi)P(S = 1|Zi)P(V = Vi |S = 1,Zi)

= P(S = 0|Zi)

P(S = 1|Zi)
· P(V = Vi |S = 0,Zi)

P(V = Vi |S = 1,Zi)
.(3.3)

Each weight is thus a product of two components: (1) the odds of being in the target
population sample conditional on Z but not V , and (2) a ratio of the probability
density/mass of V = Vi in the Z = Zi stratum comparing the target population
sample to the RCT sample.7

In this formula of the weights [equation (3.3)], the first component can read-
ily be estimated from data; the denominator of the second component can also be
estimated. The numerator of the second component, P(V = Vi |S = 0,Zi), is un-
known. This suggests that a sensitivity analysis can be conducted by specifying a
plausible range for the unknown distribution of V given Z in the target population,
P(V |S = 0,Z), and for each distribution in this range, constructing weights and es-
timating TATE using the reweighted RCT sample. TATE can be estimated using
either the difference in weighted mean outcome between the treated and control
conditions or using regression of the outcome on treatment and covariates.

The challenge is how to estimate P(V |S = 1,Z) and how to specify plausible
ranges for P(V |S = 0,Z). Both these tasks are complicated, and results are prone
to misspecification bias when V or Z or both are of any form but binary. We hereby
limit the consideration of this method to the case where V and Z are binary. With
one binary Z and one binary V , there are only four unique weights:

Wi |Vi=1,Zi=1 = P(S = 0|Z = 1)

P(S = 1|Z = 1)
· P(V = 1|S = 0,Z = 1)

P(V = 1|S = 1,Z = 1)
,

Wi |Vi=0,Zi=1 = P(S = 0|Z = 1)

P(S = 1|Z = 1)
· 1 − P(V = 1|S = 0,Z = 1)

1 − P(V = 1|S = 1,Z = 1)
,

7This ratio is of the same form as a ratio used elsewhere in weighting to control confounding in
causal mediation analysis [Hong (2010)].
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Wi |Vi=1,Zi=0 = P(S = 0|Z = 0)

P(S = 1|Z = 0)
· P(V = 1|S = 0,Z = 0)

P(V = 1|S = 1,Z = 0)
,

Wi |Vi=0,Zi=0 = P(S = 0|Z = 0)

P(S = 1|Z = 0)
· 1 − P(V = 1|S = 0,Z = 0)

1 − P(V = 1|S = 1,Z = 0)
.

The denominators in the second component of these weights are easily estimated.
For the numerators, we need to specify ranges for two probabilities: P(V = 1|S =
0,Z = 1) and P(V = 1|S = 0,Z = 0), the prevalence of V = 1 in the target popu-
lation given Z = 1 and Z = 0.

3.1.3. Weighted-outcome-model-based sensitivity analysis. While the full
weighting strategy is hard to implement in the context of sensitivity analysis, a
partial weighting version combined with an outcome model lends itself well to
sensitivity analysis. The idea is to use weighting to adjust for known differences
between the two samples (here differences in the distribution of Z) and then to
use an outcome model to do sensitivity analysis on unknown quantities (V in the
target population). First, we weight the RCT sample by the individuals’ odds of
being in the target population sample conditional on Z only, P(S=0|Zi)

P(S=1|Zi)
. We then

use this weighted RCT sample to estimate the outcome model [of the form in
equation (3.1)]. We use the estimates of βt , βzt , βvt and their variance–covariance
matrix from this model as inputs for estimating TATE in the same manner as in
the nonweighted outcome-model-based method [based on TATE formula equation
(3.2)].

The difference between this method and the first method is that the weighting
makes the distribution of Z in the RCT sample more similar to that in the target
population, and thereby helps adjust for the discrepancy in average treatment effect
due to effect moderation by Z. This may be helpful in the case the Z part of
the outcome model is misspecified, which we investigate in a simulation study
reported in Section 3.2.

3.2. Simulation study comparing the outcome-model-based and weighted-
outcome-model-based sensitivity analyses. We investigate how well these two
methods perform relative to each other in recovering the true TATE in situations
where the outcome model is correctly or incorrectly specified. When the outcome
model is correctly specified, we expect that both methods are unbiased. When
the Z part of the outcome model is misspecified, we expect that the weighted-
outcome-model-based method is less biased. When the V part of the outcome
model is misspecified, we expect that the same method helps reduce bias due to
this misspecification if Z and V are positively correlated and influence treatment
effect in the same direction. [R-code for this simulation study can be found in the
Supplementary Material, Nguyen et al. (2017).]



234 NGUYEN, EBNESAJJAD, COLE AND STUART

3.2.1. Data generation. We consider situations with one X, one Z and one V .
X is a standard normal random variable. Z and V are first generated as multivariate
normal with correlations ranging from 0 to ±0.5, and then each is either kept in
continuous form or dichotomized. When either Z or V is binary, its prevalence is
0.25 in the RCT sample and 0.5 in the target population. When either Z or V is
continuous, it has mean 0 in the RCT and 0.5 in the target population, and variance
1 in both.

In the RCT, T is randomly assigned to 0 and 1 with probability 0.5. With regards
to the outcome, for the continuous Z and V combination, we use a base model with
Z and V as moderators, plus six other models, each with one additional moderator
from among Z2, V 2 or ZV , whose moderation effect is either positive or negative:

A. Y = X + T + Z + V + ZT + V T + εY ,

B1. Y = X + T + Z + V + ZT + V T + Z2T + εY ,

B2. Y = X + T + Z + V + ZT + V T − Z2T + εY ,

C1. Y = X + T + Z + V + ZT + V T + V 2T + εY ,

C2. Y = X + T + Z + V + ZT + V T − V 2T + εY ,

D1. Y = X + T + Z + V + ZT + V T + ZV T + εY ,

D2. Y = X + T + Z + V + ZT + V T − ZV T + εY ,

εY ∼ N(0,4).

For the continuous Z and binary V combination, we use models A, B1–2 and D1–
2. For the binary Z and continuous V combination, we use A, C1–2 and D1–2.
For the binary Z and V combination, we use A and D1–2.

For each scenario (combining Z and V types and outcome model), 100,000
n = 400 RCT samples and n = 5000 target population samples are generated.

3.2.2. Methods implementation.

Outcome models used in the sensitivity analyses. For scenarios with the true out-
come model A, we implement the outcome-model-based and weighted-outcome-
model-based sensitivity analyses using the correctly specified outcome model. For
the other scenarios, we implement these methods using the correct model as well
as the misspecified model leaving out the third moderator (Z2, V 2 or ZV ). We
choose to consider this misspecified model because it is simple and perhaps most
often used. In practice, detection of moderation effects using regression is often an
exploratory analysis trying out interaction terms of different covariates with treat-
ment. More complex interaction terms are less often considered, and even if they
are, the power to detect them is limited.

Weighting details. With the weighted-outcome-model-based method, the weight-
ing is partial, adjusting for Z but not V . We compute the weights based on a logistic
sample membership model with Z as the predictor. With a continuous Z, to allow
flexible modeling of sample membership probability, we use natural splines with
nine knots.
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FIG. 1. Bias of outcome-model-based and weighted-outcome-model-based sensitivity analyses us-
ing correct and misspecified outcome models. Notes: “outmod” = outcome-model-based; “wtdout-
mod” = weighted-outcome-model-based. For both methods, the same outcome models are used. In
scenarios with only two moderators (Z and V ), only the correct model is used. In scenarios with
a third moderator (Z2, V 2 or ZV ), the correct model and the misspecified model that excludes the
third moderator are used. In these scenarios the moderation effects of Z2, V 2 or ZV are positive.
Results from scenarios where they are negative are mirror images of these plots across the horizontal
zero line, that is, the sign of bias is flipped.
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3.2.3. Simulation results. The main results to report concern the bias or lack
thereof of the two methods under investigation when using correct or misspecified
outcome models. Since the true ATE in a particular target population sample may
differ from the true TATE as set by the simulation parameters, we use the true
ATE for a particular target population sample as the goal of inference for each
simulation iteration. This helps avoid noise due to sampling variability and focuses
on the bias itself.

Figure 1 presents the bias of these two methods using correct and misspecified
outcome models. Across all scenarios, when the correct outcome model is used,
both methods are unbiased. When a misspecified model is used, both methods
are biased. When the model is correctly specified with respect to V but misspeci-
fied with respect to Z (in scenarios with Z2 as the third moderator—column 2 in
the figure), as expected, the weighted-outcome-model-based method, which uses
weighting to adjust for Z, is less biased than the outcome-model-based method.

When the model is correctly specified with respect to Z but misspecified with
respect to V (scenarios with V 2 as the third moderator—column 3), the two meth-
ods are similarly biased if Z and V are uncorrelated. When Z and V are positively
correlated, the weighted-outcome-model-based method becomes less biased be-
cause the weighting adjustment for Z provides some adjustment for V . When Z

and V are negatively correlated, the contrary is true, with the weighted-outcome-
model-based method being more biased.

When the model is misspecified with respect to both Z and V (scenarios with
ZV as the third moderator—column 4), both methods are biased. For most of the
range of Z-V correlation considered, the weighted-outcome-model-based method
is less biased. At a certain point when the correlation is high enough, the side-
effect adjustment for V that results from weighting adjustment for Z pulls the
TATE estimate to zero bias and then past zero to bias of the opposite sign.

These results confirm our hypotheses that (i) when the outcome model is mis-
specified with respect to Z, the weighted-outcome-model-based method is less bi-
ased than the outcome-model-based method; and that (ii) when the outcome model
is misspecified with respect to V , and Z and V are positively correlated and in-
fluence treatment effect in the same direction, the weighted-outcome-model-based
method tends to be less biased.

4. Sensitivity analysis for effect moderation that is completely unobserved.
In this situation, there may be known moderators (Z) that we observe in both the
RCT and the target population sample. We are concerned, however, that there may
be additional effect moderation by factors that are unobserved even in the RCT
that may be differentially distributed between the RCT sample and the target pop-
ulation. While in the previous situation we deal with a specific variable V (specific
because it is observed in the RCT), here we think of a generic variable denoted by
U that is unknown and unobserved. At this point in our conceptualization, U can
potentially be an actual characteristic that is unobserved, or it can be a quantity that
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combines multiple effect moderation factors. Our purpose is to determine whether
sensitivity analyses for the V case can be adapted for the current case (which we
refer to as the U case).

The full-weighting method requires U to be observed in the RCT, and so can-
not be used here. The outcome-model-based methods, with a formula for TATE
that includes the βt term [like the formula in equation (3.2), except replacing V

with U ], also cannot be used because the estimation of βt depends on the variables
interacting with treatment, including U . However, a small modification results in
methods that work for a special definition of U .

4.1. Two sensitivity analyses for the U case.

4.1.1. Bias-formula-based sensitivity analysis. Assume the linear potential
outcomes model

(4.1) E
[
Y t

i

] = β0 + βt t + βztZit + βutUit + fxzu(Xi,Zi,Ui)

is similar to the model for the V case, also with no three-way interaction with treat-
ment. With the assumption of sample ignorability for treatment effects conditional
on Z, U , we have both

SATE = βt + βztE[Z|S = 0] + βutE[U |S = 1] and(4.2)

TATE = βt + βztE[Z|S = 0] + βutE[U |S = 1].(4.3)

Note that this assumption requires U to capture all effect moderating forces other
than Z, thus narrowing the definition of U . Equation (4.2) and equation (4.3) imply
that

(4.4)
TATE = SATE + βzt

{
E[Z|S = 0] −E[Z|S = 1]}

+ βut

{
E[U |S = 0] −E[U |S = 1]}.

On the right-hand side of equation (4.4), SATE can be estimated unbiasedly as the
difference in mean outcome between the two treatment conditions in the RCT. To
use equation (4.4) for sensitivity analysis, we need an unbiased estimate of βzt .
Like in the V case, the model used to estimate βzt needs to include all X variables
that are correlated, or interact, with Z. Leaving U out of the model, however,
generally leads to bias in the estimated βzt (as well as other coefficients). The only
situation where omitting U would not bias βzt is when U is independent of Z.
This requires further refining the definition of U to a quantity that combines all the
unobserved moderating factors after “regressing out” Z. We call this variable the
remaining composite moderator after accounting for Z, and denote it by U(z).8

8This consideration of U(z) independent of all observed moderators Z parallels the convention
of evaluating treatment effect sensitiveness to an unobserved confounder independent of observed
confounders [Rosenbaum and Rubin (1983a)].
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With U(z) so defined, we can estimate βzt and use

(4.5)
TATE = SATE + βzt

{
E[Z|S = 0] −E[Z|S = 1]}

+ βut

{
E[U(z)|S = 0] −E[U(z)|S = 1]}

for sensitivity analysis. By varying βut {E[U(z)|S = 0] − E[U(z)|S = 1]}, we get a
range for the point estimate of TATE. We will address how to specify ranges for
such an unknown quantity after discussing the weighting-plus-bias-formula-based
method.

4.1.2. Weighting-plus-bias-formula-based sensitivity analysis. With this ap-
proach, we have the option of weighting the RCT sample to adjust for Z and
conducting a bias-formula-based sensitivity analysis for a U that is independent of
Z (the remaining composite moderator after accounting for Z). Yet it is plausible
that X variables may carry some (even if limited) information about unobserved
moderators—they may be correlated with unobserved moderators, but the correla-
tions are small so that X do not appear to be moderators themselves. We therefore
propose adjusting for both X and Z through weighting and then conducting sensi-
tivity analysis for a U independent of X, Z (the remaining composite moderator
after accounting for X, Z). We denote this variable by U(xz).

We weight the individuals in the RCT by their odds of being in the target pop-
ulation sample conditional on X, Z, referred to as W . The weighted RCT sample
now better resembles the target population sample with respect to the distribution
of X, Z. On the other hand, it resembles the unweighted RCT sample with respect
to the distribution of U because U is independent of X, Z. We call the ATE esti-
mated from this weighted sample the X-and-Z-adjusted ATE (xzATE). Based on
the potential outcomes model,

xzATE = βt + βzt

∑
i SiWiZi∑

i SiWi

+ βutE[U(xz)|S = 1](4.6)

≈ βt + βztE[Z|S = 0] + βutE[U(xz)|S = 1],(4.7)

where
∑

i SiWiZi/
∑

i SiWi is the weighted trial sample mean Z. This means

TATE = xzATE + βzt

{
E[Z|S = 0] −

∑
i SiWiZi∑

i SiWi

}

(4.8)
+ βut

{
E[U(xz)|S = 0] −E[U(xz)|S = 1]}, and

TATE ≈ xzATE + βut

{
E[U(xz)|S = 0] −E[U(xz)|S = 1]}.(4.9)

An unbiased estimate for xzATE is the difference between the weighted means
of the outcome in the two treatment conditions in the RCT. If the weighting
succeeds in equating the means of Z between the RCT and target population
datasets, then equation (4.9) can be used for sensitivity analysis. If the weight-
ing reduces the distance between these means but not to zero, then equation
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(4.8) can be used. If equation (4.8) is used, then we get a range for TATE
point estimates corresponding to the plausible range specified for the unknown
βut {E[U(xz)|S = 0] − E[U(xz)|S = 1]}. If equation (4.9) is used, then, in addition
to the point estimate range, we also get confidence limits for TATE.

Plausible range specification for sensitivity parameters. Both of the bias-
formula-based methods require specifying some plausible range for the unknown
βut {E[U |S = 0] − E[U |S = 1]}, where U is either U(z) or U(xz). This quantity
can be considered the combination of two sensitivity parameters: one represent-
ing the moderation effect (βut ) and the other representing the association between
U and sample membership (the difference in mean U between the two samples,
E[U |S = 0] − E[U |S = 1]). As the remaining composite moderator (combining
potentially multiple moderating factors), the most appropriate form for U to take
is perhaps the form of a continuous variable. We propose using a standardized
metric here, and so the difference in mean U between the two samples is in stan-
dard deviation units, and βut is the change in treatment effect associated with one
standard deviation difference in U .

Alternative conceptualization of U as a natural variable. The definition of U as
a composite variable—representing the remaining effect moderation factors after
accounting for Z or for X, Z—requires some degree of abstraction away from
real-world quantities. It may be common, however, for scientists to think in more
concrete terms, asking whether there may exist an unobserved natural variable
(as opposed to a composite variable) that moderates treatment effect and that is
differentially distributed between the target population and the RCT sample. It is
important to note that this is a special-case interpretation of U , and that it requires
that (1) this unobserved natural variable is the only unobserved moderator, and that
it is either (2a) independent of X, Z (if using the weighting-plus-bias-formula-
based method and weighting to adjust for X, Z) or (2b) independent of Z (if using
the bias-formula-based method or if using the weighting-plus-bias-formula-based
method but weighting to adjust for Z only). In this special case where U is a
natural variable, it can be of any form, for example, continuous, dichotomous,
polytomous, etc.

5. Real data application. We consider a smoking cessation RCT for drug
and/or alcohol-dependent adults [Reid et al. (2008)], known as CTN9 in NIDA’s
Clinical Trial Network’s repository of substance use treatment RCTs. Partici-
pants (n = 225) were adult cigarette smokers who at baseline smoked at least
10 cigarettes per day, recruited from among people who attended outpatient
community-based treatment programs for opiate, cocaine and alcohol dependence.
They were randomly assigned in a 2:1 ratio to receive either smoking cessation
treatment or no such treatment. Smoking cessation treatment consisted of one
week of group counseling before the target quit date and eight weeks of group
counseling plus transdermal nicotine patch treatment (21 mg per day for weeks 1
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to 6 and 14 mg per day for weeks 7 and 8) after the target quit date. We retain 200
participants in analysis (including 65 treated and 135 controls), excluding 18 with
no outcome data, and then an additional seven who were either in a controlled
environment or Asian, Pacific Islanders and Native Americans, since generaliz-
ing from such small numbers would be inadvisable, given the plausibility of these
categories as effect moderators.

Given NIDA’s interest in using NIDA-supported RCTs to generate evidence
relevant to practice, we define the target population to be adults in the US who seek
treatment for alcohol/substance use disorders who also smoke at least 10 cigarettes
per day. To represent this target population, we use a subset of the 2014 National
Survey on Drug Use and Health (NSDUH), a representative sample of the US
population excluding homeless persons outside shelters, active duty personnel and
those in controlled environments. Out of 55,271 NSDUH respondents, 2751 were
adults (aged 18 and older) who reported having ever sought treatment for substance
abuse, excluding Asians, Pacific Islanders and Native Americans. Of those, 934
reported smoking at least 10 cigarettes a day on average, comprising our target
population sample. [R-code for implementing this application can be found in the
Supplementary Material, Nguyen et al. (2017)].

Table 1 summarizes baseline characteristics of the RCT sample [including de-
mographics, education, employment, baseline smoking, cigarette addiction sever-
ity score, number of past quit attempts, years smoking, reasons for quitting, and
primary substance of abuse; see Reid et al. (2008) for detailed description] and the
same variables (if available) from the target population sample. The two samples
differ in all the characteristics observed in both: the RCT sample has larger propor-
tions of Hispanic, African–American and female participants, is older and smokes
more on average.

Reid and colleagues analyzed the RCT data using a longitudinal model with the
daily numbers of cigarettes smoked (collected once a week during active treatment
and at three and sixteen weeks after treatment) as repeated outcome measures.
They found a significant reduction in the number of cigarettes smoked per day in
the treatment group. In our analysis, we use the mean number of cigarettes smoked
per day over the eight weeks after the target quit date as the outcome variable. This
is justifiable since after the target quit date, the number of cigarettes smoked by the
treatment group declined and stayed at about the same level throughout the end of
treatment.

To get an estimate of SATE, we fit a linear model for the outcome that includes
treatment condition and all the baseline covariates in Table 1. Consistent with find-
ings by Reid and colleagues, we find a significant average decrease of ten cigarettes
a day as a result of the treatment. We then explore treatment effect heterogene-
ity, considering models with the same variables (as main effects) plus covariate-
treatment interactions. For model selection, we use stepwise regression with for-
ward selection and backward elimination, minimizing the Akaike information cri-
terion. The model selected, presented in Table 2, includes interaction terms of
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TABLE 1
Baseline characteristics of the RCT (n = 200) and target population (n = 934) samples

Target
RCT population

Demographics
Male gender: number (%) 105 (52.5) 587 (62.8)

Race/ethnicity: number (%)
White 73 (36.5) 764 (81.8)

African–American 51 (25.5) 67 (7.2)

Hispanic 61 (30.5) 58 (6.2)

Multiple 15 (7.5) 45 (4.8)

Age in years: mean (SD) 42.3 (9.6) 36.9 (12.3)

Years of education: mean (SD) 11.5 (2.1)

Employment: number (%)
Full-time 49 (24.5)

Part-time or student 25 (12.5)

Retired or unemployed 126 (63.0)

Primary substance abuse
Primary substance of abuse: number (%)

Opiates 113 (56.5)

Cocaine 39 (19.5)

Alcohol/other 48 (24.0)

Severity of primary substance abuse: mean (SD) 0.76 (1.04)

Cigarette smoking and addiction
Daily number of cigarettes: mean (SD) 21.2 (11.3) 17.6 (8.4)

Number of smoking years: mean (SD) 26.4 (9.9)

Number of quit attempts: mean (SD) 5.2 (12.6)

Urine cotinine: mean (SD) 1209 (667)
Addiction severity score: mean (SD) 4.05 (0.78)

Withdrawal scale: mean (SD) 1.68 (0.98)

SD = standard deviation.

treatment with African–American race category, baseline number of cigarettes per
day and with baseline cigarette addiction severity. Specifically, African–American
participants and participants who smoked a larger number of cigarettes per day at
baseline experienced a larger reduction, and those with higher baseline addiction
score experienced a smaller reduction in cigarettes smoked per day.

A key problem with trying to generalize the RCT results to the target population
is that the baseline cigarette addiction severity score is a treatment effect moder-
ator, but its target population distribution is unknown because this variable is not
available from the NSDUH. The methods described in this paper can be used to
generate TATE estimates accounting for possible distributions of cigarette addic-
tion severity in the target population. In the RCT, the mean of this variable is 4.05
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TABLE 2
Treatment effects from the outcome model with interaction terms

Variable Coefficient 95% confidence interval

Treatment −6.15 (−14.37,−2.06)

Treatment × African–American −4.09 (−8.09,−0.09)

Treatment × baseline daily number of cigarettes −0.60 (−0.76,−0.43)

Treatment × baseline cigarette addiction severity 2.37 (0.33,4.41)

This model also includes all covariates in Table 1 as main effects.

(on a 1 to 5 scale). We assume that the mean cigarette addiction severity score in
the target population is somewhere between 3 and 5, and let this sensitivity param-
eter vary over this range. Applying the outcome-model-based method described in
Section 3.1.1, we have TATE ranging from −9.87, 95% CI (−12.51,−7.23) (cor-
responding to mean baseline addiction score 3) to −5.13, 95% CI (−7.98,−2.28)

(corresponding to mean baseline addiction score 5).
For the weighted-outcome-model-based method, the first step is to weight the

RCT sample to achieve balance in the moderators observed in both samples: race
and baseline number of cigarettes per day. Exploring two methods of estimating
the conditional probability of being in the RCT sample (logistic regression and
generalized boosted models) and two sets of variables (moderators only and mod-
erators plus other covariates), we find that the weights generated from the logistic
sample membership based on the combination of moderators and covariates ob-
served in both samples (race, baseline cigarettes per day, age and gender) result in
the best balance, for the moderators as well as the other covariates. Specifically,
these weights reduced the standardized mean differences (between the target popu-
lation sample and the RCT sample) for all race categories, age and gender to under
0.05; and reduced that for baseline daily number of cigarettes from 0.43 before
weighting to 0.15 after weighting.

TABLE 3
Treatment effects from the weighted outcome model with interaction terms

Variable Coefficient 95% confidence interval

Treatment −3.70 (−17.13,9.72)

Treatment × African–American −4.49 (−8.11,−0.87)

Treatment × baseline daily number of cigarettes −0.55 (−0.82,−0.27)

Treatment × baseline cigarette addiction severity 1.77 (−1.77,5.30)

This model was fit to RCT data weighted to adjust for the differential distribution of race, gender, age
and baseline daily number of cigarettes between the two samples. The model includes all covariates
in Table 1 as main effects.
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FIG. 2. Results of the outcome-model-based and weighted-outcome-model-based sensitivity anal-
yses with the data application.

Using these weights, we fit the same outcome model with interactions to the
weighted RCT sample; results are presented in Table 3. The coefficients of the
interaction terms are similar to those from the unweighted model in Table 2, but
their confidence intervals are wider due to the weighting. Applying the weighted-
outcome-model-based sensitivity analysis, we have TATE ranging from −8.36,
95% CI (−12.50,−4.23) (corresponding to mean baseline addiction score 3)
to −4.83, 95% CI (−8.76,−0.90) (corresponding to mean baseline addiction
score 5).

Figure 2 includes the ranges of TATE with confidence bounds from both the sen-
sitivity analyses presented here. These ranges are below zero, suggesting that this
smoking cessation intervention, if applied to the target population, would result in
smoking reduction. These results are generally consistent with the RCT findings,
but give us more confidence in what the effects would be among the target pop-
ulation of cigarette smokers among people seeking alcohol/drug use treatment in
the US.

6. Discussion. This paper presents approaches for assessing the sensitivity of
the estimated treatment effect to an unobserved treatment effect moderator when
generalizing from a RCT to a target population. The paper addresses two distinct
situations. The first situation arises naturally as researchers find from analyzing
RCT data that there are variables that moderate treatment effect, but some of those
variables (V ) are not available from the data they have for the target population.
For this case, we offer an outcome-model-based method, a method fully based
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on weighting, and a weighted-outcome-model-based method which combines ele-
ments of the first two. The two methods based on the outcome model are relatively
straightforward and only require specifying a plausible range for the mean of V

in the target population; the fully weighting method is complicated, and thus is
recommended only for the case with binary moderators.

The second situation is when researchers are concerned that there may be treat-
ment effect heterogeneity that is not detected given the observed variables in the
RCT, and ask what that implies about TATE. Here we consider a composite vari-
able U that represents the remaining effect moderation factors after accounting for
the observed moderators (and possibly other covariates). For this case, we offer
a bias-formula-based method and a weighting-plus-bias-formula-based method.
With both methods, we vary two parameters, one representing U ’s association
with being in the RCT, the other representing its moderation effect, and determine
how TATE estimates change as a function of these parameters.

In this paper, we consider the RCT and the target population samples as disjoint
sets. The proposed methods, however, are easily adapted to the situation where the
RCT sample is a subset of the target population sample. In that case S = 1 denotes
being in the RCT, but all individuals (with S = 1 or S = 0) are in the target popu-
lation sample. All quantities regarding the target population are not conditioned on
S = 0. The weighting procedures involve modeling S using the target population
sample (which includes RCT subjects) and weighting RCT subjects by the inverse
of their probability of being in the RCT.

There are several directions for future extension of these sensitivity analyses.
First, these methods apply when we do not have outcome data for the target popu-
lation. There are, however, situations where the outcome under control or a com-
bination of outcome under control and treatment for different individuals is ob-
served in the target population. Currently, methods exist that use target population
outcome data under control, but only for generalization where all data, including
moderating variables, are observed [Kern et al. (2016)]. The proposed methods
could be adapted to incorporate target population outcome data.

Second, the proposed methods that use weighting are based on a specific
method of adjusting treatment effect estimates for the differential distribution of a
moderator—adjustment by weighting. Another adjustment strategy is to fit a flex-
ible model of the outcome as a function of treatment, covariates and interaction
terms, and either impute potential outcomes for individuals in the target popula-
tion as the basis to estimate TATE or estimate treatment effects for covariate strata
and average these estimates using the target population covariate distribution [see
Kern et al. (2016), for example]. Future work should investigate ways to extend
the sensitivity analysis procedures we present here to that approach.

Third, the proposed methods do not cover the case where researchers are con-
cerned about a specific variable (e.g., parents’ education attainment) that is known
or suspected (based on prior evidence) to moderate treatment effect, but is not
measured by the RCT. Methods for U do not apply, as the moderator in this case
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is a specific variable, not the remaining composite moderator. This situation is re-
lated to our first situation with a specific moderator V , except that this variable
is not measured in the RCT. Future investigation is needed to extend our first set
of proposed methods to this situation, perhaps using a combination of additional
assumptions and external information about this variable.

Fourth, the proposed outcome-model- and bias-formula-based methods assume
a linear model for the potential outcomes. In the case of a binary outcome, for
example, this means assuming treatment affects the outcome on the risk difference
scale. Recent work by Ding and VanderWeele (2015) shows that for a binary out-
come, effects measured on the odds ratio scale tend to be less heterogenous than
on the risk difference (and also risk ratio) scale. One of our next steps is to adapt
these sensitivity analysis methods to effect scales that are less heterogeneous for
specific outcomes, for example, odds ratio for a binary outcome and rate ratio for
a count outcome.

To conclude, in this paper we have presented methods for assessing sensitiv-
ity of results regarding generalizability of treatment effects to effect heterogeneity
on unobserved characteristics. These methods are helpful to researchers and poli-
cymakers who are interested in the effect of a treatment for a certain population,
given the common situation that not all effect moderators are measured both in the
RCT and in the target population.
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SUPPLEMENTARY MATERIAL

Simulation study (DOI: 10.1214/16-AOAS1001SUPPA; .zip). R-code for the
simulation study.

Data example (DOI: 10.1214/16-AOAS1001SUPPB; .zip). R-code for imple-
menting the outcome-model-based and weighted-outcome-model-based methods
on the data example.
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